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Abstract1

An understanding of physics requires knowledge of mathematics. The contrary is not true. By defi-2

nition, pure mathematics contains no physics. Yet historically, mathematics has a rich history filled3

with physical applications. Mathematics was developed by people with intent of making things work.4

In my view, as an engineer, I see these creators of early mathematics, as budding engineers. This book5

is an attempt to tell this story, of the development of mathematical physics, as viewed by an engineer.6

The book is broken down into three topics, called streams, presented as five chapters: 1) Intro-7

duction, 2) Number systems, 3) Algebra Equations, 4) Scalar Calculus, and 5) Vector Calculus. The8

material is delivered as 40 “Lectures” spread out over a semester of 15 weeks, three lectures per week,9

with a 3 lecture time-out for administrative duties. Problems are provided for each week’s assign-10

ment. These problems are written out in LATEX, with built in solutions, that may be expressed by11

un-commenting one line. Once the home-works are turned in, each student is given the solution. The12

students rated these Assignments as the most important part of the course. There is a built in interplay13

between these assignments and the lectures. On many occasions I solved the homework in class, as14

motivation for coming to class.15

There were four exams, one at the end of each of the three sections, and a final. One of the exams16

was in class, three others and the final were evening exams. Each of the exams and assignments are17

LATEX files, with solutions encoded with a one line software switch. The Exams are largely based on18

the Assignments. It is my philosophy that, in principle, the students could see the exam in advance of19

taking it. In a sense they do, since each exam was based directly on the homework.20

Author’s Personal Statement21

An expert is someone who has made all the mistakes in a small field. I don’t know if I would be22

called and expert, but I certainly have made my share of mistakes. I openly state that “I love making23

mistakes, because I learn so much from them.” One might call that the “expert’s corollary.”24

This book has been written out of both my love for the topic of mathematical physics, and a25

frustration for wanting to share many key concepts, and even new ideas on these basic concepts. Over26

the years I have developed a certain physical sense of math, along with a related mathematical sense27

of physics. While doing my research,1 I have come across what I feel are certain conceptual holes that28

need filling, and sense many deep relationships between math and physics, that remain unidentified.29

While what we presently teach is not wrong, it is missing these relationships. What is lacking is an30

intuition for how math “works.” We need to start listening to the language of mathematics. We need31

to let mathematics guide us toward our engineering goals.32

It is my strong suspicion that over the centuries many others have had similar insights, and like me,33

have been unable to convey this slight misdirection. I hope these views can be useful to open young34

minds.35

As summarized in Fig. 1, this marriage of math, physics and engineering will help us make progress36

in understanding the physical world. I turn to mathematics and physics when trying to understand the37

universe. I have arrived in my views following a lifelong attempt to understand human communication,38

i.e., the perception and decoding of human speech sounds. This research arose from my 32 years at39

Bell Labs in the Acoustics Research Department. There such lifelong pursuits were not only possible,40

1http://auditorymodels.org/index.php/Main/Publications
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ENGINEERING MATHEMATICS

PHYSICS

Figure 1: There is a natural symbiotic relationship between Physics, Mathematics and Engineering, as depicted by this
Venn diagram. Physics explores the boundaries. Mathematics provides the method and rigor. engineering transforms the
method into technology. While these three disciplines work well together, there is poor communication due to a different
vocabulary. For example, Matematics rarely, if ever, uses a system of units, whereas Physics and Engineering depend
critically on them. Mathematics strives to abstract the ideas into proofs. Physics rarely, if ever, uses a proof. When they
attempt abstract, they usually get into some difficulity. Engineers blunder ahead, ignoring most of these defects.

they were openly encouraged. The idea was that if you were successful at something, take it as far as1

you can. But on the other side, don’t do something well that’s not worth doing. People got fired for2

the latter. I should have left for University after a mere 20 years,2 but the job was just too cushy.3

In this text it is my goal to clarify some of the conceptual errors when telling the story about4

physics and mathematics. My views have been often inspired by classic works, as documented in the5

bibliography. This book was inspired by my careful reading of Stillwell (2002), through Chapter 216

(Fig. 2). Somewhere in Chapter 22 I stopped reading and switched to the third edition (Stillwell,7

2010), where I saw there was much more to master. At that point I saw that teaching this material to8

sophomores would allow me to absorb the more advanced material at a reasonable pace, which led to9

to this book.10

Back Cover Summary11

This is foremost a math book, but not the typical math book. First, this book is for the engineering12

minded, for those who need to understand math to do engineering, to learn how things work. In that13

sense it is more about physics and engineering. Math skill are critical to making progress in building14

things, be it pyramids or computers, as clearly shown by the many great civilizations of the Chinese,15

Egyptians, Arabs (people of Mesopotamia), Greeks and Romans.16

Second, this is a book about the math that developed to explain physics, to allow people to engineer17

complex things. To sail around the world one needs to know how to navigate. This requires a model18

of the planets and stars. You can only know where you are on earth if you understand where earth19

is, relative to the heavens. The answer to such a deep questions will depend on who you ask. The20

utility and accuracy of that answer depends critically on the depth of understanding of how the worlds21

and heavens work. Who is qualified to answer such question? It is best answered by those who study22

mathematics applied to the physical world.23

2I started around December 1970, fresh out of Graduate school, and retired in December 2002.



CONTENTS 9

Halley (1656–1742), the English astronomer, asked Newton (1643–1727) for the equation that de-1

scribes the orbit of the planets. Halley was obviously interested in comets. Newton immediately2

answered “an ellipse.” It is said that Halley was stunned by the response (Stillwell, 2010, p. 176), as3

this was what had been experimentally observed by Kepler (c1619), and thus he knew Newton must4

have some deeper insight.5

When Halley asked Newton to explain how he knew, Newton said he calculated it. But when6

challenged to show the calculation, Newton was unable to reproduce it. This open challenge eventually7

led to Newton’s grand treatise, Philosophiae Naturalis Principia Mathematica (July 5, 1687). It had8

a humble beginning, as a letter to Halley, explaining how to calculate the orbits of the planets. To do9

this Newton needed mathematics, a tool he had mastered. It is widely accepted that Isaac Newton and10

Gottfried Leibniz invented calculus. But the early record shows that perhaps Bhāskara II (1114–118511

AD) had mastered this art well before Newton.312

Third, the main goal of this book is to teach engineering mathematics, in a way that it can be13

understood, remembered, and mastered, by anyone motivated to learn the topic. How can this near14

impossible goal be achieved? The answered is to fill in the gaps with “who did what, and when.” There15

is an historical story that may be told and mastered, by anyone serious about the science of making16

things.17

To be an expert in a field, one must know its history. This includes who the people were, what they18

did, and the credibility of their story. Do you believe the Pope or Galileo, on the topic of the relative19

position of the sun and the earth? The observables provided by science are clearly on Galileo’s side.20

Who were those first engineers? They are names we all know: Archimedes, Pythagoras, Leonardo da21

Vinci, Galileo, Newton, . . . . All of these individuals had mastered mathematics. This book teaches22

the tools taught to every engineer. Do not memorize complex formulas, rather make the equations23

“obvious” by learning the simplicity of the underlying concepts.24

Credits25

Besides thanking my parents, I would like to credit John Stillwell for his constructive, historical sum-26
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–Jont Allen, Mahomet IL, Dec. 24, 201542
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Preface1

It is widely acknowledged that interdisciplinary science is the backbone of modern scientific investiga-2

tion. This is embodied in the STEM (Science, Technology, Engineering, and Mathematics) programs.3

Contemporary research is about connecting different areas of knowledge, thus it requires an under-4

standing of cross-disciplines. However, while STEM is being taught, interdisciplinary science is not,5

due to its inherent complexity and breadth. Furthermore there are few people to teach it. Mathematics,6

Engineering and Physics (MEP) are at the core of such studies.7

STEM vs. MEP8

Mathematics is based on the application rigor. Mathematicians specifically attend to the definitions9

of increasingly general concepts. Thus mathematics advances slowly, as these complex definitions10

must be collectively agreed upon. Mathematics shuns controversy, and embraces rigor, the opposite11

of uncertainty. Physics explores the fringes of uncertainty. Physicists love controversy. Engineering12

addresses the advancement the technology. Engineers, much like mathematicians, are uncomfortable13

with uncertainty, but are trained to deal with it.14

To create such an interdisciplinary STEM program, a unified MEP curriculum is needed. In my15

view this unification could (should) take place based on a core mathematical training, from a historical16

perspective, starting with Euclid or before (i.e., Chinese mathematics), up to modern information17

theory and logic. As a bare minimum, the fundamental theorems of mathematics (arithmetic, algebra,18

calculus, vector calculus, etc.) need to be appreciated by every MEP student. The core of this19

curriculum is outlined in Table 1.1 (p. ??).20

If in the sophomore year students are taught a common MEP methodology and vocabulary, pre-21

sented in terms of the history of mathematics, they will be equipped to22

1. Exercise interdisciplinary science (STEM)23

2. Communicate with other MEP trained (STEM) students and professors.24

The goal is a comprehensive understanding of the fundamental concepts of mathematics, defined as25

those required for engineering. We assume that students with this deep understanding will end up26

being in the top 0.1% of Engineering. Time will tell, if and when this assumption is proved to be27

correct.28

The key tool is methodology. The traditional approach is a five to six course sequence: Calc I,29

II, III, Linear Algebra IV, DiffEq V and Complex Variables VI, over a time frame of three years (six30

semesters). This was the way I learned math. Following such a formal regime, I felt I had not fully31

mastered the material, so I started over. I now consider myself to be self-taught. We need a more32

effective teaching method. I am not suggesting we replace the standard 6 semester math curriculum,33

rather I am suggesting replacing Calc I, II with this mathematical physics course, based on the historical34

thread, for those students who have demonstrated advanced ability. One needs more than a high school35

education to succeed in college engineering courses.36

By teaching mathematics in the context of history, the student can fully appreciate the underlying37

principles. Including the mathematical history provides a uniform terminology for understanding the38

fundamentals of mathematics. The present teaching method, using abstract proofs, with no (or few)39

11
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figures or physical principles, by design, removes intuition and the motivation that was available to1

the creators of these early theories. This present six semester approach does not function for many2

students, leaving them with poor, or even no intuition.3

There was a healthy culture at Bell Labs: “Find a hard problem, that is worthy of solution, and4

spend 10 years solving it. Be sure it has a solution!” This was certainly my view. To be sure it had5

a solution, I picked problems where the math and physics were almost, but not quite, in a agreement,6

but told the same story. The idea is to have a long-term impact. This view was strongly promoted by7

Richard Hamming. This view was summarized by the slogan “Don’t solve problems that are not worth8

solving.”9
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Mathematics and its History (Stillwell, 2002)

Figure 2: Table of contents of Stillwell (2002)
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Chapter 11

Introduction2

Much of early mathematics centered around the love of art and music, due to our sensations of light3

and sound. Exploring our physiological senses required a scientific understanding of vision and hearing,4

as first explored by Newton (1687) and Helmholtz (1863a) (Stillwell, 2010, p. 261).1 Our sense of color5

and musical pitch are determined by the frequencies of light and sound. The Chinese and Pythagoreans6

are well known for their early contributions to music theory.7

Pythagoras strongly believed that “all is integer,” meaning that every number, and every mathe-8

matical and physical concept, could be explained by integral relationships. It is likely that this belief9

was based on Chinese mathematics from thousands of years earlier. It is also known that his ideas10

about the importance of integers were based on what was known about music theory in those days. For11

example it was known that the relationships between the musical notes (pitches) obey natural integral12

relationships.
image: Pythagoras,
Newton Helmholtz

13

Modern applications of number theory include:14

• Public-private key encryption: which require computationally intensive prime factoring of large15

integers16

• IEEE Floating point2
17

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today18

With the digital computer, digital audio, and digital video coding everything, at least19

approximately into sequences of whole numbers, we are closer than ever to a world in which20

“all is number.”21

Mersenne (1588-1647) contributed to our understanding of the relationship between the wavelength22

and the length of musical instruments. These results were extended by Galileo’s father, and then by23

Galileo himself (1564-1642). Many of these musical contributions resulted in new mathematics, such as24

the discovery of the wave equation by Newton (c1687), followed by its one-dimensional general solution25

by d’Alembert (c1747).26

By that time there was a basic understanding that sound and light traveled at very different speeds27

(thus why not the velocities of different falling weights?).28

Ole Rõmer first demonstrated in 1676 that light travels at a finite speed (as opposed to29

instantaneously) by studying the apparent motion of Jupiter’s moon Io. In 1865, James30

Clerk Maxwell proposed that light was an electromagnetic wave, and therefore traveled at31

the speed c appearing in his theory of electromagnetism.332

1https://en.wikipedia.org/wiki/Acoustics
2https://en.wikipedia.org/wiki/IEEE_floating_point\#Formats
3https://en.wikipedia.org/wiki/Speed_of_light

15
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Galileo famously conceptualized an experiment in 1589 where he suggested dropping two different1

weights from the Leaning Tower of Pisa, and showed that they must take the same time to hit the2

ground. Conceptually this is an important experiment, driven by a mathematical argument in which3

he considered the two weights to be connected by an elastic cord. This resulted in the concept of4

conservation of energy, one of the cornerstones of modern physical theory.5

Mass

Mass

Spring

Mass

Mass

t = 0

t = 1

Figure 1.1: Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses
(weight) must fall with identical velocity. By joining them with an elastic cord they become one. Thus if the velocity
were proportional to the mass, the joined masses would fall even faster. This results in a logical fallacy. This may have
been the first time that the principle of conservation of energy was clearly stated.

While Newton may be best known for his studies on light, he was the first to predict the speed of6

sound. However his theory was in error by4
√
cp/cv =

√
1.4 = 1.183. This famous error would not be7

resolved for over two hundred years, awaiting the formulation of thermodynamics and the equipartition8

theorem, by Maxwell and Boltzmann, and others. What was needed was the concept of constant-heat,9

or adiabatic process. For audio frequencies (0.02-20 [kHz]), the small temperature gradients cannot10

diffuse the distance of a wavelength in one cycle (Pierce, 1981; Boyer and Merzbach, 2011), “trapping”11

the heat energy in the wave. There were several other physical enigmas, such as the observation that12

sound disappears in a vacuum and that a vacuum cannot draw water up a column by more than 3413

feet.14

There are other outstanding examples where physiology impacted mathematics. Leonardo da Vinci15

is well known for his studies of the human body. Helmholtz’s theories of music and the percep-16

tion of sound are excellent examples of under-appreciated fundamental mathematical contributions17

(Helmholtz, 1863a). Lord Kelvin (aka William Thompson),5 was one of the first true engineer-scientists,18

equally acknowledged as a mathematical physicist, well known for his interdisciplinary research, and19

knighted by Queen Victoria in 1866. Lord Kelvin coined the term thermodynamics, a science more20

fully developed by Maxwell (the same Maxwell of electrodynamics). Thus the interdisciplinary nature21

of science has played many key roles in the development of thermodynamics.6 Lord Rayleigh’s book on22

the theory of sound (Rayleigh, 1896) is a classic text, read even today by those who study acoustics.23

It seems that we have somewhat retracted from this venerable interdisciplinary view of science, by24

splitting the disciplines into into smaller parts, whenever we perceived a natural educational boundary.25

Reforging these natural connections into the curriculum, is essential for the proper training of STEM26

students (scientists, mathematicians and engineers).727

WEEK 128

29

4The square root of the ratio of the specific heat capacity at constant pressure to that at constant volume
5Lord Kelvin was one of half a dozen interdisciplinary mathematical physicists, all working about the same time, that

made a fundamental change in our scientific understanding. Others include Helmholtz, Stokes, Green, Heaviside, Rayleigh
and Maxwell.

6Thermodynamics is another example of a course that needs reworking along historical lines. (Kuhn, 1978)
7Perhaps its time to put the MEP Humpty Dumpty back together.
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1.1 Early Science and Mathematics1

The first 5,000 years is not well document, but the basic record is clear, as outlined in Fig. 1.2. Thanks2

to Euclid and later Diophantus (c250 CE), we have some vague understanding Chinese thought. For3

example, Euclid’s formula (Eq. 1.4, p. 40; Sec. 2.2.1, Fig. 2.3, p. 117) provides a method for computing4

Pythagorean triplets, a formula known long before Euclid (Stillwell, 2010, pp. 4-9).5

Chinese Bells and stringed musical instruments were exquisitely developed in their tonal quality, as6

documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was7

so rich that one must question why the Chinese failed to initiate the industrial revolution. Specifically,8

why did Europe eventually dominate with its innovation when it was the Chinese who did the extensive9

early invention?10

According to Lin (1995) this is known as the Needham question:11

“Why did modern science, the mathematization of hypotheses about Nature, with all its12

implications for advanced technology, take its meteoric rise only in the West at the time of13

Galileo[, but] had not developed in Chinese civilization or Indian civilization?”14

Needham cites the many developments in China:815

“Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon consid-16

ered as the three most important inventions facilitating the West’s transformation from the17

Dark Ages to the modern world, were invented in China.” (Lin, 1995)18

“Needham’s works attribute significant weight to the impact of Confucianism and Taoism on19

the pace of Chinese scientific discovery, and emphasizes what it describes as the ‘diffusionist’20

approach of Chinese science as opposed to a perceived independent inventiveness in the21

western world. Needham held that the notion that the Chinese script had inhibited scientific22

thought was ‘grossly overrated’ ” (Grosswiler, 2004).23

Lin was focused on military applications, missing the importance of non-military applications. A24

large fraction of mathematics was developed to better understand the solar system, acoustics, musical25

instruments and the theory of sound and light. Eventually the universe became a popular topic, as it26

still is today.27

1.1.1 Lec 1 The Pythagorean theorem28

While early Asian mathematics is not fully documented, it clearly defined the course for at least several
thousand years. The first recorded mathematics was that of the Chinese (5000-1200 BCE) and the
Egyptians (3,300 BCE). Some of the best early record were left by the people of Mesopotamia (Iraq,
1800 BCE). Thanks to Euclid’s Elements (c323 BCE) we have an historical record, tracing the progress
in geometry, as defined by the Pythagorean theorem for any right triangle

c2 = a2 + b2, (1.1)

having sides of lengths (a, b, c) that are either positive real numbers, or more interesting, integers, such29

that c > [a, b] and a + b > c. Integer solutions were likely found by trial and error rather than by30

Euclid’s formula.31

If a, b, c are lengths, then a2, b2, c2 are each the area of a square. Equation 1.1 says that the square
figure?

area a2 square area b2 the square area c2. Today a simple way to prove this is to compute the magnitude
of the complex number c = a+ b, which forces the right angle

|c|2 = (a+ b)(a− b) = a2 + b2.

8https://en.wikipedia.org/wiki/Joseph_Needham\#cite_note-11
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However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers1

and algebra had yet to be invented.2

Almost 700 years after Euclid’s Elements, the Library of Alexandria was destroyed (391 CE) by3

fire, taking with it much of the accumulated Greek knowledge. Thus one of the best technical records4

may be Euclid’s Elements, along with some sparse mathematics due to Archimedes (c300 BCE) on5

geometrical series, computing the volume of a sphere, and the area of the parabola, and elementary6

hydrostatics. Additionally, a copy of a book by Diophantus Arithmetic was discovered by Bombelli7

(c1572) in the Vatican library (Stillwell, 2010, p. 51). This book became an inspirational resource for8

Fermat.9

Chronological history pre 16th century 1.1.2a

200th BCE Chinese (Primes; quadratic equation; Euclidean algorithm (GCD))

180th BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)

6th BCE Pythagoras (Thales) and the Pythagorean “tribe”

4th BCE Euclid (quadratic equation) 300BCE; Archimedes

3th CE Diophantus c250CE;

4th CE Alexandria Library destroyed 391CE;

7th CE Brahmagupta (negative numbers; quadratic equation)

9th CE al-Khwārizmī (algebra) 830CE

10th CE Bhaskara (calculus) 1114-1183

15th Leonardo & Copernicus 1473-1543

16th Tartaglia (cubic eqs); Bombelli 1526-1572; Galileo Galilei 1564-1642

Time Line

1500BCE |0CE |500 |1000 |1400 |1650

Christ

Chinese
Babylonia

Pythagoreans
Euclid

LeonardoBrahmagupta
Diophantus Bhaskara

Archimedes
Bombelli

al−Khawarizmi Copernicus

Figure 1.2: Mathematical time-line between 1500 BCE and 1650 CE.

1.1.2 Pythagorean Triplets10

Well before Pythagoras, the Babylonians had tables of Pythagorean triplets (PTs), integers [a, b, c]11

that obey Eq. 1.1. An example is [3, 4, 5]. A stone tablet (Plimpton-322) dating back to 1800 [BCE]12

(Fig. 1.9, p. 41) was found with integers for [a, c]. Given such sets of two numbers, which determined a13

third positive integer b such that b =
√
c2 − a2, this table is more than convincing that the Babylonians14

were well aware of PTs, but less convincing that they had access to Euclid’s formula (Eq. 1.4 p. 40).15

It seems likely that Euclid’s Elements was largely the source of the fruitful 6th century era due to16

the Greek Mathematician Diophantus (Fig. 1.2), who developed the concept of discrete mathematics,17

now known as Diophantine analysis.18

The work of Diophantus was followed by a rich mathematical era, with the discovery of 1) early cal-19

culus (Brahmagupta, 7th CE), 2) algebra (al-Khwārizmī, 9th CE), and 3) complex arithmetic (Bombelli,20

15th CE). This period overlapped with the European middle (aka, dark) ages. Presumably European21

intellectuals did not stop thinking during these many centuries, but what happened in Europe is22

presently unclear given the available records.923

9It might be interesting to search the archives of the monasteries, where the records were kept, to figure out what
happened during this strange time.
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1.1.3 What is mathematics?1

Mathematics is a language, not so different from other languages. Today’s mathematics is a written2

language with an emphasis on symbols and glyphs, biased toward Greek letters. The etymology of these3

symbols would be interesting to study. Each symbol is dynamically assigned a meaning, appropriate4

for the problem being described. These symbols are then assembled to make sentences. It is similar5

to Chinese in that the spoken and written version are different across dialects. In fact, like Chinese,6

the sentences may be read out loud in the language (dialect) of your choice, while the mathematical7

sentence (like Chinese) is universal.8

Math (i.e., the syntax) is a language: It seems strange when people complain that they “can’t9

learn math,”10 but they claim to be good at languages. Math is a language, with the symbols taken10

from various languages, with a bias toward Greek, due to the popularity of Euclid’s Elements. Learning11

languages is an advanced social skill. However the social outcomes are very different between learning a12

romance language and math. Learning a new language is fun because it opens doors to other cultures.13

Math is different due to the rigor of the rules of the language, along with the way it is taught (e.g.,14

not as a language). A third difference between math and the romance languages is that math evolved15

from physics, with important technical applications. This was the concept behind the Pythagorean16

school, a band of followers called the Pythagoreans.17

A further problem is that pre-high-school students confuse arithmetic with math. The two topics18

are very different, and students need to understand this. One does not need to be good at arithmetic19

to be good at math (but it doesn’t hurt).20

There are many rules that must be mastered. These rules are defined by algebra. For example the21

sentence a = b means that the number a has the same value as the number b. The sentence is spoken22

as “a equals b.” The numbers are nouns and the equal sign says they are equivalent, playing the role of23

a verb, or action symbol. Following the rules of algebra, this sentence may be rewritten as a− b = 0.24

Here the symbols for minus and equal indicate two types of actions.25

Sentences can become arbitrarily complex, such as the definition of the integral of a function, or a26

differential equation. But in each case, the mathematical sentence is written down, may be read out27

loud, has a well defined meaning, and may be manipulated into equivalent forms following the rules28

of algebra and calculus. This language of mathematics is powerful, with deep consequences, known as29

proofs.30

The writer of an equation should always translate (explicitly summarize the meaning of the expres-31

sion), so the reader will not miss the main point. This is simply a matter of clear writing.32

Language may be thought of as mathematics (turning this idea on its head). To properly write33

correct English it is necessary to understand the construction of the sentence. It is important to34

identify the subject, verb, object, and various types of modifying phrases. If you wish to read about35

this, look up the distinction between the words that and which, which make a nice example of this36

concept. Most of us work directly with what we think “sounds right,” but if you’re learning English as37

a second language, it is very helpful to understand the rules, which are arguably easier to master than38

the foreign phones (i.e., speech sounds).39

1.1.4 Early Physics as Mathematics40

The role of Mathematics is to summarize algorithms (i.e., sets of rules). It was clear to Pythagoras41

(and many others before him), that there was an important relationship between mathematics and42

the physical world. Pythagoras may have been one of the first to capitalize on this relationship, using43

science and mathematics to design and make things.11 This was the beginnings of technology as44

we know it, coming from the relationship between physics and math, impacting map making, tools,45

10“It looks like Greek to me.”
11It seems likely that the Chinese and Egyptians also did this, but that is more difficult to document.
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Figure 1.3: Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli; Below: Leonhard Euler (1707) and Jean le
Rond d’Alembert (1717-1783). The figure numbers are from Stillwell (2010).
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implements of war (the wheel, gunpowder), art (music), sound, water transport, sanitation, secure1

communication, food, . . . , etc.2

Why is Eq. 1.1 called a theorem, and what exactly needs to be proved? We do not need to prove3

that (a, b, c) obey this relationship, since this is a condition that is observed. We do not need to prove4

that a2 is the area of a square, as this is the definition of the area of a square. What needs to be proved5

is that this relation only holds if the angle between the two shorter sides is 90◦, when the sum of the6

areas a2 and b2 equals area c2. It follows that lengths a and b are less than length c, which is less than7

a+ b (i.e., 0 < a ≤ b < c < a+ b).8

To appreciate the significance of this development it is helpful to trace the record back to before9

the time of the Greeks. The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras.10

Rather Euclid and Pythagoras appreciated the importance of these ideas and documented them.11

In the end the Pythagoreans were destroyed by fear. This may be the danger of mixing technology12

and politics:13

“Whether the complete rule of number (integers) is wise remains to be seen. It is said that14

when the Pythagoreans tried to extend their influence into politics they met with popular15

resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 BCE.”16

–Stillwell (2010, p. 16)17

Chronological history post 16th century 1.1.2b

17th Galileo 1564-1642, Kepler 1571-1630, Newton 1642-1727 Principia 1687; Mersenne; Huy-
gen; Pascal; Fermat, Descartes (analytic geometry); Bernoullis Jakob, Johann & son Daniel

18th Euler 1748 Student of Johann Bernoulli; d’Alembert 1717-1783; Kirchhoff; Lagrange;
Laplace; Gauss 1777-1855

19th Möbius, Riemann 1826-1866,
Cauchy 1789-1857, Helmholtz 1821-1894, Maxwell 1831-1879, Heaviside 1850-1925,
Rayleigh 1842-1919

20th Hilbert; Einstein; . . .

Time Line

|1525 |1600 |1700 |1800 |1875 |1925

Mersenne

Fermat

Hilbert

US Civil War

Descartes

Ben Franklin

Johann Bernoulli

Jacob Bernoulli
Daniel Bernoulli

Einstein
Huygens

Euler

Newton

d′Alembert

Gauss

Galileo Cauchy
Helmholtz

Maxwell

Riemann

Bombelli

Rayleigh

Figure 1.4: Time-line of the four centuries from the 16th and 20th CE. Given the time line, it is likely that Bombelli’s dis-
covery of Diophantus’ book on “Arithmetic” in the Vatican library, triggered many of the ideas presented by Descarte and
Fermat, followed by others (i.e., Newton). Bombelli’s discovery might be considered as a magic moment in mathematics.
The vertical red lines connect mentor-student relationships. .

1.1.5 The birth of modern mathematics18

Modern mathematics (what we know today) was born in the 15-16th century, in the hands of Leonardo19

da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Stillwell, 2010). Many of these early20

master were, like the Pythagoreans, secretive to the extreme about how they solved problems. They21

had no interest in sharing their ideas. This soon changed due to Mersenne, Descartes and Newton,22

causing mathematics to blossom.23
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The amazing Bernoulli family The first individual that seems to have openly recognized the1

importance of mathematics, to actually teach it, was Jacob Bernoulli (Fig. 1.3). Jacob worked on what2

is now view as the standard package of analytic “circular” (i.e., periodic) functions: sin(x), cos(x),3

exp(x), log(x).12 Eventually the full details were developed (for real variables) by Euler (Section 1.3.94

and 3.4.1).5

From Fig. 1.4 we see that Jacob was contemporary to Mersenne, Descartes, Fermat, Huygens,6

Newton, and Euler. Thus it seems likely that he was strongly influenced by Newton, who in turn was7

influenced by Descartes,13 Vìte and Wallis (Stillwell, 2010, p. 175). With the closure of Cambridge8

University due to the plague of 1665, Newton returned home to Woolsthorpe-by-Colsterworth (95 [mi]9

north of London), to worked by himself, for over a year.10

Jacob Bernoulli, like all successful mathematicians of the day, was largely self taught. Yet Jacob11

was in a new category of mathematicians, because he was an effective teacher. Jacob taught his sibling12

Johann, who then taught his sibling Daniel. But most importantly, Johann taught Leonhard Euler13

(Figs. 1.4, 1.3), the most prolific (thus influential) of all mathematicians. This resulted in an explosion14

of new ideas and understanding. It is most significant that all four mathematicians published their15

methods and findings. Much later, Jacob studied with students of Descartes14 (Stillwell, 2010, p. 268-9).16

Euler went far beyond all the Bernoulli family, Jacob, Johann and Daniel, (Stillwell, 2010, p. 315).17

A special strength of Euler was the degree to which he published. First he would master a topic, and18

then he would publish. His papers continued to appear long after his death (Calinger, 2015).19

Another individual of that time of special note, who also published extensively, was d’Alembert20

(Figs. 1.4, 1.3). Some of the most important tools were first proposed by d’Alembert. Unfortunately,21

and perhaps somewhat unfairly, his rigor was criticized by Euler, and later by Gauss (Stillwell, 2010).22

Once the tools were being openly published, mathematics grew exponentially.15 It was one of the23

most creative times in mathematics. Figure 1.4 shows the list of the many famous names, and their24

relative time-line. To aid in understand the time line, note that Leonhard Euler was a contemporary25

of Benjamin Franklin, and James Clerk Maxwell of Abraham Lincoln.16
26

1.1.6 Three Streams from the Pythagorean theorem27

From the outset of his presentation, Stillwell (2010, p. 1) defines “three great streams of mathematical28

thought: Numbers, Geometry and Infinity,” that flow from the Pythagorean theorem, as summarized in29

Table 1.1. The Pythagorean theorem is the spring from which flow the three streams of all mathematics.30

This is a useful concept, based on reasoning not as obvious as one might think. Many factors are in31

play here. One of these was the strongly held opinion of Pythagoras that all mathematics should be32

based on integers. The rest are tied up in the long, necessarily complex history of mathematics, as33

best summarized by the fundamental theorems (Table 1.2, p. 31), which are each discussed in detail in34

a relevant chapter.35

Stillwell’s concept of three streams following from the Pythagorean theorem is the organizing prin-36

ciple behind the this book, organized by chapter:37

1. Introduction (Chapter 1) A detailed overview of the fundamentals and the three streams are38

presented in Sections 1.2–1.5. This chapter is intended to be self contained. Chapters 2-5 go into39

details for those who wish to know more. If your a novice, stick to chapter 1.40

2. Number Systems (Chapter 2: Stream 1) Fundamentals of number systems, starting with prime41

numbers, through complex numbers, vectors and matrices.42

12The log and tan functions are related by tan−1(z) = − 1
2

ln( 1−z
1+z

).
13https://en.wikipedia.org/wiki/Early_life_of_Isaac_Newton
14It seems clear that Descartes was also a teacher.
15There are at least three useful exponential scales: Factors of 2, factors of e ≈ 2.7, and factors of 10. The decibel uses

factors of 2 (6 [dB]) and factors of 10 (20 [dB]). Information theory uses powers of 2 (1 [bit]), 4 (2 [bits]). Circuit theory
uses in factors of e ≈ 3.7 (11.4 [dB]).

16Lincoln traveled through Mahomet IL (where I live) on his way to the Urbana Court house.
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3. Algebraic Equations (Chapter 3: Stream 2) Algebra and its development, as we know it today.1

The theory of real and complex equations and functions of real and complex variables. Complex2

impedance Z(s) of complex frequency s = σ+ω is covered with some care, given its importance3

for engineering mathematics.4

4. Scalar Calculus (Chapter 4: Stream 3a) Ordinary differential equations. Integral theorems.5

Acoustics.6

5. Vector Calculus: (Chapter 5: Stream 3b) Vector Partial differential equations. Gradient, di-7

vergence and curl differential operators. Stokes, and Green’s theorems. Maxwell’s equations.8

9

Table 1.1: Three streams followed from Pythagorean theorem: Number Systems
(Stream 1), Geometry (Stream 2) and Infinity (Stream 3).

• The Pythagorean Theorem is the mathematical spring which bore the three streams.

• ≈Several centuries per stream:

1) Numbers:

6thBCE N counting numbers, Q (Rationals), P Primes

5thBCE Z Common Integers, I Irrationals

7thCE zero ∈ Z

2) Geometry: (e.g., lines, circles, spheres, toroids, . . . )

17thCE Composition of polynomials (Descartes, Fermat)
Euclid’s Geometry + algebra ⇒ Analytic Geometry

18thCE Fundamental Theorem of Algebra

3) Infinity: (∞ → Sets)

17-18thCE Taylor series, Functions, Calculus (Newton)

19thCE R Real, C Complex 1851

20thCE Set theory

1.2 Stream 1: Number Systems10

Number theory (discrete, i.e., integer mathematics) was a starting point for many key ideas. For ex-11

ample, in Euclid’s geometrical constructions the Pythagorean theorem for {a, b, c} ∈ R was accepted12

as true, but the emphasis in the early analysis was on integer constructions (i.e., {a, b, c} ∈ N), such as13

Euclid’s formula for Pythagorean triplets (Eq. 1.4, Fig. 1.8, p. 40). As we shall see, the Pythagorean14

theorem is a rich source of mathematical constructions, such as composition of polynomials, and solu-15

tions of Pell’s equation by eigenvector and recursive analysis methods. Recursive difference equation16

solutions predate calculus, at least going back to the Chinese (c2000 BCE). These are early (pre-limit)17

forms of differential equations, best analyzed using an eigenfunction expansion (Appendix D), a power-18

ful geometrical concept from linear algebra, of an expansion in terms of an orthogonal set of normalized19

(unit-length) vectors.20

The first use of zero and ∞: It is hard to imagine that one would not appreciate the concept of21

zero and negative numbers when using an abacus. If five beads are moved up, and one is moved down,22

then four are left. Then if four more are move down, that leaves zero. Taking away (subtracting) is the23

opposite of giving (adding). Thus subtraction, to obtain zero beads, is no different than subtraction24

from zero, giving negative four beads. On an abacus, subtraction is obviously the inverse of addition.25

To assume the Romans or the Chinese did not understand negative numbers, seems a bit absurd.26
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Understanding the concept of zero and negative numbers is not the same as having a symbolic1

notation. The Roman number system has no such symbols. The first recorded use of a symbol for zero2

is said to be by Brahmagupta in 628 CE.17 It does not take much imagination to go from counting3

numbers N to the set of all integers Z, including zero, but apparently it takes 600 years to functionally4

develop a terminology, that represents these ideas. Likely this is more about politics and government5

rule, than mathematics. Defining the rules of subtraction required the creation of algebra (c830 CE,6

Fig. 1.2).7

The concept that caused much more difficulty was ∞. Until Riemann’s thesis in 1851 it was not8

clear if ∞ was a number, many numbers, or even definable.9

1.2.1 Lec 2: The Taxonomy of Numbers: P,N,Z,Q, I,R,C10

Once symbols for zero and negative numbers were accepted, progress was made. In a similar manner, to11

fully understand numbers, a transparent notation is required. First one must differentiate between the12

different classes (genus) of numbers, providing a notation that defines each of these classes, along with13

their relationships. It is logical to start with the most basic counting numbers, which we indicate with14

the double-bold symbol N. All the double-bold symbols and their genus are summarized in Appendix15

A.16

Counting numbers N: These are known as the “natural numbers” {1, 2, 3, · · · } ∈ N, denoted by17

the double-bold symbol N. For increased clarity we shall refer to the natural numbers as counting18

numbers, to clarify that natural means integer. The mathematical sentence 2 ∈ N is read as 2 is a19

member of the set of counting numbers. The word set means the sharing of a specific property.20

Primes P: A prime number P is an integer that may not be factored, other than by 1 and itself.21

Since 1 = 1 · 1, 1 6∈ P, as it is seen to violate this basic definition of a prime. Prime numbers P are22

a subset of the counting numbers (P ⊂ N). We shall use the convenient notation πn for the prime23

numbers, indexed by n ∈ N. The first 12 primes (n = 1, . . . , 12) are πn = 2, 3, 5, 7, 11, 13, 17, 19, 23,24

29, 31, 37. Since, 4 = 22 and 6 = 2 · 3 may be factored, {4, 6} 6∈ P (read as: 4 and 6 are not in the set25

of primes). Given this definition, multiples of a prime, i.e., nπk ≡ [2, 3, 4, 5, . . .]× πk of any prime πk,26

cannot be prime. It follows that all primes except 2 must be odd and every integer N is unique in its27

factorization.28

Coprimes are a pair of numbers with no common factors. For example, 4 = 2 · 2 and 6 = 2 · 3 are29

not coprime, as they have 2 as a common factor, whereas 21 = 3 · 7 and 10 = 2 · 5 are. By definition30

all distinct primes are coprime. The notation m ⊥ n indicates that m,n are coprime. The ratio of two31

coprimes is reduced, as it has no factors to cancel. The ratio of two numbers that are not coprime,32

may always be reduced to a smaller ratio, once the common factors are canceled. This is called the33

reduced form, or irreducible fraction. When doing numerical work, it is always beneficial to work with34

irreducible fractions. This is especially important when working with the ratio of polynomials, to35

remove common roots, typically by long division or deconvolution.36

The fundamental theorem of arithmetic states that all integers may be uniquely expressed as a37

product of primes. The Prime Number Theorem estimates the mean density of primes over N.38

Integers Z: These include positive and negative counting numbers and zero. Notionally we might39

indicate this using set notation as Z : {−N, 0,N}. Read this as The integers are in the set composed of40

the negative of the natural numbers −N, zero, and N. Note that N ⊂ Z.41

Rational numbers Q: These are defined as numbers formed from the ratio of two integers. Since42

the integers Z include 1, it follows that integers are a subset of rational numbers (Z ⊂ Q). For example,43

the rational number 3/1∈ Z). The main utility of rational numbers is that that they can efficiently44

17The fall of the Roman Empire has been established as Sept. 4, 476.
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approximate any number on the real line, to any precision. For example the rational approximation1

π ≈ 22/7, has a relative error of ≈0.04%.2

Fractional number F : The power of rational numbers Q is in their ability to approximate irre-3

ducible fractions (R 6⊂ Z). It follows that a subset of the rationals, that excludes the integers, has great4

value. We call these numbers Fractional numbers and assign them the symbol F. They are defined as5

the subset of rationals that are not integers. From this definition F ⊥ Z, F ⊂ Q = Z ∪ F. Because of6

its powerful approximating power, the fractional set F represent the most important (and the largest)7

portion of the rational numbers, dwarfing the size of the integers, another good reason for defining the8

two distinct subsets.9

Once factored, and common factors canceled, the subset F ⊂ Q of rational numbers is always the10

ratio of coprimes. For example π ≈ 22/7 = 11 · 2/7 = 3 + 1/7 with 22 ⊥ 7, and 9/6 = 3/2 = 1 + 1/211

with 3 ⊥ 2.18
12

Irrational numbers I: Every real number that is not rational is irrational (Q ⊥ I, i,e., ✓✓Q).13

Irrational numbers include π, e and the square roots of the primes (∈
√
P). These are decimal numbers14

that never repeat, thus requiring infinite precision in their representation. Such numbers can not (and15

never will) be represented on any computer, as they would require an infinite number of bits (precision).16

Irrational numbers (I) were famously problematic for the Pythagoreans, who incorrectly theorized17

that all numbers were rational. Like ∞, irrational numbers require a new and difficult concept before18

they may even be defined: They were not in the set of fractional numbers (I 6⊂ F). It was easily19

shown, from a simple geometrical construction, that most, but not all of the square roots of integers20

are irrational. It was essential to understand the factorization of counting numbers before the concept21

of irrationals could be sorted out.22

Real numbers R: Reals are the union of rational and irrational numbers, namely R : {I,Q}23

(R = Z ∪ F ∪ I). The lengths in Euclidean geometry are reals. Many people assume that IEEE 75424

floating point numbers (c1985) are real (i.e., ∈ R). In fact they are rational (Q : {F∪Z}) approximations25

to real numbers, designed to have a very large dynamic range. There can be no machine realization26

of irrational numbers, since such a number would require infinite precision (∞ bits). The hallmark of27

fractional numbers (F) is their power in making highly accurate approximations of any real number.28

Using Euclid’s compass and ruler methods, one can make line length proportionally shorter or29

longer, or (approximately) the same. A line may be made be twice as long, an angle bisected. However,30

the concept of an integer length in Euclid’s geometry was not defined.19 Nor can one construct an31

imaginary or complex line as all lines are assumed to be real.32

Real numbers were first fully accepted only after set theory was developed by Cantor (1874) (Still-33

well, 2010, pp. 461, 525. . . ). It seems amazing, given how widely accepted real numbers are today. But34

in some sense they were accepted by the Greeks, as lengths of real lines.35

Complex numbers C: Complex numbers are best defined as ordered pairs of real numbers.20 The36

word “complex,” as used here, does not mean that the number are mystical. The word “imaginary”37

does not mean the numbers disappear. Complex numbers are quite special in engineering mathematics,38

since roots of polynomials are complex. The most obvious example is the quadratic formula for the39

roots of a 2d degree polynomial, having either rational, real or complex coefficients.40

18HW problem: How to define F given two integers (n,m) ⊂ Z? Sol: Not sure how to approach this, but it seems like
a fun problem. Here two simple methods that do not work: (1) One cannot define F as the ratio x = n/m, since given
m = 1, x ∈ Z. (2) One cannot define F as the ratio of two coprimes, since then x = 1/m 6∈ F (since 1 6 P).

19As best I know.

20A polynomial a+ bx and a 2-vector [a, b]T =

[
a
b

]
are also examples of ordered pairs.
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The common way to write a complex number is using the notation z = a+ b ∈ C, where a, b ∈ R.1

Here 1 =
√
−1. We also define 1ı = −1 to account for the two possible signs of the square root.2

Accordingly 12 = 1ı2 = −1.3

Multiplication of complex numbers follows the basic rules of real algebra, for example, the rules of
multiplying two polynomials. Multiplication of two first degree polynomials gives

(a+ bx)(c+ dx) = ac+ (ad+ bc)x+ bdx2

If we substitute 1 for x, and use the definition 12 = −1, we obtain the product of the two complex
numbers

(a+ b)(c+ d) = ac− bd+ (ad+ bc).

Thus multiplication of complex numbers obey the accepted rules of algebra.4

Polar representation: A alternative for complex multiplication is to work with polar coordinates.
The polar form of complex number z = a + b is written in terms of its magnitude ρ =

√
a2 + b2 and

angle θ = ∠z = tan−1(z) = arctan z, as z = ρeθ. From the definition of the complex natural log
function

ln ρeθ = ln ρ+ θ,

which is useful in engineering calculations.21
5

Matrix representation: A second alternative and useful way to represent complex numbers is in
terms of 2x2 matrices. This relationship is defined by the mapping from a complex number to a 2x2
matrix

a+ b↔
[
a −b
b a

]
, 2↔

[
2 0
0 2

]
, −↔

[
0 1
−1 0

]
, eθ ↔

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

]

You might verify that

a+ b

c+ d
=
ab+ bd+ (bc− ad)

c2 + d2
←→

[
a −b
b a

] [
c −d
d c

]−1

=

[
a −b
b a

] [
c d
−d c

]
1

c2 + d2
.

By taking the inverse of the 2x2 matrix one can define the ratio of one complex number by another,6

Until you try out this representation, it may not seem obvious, or even that it could work.7

This representation proves that 1 is not necessary when defining a complex number. What 1 can8

do is to conceptually simplify the algebra. It is worth your time to become familiar with the matrix9

representation, to clarify any possible confusions you might have about multiplication and division of10

complex numbers. This matrix representation can save you time, heartache and messy algebra. Once11

you have learned how to multiply two matrices, it’s a lot simpler than doing the complex algebra. In12

many cases we will leave the results of our analysis in matrix form, to avoid the algebra altogether.22
13

Thus both representations are important. More on this topic may be found in Chapter 2.14

Real versus complex numbers: As discussed in Appendix A (p. 167), all numbers may be viewed
as complex. Namely every real number is complex if we take the imaginary part to be zero (Boas,
1987). For example, 2 ∈ P ⊂ C. Likewise every purely imaginary number (e.g., 0 + 1) is complex with
zero real part. It follows that 2 ∈ P. Integers are a subset of reals, which are a subset of complex
numbers23 Gaussian integers are complex integers (Z ⊂ R ⊂ C).24 From the above discussion it should

21Chapter 2 discusses the definition of the phase, i.e., how is it computed (i.e., arctan(eθ), arctan2(x,y)), and the
importance of the unwrapped phase, as in the example (Section 1.3.11, p. 67) δ(t− τ) ↔ e−τ.

22Sometimes we let the computer do the final algebra, numerically, as 2x2 matrix multiplications.
23The plural complexs (a double /s/) seems an unacceptable word in English.
24It follows that integers are a subset of Gaussian integers (the imaginary or real part of the Gaussian integer may be

zero).
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be clear that each of these different classes of number are nested in a hierarchy, with the following
embedding

πk ∈ P ⊂ N ⊂ Z ⊂ F ⊂ R ⊂ C.

Properties of Q and I: The integers Z and fractionals F split the rationals (Q : Z∪F, Z ⊥ F), thus1

each is a subset of the rationals (Z ⊂ Q, F ⊂ Q). Similarly, the rationals Q and irrationals I split the2

reals (R : Q ∪ I, Q ⊥ I), thus each is a subset of the reals (Q ⊂ R, I ⊂ R).3

The roots of polynomials xk are complex (xk ∈ C), independent of the genus of the coefficients (e.g.,4

real integer coefficients give rise to complex roots). Each genus plays an important role in algebra, with5

prime numbers at the bottom (root of the tree) and complex numbers at the top. We shall explore this6

further in Chaps. 2 and 3.7

Finally, note that complex numbers C do not have “order,” meaning one complex number cannot8

be larger or smaller than another. It makes no sense to say that  > 1 or  = 1 (Boas, 1987). The real9

and imaginary parts and the magnitude and phase, have order. If time t were complex, there could be10

no yesterday and tomorrow.25
11

Applications of integers12

The most relevant question at this point is “Why are integers so important?” We briefly addressed this13

question in Section 1.2.1. First we count with them, so we can keep track of “how much.” But there14

is much more to numbers than counting: We use integers for any application where absolute accuracy15

is essential, such as banking transactions (making change), the precise computing of dates (Stillwell,16

2010, p. 70) and location (“I’ll meet you at 34 and Vine at noon on Jan. 1, 2034.”), building roads or17

buildings out of bricks (objects of a uniform size).18

To navigate we need to know how to predict the tides, the location of the moon and sun, etc. Integers19

are important because they are precise: Once a month there is a full moon, easily recognizable. The20

next day its slightly less than full.21

The Pythagoreans claimed that all was integer. From a practical point of view, it seems they were22

right. Today all computers compute floating point numbers as rational integers. However in theory,23

they were wrong.24

History of complex numbers: It is notable how long it took for complex numbers to be accepted25

(1851), relative to when they were first introduced by Bombelli (16th century CE). One might have26

thought that the solution of the quadratic, known to the Chinese, would have settled the question.27

It seems that complex integers (aka, Gaussian integers) were accepted before non-integral complex28

numbers. Apparently real numbers (R) were not accepted (i.e., proved to exist, thus mathematically29

defined) until even later. It took the development of set theory in the late 19th century to sort out a30

proper definition of the real number, due to the existence of irrational numbers.31

Numerical Representations of I,R,C: When doing numerical work, one must consider how we32

may compute within the family of reals (i.e., irrationals). There can be no irrational number rep-33

resentation on a computers. IEEE floating point numbers, which are the international standard of34

computation, are actually rational approximations. The mantissa and the exponent are each integers,35

having sign and magnitude. The size of each integer depends on the precision of the number being36

represented. An IEEE floating-point number is rational because it has a binary (integer) mantissa,37

multiplied by 2 raised to the power of a binary (integer) exponent. For example π ≈ a2b with a, b ∈ Z.38

In summary, IEEE floating-point numbers are not, and cannot, be irrational, since to do that would39

require an infinite number of bits.40

25One could allow ξ = x+ 1j ct to be complex (x, t ∈ R, with x in meters [m] and t is in seconds [s], with c the speed
of light, in [m/s]).
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True floating point numbers contain irrational numbers, which must be approximate by rational
numbers. This leads to the concept of fractional representation, which requires the definition of the
mantissa, base and exponent, where both the mantissa and the exponent are signed. Numerical results
must not depend on the base. One could dramatically improve the resolution of the numerical repre-
sentation by the use of the Fundamental Theorem of Arithmetic (Section 1.2.2, page 30). For example
one could factor the exponent into its primes and then represent the number as a2b3c5d7e, etc. Such a
representation would improve the resolution of the representation. But even so, the irrational numbers
would be approximate. For example, base ten 26 is natural using this representation since 10n = 2n5n.

table?

Thus

π · 105 ≈ 314 159.27 . . . = 3 · 2555 + 1 · 2454 + 4 · 2353 + · · ·+ 9 · 2050 + ✁2 ·✟✟2−15−1 · · · .

If we approximate π by 22/7, then according to the Matlab/Octave dec2bin() routine, the binary
representation is

π · 217 ≈ 13107210 · 22/7 = 110, 0100, 1001, 0010, 01012,

where 1 and 0 are multipliers of powers of 2, which are then added together as follows

218 + 217 + 214 + 211 + 28 + 25 + 22 + 20.

In base 16 (i.e, hexadecimal) 217 · 22/7 = 218 · 816/716.1

Computers keep track of the decimal point using the exponent, which in this case is the factor 217
2

= 13107210. The concept of the decimal point is replaced by an integer, having the desired precision,3

and a scale factor of any base (radix). This scale factor may be thought of as moving the decimal point4

to the right (larger number) or left (smaller number). The mantissa “fine-tunes” the value about a5

scale factor (the exponent).6

Here is x = 217×22/7 using IEEE 754 double precision, as computed by an IEEE-754 floating point7

converter:27 x = 411, 940.562510 = 254 × 1198372 = 0, 10010, 00, 110010, 010010, 010010, 0100102 =8

0x48c9249216. The commas in the binary (0,1) string are to help visualize the quasi-periodic nature9

of the bit-stream. The mantissa is 4, 793, 49010 and the exponent is 218. The numbers are stored10

in a 32 bit format, with 1 bit for sign, 8 bits for the exponent and 23 bits for the mantissa. Per-11

haps a more instructive number is x = 4, 793, 490.0 = 0, 100, 1010, 100, 100, 100, 100, 100, 100, 100, 100212

= 0x4a92492416, which has a repeating binary bit pattern of ((100))3, broken by the scale factor13

0x4a. Another with even higher symmetry is x = 6.344, 131, 191, 146, 9 × 10−17 = 0x24, 924, 92416 =14

00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1002. In this example the repeating pattern is clear in the15

Hex representation as a repeating ((942))3, as represented by the double brackets, with the subscript16

indicating the period, in this case, 3 digits. As before, the commas are to help with readability, and17

have no other meaning.18

There are other important types of representations. As pairs of reals, complex numbers have similar
approximate representations. An important representations of complex numbers is ez = cosh(z) +
j sinh(z) with z ∈ C, which includes the famous formula of Euler (θ ∈ R)

eθ = cos θ + j sin θ ↔
[
cos θ − sin θ
sin θ cos θ

]
.

Some of these concepts can be generalized to include vectors, matrices and polynomials.19

Integers and the Pythagoreans The integer is the corner stone of the Pythagorean doctrine, so20

much so that it caused a fracture within the Pythagoreans when it was discovered that not all numbers21

are rational. The famous example is the isosceles triangle 1, 1,
√

2, which lead to the next triangle22

26Base 10 is the natural world-wide standard simply because we have 10 fingers.
27http://www.h-schmidt.net/FloatConverter/IEEE754.html
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[1, 2,
√

3], etc. This is known as the Spiral of Theodorus: the short side is 1 and the hypotenuse is1

extended by one, using a simple compass-ruler construction.2

There are right-triangles with integral lengths, the best known being [3, 4, 5]. Such triplets of3

integers [a, b, c] that satisfy the Pythagorean formula (Eq. 1.1) are denoted Pythagorean triplets, which4

may be verified using Euclid’s formula (Eq. 1.4, p. 118).5

To form triangles with perfect 90◦ angles, the lengths need to satisfy Eq. 1.1. Such triangles are6

useful in constructing buildings or roads made from of bricks having a uniform size.7

Public-private key Security: An important application of prime numbers is public-private key8

(RSA) encryption, essential for internet security applications (e.g., online banking). To send secure9

messages the security (i.e., utility) of the internet is dependent on key encryption. Most people assume10

this is done by a personal login and passwords. Passwords are simply not secure, for many reasons. A11

proper method depends on factoring integers formed from products of primes having thousands of bits.28
12

The security is based on the relative ease in multiplying large primes, but the virtual impossibility of13

factoring them.14

When a computation is easy in one direction, but its inverse is impossible, it is called a trap-door15

function. We shall explore the reasons for this in Chapter 2. If everyone were to switch from passwords16

to public key encryption, the internet would be much more secure.17

Puzzles: A third application of integers are imaginative problems that use integers. An example is18

the classic Chinese Four stone problem: “Find the weight of four stones that can be used with a scale19

to weigh any object (e.g., salt, gold) between 0, 1, 2, . . . , 40 [gm].” As with the other problems, the20

answer is not as interesting as the method, since the problem may be easily recast into a related one.21

This type of problem can be found in airline magazines as entertain on a long flight. The solution to22

this problem is best cast as a linear algebra problem, with integer solutions. Again, once you know the23

trick, it is “easy.”29
24

1.2.2 Lec 3: The role of physics in mathematics25

Bells, chimes and Eigenmodes Integers naturally arose in art, music and science. Examples26

include the relations between musical notes, the natural eigenmodes (tones) of strings and other musical27

instruments. These relations were so common and well studied, it appeared that to understand the28

physical world (aka, the Universe), one needed to understand integers. This was a seductive view, but29

not actually correct. As will be discussed in Sections 1.3.1 and 3.1.1, it is best to view the relationship30

between acoustics, music and mathematics as historical, since these topics played such an important31

role in the development of mathematics. Also interesting is the role that integers play in quantum32

mechanics, also based on eigenmodes, but in this case, those of atoms.33

Engineers are so accustomed to working with real (or complex) numbers, the distinction between34

real (i.e., irrational) and fractional numbers are rarely acknowledged. Integers on the other hand35

arise in many contexts. One cannot master programming computers without understanding integer,36

hexadecimal, octal, and binary representations, since all numbers in a computer are represented in37

numerical computations in terms of rationals (Q = Z ∪ F).38

As discussed in Section 1.2.1, the primary reason integers are so important is their absolute precision.39

Every integer n ∈ Z is unique,30 and has the indexing property, which is essential for making lists that40

are ordered, so that one can quickly look things up. The alphabet also has this property (e.g., a book’s41

28It would seem that public key encryption could work by having two numbers with a common prime, and then by
using Euclidean algorithm, that GCD could be worked out. One of the integers could be the public key and the second
could be the private key. Given the difficulty of factoring the numbers into their primes, and ease of finding the GCD
using Euclidean algorithm, a practical scheme may be possible. Ck this out.

29When ever someone tells you something is “easy,” you should immediately appreciate that it is very hard, but there
is a concept, that once you learn, the difficulty evaporates.

30Check out the history of 1729 = 13 + 123 = 93 + 103.
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index). Other than for hexadecimal numbers, which for notional reasons use the alphabet, letters are1

equivalent to integers.2

Because of the integer’s absolute precision, the digital computer overtook the analog computer,3

once it was practical to make logic circuits that were fast. The first digital computer was thought4

to be the Eniac at the University of Pennsylvania, but it turned out that the code-breaking effort in5

Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer (The6

Colossus) to break the WWII German “Enigma” code. Due to the high secrecy of this war effort, the7

credit was only acknowledged in the 1970s when the project was finally declassified.8

There is zero possibility of analog computing displacing digital computing, due to the importance9

of precision (and speed). But even with binary representation, there is a non-zero probability of error,10

for example on a hard drive, due to physical noise. To deal with this, error correcting codes have been11

developed, to reduce the error by several orders of magnitude. Today this is a science, and billions of12

dollars are invested to increase the density of bits per area, to increasingly larger factors. A few years13

ago the terabyte drive was unheard of; today it is the standard. In a few years petabyte drives will14

certainly become available. It is hard to comprehend how these will be used by individuals, but they15

are essential for on-line (cloud) computing.16

Fundamental theorems17

Modern mathematics is build on a hierarchical construct of fundamental theorems, as summarized in18

Table 1.2. The importance of such theorems cannot be overemphasized. Every engineering student19

needs to fully appreciate the significance of these key theorems. If necessary, memorize them. But20

that will not do over the long run, as each and every theorem must be fully understood. Fortunately21

most students already know several of these theorems, but perhaps not by name. In such cases, it is a22

matter of mastering the vocabulary.23

The theorems are naturally organized and may be thought of in terms of Stillwell’s three streams.24

For Stream 1 there is the Fundamental Theorem of Arithmetic and the Prime Number Theorem. For25

Stream 2 there is the Fundamental Theorem of Algebra and Bézout’s theorem, while for Stream 3 there26

are a host of theorems on calculus, ordered by their dimensionality. Some of these theorems verge27

on trivial (e.g., the Fundamental Theorem of Arithmetic). Others are more challenging, such as the28

Fundamental Theorem of Vector Calculus and Green’s theorem.29

Complexity should not be confused with importance. Each of these theorems is, as stated, funda-30

mental. Taken as a whole, they are a powerful way of summarizing mathematics.31

Stream 1: Prime Number theorems:32

There are two fundamental theorems about primes,33

1. The fundamental theorem of arithmetic: This states that every integer n ∈ Z may be uniquely34

factored into prime numbers. This raises the question of the meaning of factor (split into a35

product). The product of two integers m,n ∈ Z is mn =
∑
m n =

∑
nm.36

2. The Prime Number Theorem: One would like to know how many primes there are. That is easy:37

|P| = ∞. (The cardinality, or size of the set of primes, is infinite). The proper way of asking38

this questions is What is the average density of primes, in the limit as n → ∞? This question39

was answered, for all practical purposes, by Gauss, who in his pastime, computed the first three40

million primes by hand. He discovered that, to a good approximation, the primes are equally41

likely, on a log scale. This is nicely summarized by the jingle, attributed to the mathematician42

Pafnuty Chebyshev (Stillwell, 2010, p. 585)43

Chebyshev said, and I say it again: There is always a prime between n and 2n.44

When the ratio (interval) of two frequencies (pitch) is 2, the relationship is called an octave. Thus45

we might say, with a slight stretch of terminology, there is at least one prime per octave. Thus one46
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Table 1.2: The fundamental theorems of mathematics

1. Fundamental theorems of:

(a) Number systems: Stream 1

• arithmetic

• prime number

(b) Geometry: Stream 2

• algebra

• Bézout

(c) Calculus: Stream 3a

• Leibniz R1

• complex C ⊂ R2

• vectors R3,Rn,R∞

• Green: Divergence or Stokes’ theorem

• Vector calculus (Helmholtz’ theorem)

2. Other key concepts:

• Complex analytic functions (complex roots are finally accepted!)

– Complex Taylor series (complex analytic functions)

– Region of convergence (RoC) of complex analytic series

– Laplace transform, and its inverse

– Causal time =⇒ complex frequency s

– Cauchy Integral Theorem

– Residue integration (i.e., Green’s Thm in R2)

• Riemann mapping theorem (Gray, 1994; Walsh, 1973)

• Complex Impedance (Ohm’s Law) (Kennelly, 1893)

aFlanders, Harley (June–July 1973). “Differentiation under the integral sign.” American Math-
ematical Monthly 80 (6): 615-627. doi:10.2307/2319163. JSTOR 2319163.
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might wonder about the maximum number of primes per octave. In modern music the octave is further1

divided into 12 intervals called semitones (factors), equal to the 12
√

2. The product of 12 semitones is2

an octave. Thus one might ask how many primes there are per semitone? In the end, it is a question3

of the density of primes on a log (i.e., ratio) scale.4

Stream 2: Fundamental theorem of algebra5

This theorem states that every polynomial has at least one root. When that root is removed then the6

degree of the polynomial is reduced by 1. Thus when applied recursively, a polynomial of degree N7

has N roots.8

Besides the fundamental theorem of algebra, a second important theorem is Bézout’s theorem,9

which is a generalization of the fundamental theorem of algebra. It says31 that the composition of10

two polynomials has degree equal to the product of the degrees of each polynomial. For example, if11

P3(x) = x3 and P5(x) = x5, then P3(P5)(x) = (x5)3 = x15. It further states that when counting the12

N roots of a polynomial of degree N , one must include the imaginary roots, double roots and roots at13

infinity, some of which may difficult to identify.14

One must wonder what happens when the degree is fractional, or worse, irrational? Are these cases15

covered by Bézout?16

Stream 3: Fundamental theorems of calculus17

In Sections ?? and 1.5.5 we will deal with each of the theorems for Stream 3, where we consider the18

several fundamental theorems of integration, starting with Leibniz’s formula for integration on the real19

line (R), then progressing to complex integration in the complex plane (C) (Cauchy’s theorem), which20

is required for computing the inverse Laplace transform. Gauss’ and Stokes’ Laws for R2 require closed21

and open surfaces, respectively. One cannot manipulate Maxwell’s equations, fluid flow, or acoustics22

without understanding these theorems. Any problem that deals with the wave equation in more than23

one dimension, requires an understanding of these theorems, thus are the basis of the derivation of the24

Kirchhoff voltage and current laws. The ∇ symbol is pronounced as “del” (prefered) or “nabla.”25

Finally we define the four basic vector operations based on the ∇ “operator:” the gradient ∇(),26

divergence ∇·() curl ∇×() and the Laplacian ∇·∇() = ∇2(). The first three operations are defined27

in terms of integral operations on a surface in 1, 2 or 3 dimensions, by then taking the limit as that28

surface, and the volume contained within, goes to zero. These three differential operators are necessary29

if you wish to understand Maxwell’s Equations, the crown jewel of mathematical physics.30

Other key concepts31

Besides the widely recognized fundamental theorems for the three streams, there are a number of32

equally important theorems that have not yet been labeled as “fundamental.”32
33

The widely recognized Cauchy Integral Theorem is an excellent example, since it is a stepping stone34

to Green’s theorem and the fundamental theorem of complex integral calculus. In Section ?? (p. ??)35

we clarify the contributions of each of these special theorems.36

Once these fundamental theorems of integration (Stream 3) have been mastered, the student is37

ready for the complex frequency domain, which takes us back to Stream 2 and the complex frequency38

plane (s = σ+ω ∈ C). While the Fourier and Laplace transforms are taught in Mathematics courses,39

typically few physical connections are made, accordingly the concept of complex frequency is rarely40

mentioned. The complex frequency domain and causality are fundamentally related, and critical for41

the analysis of signals and systems, and especially the concept of impedance (Sect. 1.4.3, p. 75).42

31Statements of the theorem speak of intersections and constructions of curves, rather than compositions. I find
this somewhat confusing. For example, how does intersection differ from elimination, or construction from composition
(Stillwell, 2010, p. 119)?

32It is not clear what it takes to reach this more official sounding category.
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Without the concept of time and frequency, one cannot develop an intuition for the Fourier and1

Laplace transform relationships, especially within the context of engineering and mathematical physics.2

WEEK 23

4

1.2.3 Lec 4: Prime numbers5

If someone came up to you and asked for a theory of counting numbers, I suspect you would look them6

in the eye with a blank stare, and start counting. It sounds like either a bad joke or a stupid question.7

Yet integers are rich topic, so the question is not even slightly dumb. It is somewhat amazing that8

even birds and bees can count. While I doubt birds and bees can recognize primes, cicadas and other9

insects only crawl out of the ground in multiples of prime years, (e.g., 13 or 17 year cycles). If you10

have ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally,11

there is an analytic function, first introduced by Euler, based on his analysis of the sieve, now known12

as the Riemann zeta function ζ(s), which is complex analytic, with its poles at the logs of the prime13

numbers. The exact relationship between the primes and the poles will be discussed in Sections 1.4.1214

(p. 88) and 4.5.1 (p. 151). The properties of this function are truly amazing, even fun.33 It follows that15

primes are a subset of the counting numbers (Section 1.2.1), that the theory of numbers (and primes)16

is an important topic of study. Many of the questions, and some of the answers, go back to at least17

the time of the Chinese (Stillwell, 2010).18

The importance of prime numbers19

Likely the first insight into the counting numbers started with the sieve, shown in Fig. 1.5. A sieve20

answers the question “How can one list the prime numbers?” The answer comes from looking for21

irregular patterns in the counting numbers, by playing the counting numbers against themselves.22

A prime is that subset of positive integers P ∈ N that cannot be factored. The number 1 is not a23

prime, for some non-obvious reasons, but there is no pattern in it since it is always a (useless) factor24

of every counting number.25

Sieves26

A recursive sieve method for finding primes was first devised by the Greek Eratosthenes,34 and sum-27

marized in Fig. 1.5.28

1. Write N − 1 counting number from 2 to N (List)29

2. Define loop index k = 1 and a multiplier n ∈ N denoted n := {2, · · · , N}.30

3. The next number on the list is prime πk ∈ P31

4. Remove (Cross out) all multiples n · πn of πk32

5. k = k + 1: return to step 3.33

Starting from the first prime π1 = 2, one successively strikes out all the multiples of that prime.34

For example, starting from π1 = 2 one strikes out 2 ·2, 2 ·3, 2 ·4, 2 ·5, · · · , 2 ·(N/2). By definition the35

multiples are products of the target prime (2 in our example) and every another integer (n ≥ 2). In36

this way all the even numbers are removed in this first iteration. The next remaining integer (3 in our37

33The Riemann zeta function is known as the million dollar equation as there is a cash reward for a proof of the Riemann
Hypothesis.

34https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes\#Euler.27s_Sieve
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example) is identified as the next (second) prime π2. Then all the (N − 2)/2 multiples of π2 = 3 are1

removed. The next remaining number is π3 = 5, so all multiples of π3 = 5 are removed (i.e., ✚✚10, ✚✚15,2

✚✚25 etc., · · · ). This process is repeated until all the numbers of the list have been either canceled, or3

identified as prime.4

As the word sieve implies, this sifting process takes a heavy toll on the integers, rapidly pruning5

the non-primes. In four iterations of the sieve algorithm, all the primes below N = 50 are identified in6

red. The final set of primes are displayed in the caption of Fig. 1.5.7

1. Write N integers from 2 to N − 1. Let k = 1. The first element π1 = 2 is a prime. Cross out
n · πn: (e.g., n · π1 = 4, 8, 16, 32, · · · ).

2 3 ✚✚4 5 ✚✚6 7 ✚✚8 9 ✚✚10
11 ✚✚12 13 ✚✚14 15 ✚✚16 17 ✚✚18 19 ✚✚20
21 ✚✚22 23 ✚✚24 25 ✚✚26 27 ✚✚28 29 ✚✚30
31 ✚✚32 33 ✚✚34 35 ✚✚36 37 ✚✚38 39 ✚✚40
41 ✚✚42 43 ✚✚44 45 ✚✚46 47 ✚✚48 49 ✚✚50

2. Let k = 2, π2 = 3. Cross out nπk (6, 9, 12, 15, . . .):

2 3 ✚✚4 5 ✚✚6 7 ✚✚8 ✚✚9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 49 ✚✚50

3. Let k = 3, π3 = 5. cross out nπ3. (Cross out 25, 35).

2 3 ✚✚4 5 ✚✚6 7 ✚✚8 ✚✚9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 ✚✚25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 ✚✚35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 ✚✚49 ✚✚50

4. Finally let k = 4, π4 = 7. Remove nπ4: (Cross out 49). Thus there are 15 primes less than
N = 50: πk = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

Figure 1.5: Sieve of Eratosthenes for the case of N = 50.

Once a prime greater than N/2 has been identified, we may stop, since twice that prime is greater8

than N , the maximum number under consideration. Once you have reached
√
N all the primes have9

been identified (this follows from the fact that the next prime πn is multiplied by an integer n = 1, . . . N).10

Once this number nπn > N the list has been exhausted, which must be n <
√
N .11

When using a computer, memory efficiency and speed are the main considerations. There are12

various schemes for making the sieve more efficient. For example the recursion nπk = (n − 1)πk + πk13

will speed up the process, by replacing the multiply with an addition of πk.14

Two fundamental theorems of primes: Early theories of numbers revealed two fundamental
theorems (there are many more than two), as discussed in Section 1.2.2 and 2.1.1 (p. 111). The first
of these is the fundamental theorem of arithmetic, which says that every integer greater than 1 may be
uniquely factored into a product of primes

n =
K
Π
k=1

πβk
k , (1.2)
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where k = 1, . . . ,K indexes the integer’s K prime factors πk ∈ P. Typically prime factors appear1

more than once, for example 25 = 52. To make the notation compact we define the multiplicity βk2

of each prime factor πk. For example 2312 = 23 · 172 = π3
1 π

2
7 (i.e., π1 = 2, β1 = 3;π7 = 17, β7 = 2)3

and 2313 = 32 · 257 = π2
3 π55 (i.e., π2 = 3, β3 = 2;π55 = 257, β55 = 1) Our demonstration of this is4

empirical, using the Matlab/Octave factor(N) routine, which factors N .35
5

What seems amazing is the unique nature of this theorem. Each counting number is uniquely6

represented as a product of primes. There cannot be two integers with the same factorization. Once7

you multiply the factors out, the result is unique (N). Note that it’s easy to multiply integers (e.g.,8

primes), but expensive to factor them. And factoring the product of three primes is significantly more9

difficult than factoring two.10

Factoring is much more expensive that division. This is not due to the difference in the cost of11

division over multiplication. The division of one number by another is only slightly more expensive12

than multiplying two numbers, maybe by a factor of 2.36 Dividing the product of two primes, given one,13

is trivial, slightly more complicated that multiplying. Factoring the product of two primes is nearly14

impossible, as one needs to know what to divide by. This is an explosion in probability, measured15

by Shannon Entropy. Factoring means dividing by some integer and obtaining another integer with16

remainder zero. Thus one could factor factor a product of primes N = πkπl by doing M divisions,17

where M is the number of primes less than N . This assumes the list of primes less than N are known.18

19

But the utility has to do with the density of primes (the prime number theorem, i.e., Gauss’20

hypothesis). If we were simply looking up a few numbers from a short list of primes, it would be easy,21

but the density of primes among the integers, is logarithmic (>1 per octave, Section 2.1.1, p. 112).22

This take us to the Prime Number Theorem (PNT). The security problem is the reason why these23

two theorems are so important: 1) Every integer has a unique representation as a product of primes,24

and 2) the number of primes is very dense (their are a very large number of them, the density is25

proportional to the log of their number). Security reduces to the “needle in the haystack problem,” the26

cost of a search. A more formal way to measure the density is known as Shannon entropy, couched in27

terms of the expected value of the log-probability of events “What is the probability of finding a prime28

between N and 2N?”37
HW problem!

29

Rational numbers Q30

The most important genus of numbers are the rational numbers since they maintain the utility of31

absolute precision, and they can approximate any irrational number (e.g., π ≈ 22/7) to any desired32

precision. However, the subset of rationals we are actually interested in is the fractionals F. Recall33

that Q : F ∪ Z and F ⊥ Z. The fractionals are the numbers with the approximation utility, with34

arbitrary accuracy. Integers are equally important, but for a very different reason. All numerical35

computing today is done with Q. Indexing uses integers Z, while the rest of computing (flow dynamics,36

differential equations, etc.) is done with fractionals F (i.e., IEEE-754). Computer scientists are trained37

on these topics, and computer engineers need to be at least conversant with them.38

Irrational numbers: The cardinality of numbers are ordered: |I|≫ |Q| ≫ |N| = |P|39

The real line may be split into the irrationals and rationals. The rationals may be further split into40

the integers and the fractionals. Thus, all is not integer. If a triangle has two integer sides, then the41

hypotenuse can be irrational (
√

2 =
√

12 + 12). This leads us to a fundamental question: “Are there42

integer solutions to Eq. 1.1?” We need not look further than the simple example {3, 4, 5}. In fact this43

35If you wish to be a Mathematician, you need to learn how to prove theorems. If you’re an Engineer, you are happy
that someone else has already proved them, so that you can use the result.

36https://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/
37When I understand this better, I do a better job of explaining it.
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example does generalize, and the formula for computing an infinite number of integer solutions is called1

Euclid’s Formula, which we will properly discuss in Section 1.2.5, p. 37.2

However, the more important point is that the cardinality of the irrationals is much larger than3

any set other than the reals (i.e., complex numbers). Thus when we use computers to model physical4

systems, we are constantly needing to compute with irrational numbers. But this is impossible since5

every irrational numbers would require an infinite number of bits to represent it. Thus we must compute6

with rational approximations to the irrationals. This means we need to use the fractionals. In the end,7

we must work with the IEEE 754 floating point numbers,38 which are fractionals.8

1.2.4 Lec 5: Greatest common divisor (Euclidean algorithm)9

The Euclidean algorithm is a method to find the greatest common divisor (GCD) k between two integers10

n,m, denoted k = gcd(n,m), where n,m, k ∈ N. For example 15 = gcd(30, 105) since when factored11

(30, 105) = (2 · 3 · 5, 7 · 3 · 5) = 3 · 5 · (2, 7) = 15 · (2, 7). The Euclidean algorithm was known to the12

Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41).13

Why is the GCD important? Computing the GCD is simple, whereas a full factoring is extremely14

expensive. The GCD is important, precisely because of the fundamental difficulty of factoring large15

integers into their primes. This utility surfaces when the two numbers are composed of very large16

primes. When two integers have no common factors they are said to be coprime, thus their GCD is 1.17

The ratio of two integers which are coprime is automatically in reduced form (they have no common18

factors).19

For example 4/2 ∈ Q is not reduced since 2=gcd(4,2). Canceling out the common factor 2, gives20

the reduced form 2/1=2 ∈ N. Thus if we wish to form the ratio of two integers, first compute the21

gcd, and remove it from the two numbers, to form the ratio. This assures the rational number is in its22

reduced form. If the GCD were 103 digits it is obvious that the common factor must be removed to23

greatly simplify further computation.24

An example: Take the two integers [873, 582]. In factored form these are [π25 · 32, π25 · 3 · 2]. Given
the factors, we see that the largest common factor is π25 · 3 = 291 (π25 = 97). When we take the ratio
of the two numbers this common factor cancels

873

582
= ✟✟π25 · ✁3 · 3

✟✟π25 · ✁3 · 2
=

3

2
= 1.5.

Of course if we divide 582 into 873 this we will numerically obtain the answer 1.5 ∈ F.25

If the common factor is large (π25 in this example), a floating point number in F is returned, since26

all floating point numbers are in F. But due to rounding errors, it may not be 3/2. As an exam-27

ple, in Matlab/Octave rat(3/2)=2+1/(-2), due to IEEE floating point rounding. One would expect28

rat(3/2)=1+1/2. To obtain the precise answer in F, we need to remove the the GCD. Removing large29

common factors, without actually factoring the two numbers, has obvious practical utility. However30

this breaks down due to numerical issues. For example rat(582,97)= 582 (the wrong answer) yet31

factor(582)= 2*3*97 and factor(873) = 3*3*97 (the correct answers). If we remove factors 2 or32

3, we get the correct answer: rat(582/3,97)= 194=2*97, rat(582/2,97)= 291 = 3*97. This is the33

nature of rounding error in the IEEE processor.34

Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers35

be 6, 9. At each step the smaller number (6) is subtracted from the larger (9) and the difference36

(the remainder) and the smaller numbers are saved. This process continues until the two resulting37

numbers are equal, at which point the GCD equals that final number. If we were to take one more38

step, the final numbers would be the gcd and zero. For our example step 1 gives 9-6=3, leaving 6 and39

3. Step 2 gives 6-3=3 and 3. Since the two numbers are the same, the GCD=3. If we take one more40

38IEEE 754: http://www.h-schmidt.net/FloatConverter/IEEE754.html.
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Greatest Common Divisor: k=gcd(m,n)

• Examples (m,n, k ∈ Z):

– gcd(13*5,11*5) = 5 (The common 5 is the gcd)

– gcd(13*10,11*10) = 10 (The gcd(130,110) = 10 = 2*5, is not prime)

– gcd(1234,1024) = 2 (1234=2*617, 1024=210)

– gcd(πkπm, πkπn) = πk

– k=gcd(m,n) is the part that cancels in the fraction m/n ∈ F

– m/gcd(m,n) ∈ Z

• Co-primes (m ⊥ n) are numbers with no common factors: i.e., gcd(m,n)=1

– The gcd of two primes is always 1: gcd(13,11) = 1, gcd(πm, πn)=1

– m = 7 · 13, n = 5 · 19 ⇒ (7 · 13) ⊥ (5 · 19)

– If m ⊥ n then gcd(m,n) = 1

– If gcd(m,n) = 1 then m ⊥ n

• The GCD may be extended to polynomials: e.g., gcd(ax2 + bx+ c, αx2 + βx+ γ)

– gcd((x− 3)(x− 4), (x− 3)(x− 5))= (x− 3)

– gcd(x2 − 7x+ 12, 3(x2 − 8x+ 15))= 3(x− 3)

– gcd(x2 − 7x+ 12, (3x2 − 24x+ 45)= 3(x− 3)

– gcd( (x− 2π)(x− 4), (x− 2π)(x− 5) )= (x− 2π) (Needs long division)

Figure 1.6: The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathematics,
and is highly relevant today. It is both powerful and simple. It was used by the Chinese during the Han dynasty (Stillwell,
2010, p. 70) for reducing fractions. It may be used to find pairs of integers that are coprime (their gcd must be 1), and it
may be used to identify factors of polynomials by long division. It has an important sister algorithm called the continued
fraction algorithm (CFA), that is so similar in concept that Gauss referred to the Euclidean algorithm as the“continued
fraction algorithm” (Stillwell, 2010, p. 48).

difference we obtain (3,0). We can easily verify this result since this example is easily factored (e.g.,1

3 ·3, 3 ·2) = 3(3, 2). It may be numerically verified using the Matlab/Octave GCD command gcd(6,9),2

which returns 3.3

In Chapter 2, Section 2.1.3 (p. 114), we shall describe two methods for implementing this procedure4

using matrix notation, and explore the deeper implications.5

Coprimes6

Related to the prime numbers are co-primes, which are integers that when factored, have no common7

primes. For example 20 = 5·2·2 and 21 = 7·3 have no common factors, thus they are coprime. Coprimes8

[m,n] may be indicated with the “perpendicular” notation n ⊥ m, spoken as “n is perpendicular (perp)9

to m.” One may use the GCD to determine if two numbers are coprime. When gcd(m,n) = 1, m and10

n are coprime. For example since gcd(21,20)=1 (i.e., 21 ⊥ 20) the are coprime.11

1.2.5 Lec 6: Continued fraction algorithm12

In its simplest form, the Continued fraction algorithm (CFA) starts from a single real decimal number13

x ∈ R, and recursively expands it as a fraction x ∈ F. Thus the CFA It is used in finding rational14

approximations to any real number. For example, π ≈ 22/7. The GCD (the Euclidean algorithm) on15

the other hand operates on a pair of integers m,n ∈ N and finds their greatest common divisor k ∈ N.16

Thus m/k, n/k ∈ N, reducing the ratio to its irreducible form.17

Despite this seeming large difference in the two algorithms, apparently the CFA is closely related to18

the Euclidean algorithm (the GCD), so closely in fact, that Gauss referred to the Euclidean algorithm19

as the Continued fraction algorithm (Stillwell, 2010, P. 48). At first glance it is not clear why Gauss20

would call the CFA the Euclidean algorithm. One must assume that Gauss had some deeper insight21
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into this relationship. If so, that insight would be valuable to understand.1

In the following we refine the description of the CFA and give examples that go beyond the simple2

cases of expanding numbers. The CFA of any positive number, say x0 > 0, is defined as follows:3

1. Start with n = 0 and input target (starting value) x0 ∈ R.4

2. Define an = round(xn), which rounds to the nearest integer.5

3. rn = xn − an > 0 is the remainder. If rn = 0, the recursion terminates.6

4. Define xn+1 ≡ 1/rn and return to step 2, with n = n+ 1.7

The recursion may continue to any desired accuracy, since convergence is guaranteed.8

An example: Let x0 ≡ π ≈ 3.14159 . . . . Thus ao = 3, ro = 0.14159, x1 = 7.065 ≈ 1/ro, and a1 = 7.
If we were to stop here we would have

π̂1 ≈ 3 +
1

7 + 0.0625 . . .
≈ 3 +

1

7
=

22

7
. (1.3)

This approximation of π ≈ 22/7 has a relative error of 0.04%

22/7− π
π

= 4× 10−4.

For the second approximation we continue by reciprocating the remainder 1/0.0625 ≈ 15.9966 which
rounds to 16, resulting in the second approximation

π̂2 ≈ 3 + 1/(7 + 1/16) = 3 + 16/(7 · 16 + 1) = 3 + 16/113 = 355/113.

Note that if we had truncated 15.9966 to 15, the remainder would have been much larger, resulting in9

a less accurate rational approximation.10

Rational approximation examples

22

7
= [3; 7] ≈ π +O(1.3× 10−3)

355

113
= [3; 7, 16] ≈ π +O(2.7× 10−7)

104348

33215
= [3; 7, 16,−249] ≈ π +O(3.3× 10−10)

Figure 1.7: The expansion of π to various orders, using the CFA, along with the order of the error of
each rational approximation. For example 22/7 has an absolute error (|22/7− π|) of about 0.13%.

Notation: Writing out all the fractions can become tedious. For example, expanding e using the
Matlab/Octave command rat(exp(1)) gives the approximation

3 + 1/(−4 + 1/(2 + 1/(5 + 1/(−2 + 1/(−7))))).

A compact notation for this these coefficients of the CFA is [3;−4, 2, 5,−2,−7]. Note that the lead-11

ing integer may be indicated by an optional semicolon to indicate the decimal point. Unfortunately12

Matlab/Octave does not support the bracket notation. If the process is carried further, the values of13

an ∈ N give increasingly more accurate rational approximations.14
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In Matlab/Octave there are four different rounding function: round(), fix(), floor(), ceil().1

If the rounding-down (floor) is used π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .] whereas true rounding to2

the nearest integer (round) gives π = [3; 7, 16,−294, 3,−4, 5,−15, . . .]. Thus round introduces negative3

coefficients each time a number rounds up to the nearest integer.4

When the CFA is applied and the expansion terminates (rn = 0), the target is rational. When5

the expansion does not terminate (which is not always easy to determine), the number is irrational.6

Thus the CFA has important theoretical applications regarding irrational numbers. You may try this7

yourself using Matlab’s rats(pi) command.8

One of the useful things about the procedure, besides its being so simple, are its generalizations,9

one of which will be discussed in Section 2.1.3 (p. 114).10

Symmetry: A continued fraction expansion can have a high degree of symmetry. For example, the
CFA of

1 +
√

5

2
= 1 +

1

1 + 1
1+···

= 1.618033988749895 . . . ,

Here the lead term in the fraction is always 1 (an = [1; 1, 1, · · · ]), thus the sequence will not terminate,11

proving that
√

5 ∈ I. A related example is rat(1+sqrt(2)), which gives [2; 2, 2, 2, . . .].12

When expanding a target irrational number (x0 ∈ I), and the CFA is truncated, the resulting
rational fraction approximates the irrational target. For the example above, if we truncate at three
coefficients ([1; 1, 1]) we obtain

1 +
1

1 + 1
1+0

= 1 + 1/2 = 3/2 = 1.5 =
1 +
√

5

2
+ 0.118 + . . . .

Truncation after six steps gives

[1. 1, 1, 1, 1, 1, 1] = 13/8 ≈ 1.6250 =
1 +
√

5

2
+ .0070 . . . .

Because all the coefficients are 1, this example converges very slowly, When the coefficients are large13

(i.e., remainder small), the convergence will be faster. The expansion of π is an example of faster14

convergence.15

In summary: Every rational number m/n ∈ F, with m > n > 1, may be uniquely expanded as a16

continued fraction, with coefficients ak determined using the CFA. When the target number is irrational17

(x0 ∈ Q), the CFA does not terminate, thus each step produces a more accurate rational approximation,18

converging in the limit as n→∞.19

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational,
but with an important caveat: one must determine if the expansion terminates. This may not be
obvious. The fraction 1/3 = 0.33333 . . . is an example of such a target, where the CFA terminates yet
the fraction repeats. It must be that

1/3 = 3× 10−1 + 3× 10−2 + 3× 10−3 + . . . .

Here 3*3=9. As a second example39

1/7 = 0.142857142857142857142857 · · · = 142857× 10−6 + 142857× 10−12 + . . .

39Taking the Fourier transform of the target number, represented as a sequence, could help to identify an underlying
periodic component. The number 1/7 ↔ [[1, 4, 2, 8, 5, 7]]6 has a 50 [dB] notch at 0.8π [rad] due to its 6 digit periodicity,
carried to 15 digits (Matlab/Octave maximum precision), Hamming windowed, and zero padded to 1024 samples.
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Note that 142857 ∗ 7 = 999999. This also works for 1/11 = 0.090909 · · · and 11× 0.090909 = 999999.1

We might conclude that when the sequence of digits repeats, the sequence is predictable, thus it must2

be rational.3
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5

1.2.6 Lec 7: Pythagorean triplets (Euclid’s formula)6

Euclid’s formula is a method for finding three integer lengths [a, b, c] ∈ N, that satisfy Eq. 1.1. It is
important to ask “Which set are the lengths [a,b,c] drawn from?” There is a huge difference, both
practical and theoretical, if they are from the real numbers R, or the counting numbers N. Given
p > q ∈ N, the three lengths [a, b, c] ∈ N of Eq. 1.1 are given by

a = p2 − q2, b = 2pq, c = p2 + q2. (1.4)

This result may be directly verified, since

[p2 + q2]2 = [p2 − q2]2 + [2pq]2

or
p4 + q4 +✟✟✟

2p2q2 = p4 + q4 −✟✟✟
2p2q2 +✟✟✟

4p2q2.

Thus, Eq. 1.4 is easily proven, once given. Deriving Euclid’s formula is obviously more difficult.7

Figure 1.8: Beads on a string form perfect right triangles when number of beads on each side satisfy Eq. 1.1.

A well known example is the right triangle depicted in Fig. 1.8, defined by the integers [3, 4, 5] ∈ N ,8

having angles [0.54, 0.65, π/2] [rad], which satisfies Eq. 1.1 (p. 17). As quantified by Euclid’s formula9

(Eq. 1.4), there are an infinite number of Pythagorean triplets (PTs). Furthermore the seemingly simple10

triangle, having angles of [30, 60, 90] ∈ N [deg] (i.e., [π/6, π/3, π/2] ∈ I [rad]), has one irrational (I)11

length ([1,
√

3, 2]).12

The technique for proving Euclid’s formula for PTs [a, b, c] ∈ Q, derived in Fig. 2.3 (p. 118) of13

Section 2.1.4, is much more interesting than the PTs themselves.14

The set from which the lengths [a, b, c] are drawn was not missed by the Indians, Chinese, Egyptians,15

Mesopotamians, Greeks, etc. Any equation whose solution is based on integers is called a Diophantine16

equation, named after the Greek mathematician Diophantus of Alexandria (c250 CE).17

A stone tablet having the numbers engraved on it, as shown in Table 1.9, was discovered in18

Mesopotamia, from the 19th century [BCE], and cataloged in 1922 by George Plimpton.40 These19

numbers are a and c pairs from PTs [a,b,c]. Given this discovery, it is clear that the Pythagoreans were20

following those, long before them. Recently a second similar stone, dating between 350 and 50 [BCE]21

has been reported, that indicates early calculus on the orbit of Jupiter’s moons.41
22

40http://www.nytimes.com/2010/11/27/arts/design/27tablets.html;https://en.wikipedia.org/wiki/

Plimpton_322
41http://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy-jupiter.html
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Figure 1.9: “Plimpton-322” is a stone tablet from 1800 [BCE], displaying a and c values of the Pythagorean

triplets [a, b, c], with the property b =
√
c2 − a2 ∈ N. Several of the c values are primes, but not the a values.

The stone is item 322 (item 3 from 1922), from the collection of George A. Plimpton. –Stillwell (2010)

1.2.7 Lec 8: Pell’s Equation1

Pell’s equation

x2 −Ny2 = 1, (1.5)

with non-square N ∈ N specified and a, b ∈ N unknown, is related to the Euclidean algorithm (Stillwell,2

2010, 48). For example, with N = 2, one solution is a = 17, b = 12 (172 − 2 · 122 = 1). This equation3

has a long history (Stillwell, 2010).4

A 2x2 matrix recursion algorithmic was used by the Pythagoreans to investigate the
√

2

[
xn
yn

]
=

[
1 2
1 1

] [
xn−1

yn−1

]
. (1.6)

Starting with [xo, yo]
T = [1, 0]T , results in solutions of Pell’s equations (Stillwell, 2010, p. 44). Their5

approach was likely motivated by the Euclidean algorithm (GCD, p. 36), since yn/xn →
√

2 (Stillwell,6

2010, p. 37, 55). Note that this is a composition method, of 2x2 matrices, since the output of one7

matrix multiply is the input to the next.8

Asian solutions: The first solution of Pell’s equation was published by Brahmagupta (c628), who9

independently discovered the equation (Stillwell, 2010, p. 46). Brahmagupta’s novel solution introduced10

a different composition method (Stillwell, 2010, p. 69), and like the Greek result, these solutions were11

incomplete.12

Then in 1150CE, Bhâskara II obtained solutions using Eq. 1.6 (Stillwell, 2010, p.69). This is the13

solution method we shall explore here, as summarized in Fig. 1.10.14

The best way to see how this recursion results in solutions to Pell’s equation, is by example.
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Initializing the recursion with the trivial solution [x0, y0]T = [1, 0]T , gives

[
x1

y1

]
=

[
1
1

]
=

[
1 2
1 1

] [
1
0

]
12 − 2 · 12 = −1

[
x2

y2

]
=

[
3
2

]
=

[
1 2
1 1

] [
1
1

]
32 − 2 · 22 = 1

[
x3

y3

]
=

[
7
5

]
=

[
1 2
1 1

] [
3
2

]
(7)2 − 2 · (5)2 = −1

[
x4

y4

]
=

[
17
12

]
=

[
1 2
1 1

] [
7
5

]
172 − 2 · 122 = 1

[
x5

y5

]
=

[
41
29

]
=

[
1 2
1 1

] [
17
12

]
(41)2 − 2 · (29)2 = −1

Thus the recursion results in a modified version of Pell’s equation

x2
n − 2y2

n = (−1)n,

where only even values of n are solutions. This sign change had no effect on the Pythagorean goal,1

since they only cared about yn/xn →
√

2.2

Solution to Pell’s equation: By multiplying the matrix by 1, all the solutions to Pell’s equation3

are determined. This solution is shown in Fig. 1.10 for the case of N = 2, and again in Appendix D,4

Eq. D.1, for N = 3. The math is straightforward and is easily verified using Matlab/Octave. From5

Fig. 1.10 we can see that every output this slightly modified matrix recursion gives solutions to Pell’s6

equation (Eq. 1.5).7

For n = 0 (the initial solution) [x0, y0] is [1,0], [x1, y1] = j[1, 1], and [x2, y2] = −[3, 2]. These are8

easily computed by this recursion, and easily checked on a hand calculator (or using Matlab/Octave).9

Without the  factor the sign would alternate; the 1 factor corrects the alternation in sign, so every10

iteration yields a solution.11

• Case of N = 2 & [x0, y0]T = [1, 0]T

Note: x2
n − 2y2

n = 1, xn/yn −→∞
√

2

[
x1

y1

]
= 

[
1
1

]
= 

[
1 2
1 1

] [
1
0

]
2 − 2 · 2 = 1

[
x2

y2

]
= 2

[
3
2

]
= 

[
1 2
1 1

]


[
1
1

]
32 − 2 · 22 = 1

[
x3

y3

]
= 3

[
7
5

]
= 

[
1 2
1 1

]
2
[
3
2

]
(7)2 − 2 · (5)2 = 1

[
x4

y4

]
=

[
17
12

]
= 

[
1 2
1 1

]
3
[
7
5

]
172 − 2 · 122 = 1

[
x5

y5

]
= 

[
41
29

]
= 

[
1 2
1 1

] [
17
12

]
(41)2 − 2 · (29)2 = 1

Figure 1.10: This summarizes the solution of Pell’s equation for N = 2 using a slightly modified matrix
recursion. Note that xn/yn →

√
2 as n→∞, which was what the Pythagoreans were pursuing.
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At each iteration, the ratio xn/yn approaches
√

2 with increasing accuracy, coupling it to the1

Euclidean algorithm (GCD). The value of 41/29 ≈
√

2, with a relative error of <0.03%. The solution2

for N = 3 is discussed at the end of Appendix D.3

Relations to digital signal processing: Today we recognize Eq. 1.6 as a difference equation, which4

is a pre-limit (pre Stream 3) form of differential equation. The Greek 2x2 form is an early precursor to5

17th and 18th century developments in linear algebra. Thus the Greek’s recursive solution for the
√

26

and Bhâskara’s (1030 CE) solution of Pell’s equation, is an early precursor to discrete-time processing,7

as well as to calculus.8

There are similarities between Pell’s Equation and the Pythagorean theorem. As we shall see in9

Chapter 2, Pell’s equation is related to the geometry of a hyperbola, just as the Pythagorean equation10

is related to the geometry of a circle. One might wonder if there is a Euclidean formula for the solutions11

of Pell’s Equations, since these are all conic sections with closely related geometry.12

WEEK 413

14

1.2.8 Lec 9: Fibonacci sequence15

Another classic problem, formulated by the Chinese, was the Fibonacci sequence, generated by the
relation

fn+1 = fn + fn−1. (1.7)

Here the next number fn+1 is the sum of the previous two. If we start from [0, 1], this difference equation
leads to the Fibonacci sequence fn = [0, 1, 1, 2, 3, 5, 8, 13, . . .]. Alternatively, if we define yn+1 = xn,
then Eq. 1.7 may be represented as the recursion of a 2x2 matrix equation

[
xn+1

yn+1

]
=

[
1 1
1 0

] [
xn
yn

]
. (1.8)

The correspondence is easily verified. Starting with [xn, yn]T = [0, 1]T we obtain for the first few steps

[
1
0

]
=

[
1 1
1 0

] [
0
1

]
,

[
1
1

]
=

[
1 1
1 0

] [
1
0

]
,

[
2
1

]
=

[
1 1
1 0

] [
1
1

]
,

[
3
2

]
=

[
1 1
1 0

] [
2
1

]
, . . .

From the above xn = [0, 1, 1, 2, 3, 5, . . .] is the Fibonacci sequence since the next xn is the sum of the16

previous two.17

Summary: The gcd (Euclidean algorithm), Pell’s equation and the Fibonacci sequence may all be
written as compositions of 2x2 matrices. This is an important and common thread of these early
mathematical findings. It seems that equations of the form

[
xn+1

yn+1

]
=

[
a b
c d

] [
xn
yn

]

play a special role in mathematics. The fact that complex numbers have the same form, as 2x2 matrices,18

also plays a role. The first few thousands of years of mathematical trial and error research, set the19

stage for major breakthroughs.20
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1.2.9 Lec 10: Exam I (In class)1

1.3 Algebraic Equations: Stream 22

The era from 1600-1850 (Fig. 1.4, p. 21) produced a stream of fundamental theorems. A few of the3

individuals who played a notable role in this development, in chronological (birth) order, include Galileo,4

Mersenne, Newton, d’Alembert, Fermat, Huygens, Descartes and Helmholtz. These individuals were5

some of the first to develop the basic ideas, in various forms, that were then later reworked into the6

proofs, that today we recognize as The fundamental theorems of mathematics.7

1.3.1 Lec 11 Algebra and geometry as physics8

Following Stillwell’s history of mathematics, Stream 2 is geometry, which led to the merging of Euclid’s9

geometrical methods and the 9th century development of algebra by al-Khwarizmi (830 CE). This10

integration of ideas lead Descartes and Fermat to develop analytic geometry. While not entirely a11

unique and novel idea, it was late in coming, given what was known at that time.12

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served13

students of mathematics for more than two thousand years. Algebra and geometry were, at first, inde-14

pendent lines of thought. When merged, the focus returned to the Pythagorean theorem, generalized as15

analytic conic sections rather than as geometry in Euclid’s Elements. With the introduction of Algebra,16

numbers, rather than lines, could be used to represent a geometrical length. Thus the appreciation for17

geometry grew, given the addition of the rigorous analysis using numbers.18

Physics inspires algebraic mathematics: The Chinese used music, art, and navigation to drive19

mathematics. With the invention of algebra this paradigm did not shift. A desire to understand20

motions of objects and planets precipitated many new discoveries. Galileo investigated gravity and21

invented the telescope. Kepler investigated the motion of the planets. While Kepler was the first to22

appreciate that the planets were described by ellipses, it seems he under-appreciate the significance of23

this finding, and continued with his epicycle models of the planets. Using algebra and his calculus,24

Newton formalized the equation of gravity, forces and motion (Newton’s three laws) and showed that25

Kepler’s discovery of planetary elliptical motion naturally follows from these laws. With the discovery26

of Uranus (1781) “Kepler’s theory was ruined.” (Stillwell, 2010, p. 23).27

Once Newton proposed the basic laws of gravity, he proceed to calculate, for the first time, the
speed of sound. This required some form of the wave equation

∂2

∂x2
p(x, t) =

1

c2

∂2

∂t2
p(x, t), (1.9)

a key equation in mathematical physics. The speed of sound is c = 343 [m/s], which is a function of28

the density ρo = 1.12 [kg/m3] and the dynamic stiffness ηP0 of air.42
29

If we substitute for the pressure
p(x, t) = e2π(ft±kx), (1.10)

where t is time and x is position, we find that k = 2π/λ = 2πf/c, because k = 2π/λ.30

This classic relation λf = c is deceivingly simple, thus confusing, because k = 2π/λ becomes31

complex (has both real and imaginary parts) in dispersive media (e.g., electron waves in silicon crystals).32

In these more general cases, k(f) = 2πf/c must be replaced with a complex analytic function κ(s)33

of s, such that the wave velocity c is a complex function of s. This is because electron “waves” in a34

dispersive medium (e.g., a semi-conductor, such as silicon), are “filtered” in their magnitude and phase.35

42c =
√
ηP0/ρo, η = cp/cv = 1.4 is the ratio of two thermodynamic constants, and P0 = 105 [Pa] is the barometric

pressure of air.
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This filter acts as a transmission line, a “wave-filter,” forcing the wavelength to be a strong (complex)1

function of frequency. This view is elegantly explained by Brillouin (1953, Chap. 1), in an historical2

context.3

While Newton’s value for c was incorrect by the thermodynamic constant
√
η, a problem that would4

take more than two hundred years to resolve, his success was important because it quantified the physics5

behind the speed of sound, and demonstrated that momentum mv, not mass m, was transported by the6

wave. His concept was correct, and his formulation using algebra and calculus represented a milestone7

in science. In the most general case, c is complex analytic. This is the view of Brillouin, if I understand8

him. Thus history repeats itself in 1953.9

Newton’s Principia was finally published in 1687, and the general solution to Newton’s wave equa-
tion [i.e., p(x, t) = G(t±x/c)], where G is any function, was first published 60 years later by d’Alembert
(c1747), which showed that for sounds of a single frequency, the wavelength λ and frequency f were
related by

fλ = c.

Today d’Alembert’s analytic wave solution can be written as Eq. 1.10 with wave number k = 1/λ10

[m−1]. This formulation led to the frequency domain concept of Fourier analysis, based on the linearity11

(i.e., superposition) property of the wave equation (Postulate P2: Lec. 1.3.12, p. 70).12

The corresponding discovery for the formula for the speed of light was made 174 years after Prin-13

cipia, by Maxwell (c1861). Maxwell’s formulation also required great ingenuity, as it was necessary to14

hypothesize an experimentally unmeasured term in his equations, to get the mathematics to correctly15

predict the speed of light. Thus history repeated itself in 1861.16

The first Algebra: Prior to the invention of algebra, people worked out problems as sentences using
an obtuse description of the problem (Stillwell, 2010, p. 93). Algebra solved this problem, providing a
compact language, where numbers are represented as abstract symbols (e.g., x and α). The problem
to be solved could be formulated in terms of sums of powers of smaller terms, the most common being
powers of some independent variable (i.e., time or frequency). Today we call such an expression a
polynomial of degree n

Pn(z) ≡ zn + an−1z
n−1 + · · ·+ a0z

0 =
n∑

k=0

akz
k =

n∏

k=0

(z − zk). (1.11)

Here we have set an = 1. The coefficient an cannot be zero, or the polynomial would not be of degree17

n. A solution is to force an = 1, since this simplifies the expression, and does not change the roots.18

The key question is “What values of z = zk result in Pn(zk) = 0.” In other words, what are the19

roots zk of the polynomial? The answer to this question consumed thousands of years, with intense20

efforts by many aspiring mathematicians. In the earliest attempts, it was a competition to evaluate21

mathematical acumen. Results were held as a secret to the death bed. It would be fair to view this22

effort as an obsession. Today the roots of any polynomial may be found by numerical methods, to very23

high accuracy. There are also a number of important theorems.24

Of particular interest is composing a circle with a line, when the line does not touch the circle, and25

finding the roots. There was no solution to this problem using geometry. This question is addressed26

in the assignments.27

Finding roots of polynomials The problem of factoring polynomials has a history more than28

a millennium in the making. While the quadratic (degree N = 2) was solved by the time of the29

Babylonians (i.e., the earliest recorded history of mathematics), the cubic solution was finally published30

by Cardano in 1545. The same year, Cardano’s student solved the quartic (N = 4). In 1826 (281 years31

later) it was proved that the quintic (N = 5) could not be factored by analytic methods.32

As a concrete example we begin with trivial but important case of the quadratic

P2(x) = ax2 + bx+ c. (1.12)
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Chronological history post 17th century

17th Newton 1642-1727, Bernoulli, Johann 1667-1748

18th Bernoulli, Daniel, Cauchy 1789-1857, Euler 1748-83, d’Alembert 1717-83, Gauss 1777-1855

19th Kirchhoff 1824-87, Helmholtz 1821-1894, Riemann 1826-1866, Maxwell 1831-1879, Rayleigh
1842-1919, Heaviside 1850-1925, Poincare 1854-1912,

20th Sommerfeld 1686-1951, Einstein 1879-1955, Brillouin 1889-1969 . . .

Time Line

|1640 |1700 |1750 |1800 |1850 |1900 |1950

Newton
Johann Bernoulli

Daniel Bernoulli
Euler

dAlembert

Gauss
Cauchy

Kirchhoff
Helmholtz

Riemann
Maxwell

Poincare

Rayleigh
Heaviside

Einstein

Stokes

Sommerfeld

Brillouin

Kelvin

Figure 1.11: Time-line of the three centuries from the 18th to 20th CE. This was one of the most productive of
all times, perhaps starting with the deep work of von Helmholtz, educated an experienced as a military surgeon,
who mastered classical music, acoustics, physiology, vision, hearing (Helmholtz, 1863b), and, most important of all,
mathematics. Kirchhoff frequently expanded on Helmholtz’s contributions. Is is reported that Lord Rayleigh learned
German to be able to read Helmholtz’s great work. The history during this time is complex. For example, Lord
Kelvin wrote a letter to Stokes, suggestion Stokes prove what is today known as “Stokes theorem.” Stokes posted a
reward (the Smith Prize), looking for one who could prove “Lord Kelvin’s theorem,” finally proved by Hankel (1839-73)
(https://en.wikipedia.org/wiki/Hermann Hankel). The birth dates of those who contributed to mathematics during
this time display exponential growth. Many new concepts were being proved and appreciated over this productive period.
In 1863-65, Maxwell published his famous equations, followed by the cleanup work of Heaviside, Gibbs and Hertz, who
reformulated them in “modern” vector notation. The vertical red lines connect mentor-student relationships. This figure
should put to rest the idea that ones best work is done in the early years. Many of these scientists were fully productive
to the end of old age. Those that were not, died early, due to poor health or accidents.

The roots are those values of x such that P2(xk) = 0. One of the first results (recorded by the
Babylonians, c2000 BCE) was the factoring of this equation by completing the square (Stillwell, 2010,
p. 93). One may isolate x by rewriting Eq. 1.12 as

1

a
P2(x) = (x+ b/2a)2 − (b/2a)2 + c/a. (1.13)

This is easily verified by expanding the squared term and canceling (b/2a)2

1

a
P2(x) = [x2 + (b/a)x+✘✘✘✘(b/2a)2]−✘✘✘✘(b/2a)2 + c/a.

Setting Eq. 1.13 to zero and solving for the two roots x±, gives the quadratic formula43

x± =
−b±

√
b2 − 4ac

2a
. (1.14)

If b2 + ac > 0, then the two roots are real (x± ∈ R). Otherwise, they are complex. If a, b, c ∈ R, which1

is typically the case, then this condition simplifies to ac < 0 (i.e., c/a > 0).2

No insight is gained by memorizing the quadratic formula (Eq. 1.14). On the other hand, an3

important concept is gained by learning Eq. 1.13, which can be very helpful when doing analysis.4

43By direct substitution demonstrate that Eq. 1.14 is the solution of Eq. 1.12.
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It seems obvious, that instead of memorizing Eq. 1.14, learn Eq. 1.13. Arguably, the factored form1

(Eq. 1.13) is easier to remember, as a method, rather than as a formula that must be memorized.2

Importantly, the term b/2a has significance [P2(−b/2a) = c/a− (b/2a)2], the sign of which determines3

if the nature of the roots (real vs. complex).4

In third grade I learned the trick44

9 · n = (n− 1) · 10 + (10− n). (1.15)

With this simple rule I did not need to depend on my memory for the 9 times tables. By expanding5

the above, one can see why it works: 9n = n10✟✟✟−10 +✚✚10 − n = n(10 − 1). Learning an algorithm is6

much more powerful than memorization of the 9 times tables. How one thinks about a problem can7

have great impact.8

Working with polynomials in Matlab/Octave: In Matlab/Octave there are five functions that9

work together as an important set, and you need to become familiar with these:10

1. R=root(A) Vector A = [aN , aN−1, . . . , a0] are the coefficients of polynomial Pn(z) =
∑N
n=0 anz

n,11

with N is the degree of the polynomial. It is convenient to force aN = 1, corresponding to dividing12

the polynomial by this value, when it is not 1, guaranteeing it cannot be zero, as mentioned above.13

Define R = [z1, z2, · · · , zn] as the vector of roots, such that polyval(A,R)=0.14

2. y=polyval(A,x) This evaluates the polynomial defined by vector A at vector values of x, returning15

vector y(x).16

3. A=poly(R) This is the inverse of root(), returning a vector of polynomial coefficients A, given a17

vector of roots R. Due to IEEE-754 scaling issues, this can give strange results, that are numerically18

correct, but withing the limits of IEEE-754 accuracy.19

4. [K,R]=residue(A,B): Given the ratio of two polynomials A,B, residue(A,B) returns vectors
K,R such that

A(s)

B(s)
=
∑

k

Kk

s− sk
. (1.16)

where sk are the roots of B.20

5. C=conv(A,B): Vector C contain the polynomial coefficients of the convolution of the two vector21

of coefficients of polynomials A,B. For example [1, 2, 1]=conv([1, 1], [1, 1]).22

The use of residue() will be discussed in Sect. 1.3.3 (p. 53), and again, in more detail, in Sect. 1.4.1023

(p. 85).24

Analytic Series: When the degree of the polynomial is infinite (i.e., n=∞), P∞(x), x, x0, an ∈ R

the series is called a power series, namely

P (x) =
∞∑

0

an(x− x0)n. (1.17)

For values of x where the power series converges, P (x) is said to be an analytic function in the25

neighborhood of the expansion point x0, within the region of convergence (RoC), also known as the26

radius of convergence (RoC), for cases where the argument x is complex.27

When the coefficients are determined by derivatives of P (x) evaluated at x = x0, then P (x) is
called a Taylor series, where

an =
1

n!

dn

dxn
P (x)

∣∣∣∣
x=x0

. (1.18)

44E.G.: 9 · 7 = (7 − 1) · 10 + (10 − 7) = 60 + 3 and 9 · 3 = (3 − 1) · 10 + (9 − 3) = 20 + 7. As a check, note that the two
terms (n− 1) and (10 − n), add to 9.
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This formula shows, in a general way, how to uniquely define the coefficients, and without the Taylor1

series formula, we would have no general way of finding an. The proof of the Taylor formula is2

transparent, simply by taking the term by term derivative of Eq. 1.17 and then evaluating the result3

at the expansion point.4

Exercise: Verify that a0 and a1 of Eq. 1.17 follow from Eq. 1.18.5

Taylor series play a special role in mathematics, as the coefficients of the series uniquely determine6

a function (e.g., via its derivatives). The implications, and limitations of the series representation are7

very specific. First, if the series fails to converge (i.e., outside the RoC), it is essentially meaningless.8

Second, the analytic function must be single valued. This follows from the fact that each term in9

Eq. 1.17 is single valued. Third, analytic functions are very “smooth,” since the may be differentiated10

an∞ number of times, and the sum still converges. There can be no jumps or kinks in these functions.11

But these properties are both their curse and their blessing, as they represent a good starting point12

for solving differential equations, which is exactly how they were used, by Newton and others.13

Two well known analytic functions are the geometric series

1

1− x = 1 + x+ x2 + x2 + . . . =
∞∑

n=0

xn (1.19)

and exponential series

ex = 1 + x+
1

2
x2 +

1

3 · 2x
3 +

1

4 · 3 · 2x
4 + . . . =

∞∑

n=0

1

n!
xn. (1.20)

Exercise: Verify that the coefficients of the above functions are given by Eq. 1.18.14

Region of convergence: Determining the RoC for a given analytic function is quite important, and15

may not always be obvious. In general the RoC is a circle having a radius, centered on the expansion16

point, out to the nearest pole. Thus when the expansion point is moved, the RoC changes, since the17

location of the pole is fixed.18

For the geometric series (Eq. 1.19), if the expansion point is taken as x0 = 1, the RoC is |x| < 1,
since 1/(1 − x) has a pole at x = 1. We may move the expansion point by a linear transformation.
For example, by replacing x with z + 3. Then the series becomes 1/((z + 3) − 1) = 1/(z + 2), so the
RoC becomes 2, because in the z plane, the pole has moved to −2. A second important example is the
function 1/(x2 + 1), which has the same RoC as the geometric series, since it may be expressed as the
partial fraction expansion

1

x2 + 1
=

1

(x+ 1)(x− 1)
=

1

2

(
1

x− 1
− 1

x+ 1

)
.

This form of expansion is called a partial fraction expansion.19

Each term has an RoC of |x| < |1| = 1. In other words, it is the sum of two geometric series, with20

poles at ±1 which are not as obvious because the roots are complex, and conjugate. Once factored, it21

becomes clear what is going on.22

Exercise: Verify the above expression is correct, and show that the residues are ±1/2.23

The exponential series converges for every finite value of x ∈ R (the RoC is the entire real line),24

thus the exponential is called an entire function.25
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Analytic functions: Any function that has a Taylor series expansion is called an analytic function.1

Within the RoC, the series expansion defines a single valued function. Polynomials, 1/(1− x) and ex2

are examples of analytic functions that are real. Because analytic functions are easily manipulated3

term by term, they may be used to find solutions of differential equations, since the derivatives of a4

series are uniquely determined within the RoC, due to Eq. 1.18.5

Every analytic function has a corresponding differential equation, that is determined by the coeffi-
cients ak of the analytic power series. An example is the exponential, which has the property that it
is the eigenfunction of the derivative operation

d

dx
eax = aeax,

which may be verified using Eq. 1.20. This relationship is a common definition of the exponential6

function, which is a very special, because it is the eigenfunction of the derivative.7

The complex analytic power series (i.e, complex analytic functions) may also be integrated, term
by term, since ∫ x

f(x)dx =
∑ ak

k + 1
xk+1. (1.21)

Newton took full advantage of this property of the analytic function and used the analytic series (Taylor8

series) to solve many problems, especially for working out integrals, allowing him to solve DEs. To fully9

understand the theory of differential equations (DE), one must master single valued analytic functions10

and their analytic power series.11

During the 16th and 17th century, it had becoming clear that DEs can characterize a law of nature
at a single point in space and time. For example the law of gravity (first formulated by Galileo to
explain the dropping to two objects of different masses) must obey conservation of energy. Newton
(c1687) went on to show that there must be a gravitational potential between to masses (m1,m2) of
the form

φ(r) ∝ m1m2

r
, (1.22)

where r = |x1 − x2| is the Euclidean distance between the two point masses at locations x1 and x2.12

Note that this a power series, but with exponent of −1, which is a pole.13

Single- vs. multi-valued functions: Polynomials are single valued functions: for each x there is14

a single value of Pn(x). The set of x values of a function are called the domain and the set of y(x)15

values are called the codomain.45 The roles of the domain and codomain may be swapped, to obtain16

the inverse function, which is typically quite different in its properties compared to the function. For17

example y(x) = x2 + 1 has the inverse x = ±√y − 1, which is double valued, and complex when y < 1.18

Periodic functions, such as y(x) = sin(x) are more exotic, since x(y) = arcsin(x) = sin−1(x) has an ∞19

number of x(y) values for each y.20

Exercise: Let y(x) = sin(x). Then dy/dx = cos(x). Show that dx/dy = −1/
√

1− x2. Hint: x(y) =21

cos−1(y) = arccos(y).
Verify

22

Exercise: Let y(x) = sin(x). Then dy/dx = cos(x). Show that dx/dy = −/
√

1 + x2.23

Exercise: Find the Taylor series coefficients of y = sin(x) and x = sin−1(y).24

45The codomain is also called the range, image or the ordinate.
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Complex analytic functions: When the argument of an analytic function F (x) is complex, that
is, x ∈ R is replaced by s = σ + ω ∈ C (recall that R ∈ C)

F (s) =
∞∑

n=0

cns− s0)n, (1.23)

with cn ∈ C, that function is said to be a complex analytic.1

For example, when the argument of the exponential becomes complex, it is periodic on the ω axis,
since

est = e(σ+ω)t = eσteωt = eσt [cos(ωt) +  sin(ωt)] .

Taking the real part gives

ℜest = eσt
eωt + e−ωt

2
= eσt cos(ωt),

and ℑest = eσtsin(ωt). Once the argument is allowed to be complex, it becomes obvious that2

the exponential and circular functions are fundamentally related. This exposes the family of en-3

tire circular functions [i.e., es, sin(s), cos(s), tan(s), cosh(s), sinh(s)] and their inverses [ln(s), arcsin(s),4

arccos(s), arctan(s), cosh−1(s), sinh−1(s)], first fully elucidated by Euler (c1750) (Stillwell, 2010, p. 315).5

Note that because a function, such as sin(ωt), is periodic, its inverse must be multi-valued. What is6

needed is some systematic way to account for this multi-valued properties. That methodology was7

provided by Riemann 100 years later, in this 1851 PhD Thesis, supervised by Gauss, in the final years8

of Gauss’ life.9

Given a complex analytic function of a complex variable, one must resort to the extended complex10

plane, Riemann sheets and branch cuts, as discussed in Section 1.3.8 (p. 60). The extended complex11

plane is a tool that extends the domain of complex analytic to include the point at infinity. This12

topic is critically important in engineering mathematics, and will be discussed in length in Sections13

1.3.8-1.3.11 (pp. 60-67).14

Definition of the Taylor series of a complex analytic function: However there is a fundamental15

problem, since we cannot formally define the Taylor series for the coefficients ck, since we have not16

defined dF (s)/ds, the derivative with respect to the complex variable s ∈ C. Thus simply substituting17

s for x in an analytic function is leaving a major hole in our understanding of the complex analytic18

function.19

To gain a feeling of the nature of the problem, we make take derivatives of a function with respect
to various variables. For example,

d

dt
est = sest.

Also

eωt
d

dσ
eσt = σest.

and

eσt
d

dω
eω = ωest.

are straightforward.20

It was the work of Cauchy (1814) (Fig. 1.11), who uncovered much deeper relationships within21

complex analytic functions (Sect. 1.3.9, p. 62) by defining differentiation and integration in the com-22

plex plane, leading to several fundamental theorems of complex calculus, including the Fundamental23

theorem of complex integration, and Cauchy’s formula. We shall explore this in and several fundamental24

theorems in Sect. 1.4.1 (p. 72).25

There seems to be some disagreement as to the status of multi-valued functions: Are they functions,26

or is a function strictly single valued? If so, then we are missing out on a host of interesting possibilities,27

including all the inverses of nearly every complex analytic function.28
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Impact on Physics: It seems likely, if not obvious, that the success of Newton was his ability to1

describe physics by the use of mathematics. He was inventing new mathematics at the same time as2

he was explaining new physics. The same might be said for Galileo. It seems likely that Newton was3

extending the successful techniques and results of Galileo. Galileo died on Jan 8, 1642, and Newton4

was born Jan 4, 1643, just short of one year later. Certainly Newton was well aware of Galileo’s great5

success, and naturally would have been influenced by them.6

The application of complex analytic functions to physics was dramatic, as may be seen in the six7

volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of his many (36)8

students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg46 and Seebach, to name a few),9

notable coworkers (i.e., Leon Brillouin) and others (i.e., John Bardeen), upon whom Sommerfeld had a10

strong influence. Sommerfeld is known for having many students who were awarded the Nobel Prize in11

Physics, yet he was not (the prize is not awarded in Mathematics). Sommerfeld brought mathematical12

physics (the merging of physical and experimental principles with mathematics) to a new level with13

the use of complex integration of analytic functions to solve otherwise difficult problems, thus following14

the lead of Newton who used real integration of Taylor series to solve differential equations.15

1.3.2 Lec 12: Polynomial root classification by convolution16

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was17

being formulated by d’Alembert. The idea behind this theorem is that every polynomial of degree N18

(Eq. 1.11) has at least one root. This may be written as the product of the root and a second polynomial19

of degree of N− 1. By the recursive application of this concept, it is clear that every polynomial of20

degree N has N roots. Today this result is known as the fundamental theorem of algebra:21

Every polynomial equation P (z) = 0 has a solution in the complex numbers. As Descartes
observed, a solution z = a implies that P (z) has a factor z − a. The quotient

Q(z) =
P (z)

z − a =
P (z)

a

[
1 +

z

a
+

(
z

a

)2

+

(
z

a

)3

+ · · ·
]

is then a polynomial of one lower degree. . . . We can go on to factorize P (z) into n linear22

factors.23

—Stillwell (2010, p. 285).24

The ultimate expression of this theorem is given by Eq. 1.11 (p. 45), which indirectly states that25

an nth degree polynomial has n roots.26

Exercise: Explore expressing this in terms of real 2x2 matrices, as described in Section 1.2.1, p. 26.27

Today this theorem is so widely accepted we fail to appreciate it. Certainly about the time you28

learned the quadratic formula, you were prepared to understand the concept of polynomials having29

roots. The simple quadratic case may be extended a higher degree polynomial. The Matlab/Octave30

command roots([1, a2, a1, a0]) provides the roots [s1, s2, s3] of the cubic equation, defined by the31

coefficient vector [1, a2, a1, a0]. The command poly([s1, s2, s3]) returns the coefficient vector. I don’t32

know the largest degree that can be accurately factored by Matlab/Octave, but I’m sure its well over33

N = 103. Today, finding the roots numerically is a solved problem.34

Factorization versus convolution: The best way to gain insight into the polynomial factorization35

problem is through the inverse operation, multiplication of monomials. Given the roots xk, there is36

a simple algorithm for computing the coefficients ak of Pn(x) for any n, no matter how large. This37

method is called convolution. Convolution is said to be a trap-door since it is easy, while the inverse,38

factoring (deconvolution), is hard, and analytically intractable for degree N ≥ 5 (Stillwell, 2010, p. 102).39

46https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-1
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Convolution of monomials1

As outlined by Eq. 1.11, a polynomial has two descriptions, first as a series with coefficients an and2

second in terms of its roots xr. The question is “What is the relationship between the coefficients and3

the roots?” The simple answer is that they are related by convolution.4

Let us start with the quadratic

(x+ a)(x+ b) = x2 + (a+ b)x+ ab,

where in vector notation [−a,−b] are the roots and [1, a+ b, ab] are the coefficients.5

To see how the result generalizes, we may work out the coefficients for the cubic (N = 3). Multi-
plying the following three factors gives

(x− 1)(x− 2)(x− 3) = (x2 − 3x+ 2)(x− 3) = x(x2 − 3x+ 2)− 3(x2 − 3x+ 2) = x3 − 6x2 + 11x− 6.

When the roots are [1, 2, 3] the coefficients of the polynomial are [1,−6, 11,−6]. To verify, substitute6

the roots into the polynomial, and show that they give zero. For example r1 = 1 is a root since7

P3(1) = 1− 6 + 11− 6 = 0.8

As the degree increases, the algebra becomes more difficult. Imagine trying to work out the co-9

efficients for N = 100. What is needed is an simple way of finding the coefficients from the roots.10

Fortunately, convolution keeps track of the book-keeping, by formalizing the procedure.11

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vectors
[1, a] and [1, b]. To find the coefficients we must convolve the root vectors, indicated by [1, a] ⋆ [1, b],
where ⋆ denotes convolution. Convolution is a recursive operation. The convolution of [1, a] ⋆ [1, b] is
done as follows: reverse one of the two monomials, padding unused elements with zeros. Next slide one
monomial against the other, forming the local dot product (element-wise multiply and add):

a 1 0 0
0 0 1 b
= 0

a 1 0
0 1 b
= x2

a 1 0
1 b 0
= (a+ b)x

0 a 1
1 b 0
= abx0

0 0 a 1
1 b 0 0
= 0

,

resulting in coefficients [· · · , 0, 0, 1, a+ b, ab, 0, 0, · · · ].12

By reversing one of the polynomials, and then taking successive dot products, all the terms in the13

sum of the dot product correspond to the same power of x. This explains why convolution of the14

coefficients gives the same answer as the product of the polynomials.15

As seen by the above example, the position of the first monomial coefficients are reversed, and then
slid across the second set of coefficients, the dot-product is computed, and the result placed in the
output vector. Outside the range shown, all the elements are zero. In summary,

[1,−1] ⋆ [1,−2] = [1,−1− 2, 2] = [1,−3, 2].

In general

[a, b] ⋆ [c, d] = [ac, bc+ ad, bd],

Convolving a third term [1,−3] with [1,−3, 2] gives

[1,−3] ⋆ [1,−3, 2] = [1,−3− 3, 9 + 2,−6] = [1,−6, 11,−6],

which is identical to the cubic example, found by the algebraic method.16

By convolving one monomial factor at a time, the overlap is always two elements, thus it is never17

necessary to compute more than two multiplies and an add for each output coefficient. This greatly18

simplifies the operations (i.e., they are easily done in your head). Thus the final result is more likely19

to be correct. Comparing this to the algebraic method, convolution has the clear advantage.20
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The product of monomial P1(x) with a polynomial PN (x) gives PN+1(x): This statement is1

another way of stating the fundamental theorem of algebra. Each time we convolve a monomial with a2

polynomial of degree N , we obtain a polynomial of degree N + 1. The convolution of two monomials3

results in a quadratic (degree 2 polynomial). The convolution of three monomials give a cubic (degree4

3). In general, the degree k, of the product of two polynomials, of degree n,m, is the sum of the degrees5

(k = n+m). For example, if the degrees are each 5 (n = m = 5), then the resulting degree is 10.6

In summary, the product of two polynomials of degree m,n having m and n roots, give a polynomial7

of degree m+n having m+n roots. This is an analysis process, of merging polynomials, by coefficient8

convolution. Multiplying polynomials is a merging process, into a single polynomial.9

Note that the degree of a polynomial is one less than the length of the vector of coefficients. The10

coefficient on the lead term should always be set to 1 since it cannot be zero, resulting in an illogical11

result. Always normalize the lead term of Pn(x) to 1 (i.e., aN = 1). This has no effect on the roots.12

While you already know this theorem from high school algebra class, it is important to explicitly13

state the fundamental theorem of algebra.14

Composition of polynomials: Convolution is not the only operation between two polynomials.
Another is composition, which may be defined for two functions f(z), g(z). Then the composition
c(z) = f(z) ◦ g(z) = f(g(z)). As a specific example, suppose f(z) = 1 + z+ z2 and g(z) = e(2z). With
these definitions

f(z) ◦ g(z) = 1 + e2z + (e2z)2 = 1 + e2z + e4z.

Note that f(z) ◦ g(z) 6= g(z) ◦ f(z).15

1.3.3 Lec 13 Residue expansions16

As discussed in Section 1.3.1, p. 47, there are 5 important Matlab/Octave routines that are closely re-17

lated: root(), polyval(), poly(), residue(), conv(). The function residue() is more complex18

that the others, and it remains to be discussed.19

When lines and planes are defined, the equations are said to be linear in the independent variables.
In keeping with this definition of linear, we say that the equations are non-linear when the equations
have degree greater than 1 in the independent variables. The term bilinear has a special meaning,
in that both the domain and codomain are linearly related by lines (or planes). As an example, an
impedance is defined in frequency as the ratio of the voltage over the current

Z(s) =
V (ω)

I(ω)
= sL0 +Ro +

K∑

k=0

Kk

s− sk
, (1.24)

where Z(s) is the impedance and V and I are the voltage and current at radian frequency ω.20

The impedance is typically specified as the ratio of two polynomials, N(s) = [an, an−1, · · · , a0] and
D(s) = [bK , bK−1, · · · , b0], as functions of complex Laplace frequency s = σ + ω, having simple roots.
The bilinear function may be written as D(s)V = N(s)I. Since D(s) and N(s) are both polynomials
in s, this is called bilinear, which comes from a corresponding scalar differential equation, of the form

K∑

k=0

bk
dk

dtk
i(t) =

N∑

n=0

an
dn

dtn
v(t) ↔ I(ω)

K∑

k=0

bks
k = V (ω)

N∑

n=0

ans
n

Equation 1.24 follows from the Laplace transform (on right) of the differential equation (on left), by21

forming the impedance Z(s) = V/I = A(s)/B(s). This form of the differential equation follows from22

Kirchhoff’s voltage and current laws (KCL, KVL) or from Newton’s laws (mechanics).23
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The physical properties of an impedance: Based on d’Alembert’s observation that the solution
to the wave equation is the sum of forward and backward traveling waves, the impedance may be
rewritten in terms of forward and backward traveling waves

Z(s) =
V

I
=
V + + V −

I+ − I− = ro
1 + Γ(s)

1− Γ(s)
, (1.25)

where ro = P+/I+ is called the surge impedance of the transmission line (e.g., wire) connected to the1

load impedance Z(s), and Γ(s) = P−/P+ = I−/I+ is the reflection coefficient corresponding to Z(s).2

Like Z(s), Γ(s) is causal and complex analytic. Note that the impedance and the reflectance function3

must both be complex analytic, since the are connected by the bilinear (aka, Möbius) transformation,4

which assures the mutual complex analytic properties.5

Due to the bilinear transformation, the physical properties of Z(s) and Γ(s) are very different.6

Specifically, the real part of the load impedance must be non-negative (ℜZ(ω) ≥ 0), if and only7

if |Γ(s)| ≤ 1|. In the time domain, the impedance z(t) ↔ Z(s) must have a value of ro at t = 0.8

Correspondingly, the time domain reflectance γ(t)↔ Γ(s) must be zero at t = 0.9

This is the basis of conservation of energy, which may be traced back to the properties of the10

reflectance Γ(s).11

When the impedance load, as a function of wave penetration depth x is uniform, then as the wave12

P+ travels, then there are no reflections. In this case Γ(s, x = 0) = 0, and the impedance is equal13

to ro. When there are or variations in the properties of the medium, say after a delay of τ = x/c,14

Γ(s, x) 6= 0, and backward propagated waves are returned to the input. This results in a change15

in the load impedance, both in real and imaginary parts. As long as |Γ(s, x)| ≤ 1, the real part of16

Z(s, x = 0 ≥ 0. This will be further discussed in Section ?? (p. ??).17

1.3.4 Lec 14: Introduction to Analytic Geometry18

Analytic geometry is the natural consequence of Euclid’s Geometry (which deals with conical geometry19

(e.g., points, lines, triangles, circles, spheres, ellipses, cones, etc., in two and three physical dimensions),20

merged with algebra (which deals with simultaneous equations, roots of polynomials, analytic functions,21

and ultimately, solutions of differential equations). The combination of Euclid’s (323 BCE) geometry22

and al-Khwarizmi’s (830 CE) algebra provides a new powerful tool, analytic geometry.23

There are many important relationships between Euclidean Geometry and 16th century algebra.
Important similarities include vectors, their Pythagorean lengths [a, b, c]

c =
√

(x2 − x1)2 + (y2 − y1)2, (1.26)

a = x2−x1 and b = y2−y1, and the angles. Geometry had no concept of coordinates of the vectors. This24

is one of the main differences, the ability of algebra to compute with numbers. A detailed comparison25

is in order, attempted in Table 1.3.26

There are several basic concepts that merged under the development of analytic geometry27

1. Composition of functions: If y = f(x) and z = g(y) then the composition of functions f and g is28

denoted z(x) = g ◦ f(x) = g(f(x)).29

2. Elimination: Given two functions f(x, y) and g(x, y), elimination removes either x or y. This30

procedure, called Gaussian Elimination, was known to the Chinese. This is not always possible.31

3. Intersection: While one may speak of the intersection of two lines to give a point, or two planes to32

give a line, the term intersection is also an important but very different concept in set theory. This33

is a special case of elimination when the functions f(x, y), g(x, y) are linear in their arguments.34

4. Vectors: Euclidean geometry includes the concept of a vector, as a line with a length and a slope.35

Analytic geometry defines a vector as an ordered set of points.36
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5. Analytic geometry extends the ideas of geometry with the introduction of the product of two1

vectors, the scalar (dot) product f ·g and the vector (cross) product f×g (Fig. 1.3).2

Table 1.3: Comparison between Euclidean Geometry and Algebra. The concepts that are included in Euclidean
geometry are under the column Geometry. Those under the column Algebra are unique to Algebra (not present
in Geometry). The third column are uncertain.

Geometry Algebra Uncertain

Proof, Vector, Length, Point,
Direction, ≤ 3 dimensional, In-
tersection, Conic Section, Dot
product, Square Roots: on
real line lengths.

≥ 1 dimensional, Numbers,
Analytic series and functions,
Composition, Elimination,
Fund. Thm. Algebra, sin(θ),
cos(θ), eθ, log(z), Deriva-
tive, Calculus, Polynomial &
Roots: on complex algebra.

Cross product, Recursion, It-
eration (Newton’s method)on:
complex planes and circles,
with complex roots.

What algebra added to geometry was the ability to compute with complex numbers. For example,
the length of a line (Eq. 1.26) was measured in Geometry with a compass: numbers played no role.
Once algebra was available, the line’s Euclidean length could be computed from the coordinates of the
two ends, defined by the 3-vector

e = x̂i + ŷj + zk̂ = [x, y, z]T ,

which represents a point at (x, y, z) ∈ R3 ⊂ C3 in three dimensions, having direction, from the origin3

(0, 0, 0) to (x, y, z). An alternative matrix notation is e = [x, y, z]T , a column vector of three numbers.4

These two notations are very different ways of representing exactly the same thing. View them as5

equivalent concepts.6

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative, be-7

yond the physical drawing of an object (e.g., a sphere, triangle or line). With analytic geometry we8

have the Euclidean concept of a vector, a line having a magnitude (length) and direction (angle), but9

in terms of physical coordinates (i.e., numbers). The difference between two vectors defines a third10

vector, a concept already present in Euclidean geometry. For the first time, complex numbers were11

allowed into geometry.12

As shown in Fig. 1.12, there are two types of vector products, the 1) scalar A ·B and 2) vector13

A×B products.14

Scalar product of two vectors: When using algebra, many concepts in geometry are made precise.
There are many examples of how algebra extends Euclidean geometry, the most basic being the scalar
product (aka dot product) between two vectors

x · ζ = (x̂i + ŷj + zk̂) · (α̂i + β ĵ + γk̂)

= αx+ βy + γz,

∈ R.

The scalar product takes two vectors in R3 and returns a real positive scalar length ∈ R. In matrix
notation the scalar product is written as

x · ζ =



x
y
z




T 

α
β
γ


 =

[
x, y, z

]


α
β
γ


 = αx+ βy + γz.
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Norm of a vector: The norm of a vector

||e|| ≡ +
√

e · e ≥ 0.

is defined as the positive square root of the scalar product of the vector with itself. This is the
generalization of the length, thus the sign of the square-root must be positive. The length is a concept
of Euclidean geometry, and it must always be positive and real. A complex length is not physically
meaningful. A zero-length vector is a point. More generally, the Euclidean length of a line is given as
the norm of the difference between two vectors

||e1 − e2||2 = (e1 − e2) · (e1 − e2)

= (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≥ 0,

which is the Euclidean length between the two vectors.1

C

Bθ

A

L∗

Scalar product: In AB plane
A ·B = ||A||||B|| cos θ

A×B = ||A||||B|| sin θ k̂

Vector product: ⊥ AB plane

ĵ

î

k̂

Figure 1.12: Definitions of vectors A,B,C used in the definition of A ·B, A×B and C · (A×B). The cross
product A × B is the area of the trapezoid formed by the two vectors, while the triple product C · (A × B)
defines the volume of the formed parallelepiped (i.e., prism). When all the angles are 90◦, the volume becomes
a cuboid.

Pythagorean theorem and the Schwarz inequality: Regarding Fig. 1.12, suppose we compute2

the difference between vector A and αB as L = ||A− αB||, where α ∈ R is a scalar that modifies the3

length of B. We seek the value of α, which we denote as α∗, that minimizes the length of L. From4

simple geometrical considerations, L(α) will be minimum when the difference vector is perpendicular5

to B, as shown in the figure by the dashed line from the tip of A ⊥ B.6

To show this algebraically we write out the expression for L(α) and take the derivative with respect
to α, and set it to zero, which gives the formula for α∗. The argument does not change, but the algebra
greatly simplifies, if we normalize A,B to be unit vectors a = A/||A|| and b = B/||B||, which have
norm = 1.

L2 = (a− αb) · (a− αb) = 1− 2αa · b + α2. (1.27)

Thus the length is shortest (L = L∗) when

d

dα
L2

∗ = −2a · b + 2α∗ = 0.

Solving for α∗ we find α∗ = a · b. Since L∗ > 0 (a 6= b), Eq. 1.27 becomes

1− 2|a · b|2 + |a · b|2 = 1− |a · b|2 > 0.
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In conclusion cos θ ≡ |a · b| < 1. In terms of A,B this is |A ·B| < ||A|| ||B|| cos θ, as shown next to B1

in Fig. 1.12. Thus the scalar product between two vectors is their direction cosine. Furthermore since2

this forms a right triangle, the Pythagorean theorem must hold. The triangle inequality says that the3

lengths of the two sides must be greater than the hypotenuse. Note that Θ ∈ R 6∈ C.4

This derivation is an abbreviated version of a related discussion in Section 3.2.1 (p. 126).5

Vector (×) product of two vectors: As shown in Fig. 1.12, the vector product (aka,cross-product)6

a× b is the second type of product between two vectors. The scalar product defines in a scalar, while7

the vector product defines a vector, perpendicular (⊥) to the plane of the two vectors being multiplied.8

For example, if the two vectors are in î and ĵ, then the cross-product is k̂. It is strictly in k̂ if the two9

vectors are perpendicular to each other (i.e., k̂ = î× ĵ = −ĵ× î).10

The formula for computing the cross product is

a× b = (a1̂i + a2̂j + a3k̂)× (b1̂i + b2̂j + b3k̂) =

∣∣∣∣∣∣∣

î ĵ k̂
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
.

The vector product of a vector with itself (or the difference between two vectors) is zero.11

The scalar product of a third vector c with the vector product a× b

c · (a× b) =

∣∣∣∣∣∣∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣

represents the volume of a parallelepiped (think of a squashed sugar cube).12

Impact of Analytic Geometry: The most obvious development of algebra, given the creation13

of analytic geometry, was a detailed analysis of the conic sections, using algebra, rather than using14

drawings made with a compass and ruler. A useful example is the composition of the line and circle,15

a venerable construction. Once algebra was invented, the composition could be done using formulas.16

The first two mathematicians to appreciate this mixture of Euclid’s geometry and the new algebra17

were Fermat and Descartes (Stillwell, 2010, p. 111-115); soon Newton contributed to this effort, by the18

addition of physics (calculations in acoustics, orbits of the planets, and the theory of gravity and light19

Stillwell (2010, p. 115-117)), significant concepts for 1687..20

Given these new methods, many new solutions to problems emerged. The complex roots of poly-21

nomials continued to appear, without any obvious physical meaning. Complex numbers seem to have22

been viewed as more of an inconvenience than a problem. Newton’s solution to this dilemma was to23

simply ignore the imaginary cases (Stillwell, 2010, p. 119).24

1.3.5 Composition of polynomials: Bézout’s theorem25

When we multiply two polynomials, the result is the sum of the degrees of the individual polynomials26

(Section 1.3.3, p. 53). However when we compose two polynomials, of degree m and n, the resulting27

degree is the product of the degrees. For example given two polynomials of degree n and m, fn(x) and28

gm(x), their composition is defined as fn ◦ gm = f(g(x)). For example, the composition of a line with29

a line, is a line. The composition of a line with a circle, is a circle.30

This is known as Bézout’s theorem, which states the number of roots of composition of two functions31

is determined by the product of their degrees. The power of Bézout’s theorem is that it applies to32

functions of more than one variable. Composition of functions is also known as the construct of33

equations (Stillwell, 2010, p. 118). It was proved by Bézout (1779), who showed how one must count34

all the roots, including multiple roots, and roots at infinity (Stillwell, 2010, p. 295).35
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1.3.6 Lec 15 Gaussian Elimination1

The method for finding the intersection of equations is based on the recursive elimination of all the2

variables but one. This method, known as Gaussian elimination, works across a broad range of cases,3

but may be defined in a systematic procedure when the equations are linear in the variables.47 Rarely4

do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian5

eliminations can still work in such cases (Stillwell, 2010, p. 90).6

In Appendix B.2 (p. 176) the inverse of a 2x2 linear system of equations is derived. Even for a 2x2
case, the general solution requires a great deal of algebra. Working out a numeric example of Gaussian
elimination is more instructive. For example, suppose we wish to find the intersection of the equations

x− y = 3

2x+ y = 2.

This 2x2 system of equations is so simple that you may immediately visualize the solution: By adding7

the two equations, y is eliminated, leaving 3x = 5. But doing it this way takes advantage of the specific8

example, and we need a method for larger systems of equations. We need a generalized (algorithmic)9

approach. This general approach is called Gaussian elimination.10

Start by writing the equations in a standardized matrix format

[
1 −1
2 1

] [
x
y

]
=

[
3
2

]
. (1.28)

Next, eliminate the lower left term (2x) using a scaled version of the upper left term (x). Specifically,
multiply the first equation by -2, add it to the second equation, replacing the second equation with the
result. This gives [

1 −1
0 3

] [
x
y

]
=

[
3

2− 3 · 2

]
=

[
3
−4

]
. (1.29)

Note that the top equation did not change. Once the matrix is “upper triangular” (zero below the11

diagonal) you have the solution. Starting from the bottom equation, y = −4/3. Then the upper12

equation then gives x− (−4/3) = 3, or x = 3− 4/3 = 5/3.13

In principle Gaussian elimination is easy, but if you make a calculation mistake along the way, it14

is very difficult to find the error. The method requires a lot of mental labor, with a high probability15

of making a mistake. You do not want to apply this method every time. For example suppose the16

elements are complex numbers, or polynomials in some other variable such as frequency. Once the17

coefficients become more complicated, the seeming trivial problem becomes highly error prone. There18

is a much better way, that is easily verified, which puts all the numerics at the end, in a single step.19

The above operations may be automated by finding a carefully chosen upper-diagonalization matrix
U that does the same operation. For example let

U =

[
1 0
−2 1

]
. (1.30)

Multiplying Eq. 1.28 by U we find

[
1 0
−2 1

] [
1 −1
2 1

] [
x
y

]
=

[
1 −1
0 3

] [
x
y

]
=

[
3
−4

]
(1.31)

we obtain Eq. 1.29. At this point we can either back-substitute and obtain the solution, as we did20

above, or find a matrix L that finishes the job, by removing elements above the diagonal.21

47https://en.wikipedia.org/wiki/System_of_linear_equations
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In Appendix B.2 the inverse of a general 2x2 matrix is summarized in terms of three steps: 1) swap
the diagonal elements, 2) reverse the signs of the off-diagonal elements and 3) divide by the determinant
∆ = ab− cd. Specifically [

a b
c d

]−1

=
1

∆

[
d −b
−c a

]
. (1.32)

There are very few things that you must memorize, but the inverse of a 2x2 is one of them. It needs1

to be in your tool-bag of tricks, as you once did for the quadratic formula.2

While it is difficult to compute the inverse matrix from scratch (Appendix B), it takes only a few
seconds to verify it (steps 1 and 2)

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc −ab+ ab
cd− cd −bc+ ad

]
=

[
∆ 0
0 ∆

]
. (1.33)

Thus dividing by the determinant gives the 2x2 identity matrix. A good strategy, when you don’t trust3

your memory, is to write down the inverse as best you can, and then verify.4

Using 2x2 matrix inverse on our example, we find

[
x
y

]
=

1

1 + 2

[
1 1
−2 1

] [
3
2

]
=

1

3

[
5

−6 + 2

]
=

[
5/3
−4/3

]
. (1.34)

If you use this method, you will rarely (never) make a mistake, and the solution is easily verified.5

Either you can check the numbers in the inverse, as was done in Eq. 1.33, or you can substitute the6

solution back into the original equation.7

1.3.7 Lec 16: Transmission (ABCD) matrix composition method8

In this section we shall derive the method of linear composition of systems, known by several names9

as the ABCD Transmission matrix method, or in the mathematical literature as the Möbius (bilinear)10

transformation. Using the method of matrix composition, a linear system of 2x2 matrices can represent11

a large and important family of networks. By the application of Ohm’s law to the circuit shown in12

Fig. 1.13, we can model a cascade of such cells.13

L

C

V2V1 +

−

+

−

I2I1

Figure 1.13: This is a single LC cell, of an LC transmission line of Fig. 2.2 (p. 117). It may be modeled by the
ABCD method, as the product of two matrices, as discussed below. The inductance L of the coil and the capacitance C
of capacitor are in units of [Henry/m] and [Farad/m], thus they depend on length ∆x [m] that the cell represents. Note
the flows are always defined as into the + node.

Matrix composition: Matrix multiplication represents a composition of 2x2 matrices, because the
input to the second matrix is the output of the first (this follows from the definition of composition:
f(x) ◦ g(x) = f(g(x))). Thus the ABCD matrix is also known as the transmission matrix method, or
occasionally the chain matrix. The general expression for an transmission matrix T (s) is

[
V1

I1

]
=

[
A B
C D

] [
V2

−I2

]
. (1.35)
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The four coefficientsA(s),B(s), C(s),D(s) are all complex functions of the Laplace frequency s = σ+jω.1

The derivation is repeated with more detail in Section 3.3.2 (p. 134). It is a standard convention to2

always define the current into the node, but since the input current (on the left) is the same as the3

output current on the right (I2), the sign must be reversed to meet the convention of current into every4

node. When transmission matrices are cascaded, the signs all match.5

Example of the use of the ABCD matrix composition: In Fig. 1.13 we see the network is
composed of a series inductor (mass) having an impedance Zl = sL, and a shunt capacitor (compliance)
having an impedance Zc = 1/sC, where s ∈ C. As determined by Ohm’s Law, each impedance is
describe by a linear relation between the current and the voltage. For the inductive impedance, applying
Ohm’s law, we find

V1 − V2 = ZlI1

where Zl is the impedance of the inductor. For the capacitive impedance, applying Ohm’s law we find

V2 = (I1 + I2)Zc,

where Zc is the impedance of the capacitor. Each of these linear impedance relations may be written
in matrix form. The series inductor equation gives (Note I1 = −I2)

[
V1

I1

]
=

[
1 Zl
0 1

] [
V2

−I2

]
, (1.36)

while the shunt capacitor equation yields

[
V2

I1

]
=

[
1 0
Yc 1

] [
V2

−I2

]
, (1.37)

where Yc = 1/Zc is called the admittance. Note V1 = V2.6

When the second matrix equation for the shunt admittance (Eq. 1.37) is substituted into the series
impedance equation (Eq. 1.36), we find the ABCD matrix (T1 ◦ T2), for the cell is simply the product
of two matrices [

V1

I1

]
=

[
1 Zl
0 1

] [
1 0
Yc 1

] [
V2

I2

]
=

[
1 + ZlYc Zl

Yc 1

] [
V2

−I2

]
. (1.38)

Thus A(s) = 1 +ZlYc = 1 + s2LC, B(s) = Zl,C(s) = Yc and D = 1. This equation characterizes every7

possible relation between the input and output voltage and current of the cell.8

For example, the ratio of the output to input voltage with the output unloaded (I2 = 0), known as
the voltage divider relation may be found from the upper equation with I2 = 0. Writing this out gives

V2

V1

∣∣∣∣
I2=0

=
1

A(s)
=

1

1 + ZlYc
=

Zc
Zc + Zl

.

To derive the formula for the current divider equation, use the lower equation and set V2 = 0.

−I2

I1

∣∣∣∣
V2=0

=
1

D = 1.

1.3.8 Lec 17: Riemann Sphere: 3d extension of chord and tangent method9

Once algebra was formulated c830 CE, mathematicians were able to expand beyond the limits placed10

on it by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell,11

2010, p. 93). The geometry of Euclid’s Elements had paved the way, but after 2000 years, the addition12

of the language of algebra changed everything. The analytic function was a key development, heavily13

used by both Newton and Euler. Also the investigations of Cauchy made important headway with his14
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work on complex variables. Of special note was integration and differentiation in the complex plane of1

complex analytic functions, which is the topic of stream 3.2

It was Riemann, working with Gauss in the final years of Gauss’ life, who made the breakthrough,3

with the concept of the extended complex plane.48 This concept was based on the composition of a line4

with the sphere, similar to the derivation of Euclid’s formula for Pythagorean triplets (Fig. 2.3, p. 118).5

While the importance of the extended complex plane was unforeseen, it changed analytic mathematics6

forever, along with the physics it supported. It unified and thus simplified many important integrals,7

to the extreme. This idea is captured by the fundamental theorem of complex integral calculus (Table8

1.7 p. 71) and 4.3.1, p. 148).9

Figure 1.14: The left panel shows how the real line may be composed with the circle. Each real x value maps to a
corresponding point x′ on on the unit circle. The point x → ∞ maps to the north pole N . This simple idea may be
extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the sphere. As
with the circle, the point on the complex plane z → ∞ maps onto the north pole N . This construction is important
because while the plane is open (does not include z → ∞), the sphere is analytic at the north pole. Thus the sphere
defines the closed extended plane. Figure from Stillwell (2010, pp. 299-300).

The idea is outlined in Fig. 1.14. On the left is a circle and a line. The difference between this case10

and the derivation of the Pythagorean Triplets is, that the line starts at the north pole, and ends on11

the real x ∈ R axis at point x. At point x′, the line cuts through the circle. Thus the mapping from x12

to x′ takes every point on R to a point on the circle. For example, the point x = 0 maps to the south13

pole (not indicated). To express x′ in terms of x one must compose the line and the circle, similar14

to the composition used in Fig. 2.3 (p. 118). The points on the circle, indicated here by x′, require a15

traditional polar coordinate system, having a unit radius and an angle defined between the radius and16

a vertical line passing through the north pole. When x→∞ the point x′ → N , known as the point at17

infinity. But this idea goes much further, as shown on the right half of Fig. 1.14.18

Here the real tangent line is replaced by the a tangent complex plane z ∈ C, and the complex19

puncture point z′ ∈ C, in this case on the complex sphere, called the extended complex plane. This is a20

natural extension of the chord/tangent method on the left, but with significant consequences. The main21

difference between the complex plane z and the extended complex plane, other than the coordinate22

system, is what happens at the north pole. The point at |z| =∞ is not defined on the plane, whereas23

on the sphere, the point at the north pole is simply another point, like every other point on the sphere.24

Open vs. closed sets: Mathematically the plane is said to be an open set, since the limit z → ∞25

is not defined, whereas on the sphere, the point z′ is a member of a closed set, since the north pole is26

defined. The distinction between an open and closed set is important, because the closed set allows27

the function to be complex-analytic at the north pole, which it cannot be on the plane (since the point28

at infinity is not defined).29

The z plane may be replaced with another plane, say the w = F (z) ∈ C plane, where w is some30

48“Gauss did lecture to Riemann but he was only giving elementary courses and there is no evidence that at this
time he recognized Riemann’s genius.” http://www-groups.dcs.st-and.ac.uk/˜history/Biographies/Riemann.html

“In 1849 he [Riemann] returned to Göttingen and his Ph.D. thesis, supervised by Gauss, was submitted in 1851.” http:

//www-groups.dcs.st-and.ac.uk/˜history/Biographies/Riemann.html
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function F of z ∈ C. For the moment we shall limit ourselves to complex analytic functions of z, namely1

w = F (z) = u(x, y) + v(x, y) =
∑∞
n=0 z

n.2

In summary, given a point z = x + y on the open complex plane, we map it to w = F (z) ∈ C,3

the complex w = u+ v plane, and from there to the closed extended complex plane w′(z). The point4

of doing this is that it allows us to allow the function w′(z) to be analytic at the north pole, meaning5

it can have a convergent Taylor series at the point at infinity z → ∞. Since we have not defined6

dw(z)/dz, the concept of a complex Taylor series is undefined.7

Möbius bilinear transformation8

In mathematics the Möbius transformation has special importance because it is linear in its action. In9

the engineering literature this transformation is known as the bilinear transformation. Since we are10

engineers we shall stick with the engineering terminology. But if you wish to read about this on the11

internet, be sure to also search for the mathematical term, which may be better supported.12

When a point on the complex plane z = x+y is composed with the bilinear transform (a, b, c, d ∈ C),
the result is w(z) = u(x, y) + v(x, y)

w =
az + b

cz + d
(1.39)

the transformation from z → w is a cascade of four independent compositions13

1. translation (w = z + b: a = 1, b ∈ C, c = 0, d = 1),14

2. scaling (w = |a|z: a ∈ R, b = 0, c = 0, d = 1)15

3. rotation (w = a
|a|z: a ∈ C, b = 0, c = 0, d = |a|) and16

4. inversion (w = 1
z : a = 0, b = 1, c = 1, d = 0).17

Each of these transformations are a special case of Eq. 1.39, with the inversion the most complicated.18

A wonderful video showing the effect of the bilinear (Möbius) transformation on the plane is available19

that I highly recommend: https://www.youtube.com/watch?v=0z1fIsUNhO420

21

When the extended plane (Riemann sphere) is analytic at z = ∞, one may take the derivatives22

there, defining a Taylor series with the expansion point at∞ and then integrate through∞. When the
defined.

23

bilinear transformation rotates the Riemann sphere, the point at infinity is translated to a finite point24

on the complex plane, revealing normal characteristics. A second way to access the point at infinity is25

by inversion, swapping poles with zeros. Thus a zero at infinity is the same as a pole at the origin.26

This construction of the Riemann sphere and the Mb̈ious (bilinear) transformation allow us to fully27

understand the point at infinity, and treat it like any other point. If you felt that you never understood28

the meaning of the point at ∞ (likely), this will help.29

1.3.9 Lec 18: Complex analytic mappings (Domain-coloring)30

One of the most difficult aspects of complex functions of a complex variable is understanding what’s31

going on. For example, w = sin(σ) is trivial when ω = 0 (i.e., s is real), because sin(σ) is then real.32

But the general case, w(s) = sin(s) ∈ C, is not so easily visualized, because with argument s ∈ C, the33

function w ∈ C, since the mapping is from the s = σ + ω plane to the w(σ, ω) = u(σ, ω) + v(σ, ω)34

plane, which in general is complicated. Fortunately with computer software today, this problem can35

be solved by adding color to the graph. A Matlab/Octave script zviz.m has been used to make these36

make the charts shown here.49 This tool is known as Domain-coloring. Rather than plotting u(σ, ω)37

and v(σ, ω) separately, domain coloring allows us to display the entire function on one plot. Note that38

for this visualization we see the complex polar form of w(s), rather than a rectangular (u, v) graph.39

49URL for zviz.m: http://jontalle.web.engr.illinois.edu/uploads/298/zviz.m
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w = s

σ

jω
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Figure 1.15: On the left is a color map showing the definition
of the complex mapping from the s = σ + ω plane to the w(s) =
u(σ, ω)+v(σ, ω) plane. This mapping from one complex plane s = σ+ω
to another w = u(σ, ω) + v(σ, ω), is visualized by the use of intensity
(light/dark) to indicate magnitude, and color (hue) to indicate angle
(phase), of the mapping. On the left w(s) = s = σ + ω (i.e., u = σ
and v = v). On the right is w(z) = z − √

j, a shift to the right and

up by
√

2/2 = 0.707. The white and black lines are the iso-real and
iso-imaginary contours of the mapping.

In Fig. 1.15 we show this color code1

as a 2x2 dimensional domain-coloring2

graph. The color (hue) represents the3

phase, and intensity (dark to light), the4

magnitude, of the function being ana-5

lyzed. On the left is the reference con-6

dition, the identity mapping (w = s).7

Red is 0◦, sea-green is 90◦, blue-green8

is 135◦, blue is 180◦, and violet is −90◦
9

(or 270◦). The function w = s has a10

dark spot (a zero) at s = 0, and be-11

comes brighter away from the origin.12

On the right is w = z − √j, which13

shifts the zero by
√
j. In summary, do-14

main coloring gives the full picture of15

the complex analytic function mappings w(x, y) = u(x, y) + v(x, y), in polar coordinates.16

Two examples are given in Fig. 1.16 to help you interpret the two complex mappings w = es (left)17

and its inverse s = ln(w). The exponential is relatively easy to understand because w = eσeω. The18

red region is where ω ≈ 0 in which case w ≈ eσ. As σ becomes large and negative, w → 0 so the entire19

field becomes dark on the left. The field is becoming light on the right where w = eσ → ∞. If we let20

σ = 0 and look along the ω axis, we see that the function is changing phase, sea-green (90◦) at the top21

and violet (-90◦) at the bottom.22

Note the zero in ln(w) at w = 1 in the right panel. The root of the log function is log(sr) = 0 is23

sr = 1, φ = 0, since log(1) = 0. More generally, the log of w = |w|eφ is s = log(|w|) + φ. Thus s can24

be zero only when the angle of w is zero (i.e., φ = 0).25

The log function has a branch cut along the φ = 180◦ axis. As one crosses over the cut, the phase26

goes above 180◦, and the plane changes to the next sheet of the log function. The only sheet with27

a zero is the principle value, as shown. All others, the log function is either increasing or decreasing28

monotonically, and there is no zero, as seen on sheet 0 (the one showing in Fig. 1.16).29

w = exp(s)

σ

jω
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 1

 0
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s = log((u+jv))
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Figure 1.16: On the left is the function w(s) = es and on the right is s = log(w). The color shows the phase, and
the intensity shows the magnitude of the mapping, as a function of s = σ + ω. The white lines are iso-real part and
black lines are iso-imaginary part of the mapping. For the mapping on the left, w(s) = es goes to zero as σ → −∞, thus
the domain coloring plot becomes dark for σ < −2. The white and black lines are always perpendicular because es is
complex analytic everywhere. On the right shows s = log(w), the inverse of w = es, which has a zero at s = 1, since
there log(1) = 0 (the imaginary part is zero). When s = ejθ, the log(s) = jθ, thus is not zero unless θ = 0. Every time θ
increases beyond πk, for k ∈ Z, log(s) crosses the branch cut (white line at 180◦), causing the color to change abruptly
along the negative u axis.
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1.3.10 Lec 19: Signals: Fourier and Laplace transforms1

Two basic transformations in engineering mathematics are the Fourier and the Laplace transforms,2

which deal with time–frequency analysis.3

The Fourier transform takes a time domain signal f(t) ∈ R and transforms it to the frequency
domain ω ∈ R, where it is complex (F (ω) ∈ C). For the Fourier transform, both the time −∞ < t <∞
and frequency ∞ < ω <∞ are strictly real. The time vs. frequency relationship, between f(t) and its
transform F (ω), is indicated by the double arrow symbol

f(t)↔ F (ω).

Since the FT obeys superposition, it is possible to define a FT of a complex time function f(t) ∈ C, t ∈4

R. This is useful in certain applications (i.e, Hilbert envelope, Hilbert transforms), but because the5

FT is not complex analytic, can be error prone if your not fully in charge of the method.6

The Laplace transform takes a real causal signals f(t) ∈ R, as a function of real time t ∈ R, that7

are strictly zero for negative time (f(t) = 0 for t < 0), and transforms them into complex functions8

F (s) ∈ C of complex frequency s = σ + ω. As for the Fourier transform, there is the convenient9

notation f(t) ↔ F (s). It is common to express the causal nature of f(t)u(t) by indicating the causal10

nature, using the Heaviside step function u(t).11

When a signal is zero for negative time f(t < 0) = 0, it is said to be causal, and the resulting12

transform F (s) is then complex analytic over significant regions of the s plane. For a function of time13

to be causal, time must be real (t ∈ R), since if it were complex, it would lose the order property (thus14

it could not be causal).15

Restriction on a function (e.g., real, causal, periodic, positive real part, etc.) are called a symmetric16

property. There are many forms of symmetry (Section 1.3.12, p. 70). The concept of symmetry is very17

general and widely used in both mathematics and physics, where it is more generally known as Group18

theory. We shall restrict ourselves to only a few very basic symmetries (Section 3.5.1, p. 137).19

Periodic signals: Besides these two basic types of time–frequency transforms, there are several20

variants that depend on the symmetry in time and frequency. For example, when the time signal21

is sampled (discrete in time), the frequency response becomes periodic, leading to the Discrete-time22

Fourier transform (DTFT). When a time response is periodic, the frequency response is sampled (dis-23

crete in frequency), leading to the Fourier Series. These two symmetries may be simply characterized24

as periodic in time ⇒ discrete in frequency, and periodic in frequency ⇒ discrete in time. In Sec-25

tion 3.4.2 we shall explain this concept with examples. When a function is both discrete in time and26

frequency, it is necessarily periodic in time and frequency, leading to the Discrete Fourier Transform27

(DFT). The DFT is typically computed with an algorithm called the Fast Fourier Transform (FFT),28

which can dramatically speed up the calculation when the data is a power of 2, in length.29

A very important symmetry is when functions that are causal (in time) and periodic (in frequency).30

The best known example is the class of signals that have z transforms, which are causal (one-sided in31

time) and discrete-time signals. The harmonic series is the z-transform of the step function, discrete32

and one-sided in time, thus analytic within the RoC, in the complex frequency (z) domain.33

Summary: The definitions of the FT and LT transforms are superficially similar. The key difference34

is that the time response of the Laplace transform is causal, leading to complex analytic frequency35

responses. The frequency response of the Fourier transform is real, thus typically not analytic. These36

are not superficial differences. The concept of symmetry is helpful in understanding the many different37

types of time-frequency transforms. Two fundamental types of symmetry are causality and periodicity.38

39

Definition of the Fourier transform: The forward transform takes f(t) to F (ω) while the inverse40

transform takes F (ω) to f̃(t). The tilde symbol indicates that in general recovered inverse transform41

signal can be slightly different from f(t). We will give examples of this below.42
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Table 1.4: The following table provides a short table of simple Fourier Transforms. Note a > 0 ∈ R has units
[rad/s]. To flag this necessary condition, we use |a| to assure this condition will be met. The other constant
T0 ∈ R [s] has no restrictions, other than being real. Complex constants may not appear as the argument to a
delta function, since complex numbers do not have the order property.

f(t)↔ F (ω) Name

δ̃(t)↔ 1(ω) Dirac

1(t)↔ 2πδ̃(ω) Dirac

sgn(t) =
t

|t| ↔
2

ω

ũ(t) =
1(t) + sgn(t)

2
↔ πδ̃(ω) +

1

ω
step

δ̃(t− T0)↔ e−ωT0 delay

δ̃(t− T0) ⋆ f(t)↔ F (ω)e−ωT0 delay

ũ(t)e−|a|t ↔ 1

ω + |a| exp

rec(t) =
1

T0
[ũ(t)− ũ(t− T0)]↔ 1

T0s

(
1− e−ωT0

)
pulse

ũ(t) ⋆ ũ(t)↔ δ̃2(ω) Not defined NaN

FT Properties

d

dt
v(t)↔ ωV (ω) deriv

f(t) ⋆ g(t)↔ F (ω)G(ω) conv
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F (ω) =

∫ ∞

−∞
f(t)e− ωtdt f̃(t) =

1

2π

∫ ∞

−∞
F (ω)e ωtdω (1.40)

F (ω)↔ f(t) f̃(t)↔ F (ω). (1.41)

Properties of Fourier Transforms:1

1. Both time t and frequency ω are real.2

2. For the forward transform (time to frequency), the sign of the exponential is negative.3

3. The limits on the integrals in both the forward and reverse FTs are [−∞,∞].4

4. When taking the inverse FT (IFT), the normalization factor of 1/2π is required to cancel the 2π5

in the differential of the integral dω/2π = df , where f is frequency in [Hz], and ω is the radian6

frequency [rads].7

5. The Fourier step function may be defined by the use of superposition of 1 and sgn(t) = t/|t| as

ũ(t) ≡ 1 + sgn(t)

2
=





1 if t > 0

1/2 t = 0

0 if t < 0

.

Taking the FT of a delayed step function

ũ(t− T0)↔ 1

2

∫ ∞

−∞
[1− sgn(t− T0)] e−jωtdt = πδ̃(ω) +

e−jωT0

jω

Thus the FT of the step function has the term πδ(ω) due to the 1 in the definition of the Fourier8

step. This term introduces a serious flaw with the FT of the step function: While it appears to9

be causal, it is not.10

6. The convolution ũ(t) ⋆ ũ(t) is not defined because both 1 ⋆ 1 and δ̃2(ω) do not exist (and cannot11

be defined).12

7. The inverse FT has convergence problems whenever there is a discontinuity in the time response.13

This we indicate with a hat over the reconstructed time response. The error between the target14

time function and the reconstructed is zero in the root-mean sense, but not point-wise.15

Specifically, at the discontinuity point for the Fourier step function (t = 0), ũ(t) 6= u(t), yet16 ∫
|ũ(t)−u(t)|2dt = 0. At the point of the discontinuity the reconstructed function displays Gibbs17

ringing (it oscillates around the step, hence does not converge at the jump).50 More about this18

in Section 3.4.2.19

8. The FT is not always analytic in ω, as in this example of the step function. The step function20

cannot be expanded in a Taylor series about ω = 0, because δ̃(ω) is not analytic in ω.21

9. The Fourier δ function is denoted δ̃(t), to differentiate it from the Laplace delta function δ(t).22

They differ because the step functions differ, due to the convergence problem described above.23

10. One may define

ũ(t) =

∫ t

−∞
δ̃(t)dt,

50https://en.wikipedia.org/wiki/Gibbs_phenomenon
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and define the somewhat questionable notation

δ̃(t) =:
d

dt
ũ(t),

since the Fourier step function is not analytic.1

11. The rec(t) function is defined as

rec(t) =
ũ(t)− ũ(t− T0)

T0
=





0 if t > 0

1/T0 0 < t < T0

0 if t < 0

.

It follows that δ̃(t) = limT0→0. Like δ̃(t), the rec(t) has unit area.2

Discrete Fourier Transform and Number Theory: Add some information about the DFT, FFT,3

and Prime number thm.4

1.3.11 Lec 20: Laplace transforms5

When dealing with engineering problems it is convenient to separate the signals we use from the systems6

that process them. We do this by treating signals, such as a music signal, differently from a system,7

such as a filter. In general signals may start and end at any time. The concept of causality has no8

mathematical meaning in signal space. Systems, on the other hand, obey very rigid rules (to assure that9

they remain physical). These physical restrictions are described in terms of nine Network Postulates,10

which are briefly discussed in Sect. 1.3.12, and again in greater detail in Sect. 3.5.1.11

Definition of the Laplace transform: The forward and inverse Laplace transforms are

F (s) =

∫ ∞

0−

f(t)e−stdt f(t) =
1

2π

∫ σ0+∞

σ0−∞
F (s)estds (1.42)

F (s)↔ f(t) f(t)↔ F (s) (1.43)

1. Time t ∈ R and Laplace frequency is defined as s = σ + ω ∈ C.12

2. When taking the forward transform (t → s), the sign of the exponential is negative. This is13

necessary to assure that the integral converges when the integrand f(t) → ∞ as t → ∞. For14

example, if f(t) = etu(t) (i.e., without the negative σ exponent), the integral does not converge.15

3. The target time function f(t < 0) = 0 (i.e., it must be causal). The time limits are 0− < t <∞.16

Thus the integral must start from slightly below t = 0 to integrate over a delta functions at t = 0.17

For example if f(t) = δ(t), the integral must include both sides of the impulse. If you wish to18

include non-causal functions such as δ(t+ 1) it is necessary to extend the lower limit to include19

it. In such cases simply set the lower limit to −∞, and let the integrand to determine the limits.20

4. The limits on the integrals of the forward transform are t : (0−,∞) ∈ R, and the reverse LTs are21

[σ0 −∞, σ0 +∞] ∈ C. These limits will be further discussed in Section 1.4.9 (p. 83).22

5. When taking the inverse FT (IFT), the normalization factor of 1/2π is required to cancel the23

2π in the differential ds of the integral.24

6. The frequency for the LT must be is complex, and in general F (s) is complex analytic for σ > σ0.25

It follows that the real and imaginary parts of F (s) are related. Given ℜF (s) it is possible to26

find ℑF (s) (Boas, 1987). More on this in Section 3.4.2 (p. 137).27
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Table 1.5: The following table provides a brief table of useful Laplace Transforms. Assume that:
f(t), δ(t), u(t), rect(t), T0, p, e,∈ R and F (s), G(s), s, a ∈ C.

f(t)↔ F (s) Name

δ(t)↔ 1 Dirac

δ(|a|t)↔ |a| verifyTime-scaled Dirac

δ(t− T0)↔ e−sT0 delay

δ(t− T0) ⋆ f(t)↔ F (s)e−sT0 –

u(t)↔ 1

s
step

u(at)↔ a

s
dilate

u(t− T )↔ 1

s
e−sT time-shift

u(t) ⋆ u(t) = tu(t)↔ 1/s2 ramp

u(t) ⋆ u(t) ⋆ u(t) =
1

2
t2u(t)↔ 1/s3 Triple convolution

tpu(t)↔ Γ(p+ 1)

sp+1
p ∈ R ≥ 0

1√
πt
u(t)↔ 1√

s
fractional integral

eatu(t)↔ 1

s− a modulate

rect(t) =
1

T0
[u(t)− u(t− T0)]↔ 1

T0s

(
1− e−sT0

)
pulse

∞∑

n=0

δ(t− nTo)↔
1

1− e−sTo
−−

J0(at)u(t)↔ 1

s2 + a2
Bessel

J1(t)u(t)/t↔
√
s2 + 1− s

J1(t)u(t)/t+ 2u(t)↔
√
s2 + 1 + s = esinh−1(s)

δ(t) + J1(t)u(t)/t↔
√
s2 + 1

I0(t)u(t)↔ 1/
√
s2 − 1

u(t)/
√
t+ 1↔ es

√
π

s
erfc(
√
s)

√
tu(t) ∗

√
1 + tu(t)↔ es/2K1(s/2)/2s

Table 1.6: Second caption: Remove it. Additional Laplace transforms. Note that: K1 is the Bessel function
of the second kind (i.e., J0 is of the first kind).
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LT functional properties

f(|a|t)u(|a|t)↔ |a|F (s/|a|) a 6= 0Verify

f(t)eatu(t)↔ F (s+ a) damped

f(t− T )ea(t−T )u(t− T )↔ e−sTF (s+ a) damped and delayed

f(−t)u(−t)↔ F (−s) reverse time

f(−t)e−atu(−t)↔ F (a− s) time-reversed & damped

d

dt
f(t)↔ sF (s) deriv

f(t) ⋆ g(t) =

∫ t

t=0
f(t− τ)g(τ)dτ ↔ F (s)G(s) conv

u(t) ⋆ f(t) =

∫ t

0−

f(t)dt↔ F (s)

s
conv

7. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane.1

This will be explained in Sections 1.4.6-1.4.9 (p. 82-83).2

8. The Laplace step function is defined as

u(t) =

∫ t

−∞
δ(t)dt =





1 if t > 0

NaN t = 0

0 if t < 0

.

Alternatively one could define δ(t) = du(t)/dt.3

9. It is easily shown that u(t)↔ 1/s by direct integration

F (s) =

∫ ∞

0
u(t) e−stdt = −e

−st

s

∣∣∣∣∣

∞

0

=
1

s
.

With the LT step (u(t)) there is no Gibbs ringing effect.4

10. In many physical applications, the Laplace transform takes the form of a ratio of two polynomials.
In such case the roots of the numerator polynomial are call the zeros while the roots of the
denominator polynomial are called the poles. For example the LT of u(t) ↔ 1/s has a pole at
s = 0, which represents integration, since

u(t) ⋆ f(t) =

∫ r

−∞
f(τ)dτ ↔ F (s)

s
.

5

11. The LT is quite different from the FT in terms of its analytic properties. For example, the step6

function u(t) ↔ 1/s is complex analytic everywhere, except at s = 0. The FT of 1 ↔ 2πδ̃(ω) is7

not analytic anywhere.8

Once complex integration in the complex plane has been defined (Section 1.4.2, p. 74), we can9

justify the definition of the inverse LT (Eq. 1.42).10
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1.3.12 Lec 21: Nine network postulates1

Systems of differential equations, such as the wave equation, are conveniently described in terms of2

mathematical properties, which we present here in terms of nine network postulates:3

(P1) causality (non-causal/acausal): Causal systems respond when acted upon. Virtually all physical4

systems obey causality. An example of a causal system is an integrator, which has a response of5

a step function. Filters are also examples of causal systems. Signals represent acausal responses.6

They do not have a clear beginning or end, such as the sound of the wind or traffic noise.7

(P2) linearity (nonlinear): Linear systems obey superposition. If two signals x(t) and y(t) are the8

inputs to a linear system, producing outputs x′(t) and y′(t), then if the inputs are presented9

together as ax(t) + by(t), with weights a, b ∈ R, then the output will be ax′(t) + by′(t). If either10

a, b are zero, that signal is removed from the output.11

Nonlinear system mix two inputs, thereby producing other signals not present in the input. For12

example, if the inputs to a nonlinear system are two sine waves, the output will contain distortion13

components, having frequencies not present at the input. An example of a nonlinear system is14

one that multiplies the two inputs. A second is a diode, which rectifies a signal, letting current15

flow only in one direction. Most physical systems have some degree of nonlinear response, but16

this is not always desired. Other systems are designed to be nonlinear, such as the diode example.17

(P3) passive (active): An active system has a power source, such as a battery while a passive system18

has no power source. While you may consider a transistor amplifier to be active, it is only so19

when connected to a power source.20

(P4) real (complex) time response : Typically systems are “real in, real out.” They do not naturally21

have complex responses (real and imaginary parts). While a Fourier transform takes real inputs22

and produces complex outputs, this is not an example of a complex time response. P4 is a23

characterization of the input signal, not its Fourier transform.24

(P5) time-invariant (time varying): For a system to be time varying system its properties mus depend25

on when the signal starts and stops. If the output, relative to the input, is independent of the26

starting time, then the system is time-invariant.27

(P6) reciprocal (anti-reciprocal): In many ways this is the most difficult propriety to understand. It28

is best characterized by the ABCD matrix. If B = C it is said to be reciprocal. If B = −C it29

is said to be anti-reciprocal. The loudspeaker is anti-reciprocal, which is why it is modeled by30

the gyrator rather than a transformer. All non-reciprocal systems are modeled by such gyrator,31

which swap the force and flow variables. In some ways this property is beyond the scope of this32

book.33

(P7) reversibility (non-reversible): If the system can be flipped, between input and output, the it is34

said to be reversible. In terms of the ABCD parameters, if A = D is is reversible.35

(P8) space-invariant (space-variant): If a system operates independently as a function of where it36

physically is in space, then it is space-invariant. When the parameters that characterize the37

system depend on position, it is space-variant.38

(P9) quasi-static (multi-modal): Quasi-statics follows from systems that are small compared to the39

wavelength. This is a very general assumption, that must be false when the frequency is raised40

and the wavelength becomes short. Thus this is also known as the long-wavelength approximation.41

It is a very powerful tool in modeling systems such as transmission lines.42

Each postulate has two (in one case three) categories. For example for (P2) a system is either linear43

or non-linear and for (P1) is either causal, non-causal or acausal. P6 and P9 only apply to 2-port44
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networks (those having an input and an output). The others can apply to both a 2- or 1-port networks1

(e.g., an impedance is a 1-port).2

Include a figure of examples of the many types of systems.3

Related forms of these postulates had been circulating in the literature for many years, widely4

accepted in the network theory literature (Van Valkenburg, 1964a,b; Ramo et al., 1965). The first six5

of these were formally introduced Carlin and Giordano (1964), and (P7-P9) were added by Kim et al.6

(2016).7

1.3.13 Lec 22: Exam II (Evening Exam)8

1.4 Stream 3: Scalar (Ordinary) Differential Equations9

Stream 3 is ∞, a concept which typically means unbounded (immeasurably large), but in the case of10

calculus, ∞ means infinitesimal (immeasurably small), since taking a limit requires small numbers.11

Taking a limit means you may never reaching the target, a concept that the Greeks called Zeno’s12

paradox (Stillwell, 2010, p. 76).13

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is14

preferable, since the term “ordinary” is vague, if not a meaningless label. There are a special subset of15

fundamental theorems for scalar calculus, all of which are about integration, as summarized in Table16

1.7, starting with Leibniz’s theorem. These will be discussed below, and more extensively in Chapter17

5.18

Table 1.7: Summary of the fundamental theorems of integral calculus, each of which deals with integration.
There are at least four theorems related to scalar calculus, and four more to vector calculus.

Name Mapping p. Description

Leibnez R1 → R0 72 Area under a real curve.

Cauchy C1 → C0 72 Residue integration and analytic functions.

Gauss’s Law R3 → R2 101 Conservation of mass and charge crossing a closed surface.

Stokes R3 → R1 101 Relates line integrals to the rate of change of the flux crossing
an open surface.

Green R2 → R0 101 Special case of Stokes for a plane

Helmholtz 106 Every differentiable vector field may be decomposed into a
dilatation and a rotation.

Following the integral theorems on scalar calculus, are those on vector calculus, without which19

there could be no understanding of Maxwell’s equations. Of these, the fundamental theorem of complex20

calculus (aka, Helmholtz theorem), Gauss’s Law and Stokes theorem, form the corner stone of modern21

vector field analysis. These theorems allow one to connect the differential (point) and macroscopic22

(integral) relationships. For example, Maxwell’s equations may be written as either vector differential23

equations, as shown by Heaviside (along with Gibbs and Hertz),51 or in integral form. It is helpful to24

place these two forms side-by-side, to fully appreciate their differences. To understand the differential25

(point) view, one must fully understand the integral form (the macroscopic view). These are presented26

in Section 1.5.5, p. 101.27

The beginning of modern mathematics28

The birth of mathematics as we know it today, occurred during the 16th to 18th centuries, perhaps29

starting with Galileo, Descartes, Fermat, Newton, the Bernoulli family, and Euler, as outlined in30

51https://en.wikipedia.org/wiki/History_of_Maxwell\%27s_equations
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Fig. 1.4. Galileo was formidable, due to his fame, fortune, and his stance against the powerful Catholic1

church and its establishment. His creativity in scientific circles was certainly well known due to his2

many skills and accomplishments. Fermat and Descartes were at the forefront of merging algebra and3

geometry, but while Fermat kept meticulous notebooks, he did not publish what he knew, and tended4

to be secretive.5

Much was yet to be done, by Newton and Leibniz, with the development of calculus, using term6

by term integration of functions, based on their Taylor series representation. This was a powerful7

technique, but as stated, incomplete, because the series is only valid for single-valued functions, within8

the RoC. But more importantly, Newton (and others) failed to recognize the powerful generalization to9

complex analytic series, and complex analytic functions. The first breakthrough was Newton’s publi-10

cation of Principia (1687). The second was Riemann (1851). There were many important incremental11

missteps between.12

Following Newton’s lead, the secretive and introverted behavior of the typical mathematician dra-13

matically changed with the Bernoulli family. The oldest brother, Jacob, taught his much younger14

brother Johann, who then taught his son Daniel, and Johann’s star pupil, Euler. Euler first mastered15

all the tools and then published, with a prolific intensity previously unknown.16

Euler and the circular functions: The first major task was to understand the family of analytic
circular functions, ex, sin(x), cos(x), and log(x), a task begun by the Bernoulli family, but mastered by
Euler. Euler sought relations between these many functions, some of which are not thought of as being
related, such as the log and sin functions. The connection that may “easily” be made is through the
Taylor series. By the manipulation of the analytic series representations, the relationship between ex,
and the sin and cos was precisely captured by

ex = cos(x) +  sin(x),

and its analytic inverse

ln(z) = tan−1
(
z − 1

z + 1

)
.

These not only relate the exponential function to the circular functions, but also contains  =
√
−1.17

While every high school student has learned Euler’s relation, it is doubtful (i.e., rare) that they fully18

appreciate the significance of complex analytic. While Euler found these relationships with the use19

of real power series (i.e., analytic functions), neither he, nor those who followed, seemed to fully20

appreciated the importance of complex analytic, and its potential role. For example, Newton famously21

ignored imaginary numbers, and called them imaginary in a disparaging (pejorative) way. Given22

Newton’s prominence, that certainly must have attenuated any interest in any complex algebra, even23

though it had been previously quantified by Bombelli in 1525, likely based on his amazing finding of24

Diophantus’ book Arithmetic in the Vatican library.25

While Euler was fluent with  =
√
−1, he did not consider functions to be complex analytic. That26

concept was first explored by Cauchy, almost a century later. The missing link to the concept of complex27

analytic is the definition of the derivative with respect to the complex argument (i.e., dF (z)/dz with28

z = x+ y), without which the complex analytic Taylor coefficients cannot be defined.29

1.4.1 Lec 23: Fundamental theorem of complex calculus30

History of the fundamental theorem of calculus: It some real sense, the story of calculus begins
with the fundamental theorem of calculus (FTC), also known generically as Leibniz’s formula. Simply
stated, the area under a real curve x, f(x) ∈ R, only depends on the end points

f(x) = f(0) +

∫

x
= 0xF (χ)dχ. (1.44)

This makes sense intuitively, by a simple drawing of F (x) (or F (t)), where x represents a spatial31

dimension [meters] (or if we replace x with t a temporal variable [seconds]). Recall that χ is a dummy32
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integration variable. If we go from point x = 0 to any x along a straight line measured by χ, the1

distance traveled depends on the length of the line. This is reminiscent of Eq. 1.1 (p. 17) about lengths2

and areas. Then f(x) represents the area of the integrand F (x), between the two points, in agreement3

with the common notion of an area.4

Fundamental theorems of real calculus: Leibniz’s formula says that the area under a real analytic
function (F (x), f(x), x ∈ R) only depends only on the end points. It follows that

F (x) =
d

dx
f(x).

Thus Eq. 1.44 may be viewed as an anti-derivative, or exact differential.5

If F (x) may be uniquely expanded in a power (Taylor) series in x,

F (x) =
∞∑

n=0

anx
n, (1.45)

then the FTC (Eq. 1.44) follows. This is easily seen given Taylor’s formula, for the coefficients of a
power series

an =
1

n!

dn

dxn
F (x)

∣∣∣∣
x=x0

. (1.46)

Exercise: Show that Taylor’s formula uniquely gives an by taking derivatives of Eq. 1.44, evaluated6

at x = 0.7

Case of a Complex path The fundamental Theorem of complex calculus (FTCC) states that for
any complex analytic function F (s) ∈ C with s = σ + ω ∈ C

f(s) = f(s0) +

∫ s

s0

F (ζ)dζ. (1.47)

(Greenberg, 1988, p. 1197). If we compare this to Eq. 1.44, they differ in that the path of the integral
is complex, meaning that the integral is over s ∈ C, rather than a real integral over x ∈ R. As for the
FTC, the Fundamental theorems of complex calculus (FTCC) states that the integral only depends on
the end points

F (s) =
d

ds
f(s). (1.48)

Comparing the FTC with the FTCC, it would appear that this can only be true if F (s) ∈ C is complex8

analytic, meaning it has a Taylor series in powers of s ∈ C.9

Complex analytic functions: The definition of a complex analytic function of s ∈ C is that it may
be expanded in a Taylor series

F (s) =
∞∑

n=0

cn(s− so)n (1.49)

about an expansion point so ∈ C. This definition follows the same logic as the FTC. Thus we need a
definition for the coefficients cn ∈ C, which most naturally follow from Taylor’s formula

cn =
1

n!

dn

dsn
F (s)

∣∣∣∣
s=so

. (1.50)

This requirement that F (s) have a Taylor series naturally follows by taking derivatives with respect10

to s at so. The problem is that both integration and differentiation of functions of s have not yet been11

defined.12
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Thus the question is: “What does it mean to take the derivative of a function F (s) ∈ C, s =1

σ+ω ∈ C, with respect to s, where s defines a plane rather than a real line?” We learned how to form2

the derivative on the real line. Can the same derivative concept be extended to the complex plane?3

The answer is affirmative. The question is resolved by applying the rules of the real derivative to4

defining the derivative in the complex plane. However for the complex case, there is an issue, regarding5

direction?6

Given an analytic function F (s), is the partial derivative with respect to σ different from the partial7

derivative with respect to ω? For complex analytic functions, the FTCC states that the integral is8

independent of the path in the s plane. Based on the chain rule, the derivative must also be independent9

of direction at s0. This directly follows from the FTCC. If the integral of a function of a complex variable10

is to be independent of the path, the derivative of a function with respect to a complex variable must11

be independent of the direction. This follows from Taylor’s formula, Eq. 1.50 for the coefficients of12

the complex analytic formula. The FTC is an integral over an area. The FTCC is an integral over13

a complex function along a complex path. Both relate an area under an integral. But what is the14

meaning of “area” for the complex line integral? The Cauchy-Riemann conditions provide the answer.15

1.4.2 Lec 24: Cauchy-Riemann conditions16

For the integral of Z(s) = R(σ, ω)+X(σ, ω) to be independent of the path, the derivative of Z(s) must17

be independent of the direction of the derivative. As we show next, this leads to a pair of equations18

known as the Cauchy-Riemann conditions. This is an important generalization of Eq. 1.1, p. 17 which19

goes from real integration (x ∈ R) to complex integration (s ∈ C), based on lengths, thus on area.20

Taking partial derivatives of Z(s), with respect to σ and ω, and then equating the real and
imaginary parts, gives

CR-1:
∂R(σ, ω)

∂σ
= 

∂X(σ, ω)

∂ω
and CR-2:

∂R(σ, ω)

∂ω
= 

∂X(σ, ω)

∂σ
. (1.51)

 cancels in CR-1, but introduces a 2 = −1 in CR-2. These equations are known as the Cauchy-21

Riemann (CR) conditions. They may also be written in polar coordinates.22

The CR conditions are necessary conditions that the integral of Z(s), and thus its derivative, be
independent of the path, expressed in terms of conditions on the real and imaginary parts of Z. This is
a very strong condition on Z(s), which follows assuming that Z(s) may be approximated by a Taylor
series in s

Z(s) = Z0 + Z1s+
1

2
Z2s

2 + · · · , (1.52)

where Zn ∈ C are complex constants given by the Taylor series formula (Eq. 1.50, p. 73).23

Every function that may be expressed as a Taylor series about a point s is said to be complex24

analytic at that point. This series, which is single valued, is said to converge within a radius of25

convergence (RoC). This highly restrictive condition has significant physical consequences. As an26

important example, every impedance function Z(s) obeys the CR conditions over large regions of the s27

plane, including the entire right half plane (RHP) (σ > 0). This condition is summarized by the Brune28

condition ℜZ(σ > 0) ≥ 0 (Eq. 1.59, Section 1.4.3).29

When this condition is generalized to volume integrals, it is called Green’s theorem, which is a special
Verify: KusseWest-

30

case of both Gauss’s and Stokes’s Laws, used heavily in the solution of boundary value problems in31

engineering and physics (e.g., solving problems that begin with Maxwell’s equations). The last chapter32

of this course shall depend heavily on these concepts.33

We may merge these equations into a pair of second order equations by taking a second round of
partials. Specifically, eliminating the real part R(σ, ω) of Eq. 1.51 gives

∂2R(σ, ω)

∂σ∂ω
=
∂2X(σ, ω)

∂2ω
= −∂

2X(σ, ω)

∂2σ
, (1.53)
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which may be compactly written as ∇2X(σ, ω) = 0. Eliminating the imaginary part gives

∂2X(σ, ω)

∂ω∂σ
=
∂2R(σ, ω)

∂2σ
= −∂

2R(σ, ω)

∂2ω
, (1.54)

may be written as ∇2R(σ, ω) = 0.1

In summary, for a function Z(s) to be analytic, the derivative dZ/ds must be independent of
direction (path), which requires that the real and imaginary parts of the function obey Laplace’s
equation, i.e.,

∇2R(σ, ω) = 0 and ∇2X(σ, ω) = 0. (1.55)

The CR equations are easier to work with because they are first order, but the physical intuition is best2

understood by noting that the real and imaginary parts of the function each obey Laplace’s equation.3

As you learn about solutions to Laplace’s equation, this will become more clear.4

As we shall see in the next few lectures, analytic functions must be very smooth in magnitude,5

like and area or volume, due to the above condition. They must be maximum on their boundary. For6

example, when you stretch a rubber sheet over a jagged form the height sheet obeys Laplace’s equation.7

Nowhere does the height of the sheet rise above the value at the boundary. Such functions are very8

smooth, having no second derivatives.9

Such functions define Conservative fields, which means that energy (like an area) is conserved. The10

work done in moving a mass from a to b in such a field is conserved. If you return the mass from b11

back to a, the energy is retrieved, and zero net work has been done.12

1.4.3 Lec 25: Complex Analytic functions and Brune Impedance13

It is rarely stated that the variable that we are integrating over, either x (space) or t (time), is real14

x, t ∈ R, since that fact is implicit, due to the physical nature of the formulation of the integral. But15

this intuition must be refined once complex numbers are included with s ∈ C, where s = σ + ω, as16

first developed by Cauchy (1789-1857), with the aid of Gauss (1777-1855).17

The fact that time and space are real variables is more than an assumption, rather it is a require-
ment, due to the order property. Real numbers have order. For example, if t = 0 is now (the present),
then t < 0 is the past and t > 0 is the future. The order property of time and space allows one to
order these along a real axis. If the axis were complex, as in frequency s, the order property is lost. It
follows that if we desire order, time and space must be real (t, x ∈ R). Interestingly, it has was shown
by d’Alembert (1747) that time and space are related by the wave speed c. To obtain a solution to the
governing wave equation, that Newton first proposed for sound waves, x, t ∈ R3 may be combined as

ζ = ct± x,

where c [m/s] is the phase velocity of the waves. The d’Alembert solution to the wave equation,
describing waves on a string under tension, is

u(x, t) = F (ct− x) +G(ct+ x), (1.56)

which describes the transverse velocity (or displacement) of two independent waves F (ξ), G(ξ) on the
string, which represent forward and backward traveling waves. For example, starting with a string at
rest, if one displaces the left end, at x = 0, by a step function u(t), then that step displacement will
propagate to the right as u(ct − x), arriving at location x0, at time ct0. Before this time, the string
will not move to the right of the wave-front, at x = ct, and after ct0 it will have displacement 1 at x0.
Since the wave equation obeys superposition (postulate P1, p. 70), it follows that the “plane-wave”
eigen-functions of the wave equation for x,k ∈ R3 are given by

Ψ±(x, t) = est±k·x. (1.57)
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where s = σ + ω and k = 2π/λ is the wave number, λ = |λ| is the wavelength, and |s/k| = λf = c.1

When propagation losses are considered, we must replace k with a complex analytic wave number2

κ(s) = kr + k, known as the dispersion relation. An important example is the case of electron waves3

propagating in crystals (i.e., silicon). For this special case, κ(s) describes the crystal’s dispersion4

relations, known as Brillouin zones (Brillouin, 1953).5

Complex impedance functions6

Conservation of energy (or power) is a corner stone of modern physics. It may have first been under
consideration by Galileo Galilei (1564-1642). Today the question is not if it is true, the questions should
be why. Specifically, what is the physics behind conservation of energy. Surprisingly, the answer is
straight forward, by looking at the definition of power and impedance. The power is given by the
product of two variables, sometimes call conjugate variables, the force and the flow. In electrical terms,
these are voltage (force) (v(t)↔ V (ω)) and current (flow) (i(t)↔ I(ω)), thus the electrical power is

P(t) = v(t)i(t)↔ V (ω)I(ω). (1.58)

One of the most important and obvious applications of complex functions of a complex variable is7

the impedance function.8

Every impedance must obey conservation of energy (P3): According to Postulate P3 Section
1.3.12 (p. 70), a system is passive if it does not contain a power source. Drawing power from an
impedance violates conservation of energy. This propriety is also called positive real, which is defined
as (Brune, 1931a,b)

ℜZ(s ≥ 0) ≥ 0, (1.59)

namely the real part of every impedance must be non-negative for σ ≥ 0. When this condition holds,9

one cannot draw more power than stored in the impedance. A second condition requires that the10

impedance has simple poles. If there were a pole in the region σ > 0, then the first condition would not11

be met. Therefore there can only be simple poles (degree of 1) in the region σ ≤ 0. The region σ ≤ 0 is12

called the left half s plane (LHP), and the complementary region, σ > 0, is called the right half s plane13

(RHP). The condition on the simple poles is sufficient, but not necessary, as Z(s) = 1/
√
s is a physical14

impedance, but is not a first order pole. The impedance function Z(s) = R(σ, ω) + X(σ, ω) has15

resistance R and reactance X as a function of complex frequency s = σ+ ω. The function z(t)↔ Z(s)16

are defined by a Laplace transform pair. From the causality postulate (P1) of Sections 1.3.12 and 3.5.117

(p. 137), z(t < 0) = 0.18

As an example, a resistor R0 in series with an capacitor C0 has an impedance given by

Z(s) = R0 + 1/sC0 (1.60)

with R0, C0 ∈ R > 0. In mechanics an impedance composed of a dash-pot (damper) and a spring have
the same form. A resonant system has an inductor, resistor and a capacitor, with an impedance given
by

Z(s) = R0 + 1/sC0 + sM0, (1.61)

is a second degree polynomial in the complex resonant frequency s. Thus it has two roots (eigenvalues).19

When R0 > 0 these roots are in the left half s plane.20

Systems (networks) containing many elements, and transmission lines, can be much more compli-21

cated, yet still have a simple frequency domain representation. This is the key to understanding how22

these physical systems work, as will be described below.23
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Complex analytic functions: To solve a differential equation, or integrate a function, Newton used
the Taylor series to integrate one term at a time. However he only used real functions of a real variable,
due to the fundamental lack of appreciation of the complex analytic series. This same method is how
one finds solutions to scalar differential equations today, but using an approach that makes the solution
method less obvious. Rather than working directly with the Taylor series, today we use the complex
exponential, since the complex exponential is the eigenfunction of the derivative

d

dt
est = sest.

Since est may be expressed as a Taylor series, having coefficients cn = 1/n!, in some real sense the
modern approach is a compact way of doing what Newton did. Thus every linear constant coefficient
differential equation in time may be simply transformed into a polynomial in complex Laplace frequency
s, by looking for solutions of the form A(s)est, transforming the differential equation into a polynomial
A(s) in complex frequency. For example

d

dt
f(t) + af(t)↔ (s+ a)F (s).

The root of A(sr) = sr + a = 0 is the eigenvalue of the differential equation. The key to understanding
the solutions of differential equations, both scalar and vector, is to work in the Laplace frequency
domain. The Taylor series has been replaced by est, transforming Newton’s real Taylor series into the
complex exponential eigenfunction. In some sense, these are the same method, since

est =
∞∑

n=0

(st)n

n!
. (1.62)

Taking the derivative with respect to time gives

d

dt
est = sest = s

∞∑

n=0

(st)n

n!
, (1.63)

which is also complex analytic. Thus if the series for F (s) is valid (i.e., it converges), then its derivative1

is also valid. This was a very powerful concept, exploited by Newton for real functions of a real variable,2

and later by Cauchy and Riemann for complex functions of a complex variable. The key here is “Where3

does the series fail to converge?” in which case, the entire representation fails. This is the main message4

behind the FTCC (Eq. 1.47).5

The FTCC (Eq. 1.47) is formally the same as the FTC (Eq. 1.44) (Leibniz formula), the key (and6

significant) difference being that the argument of the integrand s ∈ C. Thus this integration is a line7

integral in the complex plane. One would naturally assume that the value of the integral depends on8

the path of integration.9

But, according to FTCC, it does not. In fact it is indistinguishable from its much simple cousin,10

the fundamental theorem of calculus. And the reasoning is the same. If F (s) = df(s)/ds is complex11

analytic (i.e., has a power series f(s) =
∑
k cks

k, with f(s), ck, s ∈ C), then it may be integrated, and12

the integral does not depend on the path. This is sort of amazing. The key is that F (s) and f(s) must be13

complex analytic, which means they are differentiable. This all follows from the Taylor series formula14

Eq. 1.50 (p. 73) for the coefficients of the complex analytic series. For Eq. 1.47 to hold, the derivatives15

must be independent of the direction, as discussed in Section 1.4.2. The concept of a complex analytic16

function therefore has eminent consequences.17

The use of the complex Taylor series formula in the complex plane, generalizes the functions they18

describe, with unpredictable consequences, as nicely shown by the domain coloring diagrams presented19

in Section 1.3.9 (p. 62). The tool of complex integration was first exploited in physics by Sommerfeld20

(1952), to explain the onset transients in waves, as explained in detail in Brillouin (1960, Chap. 3).21

Up to 1910, when Sommerfeld first published his results using complex analytic signals and saddle22
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point integration in the complex plane, there was a poor understanding of the implications of the1

causal wave-front. It would be reasonable to say that his insights changed our understanding of wave2

propagation, for both light and sound. Sadly this insight has not been fully appreciated, even to this3

day. If you question this summary, please read Brillouin (1960, Chap. 1).4

The full power of the complex analytic function was first appreciated by Bernard Riemann (1826-5

1866), in his University of Göttingen PhD Thesis of 1851, under the tutelage of Carl Friedrich Gauss6

(1777-1855), and drawing heavily on the work of Cauchy.7

The key definition of a complex analytic function is that it has a Taylor series representation over8

a region of the complex frequency plane s = σ + jω, that converges in a region of convergence (RoC)9

about the expansion point, with a radius determined by the nearest pole of the function. A further10

surprising feature of all analytic functions is that within the RoC, the inverse of that function also has11

a complex analytic expansion. Thus given w(s), one may also determine s(w) to any desired accuracy,12

critically depending on the RoC.13

1.4.4 Lec 26: Multi-valued functions14

This is a time-out for an entire lecture to answer your questions that have been building, on the many15

new concepts presented over the last few weeks.16

The best question of the week: “What is a multi-valued function?” Second best question: “What is17

a line integral?,” “What is the difference between the impedance of a mass and inductor?” and “How18

are physics and math related?”19

Branch Cuts: The concept of a branch cut allows one to manipulate (and visualize) multi-valued20

functions, by breaking each region into a single valued sheets. The concepts of the branch cut and the21

sheets, along with the extended plane, were first devised by Riemann, working with Gauss (1777-1855),22

first described in his thesis of 1851. Of course it was these three mathematical constructions that23

provide the deep insight to complex analytic functions, supplementing the important earlier work of24

Cauchy (1789-1857), on the calculus of complex analytic functions.25

The branch cut is a line that separates the various single valued parts of a multi-valued function. For26

example, in Fig. 1.17 we see the double-valued mapping of w(z) = ±√z. Since the square root function27

has two overlapping regions, corresponding to the ± of the radical, there must be two connected regions,28

sort of like mathematical Siamese-twins, distinct, yet the same.29

This concept of analytic inverses becomes rich when the inverse function is multi-valued. For30

example, if F (s) = s2 then s(F ) = ±
√
F . Riemann dealt with such extensions with the concept of a31

branch-cut with multiple sheets, labeled by a sheet number. Each sheet describes an analytic function32

(Taylor series), that converges within some RoC, with a radius out to the nearest pole of that function.33

This Riemann’s branch cut and sheets explicitly deal with the need to define unique single valued34

inverses of multi-valued functions.35

Branch cuts emanate from poles that have non-integral degrees, and terminate at either another
pole of the same degree, or at ∞. For example, suppose that in the neighborhood of the pole, at s0

the function is

f(s) =
w(s)

(s− s0)k
,

where w, s,K, k ∈ C. Here w(s0) is the residue, when k = 1, s = σ + ω, s0 = σ0 + ω0 is the pole36

location, and k is some complex or real constant that defines the order of the pole (not the degree, as37

in the degree of a polynomial).38

Up to this point we have assumed that the pole order is an integer k ∈ Z or fractional (k ∈ F).
When k ∈ Z there is no branch cut. When k ∈ F there must be a branch cut, of order k. For example,
if k = 1/2, the pole is of order 1/2, and there are two Riemann sheets, as shown in Fig. 1.17. An
important example is the Bessel function

J0(t)u(t)↔ 1√
1 + s2

,
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Figure 1.17: Here we see the mapping for the square root function w(z) = ±√
z which has two single-valued sheets,

corresponding to the two signs of the square root. The lower sheet is +
√
z, and the upper sheet is −√

z. The location of
the branch cut may be moved by rotating the z coordinate system. For example, w(z) = ±√z and w(z) = ±

√
−z have a

different branch cuts, as may be easily verified using the Matlab/Octave commands j*zviz(z) and zviz(-z). A function
is analytic on the branch cut, since the cut may be moved. If a Taylor series is formed on the branch cut, it will describe
the function on the two different sheets. Thus the complex analytic series (i.e., the Taylor formula, Eq. 1.50) does not
depend on the location of a branch cut, as it only describes the function uniquely (as a single valued function), valid in
its local region of convergence. This figure has been taken from Stillwell (2010, p. 303).

which is a solution to the wave equation in two-dimensional cylindrical coordinates (Section ??, p. ??).1

Bessel functions are the solutions to guided acoustic waves in round pipes, or surface waves on the2

earth (seismic waves) or waves on the surface of a pond.3

It is important to understand that the function is analytic on the branch cut, but not at the branch4

point (the pole). One is free to move the branch cut, almost at will. It does not need to be on a line,5

it could be cut as a spiral. The only rule is that it must start and stop at two poles of the same order,6

or at ∞, which must have a pole of order k. In this course we shall not attempt to deal with irrational7

pole order.8

When the pole has an irrational order (k ∈ I), the branch cut has the same irrational order.
Accordingly there must be an infinite number of Riemann sheets, as in the case of the log function. An
example is k = π, for which

F (s) =
1

sπ
= e− log(sπ) = e−π log(s) = e−π log(ρ)e−πθ,

where the domain is expressed in polar coordinates s = ρeθ. When the irrational number is very close9

to 1, the branch cut could be very subtle (it could even be unnoticed), but it would have an impact on10

the nature of the function, and of course, on the inverse Laplace transform.11

Multivalued functions: The two basic functions we review, to answer the questions about mul-12

tivalued functions and branch cuts, are w(s) = s2 and w(s) = es, along with their inverse functions13

w(s) =
√
s and w(s) = log(s). For uniformity we shall refer to the abscissa (s = σ + ω) and the14

ordinate w(s) = u+ v. The proper, but less well known terms are the domain and co-domain, which15

is today’s nomenclature. The plots for
√
s are in Figs. 1.17 and 1.18, and for log(s), in Section 1.3.916

(p. 63).17

Square root function: The multi-valued nature of the square root is best understood by working
with the function in polar coordinates. Let

sk = reθe2πk,

where k is the sheet-index, and
w = ρeψ =

√
reθ/2eπk,
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where r, ρ ∈ R are the magnitudes and θ, ψ ∈ R are the angles. The domain-coloring program1

w = s.2

σ
jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

s = sqrt((u+jv))

u

iv

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 1.18: Here the Cartesian coordinate map between s = σ + ω
and w = u+ v. The left shows the mapping w(s) = s2. The right shows
the lower branch of the inverse s(w) =

√
w, as shown in Fig. 1.17.

zviz.m assumes that the angles go2

from −π < θ < π, with θ = 0 be-3

ing a light red and ±π a blue color.4

This angle to color map is shown in5

Fig. 1.15 (p. 63). The first Riemann6

sheet of
√
s is define by −π < θ < π.7

The second sheet picks up at θ = π8

and continues on to π+ 2π = 3π. The9

first sheet maps the angle of w (i.e.,10

φ = ∠w = θ/2) from −π/2 < φ < π/211

(w =
√
reθ/2). This corresponds to12

u = ℜw(s) > 0. The second sheet13

maps π/2 < ψ < 3π/2 (i.e., 90◦ to14

270◦), which is ℜw = u < 0. In sum-15

mary, twice around the s plane is once16

around the w(s) plane, because the angle is half due to the
√
s. This then describes the multi-valued17

nature of the square root function.18

Log function: Next we discuss the multi-valued nature of the log function. In this case there are
an infinite number of Riemann sheets, not well captured by Fig. 1.16 (p. 63), which only displays the
principal sheet. However if we look at the formula for the log function, the nature is easily discerned.
The abscissa s may be defined as multi-valued since

sk = re2πkeθ.

Here we have extended the angle of s by 2πk, where k is the sheet-index. Given this multi-sheet
extended definition of s, taking the log gives

log(s) = log(r) + (θ + 2πk).

When k = 0 we have the principle value sheet, which is zero when s = 1. For any other value of k19

w(s) 6= 0, even when r = 1, since the angle is not zero, except for the k = 0 sheet.20

1.4.5 Lec 27: Three Cauchy Integral Theorems21

Cauchy’s theorems for integration in the complex plane22

There are three basic definitions related to Cauchy’s integral formula. They are closely related, and23

can greatly simplify integration in the complex plane.24

1. Cauchy’s (Integral) Theorem: ∮

C
F (s)ds = 0, (1.64)

if and only if F (s) is complex-analytic inside of the closed curve C (Boas, 1987, p. 45),(Stillwell,25

2010, 319). The FTCC (Eq. 1.47) says that the integral only depends on the end points if F (s) is26

complex-analytic. By closing the path (contour C) the end points are the same, thus the integral27

must be zero, as long as F (s) is complex analytic.28

2. Cauchy’s Integral Formula:

1

2πj

∮

C

F (s)

s− s0
ds =

{
F (s0), s0 ∈ C (inside)

0, s0 6∈ C (outside).
(1.65)
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Here F (s) is required to be analytic everywhere within (and on) the contour C (Boas, 1987, p. 51),1

(Stillwell, 2010, p. 220). The value F (s0) ∈ C is called the residue of the pole s0 of the function2

F (s) = F (s)/(s− s0). Note the residue is the coefficient of a Taylor series expansion c−1, if this3

term were included in the series. The Taylor series (Eq. 1.49, p. 73) is defined with c−1 = 0. A4

modify series, having the c−1 6= 0, is known as a Laurent series.5

3. (Cauchy’s) Residue Theorem (Greenberg, 1988, p. 1241), (Boas, 1987, p. 73)

∮

C
f(s)ds = 2πj

K∑

k=1

ck =
K∑

k=1

∮
f(s)

s− sk
ds (1.66)

Where the residue ck ∈ C, corresponding to the kth poles of f(s), enclosed by the contour C. By6

the use of Cauchy’s integral formula, the last form of the residue theorem is equivalent to the7

residue form.8

How to calculate the residue: The case of first order poles is special since the Brune impedance
only allows simple poles and zeros, increasing the importance of this special case. The residues is
defined by the coefficient of a simple pole of the function F (s), which is complex analytic in the
neighborhood of the pole, but not at the pole. This coefficient may be computed by removing
the singularity by placing a zero at the pole frequency, followed by taking the limit as s → sk
(Boas, 1987, p. 72), namely

ck = lim
s→sk

[(s− sk)F (s)].

Consider the function f(s) = F (s)/(s− sk), where we have factored f(s) to isolate the first-order9

pole at s = sk. If f(s) is analytic at sk, then the residue of the pole at s = sk is f(sk).10

These three theorems, all attributed to Cauchy, collectively are related to the fundamental theorems11

of calculus. Because the names of the three theorems are so similar, are easily confused.12

In general it makes no sense to integrate through a pole, thus the poles (or other singularities) must13

not lie on C.14

The Cauchy integral theorem (1), follows trivially from the fundamental theorem of complex calculus15

(Eq. 1.47, p. 73), since if the integral is independent of the path, and the path returns to the starting16

point, the closed integral must be zero. Thus Eq. 1.64 holds when f(s) is complex analytic within C.17

Since the real and imaginary parts of every complex analytic function obey Laplace’s equation18

(Eq. 1.55, p. 75), it follows that every closed integral over a Laplace field, i.e., one defined by Laplace’s19

equation, must be zero. In fact this is the property of a conservative system, corresponding to many20

physical systems. If a closed box has fixed potentials on the walls, with any distribution what so ever,21

and a point charge (i.e, an electron) is placed in the box, then a force equal to F = qE is required to22

move that charge, thus work is done. However if the point is returned to its starting location, the net23

work done is zero.24

Work is done in charging a capacitor, and energy is stored. However when the capacitor is dis-25

charged, all of the energy is returned to the load.26

Soap bubbles and rubber sheets on a wire frame, obey Laplace’s equation.27

These are all cases where the fields are Laplacian, thus closed line integrals must be zero. Laplacian28

fields are commonly observed, because they are so basic.29

We have presented the impedance as the primary example of complex analytic functions. Physically,30

every impedance has an associated power, and every system having power, has an associated impedance.31

The impedance is usually defined in the frequency s domain, as the force over the flow (i.e., voltage32

over current), while the power is defined as the force times the flow (see Section 3.2.1, p. 125, Eq. 3.5).33

In summary, impedance and power are fundamentally related.34
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1.4.6 Lec 28: Cauchy Integral Formula & Residue Theorem1

The Cauchy integral formula (Eq. 1.65) is an important extension of the Cauchy integral theorem2

(Eq. 1.64) in that a pole has been explicitly injected into the integrand at s = s0. If the pole location3

is outside of the curve C, the result of the integral is zero, in keeping with Eq. 1.64. However, when4

the pole is inside of C, the integrand is no longer complex analytic, and a new result follows. By a5

manipulation of the contour in Eq. 1.65, the pole can be isolated with a circle around the pole, and6

then taking the limit, the radius goes to zero.7

For the related Cauchy residue theorem (Eq. 1.66) the same result holds, except it is assumed that8

there are K simple poles in the function F (s). This requires the repeated application of Eq. 1.65, K9

times, so it represents a minor extension of Eq. 1.65. The function F (s) may be written as f(s)/PK(s),10

where f(s) is analytic in C and PK(s) is a polynomial of degree K, with all of its roots sk ∈ C.11

Non-integral degree poles The key point is that this theorem applies when n ∈ I, including12

fractionals n ∈ F. The function 1/
√
s has a zero residue, which is strictly the amplitude of 1/s (Boas,13

1987, p. 73). When n ∈ F, the residue is, by definition, zero. When n ∈ I, the residue is, by definition,14

zero. When n = 1, the residue is c−1. For an intuitive discussion of Riemann sheets and branch cuts,15

see Boas (1987, Section 29, pp. 221-225).16

This point is equally important when defining the inverse Laplace transform. When integrating over17

ω ∈ R, the value passes through all possible exponents, including all rational and irrational numbers.18

The only value of ω that has a residue, are those at the poles of the integrand.19

1.4.7 Lec 29: Inverse Laplace transform (Cauchy residue theorem)20

The inverse Laplace transform Eq. 1.43 transforms a function of complex frequency F (s) and returns
a causal function of time f(t)

f(t)↔ F (s),

where f(t) = 0 for t < 0. Examples are provided in Table 1.5 (p. 68). We next discuss the details of21

finding the inverse transform by use of the Cauchy residue theorem, and how the causal requirement22

f(t < 0) = 0 comes about.23

The integrand of the inverse transform is F (s)est and the limits of integration are −σ0∓ω. To find24

the inverse we must close the curve, at infinity, and show that the integral at ω→∞. There are two25

ways to close these limits, to the right σ > 0 (RHP), and to the left σ < 0 (LHP), but there needs to26

be some logical reason for this choice. That logic is the sign of t. For the integral to converge the term27

est must go to zero as ω →∞. In terms of the real and imaginary parts of s = σ+ω, the exponential28

may be rewritten as eσteωt. Note that both t and ω go to ∞. So it is the interaction between these29

two limits that determines how we pick the closure, RHP vs. LHP.30

Case for causality (t < 0): Let us first consider negative time, including t → −∞. If we were to31

close C in the left half plane (σ < 0), then the product σt is positive (σ < 0, t < 0, thus σt > 0). In32

this case as ω →∞, the closure integral |s| → ∞ will diverge. Thus we may not close in the LHP for33

negative time. If we close in the RHP σ > 0 then the product σt < 0 and est will go to zero as ω →∞.34

This then justifies closing the contour, allowing for the use the Cauchy theorems.35

If F (s) is analytic in the RHP, the FTCC applies, and the resulting f(t) must be zero, and the36

inverse Laplace transform must be causal. This argument holds for any F (s) that is analytic in the37

RHP (σ > 0).38

Case of unstable poles: An important but subtle point arises: If F (s) has a pole in the RHP, then39

the above argument still applies if we pick σ0 to be to the right of the RHP pole. this means that the40

inverse transform may still be applied to unstable poles (those in the RHP). This explains the need41

for the σ0 in the limits. If F (s) has no RHP poles, then σ0 = 0 is adequate, and this factor may be42

ignored.43
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Case for zero time (t = 0): When time is zero, the integral does not, in general, converge, leaving1

f(t) undefined. This is most clear in the case of the step function u(t)↔ 1/s, where the integral may2

not be closed, because the convergence factor est = 1 is lost for t = 0.3

1.4.8 Lec 30: Inverse Laplace transform and the Cauchy Residue Theorem4

Case of t > 0: Next we investigate the convergence of the integral for positive time t > 0. In this5

case we must close the integral in the LHP (σ < 0) for convergence, so that st < 0 (σ ≤ 0 and t > 0).6

When there are poles on the ω = 0 axis, σ0 > 0 assures convergence by keeping the on-axis poles inside7

the contour. At this point the Cauchy residue theorem (Eq. 1.66) is relevant. If we restrict ourselves8

to simple poles (as required for a Brune impedance), the residue theorem may be directly applied.9

The most simple example is the step function, for which F (s) = 1/s and thus

u(t) =

∮

LHP

est

s

ds

2π
↔ 1

s
,

which is a direct application of Eq. 1.66. The forward transform of u(t) is straight forward, as discussed10

in Section 1.3.11 (p. 67). This is true of most if not all of the elementary forward Laplace transforms.11

In these cases, causality is built into the integral by the limits, so is not a result, as it must be in the12

inverse transform. An interesting problem is proving that u(t) is not defined at t = 0.13

The inverse Laplace transform of F (s) = 1/(s + 1) has a residue of 1 at s = −1, thus that is the
only contribution to the integral. A case that is more demanding is the Laplace transform pair

1√
t
u(t)↔

√
π

s
and J0(t)u(t)↔ 1√

1 + s2
.

Many of these are easily proved in the forward direction, but are much more difficult in the inverse14

direction due to the properties at t = 0, unless of course, the residue theorem (Eq. 1.66, p. 81) is15

invoked. The last L-pair helps us understand the basic nature of the Bessel function J0(t), as a branch16

cut in the frequency domain (see Fig. 3.2), Section 3.4.1, p. 136).17

Some open questions: Without the use of the CRT (Eq. 1.66) it is difficult to see how evaluate do18

the inverse Laplace transform of 1/s directly. For example, how does one show that the above integral19

is zero for negative time (or that it is 1 for positive time)? The CRT neatly solves this difficult problem,20

by the convergence of the integral for negative and positive time. Clearly the continuity of the integral21

at ω →∞ plays an important role. Perhaps the Riemann sphere plays a role in this, that has not yet22

been explored.23

1.4.9 Lec 31: Properties of the LT (e.g., Linearity, convolution, time-shift, modu-24

lation, etc.)25

As shown in the table of Laplace transforms, there are integral (i.e., integration, not integer) relation-
ships, or properties, that are helpful to identify. The first of these is a definition not a property:52

f(t)↔ F (s).

When taking the LT, the time response is given in lower case (e.g., f(t)) and the frequency domain26

transform is denoted in upper case (e.g., F (s)). It is required, but not always explicitly specified, that27

f(t < 0) = 0, that is, the time function must be causal (P1: Section 1.3.12).28

Linearity: A key property so basic that it almost is forgotten, is the linearity property of the LT.29

These properties are summarized as P2 of Section 1.3.12, 70).30

52Put this notional property in Appendix A.
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Convolution property: One of the most basic and useful properties is that the product of two LTs
in frequency, results in convolution in time

f(t) ⋆ g(t) =

∫ t

0
f(τ)g(t− τ)dτ ↔ F (s)G(s),

where we use the ⋆ operator as a shorthand for the convolution of two time functions.1

A key application of convolution is filtering, which takes on many forms. The most basic filter is2

the moving average, the moving sum of data samples, normalized by the number of samples. Such a3

filter has very poor performance. It also introduces a delay of half the length of the average, which4

may, or may not constitute a problem, depending on the application. Another important example is5

a low-pass filter, that removes high frequency noise, or a notch filter that removes line-noise (i.e., 606

[Hz] in the US, and its 2d and 3d harmonics, 120 and 180 [Hz]). Such noise is typically a result of7

poor grounding and ground loops. It is better to solve the problem at its root, than to remove it with8

a notch filter. Still, filters are very important in engineering.9

By taking the LT of the convolution we can derive this relationship
∫ ∞

0
[f(t) ⋆ g(t)]e−stdt =

∫ ∞

t=0

[∫ t

0
f(τ)g(t− τ)dτ

]
e−stdt

=

∫ t

0
f(τ)

(∫ ∞

t=0
g(t− τ)e−stdt

)
dτ

=

∫ t

0
f(τ)

(
e−sτ

∫ ∞

t′=0
g(t′)e−st′dt′

)
dτ

= G(s)

∫ t

0
f(τ)e−sτdτ

= G(s)F (s)

We encountered this relationship in Section 1.3.3 (p. 53)) in the context of multiplying polynomials,10

which was the same as convolving their coefficients. Hopefully the parallel is obvious. In the case of11

polynomials, the convolution was discrete in the coefficients, and here it is continuous in time. But the12

relationships are the same.13

Time-shift propriety: When a function is time-shifted by time T0, the LT is modified by esT0 ,
leading to to the propriety

f(t− T0)↔ e−sT0 F (s).

This is easily shown by applying the definition of the LT to a delayed time function.14

Time derivative: The key to the eigen-function analysis provided by the LT, is the transformation
of a time derivative on a time function, that is

d

dt
f(t)↔ sF (s).

Here s is the eigen value corresponding to the time derivative of est. Given the definition of the15

derivative of est with respect to time, this definition seems trivial. Yet that definition was not obvious16

to Euler. It needed to be extended to the space of complex analytic function est, which did not happen17

until at least Riemann (1851).18

Given a differential equation of order K, the LT results in a polynomial in s, of degree K.19

It follows that this LT property is the corner-stone of why the LT is so important to scalar differential20

equations, as it was to the early analysis of Pell’s equation and the Fibonacci sequence, as presented in21

earlier chapters. This property was first uncovered by Euler. It is not clear if he fully appreciated its22

significance, but by the time of his death, it certainly would have been clear to him. Who first coined23

the term eigen value and eigen function? The word eigen is a German word meaning of one. It seem24

likely that this term became popular somewhere between the 19th and 20th century.25
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Initial and final value theorems: There are much more subtle relations between f(t) and F (s) that1

characterize f(0+) and f(t→∞). While these properties can be very important in certain application,2

they are are beyond the scope of the present treatment. These relate to so-called initial value theorems.3

If the system under investigation has potential energy at t = 0, then the voltage (velocity) need not4

be zero for negative time. An example is a charged capacitor or a moving mass. These are important5

situations, but better explored in a more in depth treatment.53
6

1.4.10 Lec 32: Properties of the Brune impedance7

Impedance8

Impedance plays a crucial role in the solution of differential equations, and in the theory and practice9

of complex variables. As a theoretical concept, it is the best example of a complex analytic function,10

thus plays a key role in potential theory.11

Theoretically, impedance plays the role of a boundary condition in the solution of differential equa-12

tions, accounting for the reflectance of a wave at the boundary. It plays a critical role in conservation13

of energy, since if energy at the boundary (surface) must always be lost, given a passive boundary.14

The first person to fully appreciate the importance of impedance at the boundary may have been15

Arnold Sommerfeld, who expressed this in what today is known as the radiation impedance, which is16

the impedance boundary condition as a point source wave radiates to |R| → ∞.17

Brune impedance: As the concept of impedance evolved (it is a linear relation between a force18

and a flow), it was incorporated into more theories, such as electrical circuit theory and mechanics.19

The first persons to quantify the concept of impedance was Ohm, followed by Kirchhoff and Heaviside.20

Kennelly, not Heaviside, was the first to express the idea as a complex variable of a complex function21

of frequency (Kennelly, 1893). Perhaps Heaviside fully appreciated the concept, and has been given22

proper credit. A very interesting development was the largely forgotten but related mathematical work23

of Bott and Duffin (Van Valkenburg, 1964b)24

There are several important theorems here that follow from Brune’s Theorem on positive-real func-
tions, defined by the relation

ℜZ(σ > 0) ≥ 0, (1.67)

where Z(s) = R(s)+X(s) ∈ C is a Brune impedance having real partR(s) = ℜZ(s) and imaginary part25

X(s) = ℑZ(s), each as functions of the Laplace frequency s = σ + ω (Brune, 1931a; Van Valkenburg,26

1964b). Thus a Brune impedance has a positive analytic real part in the right-half plane σ > 0.27

This condition has many non-obvious ramifications, including (order is significant)
Move to Ch 3?

28

1. Z(s)↔ z(t < 0) = 0 is real and causal29

2. Y (s) = 1/Z(s)↔ y(t < 0) = 0 is real and causal30

3. The phase ∠Z(s) lies between ±π/2 (i.e., Z(s) is minimum–phase)31

4. All the poles and zeros are first order (there are no higher order poles)32

5. All poles and zeros lie in the left half plane LHP (σ ≤ 0)33

6. Z(σ > 0) is complex–analytic [Z(s) obeys the Cauchy-Riemann conditions in the RHP (σ > 0)]34

7. All poles and zeros of Z(s) on the ω or on the σ axis must alternate (Foster’s Theorem35

Van Valkenburg (1964b))36

8. All Brune impedances are quasi-static (lumped-parameter, where the size of the impedance ele-37

ment is much smaller than the wavelength).38

53Discuss in Section 4.4.2.
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9. The Brune impedance is a subset of impedance, where delay has been approximated away in the1

long-wavelength limit. For example, transmission lines are not in the class of Brune impedances.2

3

A Brune impedance is defined as the ratio of the force F (ω) over the flow U(ω), and may be
expressed in residue form as

Z(s) = sL0 +R0 +
K∑

k=1

ck
s− sk

=
N(s)

D(s)
, (1.68)

known as the partial fraction expansion. The term L0s represents an inductance, and R0 a resistor.
Coefficients ck are the residues, and sk the roots of D(s). It follows that

D(s) =
K∏

k=1

(s− sk) and ck = lim
s→sk

(s− sk)Z(s) =
K−1∏

n′=1

(s− sn),

where the prime on index n′ means that n = k is not included in the product. Every Brune impedance4

may be expanded in a partial fraction expansion of the form of Eq. 1.68, and every partial fraction5

expansion may be converted back into the ratio of two polynomials, using the Matlab/Octave commands6

[C,P,K]=residue(N,D) and [N,D]=residue(C,P,K). These two representations are interchangeable.7

Given a 2-port network, the input impedance and the transfer function share the same poles.54 In8

fact the transfer function must be all-pole.9

Exercises: Find the Laplace transform (L) of the three impedance relations in terms of the force10

F (s) and the velocity V (s), along with the electrical equivalent impedance: Each classical law is a11

linear relation12

1. Hooke’s Law f(t) = Kx(t). Sol: First L Hooke’s Law and then write it in terms of force and13

velocity14

Taking the L gives
F (s) = KX(s).

Since

v(t) =
d

dt
x(t)↔ V (s) = sX(s).

Thus the impedance of the spring is

Zs(s) =
F (s)

V (s)
=
K

s
,

which is analogous to the impedance of an electrical capacitor. If we specifying the compliance15

C of a spring as C = 1/K, the relation looks just like the electrical case.16

While Hooke’s law says the force and displacement are proportional, in terms of impedance
variables force and flow,

f(t) = K

∫ t

v(t)dt.

17

2. Dash-pot resistance f(t) = Rv(t). Sol: From the L this becomes

F (s) = RV (s)

and the impedance of the dash-pot is then

Zr = R,

analogous to that of an electrical resistor.18

54Namely C(s) of the ABCD matrix is the same as the impedance denominator D(s)? Verify!
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3. Newton’s 2d Law for a constant mass M : f(t) = Mdv(t)/dt. Sol: Taking the L gives

F (s) = sMV (s)

thus

Zm(s) ≡ F (s)

V (s)
= sM,

analogous to an electrical inductor.1

4. Find the total impedance seen by the net force f(t) applied to the mass M . Sol: Summing the2

forces must equal the applied force, Eq. E.1, p. 183.3

5. Take the Laplace transform (L) of Eq. E.1 (p. 183), and evaluate the total impedance Z(s) of
the mechanical circuit. Sol: From the properties of the L that dx/dt↔ sX(s), we find

Ms2X(s) +RsX(s) +KX(s) = F (s).

In terms of velocity this is (Ms+R+K/s)V (s) = F (s). Thus the circuit impedance is

Z(s) =
F

V
=
K +Rs+Ms2

s
.

4

6. What are N(s) and D(s) (e.g. Eq. 1.68, p. 86)? Sol: D(s) = s and N(s) = K +Rs+Ms2.5

7. Assume that M = R = K = 1. Find the residues (e.g. Eq. 1.68, p. 86) of the admittance
Y (s) = 1/Z(s), in terms of the roots s±. Check your answer with the Matlab/Octave command
residue. Sol: First find the roots of the numerator of Z(s) (the denominator of Y (s)):

s2
± + s± + 1 = (s± + 1/2)2 + 3/4 = 0,

which is

s± =
−1± 

√
3

2
.

Next form the partial fraction expansion

s

1 + s+ s2
= c0 +

c+

s− s+
+

c−
s− s−

=
s(c+ + c−)− (c+s− + c−s+)

1 + s+ s2
.

Comparing the two sides requires that c0 = 0. We also have two equations for the residues
c+ + c− = 1 and c+s− + c−s+ = 0. The best way to solve this is to set up a matrix relation and
take the inverse[

1 1
s− s+

] [
c+

c−

]
=

[
1
0

]
thus:

[
c+

c−

]
=

1

s+ − s−

[
s+ −1
−s− 1

] [
1
0

]
,

which gives c± = ± s±

s+−s−
The denominator is s+ − s− = j

√
3 and the numerator is ±1 + 

√
3.

Thus

c± = ± s±
s+ − s−

=
1

2

(
1± √

3

)
.

As always, finding the coefficients is always the most difficult part. Using 2x2 matrix algebra can6

really simplify up the process, and will more likely give the correct answer.7

8. By applying the CRT, find the inverse Laplace transform (L−1). Use the residue form of the
expression that you derived in the previous exercise. Sol:

z(t) =
1

2πj

∮

C
Z(s)estds.

were C is the Laplace contour which encloses the entire left-half s plane. Applying the CRT

z(t) = c+e
s+t + c−e

s−t.

where s± = −1/2± 
√

3/2 and c± = 1/2± /(2
√

3).8
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1.4.11 Lec 33: The Riemann zeta function1

The zeta function depends explicitly on the primes, which makes it very important (Section 4.5.1). In
1737 Euler proposed the real-valued function ζ(x) ∈ R and x ∈ R, to prove that the number of primes
is infinite (Goldstein, 1973). Euler’s definition of ζ(x) ∈ R is given by the power series

ζ(x) =
∞∑

n=1

1

nx
forx > 0 ∈ R. (1.69)

This series converges for x > 0, since R = n−x < 1, n > 1 ∈ N.55
2

In 1860 Riemann extended the zeta function into the complex plane, resulting in ζ(s), defined by
the complex analytic power series, identical to the Euler formula, except x ∈ R has been replaced by
s ∈ C

ζ(s) ≡ 1

1s
+

1

2s
+

1

3s
+

1

4s
+ · · · =

∞∑

n=1

1

ns
=

∞∑

n=1

n−s forℜs = σ > 0. (1.70)

This formula converges for ℜs > 1 (Goldstein, 1973). To determine the formula in other regions of3

the s plane one, must extend the series via analytic continuation. As it turns out, Euler’s formulation4

provided detailed information about the structure of primes, going far beyond his original goal.5

Euler product formula6

As was first published by Euler in 1737, one may recursively factor out the leading prime term, re-7

sulting in Euler’s product formula. Euler’s procedure is an algebraic implementation of the sieve of8

Eratosthenes (Section 1.2.3, p. 33 and Section 1.4.11, page 88).9

Multiplying ζ(s) by the factor 1/2s, and subtracting from ζ(s), removes all the even terms ∝ 1/(2n)s

(e.g., 1/2s + 1/4s + 1/6s + 1/8s + · · · )
(

1− 1

2s

)
ζ(s) = 1 +

1

2s
+

1

3s
+

1

4s
+

1

5s
· · · −

(
1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+ · · ·

)
, (1.71)

which results in (
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+ · · · . (1.72)

Repeating this with a lead factor 1/3s applied to Eq. 1.72 gives56

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+

1

27s
+

1

33s
+ · · · . (1.73)

Subtracting Eq. 1.73 from Eq. 1.72 cancels the RHS terms of Eq. 1.72
(

1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+

1

13s
+

1

17s
+

1

19s
· · · .

Further repeating this process, with prime scale factors, (i.e., 1/5s, 1/7s, · · · , 1/πsk, · · · ), removes all10

the terms on the RHS but 1, results in Euler’s analytic product formula (s = x ∈ R) and Riemann’s11

complex analytic product formula s ∈ C12

ζ(s) =
∏

πk∈P

1

1− π−s
k

=
∏

πk∈P

ζk(s), (1.74)

where πp represents the pth prime . The above defines each prime factor

ζk(s) =
1

1− π−s
k

(1.75)

55Sanity check: For example let n = 2 and x > 0. Then R = 2−ǫ < 1, where ǫ ≡ lim x → 0+. Taking the log gives
log2 R = −ǫ log2 2 = −ǫ < 0. Since logR < 0, R < 1.

56This is known as Euler’s sieve, as distinguish from the Eratosthenes sieve.
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as the kth term of the complex analytic Riemann product formula. Each recursive step in this con-1

struction assures that the lead term, along with all of its multiplicative factors, are subtracted out,2

just as with the cancellations with the sieve of Eratosthenes. It is instructive to compare each iteration3

with that of of the sieve (Fig. 1.5, p. 34).4

Note that the RoC for each factor ζk is less than that of their product ζ(s) (i.e., ℜs > 1) and as k5

increases this difference becomes quite significant.6

Poles of ζp(s)7

Discuss RoC for each term in the product representation, and the anti-causal nature of ζk(1 − s).8

Riemann’s zeta function ζ(s) ∈ C (Fig. 4.1) proposed that the argument be complex (first actually9

explored by Chebyshev in 1850, (Bombieri, 0000)), extending ζ(s) into the complex plane, (s ∈ C),10

making it a complex analytic function.11

Given that ζ(s) is a complex analytic function, one might naturally wonder if ζ(s) has an inverse12

Laplace transform. There seems to be very little written on this topic.57 We shall explore this question13

further here.14

w = 1./(1−exp(−s*pi))

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 1.19: Plot of w(s) = 1
1−e−sπ which is related to each factor ζp(s) (Eq. 1.74). Here wk(s) has poles where

1 − esπk = 0, namely where ωk = n2j, as may be seen from the colorized plot (s = σ+ω is the Laplace frequency [rad]).

One may now identify the poles of ζp(s) (p ∈ N), which are required to determining the RoC. For
example, the pth factor of Eq. 1.74, expressed as an exponential, is

ζp(s) ≡
1

1− π−s
p

=
1

1− e−sTp
=

∞∑

k=0

e−skTp , (1.76)

where Tp ≡ ln πp. Thus ζp(s) has poles at −snTp = 2πn (when e−sTp = 1), thus

sn =
2πjn

ln πp
,

where −∞ < n ∈ C < ∞. These poles are the eigen-modes of the zeta function. A domain-colorized15

plot of this function is provided in Fig. 1.19. It is clear that the RoC of ζk is ℜ > 0. It is obviously16

important to determine why ζ(s) as such a more restrictive RoC than each of its factors.17

57Cite book chapter on inverse LT of ζ(s).
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+
Zeta

p (t)δ(t)

Delay

α = 1
Zeta

p (t− Tp)

Zeta
p (t) = αZeta

p (n− Tp) + δ(t)

Tp

Figure 1.20: This feedback network is described by a time-domain difference equation with delay Tp = lnπk, has an
all-pole transfer function, given by Eq. 1.79. Physically this delay corresponds to a delay of Tp [s].

Inverse Laplace transform1

The inverse Laplace transform of Eq. 1.76 is an infinite series of delays of delay Tp
58 (Table 1.5, p. 68)

Zetap (t) = δ(t))Tp ≡
∞∑

k=0

δ(t− kTp)↔
1

1− e−sTp
. (1.77)

Inverse transform of Product of factors2

The time domain version of Eq. 1.74 may be written as the convolution of all the Zetak (t) factors

Zeta(t) ≡ Zeta2 ⋆ Zeta3 (t) ⋆ Zeta5 (t) ⋆ Zeta7 (t) · · · ⋆ Zetap (t) · · · , (1.78)

where ⋆ represents time convolution (Table 1.5, p. 68).3

Physical interpretation4

Such functions may be generated in the time domain as shown in Fig. 1.20, using a feedback delay of
Tp [s] as described by the equation in the figure, with a unity feedback gain α = 1.

Zeta(t) = Zeta(t− Tn) + δ(t).

Taking the Laplace transform of the system equation we see that the transfer function between the
state variable q(t) and the input x(t) is given by Zetap (t). Taking the L, we see that ζ(s) is an all-pole
function

ζp(s) = e−sTnζp(s) + 1(t), or ζp(s) =
1

1− e−sTp
. (1.79)

Discussion: In terms of the physics, these transmission line equations are telling us that ζ(s) may be5

decomposed into an infinite cascade of transmission lines (Eq. 1.78), each having a unique delay given6

by Tp = ln πp, πp ∈ P, the log of the primes. The input admittance of this cascade may be interpreted7

as an analytic continuation of ζ(s) which defines the eigen-modes of that cascaded impedance function.8

Working in the time domain provides a key insight, as it allows us to determine the analytic9

continuation of the infinity of possible continuations, which are not obvious in the frequency domain.10

Transforming to the time domain is a form of analytic continuation of ζ(s), that depends on the11

assumption that Zeta(t) is one-sided in time (causal).12

Additional relations: Some important relations provided by both Euler and Riemann (1859) are13

needed when studying ζ(s).14
Move to Lec33

58Here we use a shorthand double-parentheses notation to define the one-sided infinite sum f(t))T ≡
∑

∞

k=0
f(t− kT ).
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With the goal of generalizing his result, Euler extended the definition with the functional equation

ζ(s) = 2sπs−1 sin

(
πs

2

)
Γ(1− s) ζ(1− s). (1.80)

This seems closely related to Riemann’s time reversal symmetry properties (Bombieri, 0000)

π−s/2Γ

(
s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

This equation is of the form F
(
s
2

)
ζ(s) = F

(
1−s

2

)
ζ(1− s) where F (s) = Γ(s)/πs.1

As shown in Table 1.5 the L−1 of f(−t)↔ F (−s) is simply a time-reversal. This leads to a causal2

and anti-causal function that are symmetric about ℜs = 1/2 (Riemann, 1859). It seems likely this is3

an important insight into the Euler’s functional equation.4

Riemann (1859, page 2) provides an alternate integral definition of ζ(s), based on the complex
contour integration59

2 sin(πs)Γ(s− 1)ζ(s) = 

∮ ∞

x=−∞

(−x)s−1

ex − 1
dx.

−x→y
=

∮ ∞

y=−∞

(y)s−1

e−y − 1
dx.

Given the ζk(s) it seems important to look at the inverse Lof ζk(1 − s), to gain insight into the5

analytically extended ζ(s)6

Integral definition of the complex Gamma function Γ(s) The definition of the complex analytic
Gamma function (p. 68)

Γ(s+ 1) = sΓ(s) ≡
∫ ∞

0
ξse−ξdξ,

which is a generalization of the real integer factorial function n!.7

Zeros of ζ(s) We are still left with the most important question of all “Where are the zeros of ζ(s)?”8

Equation 1.79 has no zeros, it is an all-pole system. The cascade of many such systems is also all-pole.9

As I see it, the issue is what is the actual formula for ζ(s)?10

1.4.12 Lec 34: Exam III (Evening Exam)11

1.5 Vector Calculus (Stream 3b)12

1.5.1 Lec 35: Gradient ∇, divergence ∇· Curl ∇×, and Laplacian ∇2
13

Before we can define the vector operations ∇(),∇ ·(),∇×(),∇2() we must define scalar and vector14

fields.15

Scalar and vector fields16

A field is a function of (x, y, z) ∈ R3 than is analytic, namely has a Taylor series, meaning it can take17

derivatives with respect to x = (x, y, z). An example of a scalar field is T (x) = xy, or Φ(x) = ex log(y)z.18

In every case a scalar field is an analytic function of x, meaning it must be a smooth function of19

x = (x, y, z).20

Think of the scalar field for the case of a voltage Φ(x, y, z), or temperature T (x, y, z), distributed21

in R3, say between two finite sized capacitor plates, or the temperature T (x, y, z) in a room, or within22

a computer chip. If the furnace is on, blowing hot air into the room, it is not a smooth (analytic)23

59Verify Riemann’s use of x, which is taken to be real rather than complex. This could be more natural (i.e., modern
Laplace transformation notation) if −x → y → z.
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function of x. Likewise, if the computer chip has heat-generating transistors inside, the temperature1

would not be smooth, thus not analytic. Every scalar field can play the role of a potential.2

A vector field is a ordered set of scalar fields, for example

A(x) = [φ(x), ψ(x), θ(x)]T

is a vector field in R3, as long as each of the three function is analytic. For example A(x) = [x, xy, xyz]T3

is a legal vector field. An excellent discussion of vector potentials may be found in (Feynman, 1970,4

p. NN).5

The physical meaning of a potential: The important question is: “What is the physical meaning6

of the scalar and vector field?” This is best answered with a few examples. If a temperature field is7

constant (i.e., T (x) = To), there can be no heat flux (flow of heat), because it is the change in the8

temperature (potential) that causes flux. The same holds for every potential.9

Note how the difference in the temperature is proportional to the heat flux. Likewise it is the
voltage difference that drives an electrical current. This is simply stated by Ohm’s Law

I =
V2 − V1

R
,

namely the drop in voltage divided by the resistance, defines the current (electrical flux). More generally10

the impedance is the ratio of the voltage drop over the current. In electrical is is common to define11

a ground point all voltages are referenced to. This allows one to abstract away (hide) the difference12

in voltage. In fact, it is the difference across any impedance that drives the current. Other physical13

examples are the pressure, which drives velocity. An interesting case is the velocity of a fluid with no14

viscosity, which may also be defined via a potential. More on this in section 1.5.5 (p. 101).15

It is very helpful to look at the units of the scalar or vector potential, to help identify that it is a16

potential. But a proper mathematical definition seems to be that it is must be an analytic function of17

x.18

As we have learned in earlier chapters, the impedance can be complex functions of complex fre-19

quency. A capacitor has an impedance Z(s) = 1/sCo and an inductor Z(s) = sLo. For each of these20

examples, the voltage is a potential, which most generally is a complex analytic function of s, as well21

as an analytic function of x. If the potential is not analytic, then the impedance would not be well22

defined.23

Vector differential operators act on scalar and vector fields24

There are three key vector differential operators that are necessary for understanding partial differential
equations, such as the wave equation and the diffusion equation. All of these use the differential operator
∇ operator, a multi-variate generalization of the derivative

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
.

When carefully defined, the shorthand form ∂x is convienent. The official name of this operator is25

nabla. It has three basic uses: 1) the gradient of a scalar field, the 2) divergence of a vector field, and26

the curl of a vector field.27

Basic differential vector operator definitions:28

1. The gradient transforms a scalar potential field into vector field. In R3 the gradient of a scalar
field ∇φ(x) is defined as

∇φ(x) =

(
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)
φ(x),=

∂φ

∂x
î +

∂φ

∂y
ĵ +

∂φ

∂z
k̂. (1.81)
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Important examples include: the electric field vector E(x) = −∇φ(x) [Volts/m], which is the1

gradient of a voltage [V], and the force density f(x) = −∇̺(x) [N/m], which is the gradient of2

a pressure [Pa].3

2. The divergence of a vector field results in a scalar field. For example, the divergence of the electric
field flux vector D(x) [Col/m2] equals the scalar field charge density ρ(x) [Col/m3]

∇·D(x) ≡
(
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)
·D(x) =

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= ρ(x). (1.82)

This it is analogues to the scalar product between two vectors.4

When working with guided waves, narrow tubes of flux, such that the diameter is small compared
with the wavelength, the divergence may be accurately approximated as (Appendix G.7, p. 196)

∇ ·D(x) = ∇rDr =
1

A(r)

∂

∂r
A(r)Dr(r).

For example in spherical coordinates A(r) = A0r
2, and this reduces to the radial component of5

the divergence of D(x) in spherical coordinates. In cylindrical coordinates A(r) = A0r.6

3. The curl

∇×H(x) ≡

∣∣∣∣∣∣∣

î ĵ k̂
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣∣
= C(x) (1.83)

transforms the vector field H(x) into the vector field C(x). The notation | · | indicates taking7

the determinant (Appendix A, p. 167).8

Here the curl of the magnetic intensity H(x) [Amp/m2] is equal to the current density C(x)9

[Amps/m2]. As before, units can be helpful.10

4. The Laplacian (∇2 ≡∇·∇)

∂2

∂x2
+

∂2

∂y2
+

∂2

∂x2
. (1.84)

Name Input Output Operator Mnemonic

Gradient Scalar Vector −∇()
Divergence Vector Scalar ∇ · ()
Curl Vector Vector ∇× ()

Laplacian Scalar Vector ∇·∇ = ∇2() DoG
Vector Laplacian Vector Vector ∇∇·= ∇

2() GoD

Table 1.8: The three vector operators manipulate scalar and vector fields, as indicated here. The
gradient converts scalar fields into vector fields. The divergence eats vector fields and outputs scalar
fields. Finally the curl takes vector fields into vector fields. It is helpful to have a name for second
order operators (e.g., DoG, GoD), as given on page p. 6.

Exercise: By example, briefly that the definition of the operator agrees with the type of input vector.11

For Example, show that the gradient must operate on a scalar, to produce a vector. Sol: Given a scalar12

field Φ(x) = xyz [Volts], the electric field is E(x) = [̂i∂x, ĵ∂y, k̂∂z]xyz = [̂iyz, ĵxz, k̂xy][V/m].13
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Examples of the Gradient operator ∇1

When the gradient ∇ operates on a scalar field V (x), the result is a vector field60

E(x) = [Ex(x), Ey(x), Ez(x)]T = −∇V (x).

For example, if V (x) = 2 + x − y2 then E = −∇(x + 2 − y2) = −̂i + ĵ2y. To understand these three
operations we therefore need to define the domain and range of their operation, as specified in Table
1.8. Recall that the voltage is the line integral of the electric field

V (b) = V (a) +

∫ b

a
E(x) · dx, (1.85)

which is simply the fundamental theorem of calculus (Leibniz Theorem). In a charge free region, this2

integral is independent of the path from a to b.3

The simplest example of a scalar potential is the voltage between two very large (think ∞) con-
ducting parallel planes, or plates (large so that we may ignore the edge effects). In this case the voltage
varies linearly (the voltage is complex analytic) between the two plates. For example

V (x, y, z) = V0(1− x) (1.86)

is a scalar potential, thus it is scalar field (i.e., potential). At x = 0 the voltage is V0 and at x = 14

the voltage is zero. Between 0 and 1 the voltage varies linearly. Thus V (x, y, z) defines a scalar field.5

What is the physical configuration corresponding to V (x) = 2 + x− y2 (the example above)?6

If the same setup were used but the two plates were 1x1 [cm2], with a 1 [mm] air gap, there will be7

a small “fringe” effect at the edges that would slightly modify the ideal fields. This effect can be made8

small by changing the air gap to area ratio, so that the ends do not impact the capacitor’s value. If9

we are given a set of three scalar fields, we define a vector field. If the three elements of the vector are10

potentials, then we have a magnetic vector potential.11

Perhaps a more intuitive example is an acoustic pressure potential ̺(x, t), which defines a force12

density f(x, t) = −∇̺(x, t) (Eq. 1.87, p. 96).13

Next we systematically introduce the three vector operators ∇(), ∇ · () and ∇× () in terms of14

the integral definitions. In Section ?? we gave the differential definition, which is what one does15

when computing each of these forms. However a better definition may be used, based on the integral16

definitions.17

60As before vectors are columns, which take up space on the page, thus we write them as rows and take the transpose
to properly format them.
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Gradient: E = ∇φ(x, y, z) [V/m]

• Definition: R1 7→
∇

R3

E(x, y, z) = [∂x, ∂y, ∂z]
T φ(x, y, z) =

[
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]T

x,y,z

• E ⊥ plane tangent at φ(x, y, z) = φ(x0, y0, z0)

• Unit vector in direction of E is n̂ = E

||E|| , along isocline

• Basic definition

∇φ(x, y, z) ≡ lim
|S|→0

{∫∫∫
φ(x, y, z) n̂ dA

|S|

}

n̂ is a unit vector in the direction of the gradient
S is the surface area centered at (x, y, z)

• Example:

– Voltage [Volts] about a point charge Q [SI Units of Coulombs]

Φ(x, y, z) =
Q

ǫ0
√
x2 + y2 + z2

=
Q

ǫ0R

Φ [Volts]; Q = [C]; Free space ǫ0 permittivity (µ0 permeability)

1

1.5.2 Lec 36: Scalar Wave Equation (Acoustics)2

The scalar wave equation is the wave equation for a scalar potential, such as the pressure or voltage in3

a transmission line. The best known examples are the electrical and acoustic transmission lines, known4

as the telephone equations or simply the transmission line equations. We have previously studied these5

in terms of their ABCD transmission line representations, which go back to Chinese innovation, as6

Pell’s equations.7

This corresponds to the development of the basic equations of acoustics: Conservation of mass and8

momentum, or sound in a uniform tube.9

Horns provide an important generalization of the solution of the 1D wave equation, in regions where10

the properties (i.e., area of the tube) vary along the axis of wave propagation. Classic applications of11

horns is vocal tract acoustics, loudspeaker design, cochlear mechanics, any case having wave propagation12

(Brillouin, 1953). The typical experimental setup is shown in Fig. 1.21.13

The traditional formulation of the horn is widely known and is discussed in many papers and14

books (Hanna and Slepian, 1924; Morse, 1948; Mawardi, 1949) and in greater detail by (Olson, 1947,15

p. 101) and (Pierce, 1981, p. 360). Extensive experimental testing for various types of horns (conical,16

exponential, parabolic) along with a review of horn theory is provided in Goldsmith and Minton (1924).17

It is frequently stated that the Webster Horn equation (WHEN) Webster (1919) is an approximation18

that only applies to low frequencies, because it is assumed that the area function is the cross-sectional19

area, not the area of the wave-front (Morse, 1948; Shaw, 1970; Pierce, 1981). This serious limitation20

is discussed in the majority of the discussions Morse (1948); Shaw (1970); Pierce (1981). By a proper21

derivation based on Gauss’ Law, as provided in Appendix G.3 (p. 194), this restriction may be largely22

avoided, making the Webster theory of the Horn equation exact (subject to the quasi-statics approxi-23

mation). Here the variables are redefined as the average pressure and the volume velocity, each defined24

on the wave-front boundary (Hanna and Slepian, 1924).25

The horn equation is a generalization of Sturm-Louville theory, for cases where the pressure (i.e.,26
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force potential) does not form a “separable” coordinate system.1
D.Miller paper on Huy-

wave solution. The study of wave propagation begins at least as early as Huygens (ca. 1678) and following soon
after (ca. 1687) with Sir Isaac Newton’s calculation of the speed of sound (Pierce, 1981). To obtain a
wave, one must include two basic components, the stiffness of air, and its mass. These two equations
shall be denoted Hooke’s Law (F = kx) and Newton’s 2nd Law (F = ma), respectively. In vector form
these equations are Euler’s equation (i.e., conservation of momentum density)

−∇̺(x, t) = ρo
∂

∂t
u(x, t) (1.87)

and the continuity equation (i.e., conservation of mass density)

−∇ · u =
1

η0P0

∂

∂t
̺(x, t) (1.88)

(Pierce, 1981, page 15).2

Combining these two equations results in the scalar acoustic (pressure) wave equation

∇2̺(x, t) =
1

c2

∂2

∂t2
̺(x, t).

General solution of the wave equation: Apparently Huygen (1690) was the first to gain insight
into wave propagation. His important concept, today known as “Huygens’ principle,” was seriously
flawed, as left unexplained why there was no backward traveling wave generated by the forward wave
(Miller, 1991). In 1747 a well known French intellectual and mathematician, Jean le Rond d’Alembert,
published the general form of the solution to the scalar wave equation, which is

̺(x, t) = f(x− ct) + g(x+ ct) (1.89)

where f(·) and g(·) are quite general functions of their argument. That this is the solution may be3

easily shown by use of the chain rule and taking partials with respect to x and t. Surprisingly, this is4

the solution even when the functions are not differentiable. For example f(x− ct) = u(x− ct) or even5

δ(x− ct) are valid solutions, even though the proof of this is more difficult.6

In terms of the physics, d’Alembert’s general solution describes two waves, traveling at a speed c,7

one forward, and one reversed. Thus his solution is quite easily visualized. As previously discussed,8

Newton (1687) was the first to calculate the speed of sound, be it with a small error (
√

1.4). This9

was not corrected for over 200 years, following the creation of thermodynamics, and the concept of an10

adiabatic process.11

Related partial differential equations: The wave equation would morph into several other im-
portant partial differential equations as the theory was further developed, resulting in the diffusion
equation

Do
∂T (x, t)

∂t
= ∇2T (x, t) (1.90)

which describes, for example, the temperature T (x, t) or for the diffusion of two miscible liquids,
Poisson’s equation

∇2Φ(x, t) = ρ(x, t) (1.91)

which holds for gravitational fields, or the voltage around a charge, and Laplace’s equation

∇2Φ(x, t) = 0, (1.92)

which describes, for example, the voltage inside a closed chamber with various voltages on the walls,12

or the temperature in a box with a temperature distribution on the walls.13
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Each of these four equations has properties that may be simply explained, and visualized, in simple
geometries, and all are some variant of the Laplacian, formed from the divergence ∇· of the gradient
∇, i.e., ∇2() = ∇·∇(), as described below. In rectangular coordinates

∇2T (x) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
T (x). (1.93)

We first saw the Laplacian in Section 1.4.2 (p. 74), when we studied complex analytic functions. This1

operator is fundamental in mathematics, starting with complex analytic functions, and then spreading2

into the wave equation, the diffusion equation, Poisson’s equation, and Laplace’s’ equation. We start3

with the Webster horn equation, which is a key extension of Newton’s calculation of the speed of sound.4

1.5.3 Lec 37: Webster horn equation5

Newton’s Law Eq. 1.87 (conservation of momentum) along with the continuity equation (conservation
of mass) Eq. 1.88, are modern versions (generalizations) of Newton’s starting point, for calculating the
speed of sound. Following a simplification, by averaging over the wave front (Appendix G.3, p. 194)
These two equations may be written in matrix form ̺(x, t) and the volume velocity ν(x, t)

d

dx

[
P(x, ω)
V(x, ω)

]
= −

[
0 Z (s, x)

Y (s, x) 0

] [
P(x, ω)
V(x, ω)

]
, (1.94)

as discussed on p. 194, Eqs. C.5, C.7. The Fourier-transform pair of the average pressure and volume
velocity are denoted as ̺(x, t)↔ P(x, ω) and ν(x, t)↔ V(x, s), respectively.61 Here we use the complex
Laplace frequency s = σ + jω when referring to the per-unit-length impedance

Z (s, x) ≡ s ρo
A(x)

= sM(x) (1.95)

and per-unit-length admittance

Y (s, x) ≡ sA(x)

η0P0
= sC(x), (1.96)

to clearly indicate that these functions must be causal, and except at their poles, analytic in s.62 Here6

M(x) = ρo/A(x) is the horn’s per-unit-length mass, C(x) = A(x)/η0P0 per-unit-length compliance,7

η0 = cp/cv ≈ 1.4 (air).8

Bulk acoustic parameters: The bulk acoustic parameters are the free-field speed of sound

c =

√
η0P0

ρo
, (1.97)

the specific acoustic resistance is

ρoc =
√
ρoη0P0, (1.98)

and the acoustic resistance is

ro(x) =

√
Z

Y
=

√
ρoη0P0

A(x)
=

ρoc

A(x)
. (1.99)

61
Notation: Lower case variables (i.e., ̺(x, t), ν(x, t)) denote time-domain functions while upper case letters (i.e.,

P(x, ω),V(x, ω), Z(x, s),Z ,Z(s)) indicate frequency domain Fourier (ω) or Laplace (s) transforms, the latter being ana-
lytic in s = σ + jω for σ > 0. Matrix notation provides notional transparency.

62A function F (s) is said to be complex analytic in s = σ + ω at point a if it may be represented by a convergent

Taylor series in s the neighborhood of s = a. That is if F (s) =
∑

∞

n=0
fn(a)(s− a)n, where fn(a) = dnF (s)

dsn

∣∣∣
s=a

.
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Figure 1.21: Experimental setup showing a large
pipe on the left terminating the wall containing a small
hole with a balloon, shown in green. At time t = 0 the
balloon is pricked and a pressure pulse is created. The
baffle on the left is meant to represent a semi-∞ long
tube having a large radius compared to the horn input
diameter 2a, such that the acoustic admittance looking
to the left (A/ρoc with A→∞), is very large compared
to the horn’s throat admittance (Eq. 5.7). At time T
the outbound pressure pulse p(r, T ) = δ(t−T/c)/r has
reached radius T/c. Here r = x + r0 where x is the
location of the source at the throat of the horn and r
is measured from the vertex.
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The primitive solutions of the horn equation always depend on a complex wave propagation function63

κ(s), defined as the square root of the product of Z and Y :

κ(s) ≡
√

Z (s, x)Y (s, x) =

√
sρo
A(x)

× sA(x)

η0P0
=
s

c
. (1.100)

Note that since the area A(x) cancels in this expression, c is a constant. While horns are generally1

dispersive, meaning that the solution have a group velocity (and thus a group delay) that depends on2

frequency, the wave-front speed is always constant, defined by the free-field sound velocity c. These3

concepts seem to have been first clarified between 1907–1914 by Brillouin (1960, English version), while4

working with Arnold Sommerfeld (Pleshko and Plac̀z, 1969).5

Equation 5.4 is the differential equation in the conjugate variables P,V. The product of conjugate6

variables64 defines the intensity, and the ratio, an impedance (Pierce, 1981, p. 37-41).7

We shall discuss two alternative matrix formulations of these equations, the ABCD transmission8

matrix, use for computation, and the impedance matrix, used when working with experimental mea-9

surements (Pierce, 1981, Chapter 7). For each formulation reciprocity and reversibility show up as10

different matrix symmetries, as discussed by (Pierce, 1981, p. 195-203) and further here.11

The uniform horn12

All these formulae are well known for the case of the uniform, or plane-wave horn, having a constant
area A(x) = A0. Equation 5.4 (p. 157) then reduces to the classical 1D plane-wave wave equation

Pxx +
ω2

c2
P = 0.

Wave solutions: The solutions is the well-known d’Alembert (plane-wave) solution
normalization of ̺

−

̺(x, t) = ̺+(t− x/c) + ̺−(t+ x/c) ↔ α(s) e−κx + β(s)e−κL eκx,

where a(t) ↔ α(s) and b(t) ↔ β(s) are L transform pairs, representing the forward and retrograde
traveling wave amplitudes. As for the general case given above, it is convenient to define P+

0 = 1
(α = 1) and P−

L = 1 (β = e−κL), thus the normalized primary solutions are

̺+(x, t) = δ(t− x/c)↔ e−κx

and
̺−(x, t) = δ(t+ (x− L)/c)↔ eκ(x−L).

63The propagation function is commonly called the wave-number (Sommerfeld, 1952, p. 152) or the propagation-constant.
However since κ(s) is neither a number, nor constant, we have appropriately rename it. The meaning of a complex κ(s)
is addressed in (Sommerfeld, 1952, p. 154). The units of κ(s) are reciprocal length, namely κ(s) = 1/~λ(s). Since κ(s) is
complex-analytic, the wavelength ~λ(s) is a complex-analytic function of s. It follows that when ℜ~λ(jω) = 0, the wave
must be evanescent, loss-less and causal.

64https://en.wikipedia.org/wiki/Conjugate_variables_(thermodynamics)
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Radiation Admittance: Since ∂x lnP± = ∓κ = s/c, from Eq. 5.7 we find that Y ±
rad ≡ y0 = A0/ρoc.1

The signs are chosen to assure that the real admittance y0 > 0 for both types of waves, where the2

velocity V± is always into the port.3

1d ABCD matrix: Repeating the entire argument leading to the ABCD matrix (i.e., Eq. 5.18)

[
P(x)
V(x)

]
=

[
e−κx eκ(x−L)

y0e
−κx −y0e

κ(x−L)

] [
α
β

]
. (1.101)

Solving Eq. 1.101 for α and β and evaluating at x = L (and fixing all the signs to be consistent with
Eq. 5.8) we find the amplitudes in terms of the pressure and velocity at any point along the line

[
α
β

]
=

−1

2y0 e−κL

[
−y0 e

−κ(x−L) −eκ(x−L)

−y0e
−κx e−κx

]

L

[
PL
−VL

]
=

1

2

[
eκL r0e

κL

1 −r0

] [
PL
−VL

]
, (1.102)

where r0 ≡ 1/y0. We have changed the sign of −VL so as to be positive looking into the port at x = L.
Since in this case ∆L = −2y0e

−κL is independent of x, evaluating it at x = L has no effect. Substitution
of Eq. 1.102 into Eq. 1.101 and evaluating the result at x = 0 gives the final ABCD matrix

[
P0

V0

]
=

1

2

[
1 e−κL

y0 −y0e
−κL

] [
eκL ZeκL
1 −Z

] [
PL
−VL

]
(1.103)

Multiplying these out gives the final transmission matrix as

[
P0

V0

]
=

[
cosh(κL) r0 sinh(κL)
y0 sinh(κL) cosh(κL)

] [
PL
−VL

]
,

with κ = s/c, y0 = 1/Z = A0/ρoc (Pipes, 1958). The two velocities are defined into their respective4

ports.5

Impedance matrix: The impedance matrix (Eq. 5.20) is therefore

[
P0

PL

]
=

Z
sinh(κL)

[
cosh(κL) 1

1 cosh(κL)

] [
V0

−VL

]
.

The input admittance: Given the input admittance of the horn, it is already possible to determine
if it is uniform, without further analysis. Namely if the horn is uniform and infinite in length, the input
impedance at x = 0 is

Yin(0, s) ≡ V(0, ω)

P(0, ω)
= y0,

since α = 1 and β = 0. That is for an infinite uniform horn, there are no reflections.6

When the horn is terminated with a fixed impedance ZL at x = L, one may substitute pressure
and velocity measurements into Eq. 1.102 to find α and β, and given these, one may calculate the
reflectance at x = L (see Eq. 5.19)

ΓL(s) ≡ P
−

P+

∣∣∣∣∣
x=L

=
e−κLβ
α

=
P(L, ω)−ZV(L, ω)

P(L, ω) + ZV(L, ω)
=
ZL −Z
ZL + Z

given accurate measurements of the throat pressure P(0, ω), velocity V(0, ω), and the characteristic7

impedance of the input Z = ρoc/A(0).8
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Divergence: ∇·D = ρ [Col/m3]

• Definition: R3 7→
∇·

R1

∇·D ≡ [∂x, ∂y, ∂z] ·D =

[
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z

]
= ρ(x, y, z)

• Example:

– Electric Displacement (flux density) around a point charge (D = ǫ0E)

D = −∇φ(R) = −Q∇
{

1

R

}
= −Qδ(R)

1

Divergence: The integral definition [Col/m3]

• Surface integral definition of incompressible vector field

∇·D = lim
|S|→0

{∫∫
S D · n̂ dA

|V|

}
= ρ(x, y, z)

S must be a closed surface
n̂ is the unit vector in the direction of the gradient

– n̂ ·D ⊥ surface differential dA

2

1.5.4 Lec 38: Gauss’ Law; Curl & Stokes’ Law3

Divergence: Gauss’ Law [Col]

• General case of a Compressible vector field

• Volume integral over charge density ρ(x, y, z) is total charge enclosed Qenc [Col]

• ∫∫∫

V
∇·D dV =

∫∫

S
D ·n̂ dA = Qenc [Col]

• Examples

– When the vector field is incompressible

∗ ρ(x, y, z) = 0 [C/m3] over enclosed volume

∗ Surface integral is zero (Qenc = 0)

– Unit point charge: D = δ(R) [C/m2]

4
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Curl: ∇×H = I [amps/m2]

• Definition: R3 7→
∇×

R3

∇×H ≡

∣∣∣∣∣∣∣

î ĵ k̂
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣∣
= I

• Examples:

– Maxwell’s equations: ∇×E = −Ḃ, ∇×H = σE + Ḋ,

– H = −ŷi + x̂j then ∇×H = 2k̂ constant irrotational

– H = 0̂i + 0̂j + z2k̂ then ∇×H = 0 is irrotational

1

Curl: Stokes Law

• Surface integral definition of ∇×H = I (I ⊥ rotation plane of H)

n̂ ⊥ dA

S Area (open)

B Boundarydl

∇×H ≡ lim
|S|→0

{∫∫
S n̂×H dA

|S|

}
(1.104)

Ienc =

∫∫
(∇×H) ·n̂ dA =

∮

B
H·dl (1.105)

• Eq. (1): S must be an open surface
with closed boundary B
n̂ is the unit vector ⊥ to dA
H×n̂ ∈ Tangent plane of A (i.e., ⊥ n̂)

• Eq. (2): Stokes Law: Line integral of H along B is total current Ienc

2

1.5.5 Lec 39 Second-order operators: The fundamental theorem of vector calculus3

4

Besides the above first order vector derivatives, second order combinations exist, the most common
being the scalar Laplacian ∇·∇() = ∇2() (Appendix G.7, p. 196)

∇2 ≡∇·∇ =
1

A(r)

∂

∂r
A(r)

∂

∂r

such as used in acoustics. The last term on the right applies for thin tubes (e.g., spherical and cylindrical5

coordinates), with angular symmetry. This is useful in acoustics where it is know as the Webster Horn6

Equation.7

As a memory aid we define mnemonics DoC, DoG, CoG CoC and GoD as8

1. DoC: Divergence of the Curl (∇·∇×),9

2. DoG: Divergence of the Gradient (∇·∇ = ∇2),10

3. CoG: Curl of the Gradient (∇×∇),11

4. DoG: Divergence of the Gradient (∇·∇)12
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5. GoD: Gradient of the Divergence (∇∇·= ∇
2), also know as the vector Laplacian, and1

6. CoC: Curl of the curl (∇×∇×).2

It is easily shown that Doc and Cog are zero for field they operate on, providing a straight forward
proof of the the Fundamental theorem of vector calculus (Helmholtz theorem). CoG is a third key
vector identity

∇×∇×A = ∇(∇·A)−∇
2A.

You must be careful with the order of operation, which can be subtle in some cases. Most of this is3

common sense. For example, don’t operate on a scalar field with ∇×, and don’t operate on a vector4

field with ∇. This has an important exception, that makes sense. The vector Laplacian ∇2A is actually5

the ∇ of the ∇× of a vector A.6

• Review of last few lectures: Basic definitions:7

– Field: i.e., Scalar & vector fields are functions of (x, t)8

– “Del:” ∇ ≡ [∂x, ∂y, ∂z]
T

9

– Gradient: ∇φ(x, y, z) ≡ [∂xφ, ∂yφ, ∂zφ]T10

– Definitions of Divergence, Curl & Maxwell’s Eqs;11

• Helmholtz Theorem: Every vector field F (x, y, z) may be uniquely decomposed into compressible
& rotational parts

F (x, y, z) = −∇φ(x, y, z) + ∇×A(x, y, z)

– Scalar part ∇φ is compressible (∇φ = 0 is incompressible)12

– Vector part ∇×A is rotational (∇×A = 0 is irrotational)13

– Key vector identities: ∇×∇φ = 0; ∇ ·∇×A = 014

The Helmholtz decomposition: We may now restate everything defined above in terms of two15

types of vector fields that decompose every vector field. Thus another name for the fundamental16

theorem of vector calculus is the Helmholtz decomposition. An irrotational field is define as one that is17

“curl free,” namely the vector potential is a constant. An incompressible field is one that is “diverge18

free,” namely the scalar potential is a constant. The incompressible field is also called a solenoidal19

field. I recommend that you know this term (as it is widely used), but use incompressible instead, as20

the more obviously name, being the opposite of compressible.21

The decomposition of differentiable vector fields22

One of the most important fundamental theorems is that of vector calculus, The fundamental theorem of23

vector calculus, is also known as Helmholtz’ theorem. This theorem is very easily stated, but less easily24

appreciated. A physical description facilitates: Every vector field may be split into two independent25

parts. We have seen this same idea appear in vector algebra, where the vector and cross products of26

two vectors are perpendicular. Also think of linear and angular momentum. They are independent in27

that they represent different ways to carry energy, leading to independent degrees of freedom. Thus28

this idea of independents in vector fields, of the linear and rotational parts being independent, is a29

common theme, rooted in geometry. In the same sense, a vector field may be split into a dilation and30

rotational parts, which are independent (but can interact under certain conditions).31

An object with mass can be moving along a path and independently rotating. The two modes of
motion define different types of kinetic energy, transnational and rotational. These are also known as
degrees of freedom (DoF). In some real sense, Helmholtz theorem quantifies these degrees of freedom,
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1 for translation and three for rotation. Each eigenmode of vibration can be viewed as a DoF. It states
that every differentiable (i.e., analytic) vector field may be written as the sum of two terms, a scalar
part and a vector part, expressed in terms of a scalar potential φ(x, y, z) (think voltage) and a vector
potential (think magnetic vector potential). Specifically

E = −∇φ+∇×A, (1.106)

where φ is the scalar and A is the vector potential.1

Figure 1.22: Left: von Helmholtz portrait taken from the English translation of his 1858 paper “On integrals of the
hydrodynamic equations that correspond to Vortex motions” (in German) (Helmholtz, 1978). Right: Gustav Kirchhoff

To show how this relationship splits the vector field E into two parts, we include two key vector
identities, that are always equal to zero for complex analytic fields: the curl of the gradient (CoG)

∇×∇φ(x) = 0, (1.107)

and the divergence of the curl65 (DoC)

∇·(∇×A) = 0. (1.108)

The above identities are easily verified by working out a few specific examples, based on the definitions2

of the three operators, gradient, divergence and curl, or in terms of the operator’s integral definitions,3

defined below. The identities have a physical meaning, as stated above: every vector field may be split4

into its transnational and rotational parts. If E is the electric field [V/m], φ is the voltage and A is5

the induced rotational part, induced by a current. We shall explore this in our discussion of Maxwell’s6

equations, in Chapter 5.7

By applying these two identities to Helmholtz’s theorem (Eq. 1.106), we can appreciate the signif-8

icance of the theorem. It is a form of proof actually, once you have satisfied yourself that the vector9

identities are true. In fact one can work backward using a physical argument, that rotational momen-10

tum (rotational energy) is independent of the transnational momentum (transnational energy). Again11

this all goes back to the definitions of rotation and transnational forces, coded in the vector operations.12

Once these forces are made clear, the meaning of the vector operations all take on a very well defined13

meaning, and the mathematical constructions, centered around Helmholtz’s theorem, begins to provide14

some common-sense meaning. One might conclude that the physics is related to the geometry.15

Specifically, if we take the divergence of Eq. 1.106, and use the divergence vector identity

∇·E = ∇·{−∇φ+✘✘✘✘
∇×A} = −∇·∇φ = −∇2φ.

65Helmholtz was the first person to apply mathematics in modeling the eye and the ear (Helmholtz, 1863a).
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since the divergence vector identity removes the vector potential A(x, y, z).1

Likewise if we take the curl of Eq. 1.106, and use the curl vector identity

∇×E = ∇×{✟✟✟−∇φ+ ∇×A} = ∇×∇×A,

since using the curl vector identity, removes the scalar field φ(x, y, z).2

A third important vector identity is

∇×(∇×A) = ∇(∇·A)−∇
2A.

One way to think of this identity is that it defines the vector Laplacian

∇
2A ≡ ∇(∇·A)−∇×(∇×A). (1.109)

Summary of vector fields v,E:3

1. Rotational and Compressible fields: E(x, t) = −∇φ(x, t) + ∇×A; Maxwell’s equations.4

2. Rotational and incompressible fields: v(x, t) = ∇×A.5

3. Irrotational fields: ∇×v = 0 (Greenberg, 1988, p. 826). Thus v = −∇φ since ∇×∇φ = 0. Also6 ∫
v · n̂ dR only depends on the end points, and

∮
s v · n̂ dR = 0. From Stokes theorem (Greenberg,7

1988, p. 814) When a fluid may be treated as having no viscosity, it is typically irrotational, since8

it is the viscosity that can introduce shear. Since a fluid’s angular velocity is Ω = 1
2∇×v = 0,9

irrotational fluids have zero angular velocity (Ω = 0).10

Based on Stokes’ theorem, ∮

Sopen

∇×v · n̂ dA =

∮

C
v · n̂ dR

thus when the field is irrotational ∇×v = 0, it must be conservative ∇2φ = 011

Field: Compressible Incompressible
v(x, t),E(x, t) ∇·v 6= 0,∇·E 6= 0 ∇·v = 0,∇·E = 0

Rotational E = −∇φ+ ∇×A v = ∇×w
ω = ∇×v 6= 0 Vector wave Eq. (EM) Lubrication theory

∇
2E = 1

c2 Ë Boundary layers

Irrotational Acoustics Statics
Conservative v = −∇ψ ∇2φ = 0
ω = ∇×v = 0 ∇2̺(x, t) = 1

c2 ¨̺(x, t) Laplace’s Eq. (c→∞)

Figure 1.23: Table showing the four possible classifications of scalar and vector potential fields, rotational/irrotational.
compressible/incompressible. Rotational fields are generated by on the vector potential (e.g., A(x, t)), while compressible
fields are generated by a the scalar potentials (e.g., voltage φ(x, t), (velocity ψ, pressure ̺(x, t)), temperature T (x, t)).
The vorticity is defined as ω = ∇×v and the rotation as Ω = ω/2.

Summary of the four cases described in Fig. 1.23:12

1. ∇φ = 0, ∇×w = 0 thus v = 0: When both the scalar and vector potentials do not contribute to13

the vector field, the fluid is incompressible and irrotational. An example of such a case is water14

in a small space at low frequencies. When the wavelength is long compared to the size of the15

container, the fluid may be treated as incompressible. When ∇×A = 0, the effects of viscosity16

may be ignored, as it is the viscosity that creates the shear leading to rotation. This is the case17

of modeling the cochlea, where losses are ignored and the quasi-static limit is justified.18

2. v = ∇×w 6= 0: In this case the fluid is incompressible, but rotation may not be ignored. When19

the flow is dominated by the walls, the viscosity and heat transfer introduce shear, leading to20

this case21
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3. ∇φ 6= 0, ∇×w = 0: This is the compressible irrotational case, which gives rise to acoustics,1

when ignoring losses (viscose and thermal effects). Since the air is considered to be irrotational,2

one may define a velocity potential ψ, the gradient of which gives the air particle velocity, i.e.,3

v(x, t) ≡ −∇ψ(x, t).4

4. ∇φ 6= 0, ∇×w 6= 0: In this case the medium (e.g., water) is both incompressible and irrotational.5

Thus the pressure ̺(x, t) obeys Laplace’s equation ∇2̺ = 0. Once may think of this as a case6

where the speed of sound may be taken as infinite, forcing the right hand side of the wave equation7

to go to zero. This is an approximation that breaks down when the wavelength approaches the8

size of the objects, namely for frequencies above the quasi-static limit.9

In summary, each of the cases is some sort of approximation that best applies in the low frequency10

limit. This is why it is called quasi-static, meaning low, but not zero frequency.11

Thanksgiving Holiday 11/19–11/27 201612

1.5.6 Lec 40 Maxwell’s Equations: The unification of electricity and magnetism13

Once you have mastered the three basic vector operations, the gradient, divergence and curl, you are14

able to understand Maxwell’s equations. Like the vector operations, these equations may be written15

in integral or vector form. The notation is basically the same since the concept is the same. The only16

difference is that with Maxwell’s equations we are dealing with well defined physical quantities. The17

scalar and vector fields take on meaning, and units. Thus to understand these important equations,18

one must master the names of the four fields, their equation, and the units.19

Symbol Name Units Maxwell’s Eq.

E Electric Field strength [Volts/m] ∇×E = −Ḃ
D = ǫoE Electric Displacement (flux density) [Col/m2] ∇ ·D = ρ

H Magnetic Field strength [Amps/m] ∇×H = Ḋ
B = µoH Magnetic Induction (flux density) [Webers/m2] ∇ ·B = 0

Figure 1.24: The variables of Maxwell’s equations have the above names and units (in square brackets [SI Units]).

The speed of light in vacuo is c = 3 × 108 = 1/
√
µ0ǫ0 [m/s], and the characteristic resistance of light ro = 377 =

√
µ0/ǫ0

[Ω (i.e., ohms)]. The dot over a vector is shorthand for the partial with respect to time (i.e., Ḃ = ∂B/∂t).

The wave equation:20

When Maxwell’s equations are combined the vector wave equation results. Taking the curl of ∇×E
(Fig. 1.24), we obtain in the electric vector wave equation

∇×∇×E = −∇×Ḃ = −µ0∇×Ḣ = −µ0ǫ0Ë (1.110)

From identify Eq. 1.109) and collecting terms gives

∇2E − 1

ǫ0
∇(∇·D) = µ0ǫ0Ë (1.111)

In a charge free region ∇·D = 0. Since 1/c2 = µ0ǫ0, this gives the vector wave equation

∇2E =
1

c2
Ë. (1.112)

It is very important to distinguish the vector Laplacian from the scalar Laplacian. As was discussed21

in Table 1.8 (p. 93),22
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In a like manner one may derive the wave equation in terms of H

∇2H =
1

c2
Ḧ. (1.113)

Thus both E,H obey the wave equation (thus they are locked together in space-time). Recall the
d’Alembert solution of the scalar wave equation Eq. 1.56 (p. 75)

E(x, t) = f(x− ct) + g(x + ct),

where f, g are arbitrary vector fields.1

1.5.7 Lec 41 The Quasi-static approximation2

There are a number of assumptions and approximations that result in special cases, many of which3

are classic. These manipulations are all done at the differential equation level, by making assumptions4

that change the basic equations that are to be solved. These approximations distinct from assumptions5

made while solving a specific problem.6

A few and important examples include7

1. In vacuo waves (free-space scalar wave equation)8

2. Expressing the vector wave equation in terms of scalar and vector potentials9

3. Quasi-statics10

(a) scalar wave equation11

(b) Kirchhoff’s low-frequency lumped approximation (LRC networks)12

(c) Transmission line equations (Telephone and Telegraph equations)13

One of the very first insights into wave propagation was due to Huygens (c1640) (Fig. 1.4).14

Quasi-statics and it implications: The term quasi-statics (Postulate P9, p. 70) is an approxima-15

tion, used to reduce a a partial differential equations to a scalar (one-dimensional) equation (Som-16

merfeld, 1952). Quasi-statics is a way of reducing a three dimensional problem to a one–dimensional17

problem. So that it is not miss-applied, it is important to understand the nature of this approximation,18

which is goes to the heart of transmission line theory. The quasi-static approximation states that the19

wavelength λ is greater than the dimensions of the size of the object ∆ (e.g., λ≫ ∆). The best known20

example, Kirchhoff’s current and voltage laws, KCL and KVL, almost follow from Maxwell’s equations21

given the quasi-static approximation (Ramo et al., 1965). These laws state that the sum of the currents22

at a node must be zero (KCL) and the some of the voltages around a loop must be zero (KCL).23

These well known laws the analogue of Newton’s laws of mechanics. The sum of the forces at a24

point is the analogue of the sum of the voltages. Voltage φ is the force potential, since the electric field25

E = −∇φ. The sum of the currents is the analogue of the vector sum of velocities at a point is zero.26

The acoustic wave equation describes how the scalar field pressure p(x, t), the vector force density27

potential (f(x, t) = −∇p(x, t) [N/m2]), propagates in three dimensions. (The net force is the integral28

of the pressure gradient over an area.) If the wave propagation is restricted to a pipe (e.g., organ pipe),29

or to a string (e.g., an guitar or lute), the transverse directions may be ignored, due to the quasi-static30

approximation. What needs to be modeled by the equations is the wave propagation along the pipe31

(string). Thus we may approximate the restricted three-dimensional wave by a one-dimensional wave.32

33

However if we wish to be more precise about this reduction in geometry (R2 → R), we need to34

consider the quasi-static approximation, as it makes assumptions about what is happening in the other35

directions, and quantifies the effect (λ ≫ ∆). Taking the case of wave propagation in a tube, say the36
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ear canal, there is the main wave direction, down the tube. But there is also wave propagation in the1

transverse direction, perpendicular to the direction of propagation. As shown in Table 3.1 (p. 142),2

the key statement of the quasi-static approximation is that the wavelength in the transverse direction3

is much larger that the radius of the pipe. This is equivalent to saying that the radial wave reaches the4

walls and is reflected back, in a time that is small compared to the distance propagated down the pipe.5

Clearly the speed of sound down the pipe and in the transverse direction is the same if the medium is6

homogeneous (i.e., air or water). Thus the sound reaches the walls and is returned to the center line7

in a time that the axial wave traveled about 1 diameter along the pipe. So if the distance traveled is8

several diameters, the radial parts of the wave have time to come to equilibrium. So the question one9

must ask is, what are the conditions of such an equilibrium. The most satisfying answer to this is to10

look at the internal forces on the air, due to the gradients in the pressure.11

The pressure p(x, y, z, t) is a potential, thus its gradient is a force density f(x, y, z, t) = −∇p(x, y, z, t).12

What this equation tells us is that as the pressure wave approaches that of a plane wave, the radial13

(transverse) forces go to zero. If the tube has a curvature, or a change in area, then there will be local14

forces that create radial flow. But after traveling a few diameters, these forces will come to equilibrium15

and the wave will return to a plane wave. The internal stress caused by a change is area must settle16

out very quickly. There is a very important caveat however: it is only at low frequencies that the plane17

wave can dominate. At frequencies such that the wavelength is very small compared to the diameter,18

the distance traveled between reflections is much greater than a few diameters. Fortunately the fre-19

quencies where this happens are so high that they play no role in frequencies that we care about. This20

effect is referred to as cross-modes which imply some sort of radial standing waves. In fact such modes21

exist in the ear canal, but on the eardrum where the speed of sound is much slower that that of air.22

Because of the slower speed, the ear drum has cross-modes, and these may be seen in the ear canal23

pressure. Yet they seem to have a negligible effect on our ability to hear sound with good fidelity. The24

point here is that the cross modes are present, but we call upon the quasi-static approximation as a25

justification for ignoring them, to get closer to the first-order physics.26

Quasi-statics and Quantum Mechanics27

It is important to understand the meaning of Planck’s constant h, which appears in the relations of28

both photons (light “particles”) and electrons (mass particles). If we could obtain a handle on what29

exactly Planck’s constant means, we might have a better understanding of quantum mechanics, and30

physics in general. By cataloging the dispersion relations (the relation between the wavelength λ(ν)31

and the frequency ν), for between electrons and photons, this may be attainable.32

Basic relations from quantum mechanics for photons and electrons include:33

1. Photons (mass=0, velocity = c)34

(a) c = λν: The speed of light c is the product of its wavelengths λ times its frequency ν. This35

relationship is only for mono-chromatic (single frequency) light.36

(b) The speed of light is

c =
1√
µoǫo

= 0.3× 106 [m/s]

(c) The characteristic resistance of light ro =
√
µo/ǫo = |E|/|H| = 377 [ohms] is defined as the37

magnitude of the ratio of the electric E and magnetic H field, of a plane wave in-vacuo.38

(d) E = hν: the photon energy is given by Planck’s constant h ≈ 6.623 × 10−34 [m2 kgm/s],39

times the frequency (or bandwidth) of the photon)40

2. Electrons (mass = me, velocity V = 0):41

(a) Ee = mec
2 ≈ 0.91 · 10−30 · 0.32 · 1012 = 8.14× 10−20 [J] is the electron rest energy (velocity42

V = 0) of every electron, of mass me = 9.1× 10−31 [kgm], where c is the speed of light.43
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(b) p = h/λ: The momentum p of an electron is given by Planck’s constant h divided by the
wavelength of an electron λ. It follows that the bandwidth of the photon is given by

νe =
Ee
h

and the wavelength of an electron is

λe =
h

pe
.

One might reason that QM obeys the quasi-static (long wavelength) approximation. If we compare
the velocity of the electron V to the speed of light c, then we see that

c = E/p≫ V = E/p = mV 2/V

Conjecture on photon energy:1

Photons are seen as quantized because they are common generator by atoms, which produce light-
particles having the difference in two energy (quantum, or eigen-states) levels. The relation E = hν
does not inherently depend on ν being a fixed frequency. Planck’s constant h is the EM energy density
over frequency, and E(νo) is the integral over frequency

E(νo) = h

∫ νo

−νo

dν = 2hνo.

When the photon is generated by an atom ν0 is quantized by the energy level difference that corresponds2

to the frequency (energy level difference) of the photon jump.3

1.5.8 Lec 42: Final Review for Final Exam4

Summary5

Mathematics began as a simple way of keeping track of how many things there were. But eventually6

Physics and Mathematics evolved together as tools to help us navigate our environment, not just phys-7

ically around the globe, but how to solve daily problems such as food, water and waste management,8

understand the solar system and the stars, defend ourselves, use tools of war, etc.9

Based on the historical record of the abacus, one can infer that people precisely understood the10

concept of counting, addition, subtraction and multiplication (recursive addition).11

There is some evidence that the abacus, a simple counting tool, formalizing the addition of very12

large numbers, was introduced to the Chinese by the Romans, where it was used for trade.13

However this working knowledge of arithmetic did not to show up in written number systems. The14

Roman numerals were not useful for doing calculations done on the abacus. The final answer would15

then be expressed in terms of the Roman number system.16

According to the known written record, the number zero (null) had no written symbol until the17

time of Brahmagupta (628 CE). One should not assume the concept of zero was not understood simply18

because there was no symbol for it in the Roman Numeral system. Negative numbers and zero would19

be obvious when using the abacus. Numbers between the integers would be represented as rational20

numbers Q since any number may be approximated with arbitrary accuracy with rations numbers.21

Mathematics is the science of formalizing a repetitive method into a set of rules, and then general-22

izing it as much as possible. Generalizing the multiplication and division algorithm, to different types23

of numbers, becomes increasingly more complex as we move from integers to rational numbers, irra-24

tional numbers, real and complex numbers and ultimately, vectors and matrices. How do you multiply25

two vectors, or multiply and divide one matrix by another? Is it subtraction as in the case of two26

numbers? Multiplying and dividing polynomials (by long division) generalizes these operations even27
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further. Linear algebra is further important generalization, fallout from the fundamental theorem of1

algebra, and essential for solving the generalizations of the number systems.2

Many of the concepts about numbers naturally evolved from music, where the length of a string3

(along with its tension) determined the pitch (Stillwell, 2010, pp. 11, 16, 153, 261). Cutting the string’s4

length by half increased the frequency by a factor of 2. One forth of the length increases the frequency5

by a factor of 4. One octave is a factor of 2 and two octaves a factor of 4 while a half octave is
√

2. The6

musical scale was soon factored into rational parts. This scale almost worked, but did not generalize7

(sometimes known as Pythagoreas’ comma66), resulting in today’s well tempered scale, which is based Mo8

on 12 equal geometric steps along one octave, or 1/12 octave ( 12
√

2 ≈ 1.05946 ≈ 18/17 = 1 + 1/17).9

But the concept of a factor was clear. Every number may be written as either a sum, or a product10

(i.e., a repetitive sum). This led the early mathematicians to the concept of a prime number, which is11

based on a unique factoring of every integer. At this same time (c5000 BCE), the solution of a second12

degree polynomial was understood, which lead to a generalization of factoring, since the polynomial, a13

sum of terms, may be written in factored form. If you think about this a bit, it is sort of an amazing14

idea, that needed to be discovered (Stillwell, 2010, p. ). This concept lead to an important string of15

theorems on factoring polynomials, and how to numerically describe physical quantities. Newton was16

one of the first to master these tools with his proof that the orbits of the planets are ellipses, not circles.17

This lead him to expanding functions in terms of their derivatives and power series. Could these sums18

be factored? The solution to this problem led to calculus.19

So mathematics, a product of the human mind, is a highly successful attempt to explain the physical20

world. All aspects of our lives were impacted by these tools. Mathematical knowledge is power. It21

allows one to think about complex problems in increasingly sophisticated ways. An equation is a22

mathematical sentence, expressing deep knowledge. Witnessed E = mc2 and ∇2ψ = ψ̈.23
Move to end

Reading List: The above concepts come straight from mathematical physics, as developed in the24

17th–19th centuries. Much of this was first developed in acoustics by Helmholtz, Stokes and Rayleigh,25

following in Green’s footsteps, as described by Lord Rayleigh (1896). When it comes to fully appreciat-26

ing Green’s theorem and reciprocity, I have found Rayleigh (1896) to be a key reference. If you wish to27

repeat my reading experience, start with Brillouin (1953), followed by Sommerfeld (1952); Pipes (1958).28

Second tier reading contains many items Morse (1948); Sommerfeld (1949); Morse and Feshbach (1953);29

Ramo et al. (1965); Feynman (1970); Boas (1987). A third tier might include Helmholtz (1863a); Fry30

(1928); Lamb (1932); Bode (1945); Montgomery et al. (1948); Beranek (1954); Fagen (1975); Lighthill31

(1978); Hunt (1952); Olson (1947). It would be a mistake to ignore other massive physics writings by32

stalwart authors, J.C. Slater67 and Landau and Lifshitz,68 and their impressive series of Mathematical33

Physics books.34

You must enter at a level that allows you to understand. Successful reading of these books critically35

depends on what you already know. A rudimentary (high school) level of math comprehension must36

be mastered first. Read in the order that helps you best understand the material.37

Without a proper math vocabulary, mastery is hopeless. I suspect that one semester of college38

math can bring you up to speed. This book is my attempt to present this level of understanding.39

66https://en.wikipedia.org/wiki/Pythagorean_comma
67https://en.wikipedia.org/wiki/John_C._Slater
68https://www.amazon.com/Mechanics-Third-Course-Theoretical-Physics/dp/0750628960
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Chapter 21

Number Systems: Stream 12

This chapter is devoted to Number Systems (Stream 1), starting with the counting numbers N. In this3

chapter we delve more deeply into the details of the topics of Lectures 4-9.4

2.1 Week 25

In Section 1.2.3 we explore in more detail the two fundamental theorems of prime numbers, working6

out a sieve example, and explore the logarithmic integral Li(N) which approximates the density of7

primes ρk(N) up to prime N .8

The topics of Section 1.2.4 consider the practical details of computing the greatest common divisor9

(GCD) of two integers m,n (Matlab’s routine l=gcd(m,n)), with detailed examples and comparing10

the algebraic and matrix methods. Homework assignments will deal with these two methods. Finally11

we discuss the relationship between coprimes and the GCD. In Section 1.2.5 we defined the Continued12

Fraction algorithm (CFA), a method for finding rational approximations to irrational numbers. The13

CFA and GCD are closely related, but the relation needs to be properly explained. In Section 1.2.6 we14

derive Euclid’s formula, the solution for the Pythagorean triplets (PT), based on Diophantus’s chord–15

tangent method. This method is used many times throughout the course notes, first for computing16

Euclid’s formula for the PTs, then for finding a related formula in Section 1.2.7 for the solutions to17

Pell’s equation, and finally for finding the mapping from the complex plane to the extended complex18

plane (the Riemann sphere).19

Finally in Section 1.2.8 the general properties of the Fibonacci sequence is discussed. This equation20

is a special case of the second order digital resonator (well known in digital signal processing), so it21

has both historical and practical application for engineering. The general solution of the Fibonacci is22

found by taking the Z-transform and finding the roots, resulting in an eigenvalue expansion (Appendix23

D).24

2.1.1 Lec 4 Two theorems on primes25

Theorem 1: Fundamental Theorem of Arithmetic26

Factoring integers: Every integer n ∈ N has a unique factorization (Stillwell, 2010, p. 43) (Eq. 1.2,27

p. 34).28

Cofactors: Integers 2312 and 2313 are said to be coprime, since they have no common factors.
Coprimes may be identified via the greatest common divisor :

gcd(a, b) = 1

using the Euclidean algorithm (Stillwell, 2010, p. 41).29

111
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Theorem 2: Prime Number Theorem1

The primes are a random field since there is no way to predict when the next prime will occur. Thus
one needs to use statistical methods to characterize their density. Based on a sample of approximately
3 million primes, Gauss showed empirically that the average total number of primes less than N is

N∑

n=1

δn ∼
N

lnN
. (2.1)

These primes were obtained by manual calculations “as a pastime” in 1792-3 (Goldstein, 1973).2

Define δn = 1 if n is a prime, and zero otherwise.1.3

It follows that the average density of primes is ρπ(N) ∼ 1/ lnN , thus

ρπ(N) ≡ 1

N

N∑

n=1

δn ≈
1

N
Li(N) ≡ 1

N

∫ N

2

dξ

ln ξ
, (2.2)

where Li(N) is the offset logarithmic integral (Stillwell, 2010, p. 585). The primes are distributed4

as 1/ ln(n) since the average total number of primes is proportional to the logarithmic integral Li(n)5

(Goldstein, 1973; Fine, 2007).6

Here is a Matlab/Octave code that tests this formula:7

%Computes density of primes from average density8

9

NP=1e6; % 10ˆ6 primes10

p=primes(NP); %compute primes11

delta=zeros(1,NP); delta(p)=1; %put 1 at each prime12

PI=cumsum(delta); %Number of primes vs N13

rho=PI./(1:NP); %estimate of the density of primes= PI(N)./N14

%15

figure(1)16

semilogy(rho); %plot of density vs number of primes17

title(’Density of primes vs. N’); ylabel(’\rho(N)’); xlabel(’N’); grid on18

From the Prime Number Theorem it is clear that the density of primes is large (they are not scarce).19

As best I know there are no methods to find primes other than by the sieve method (Section 1.2.3,20

p. 33). If there is any good news it is that they only need to be computed once, and saved. In practical21

applications this may no help much, given their large number. But I suspect they could easily be saved22

on a modern disk (e.g., 1 TB). In theory, given primes πn up to n = N , the density ρπ(N) could help23

one search for a particular prime of known size N , by estimating how many primes there are in the24

neighborhood of N . The cost would be related to the size of N = πkπl, where N is the size of the25

private key, assuming a simple product key.26

Not surprisingly, playing with primes has been a popular pastime of mathematicians. Perhaps this27

is because those who have made inroads, providing improved understanding, have become famous.28

2.1.2 RSA public-private keys29

Internet security depends on a public-private key system, called RSA2 which is built on the difficulity30

of factoring large primes. When a forward coputation is easy, such as multiplying two primes, is easy,31

and the inverse problem (factoring a product into two primes) is hard, it is called a trap door.32

What makes RSA work is a trap door. Internet security is not be as important as global warming,33

but its pretty important. Global warming has no “end game.” Internet security does, redesign the34

internet.35

1You may view δn for the first 100 numbers with the one-line Matlab/Octave command stem(isprime(1:100))
2https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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Lets consider the problem of factoring two primes, given the product N = πkπl, k 6= l. Lets further1

assume we have list of all the primes {π1, ...πm} including N < πm. To factor N we must divide N by2

each prime less than N . With intellegent sampling, on average. we would find the prime factor in N/23

tries. Worst case an exhaustive search would take m− 1 divides of the form N/πk k = 1 · · ·m− 1. The4

number of primes less that N may be computed using Gauss’ formula for the density of primes.5

So the question remains: How does internet security actually work? Unfortunately at this time I6

can not give you a proper summary of how it works. But it is more complex than I have let on. The7

full answer requires a proper course in number theory and internet security, beyond what is presented8

here. You can read more about this at https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Operation.9

The power of this security device is based on the relatively high density of primes P ⊂ N, which is10

addressed by the Prime Number Theorem.11

Here is an RSA public key:12

13

AAAAB3NzaC1yc2EAAAADAQABAAABAQCsyfp9uDXubR/ukXMpVgK2eEttQcJeEIMg6mC7qjRa2hrhFCV1+r9YSdqcKdkkefHL+14

HI3VAYyThE94m4CmGFbPM8xpjNyH1nQw6hUdhhOtBqnCg517WDzpEqqIQCPe2ljMs+3Y1Tb05hNMv9W6SqzFCNmtJr11VXkcU15

XnrbB/bbIMs6AGGnViyLup+8rSNlqW1oH89wQcHGMn0h7P5Y/bJdgYWzX/9t5MoTNeuq7jghnP0J6aqUAfTXAq00SBKXyUM8i16

3HbQqP8n0lEHkDKyrfb72MnBrXuVl5m+B3qFkhO+infLaqrzqoyIE0EBWq46W5CKvldAv+DTIF0cS5YRl17

This strings of characters represents a prime number πpub, the public key.18

19

Here is an RSA private key:20

21

MIIEpAIBAAKCAQEArMn6fbg17m0f7pFzKVYCtnhLbUHCXhCDIOpgu6o0Wtoa4RQldfq/WEnanCnZJHnxy/hyN1QGMk4RPeJuA22

phhWzzPMaYzch9Z0MOoVHYYTrQapwoOde1g86RKqiEAj3tpYzLPt2NU29OYTTL/VukqsxQjZrSa9dVV5HFF562wf22yDLOgBh23

p1Ysi7qfvK0jZaltaB/PcEHBxjJ9Iez+WP2yXYGFs1//beTKEzXrqu44IZz9CemqlAH01wKtNEgSl8lDOotx20Kj/J9JRB5Ay24

sq32+9jJwa17lZeZvgd6hZITvop3y2qq86qMiBNBAVquOluQir5XQL/g0yBdHEuWEZQIDAQABAoIBAQCPB9sMurIaHcbzCv/T25

VdmFBmsZk/e7OdvyIVHVxvzzv9vEOZMQ6HIAOZJ29sVCxpb7izuwxSMj/S+UlJ0QFOdySRISPUwUyhLlFzF+SQuyCrCNWWvC/26

q7kwDj2P79hBn2kmekMG3OhTLSkIvTvErA/8Qmk+RfVK7WgFowRTdvufplSJCjrB1HcLIXd6tQxC5gCHLbhtJjY0YmW2xBg1f27

n1qXAGObVXpOp9Vr/kOy5uH/dS1Zp9dcySn6Hn0G+XAEs4bhYwSqZqcgsKZxiza2r3B8UUE6NjeqSVLCki5uMyXEqxbFwHy+K28

vjm8OzPgLwk2sODe+o/3DKYI0XCdNmIaBAoGBANOIHcQATwJ0/ImcgmLkTKFbNm8Xlojw4bKIFTRG8jPvssRQjWsAc6ozac7329

D7Ri5YcDeOYNg7Zyujml7hImo8NM9v53sfepCtqC4Ixv7o2snPXDSyrsOF898IgOG1O4/IEZAPwybVVg26Jn2mgtBWpj0R4vG30

AylpyX+j9crPMdRAoGBANEc3dYjJSai3oYEwB0FsBKU81a2xonsQi5+cDgHc/ugr6taWuinmSoj82MbeyKgLdyA6Vb4E03HqR31

jBRGhs44szFy9FhexBN2apAbw30a6/+MRPkAWKfDDIYW1oOtUf7nyvpuKcT5a60nsuVJiFLzfw3mSElqin8f5xDFA2yU7VAoG32

AFJ14YSiyiofCMNsa7e5X9YXBKVSALDpllJOklWKwqhUbM/yxu5Lgst6t2ijD1A2rVtwkxS7d/kLyGTotmIFBhoAStjwOERfd33

YexNXAJwmkgPR/hPdBBvcgDEV04gpakqmp5INUvo0eBNp2c9ptd0ZqjxsWJfkqP2RUKo3AxvsPECgYB8+cObN2X8sVpMvooSz34

lNsx5inOpVt2MW1A9wNoGaw/FgBEP9EDOZ9SP8tPD9bcl/2aRUL5TekRK/LG7bGsk1L5Dz3A5YGnPN/Z4Kh+rpWtmT27pYkuZ35

9/iEKyIJkIxwzBeDlFNiZa70zcUdQ9U1vlEw/XA2cHZVg7uVSinBu0AQKBgQDGcNLEXgYEFZoIMQ3Qwzvyk9ghVSv1us2ulmg36

C2MBXiInjDzyQ2ZM0nFx64YPsUjUpxl7lM4UIB6sFfXPFqtS7KygFwbq0VBORAQ/xC1EdKBcrUK/k09JGqhvSnqE1hS6NYMJF37

n4hHNt30IhDO9JHQfvzKoCfA1r+0eZSynIDqrA==38

39

This much longer string of character represents a second prime number πpri, the private key.40

If I gave you the ascii string that represents the product of the two prime numbers πkπl, along with41

πk, can you find πl? Yes, divide one by the other, with remainder zero. If I ask you to find πl given42

πkπl, you would need to call the NSA, or be some sort of expert on factoring primes. Given πkπl, for43

some large values of k and l, the GCD is not helpful, nor the CFA. While the factoring can be done44

(it is not impossible), it is a very expensive calculation. Why not use Matlab’s factor(N) routine to45

find the factors? This is where cost comes in. If the primes are large enough, even the NSA cannot do46

it in a lifetime. The numbers used in RSA are too large for Matlab’s routine to deliver an answer. In47

fact, even the largest computer in the world (such as the University of Illinois’ super computer (NCSA48

Water) cannot do this computation. But, for a carefully chose set of primes, not to large for the NCSA49

to factor them, they can decrypt a message, but you cannot. This is why they pay for these massive50

super-computers.51

As best I know you need to try one prime at a time to see if the divisor gives you a zero remainder.52

There are no hints, such as l ≈ k. Nothing to help but to grind your way through all the known primes.53

And if the primes are too large to be to be on the list of all known primes, then you have the additional54

burden of generating a list of primes long enough to contain the ones your looking for. You can be sure55

that the NSA has a long list than you do, and its getting longer every day.56

What you are given is the public key (prime πpub) (the shorter one), and you need to guess the57

private key πpri and decrypt the message I send you with the product πpub · πpri.58
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2.1.3 Lec 5 Greatest common divisor (GCD)1

Multiplying two numbers together, or dividing one by the other, is very inexpensive on today’s computer2

hardware. However, factoring a large integer (i.e., 103 digits) into its primes, is very expensive. When3

the integers are large, it is so costly that it cannot be done in a lifetime, even with the fastest computers.4

The obvious question is: “Can we find the largest common factor k = gcd(m,n) without factoring5

(m,n)?” The answer is “yes,” with the Euclidean algorithm (EA). While the EA falls short of factoring,6

it is fast and easily implemented.7

If the two integer are in factored form, the answer is trivial. For example 5 = gcd(5 · 13, 5 · 17), and8

17 = gcd(17 · 53, 17 · 3 · 31). But what about gcd(901, 1581)? So the problem that computing the GCD9

solves is when the factors are not known. Since 901 = 53∗17 and 1581 = 3∗17∗31, gcd(901, 1581) = 17,10

which is not obvious.11

In Matlab the GCD may be computed using k=gcd(m,n), which only allows integers as arguments12

(and removes the sign).13

Matrix method: The GCD may be written a matrix recursion, based on Eq. 2.1.3. The two starting
numbers are given by the vector (m0, n0). The recursion is then

[
mk+1

nk+1

]
=

[
1 −1
0 1

] [
mk

nk

]

This recursion continues until mk+1 < nk+1, at which point m and n must be swapped. Because the14

output depends on the input, this is a nonlinear recursion (Postulate P1 (Linear/nonlinear) of Section15

3.5.1, p. 137).16

The direct method is inefficient because in recursively subtract n many times until the resulting17

m is less than n, as shown in Fig. 2.1. It also must test for m < n at each iteration, and then swap18

m and n once that condition is met. This recursion is repeated until mk+1 = 0. At that stage the19

GCD is nk+1. Figure 2.1, along with the above matrix relation, give the best insight into the Euclidean20

Algorithm, but at the cost of low efficiency.21

Below is a Matlab/Octave code to find k=gcd(m,n based on the strict definition of the EA as22

described by Stillwell (2010):23

function k = gcd(m,n)24

while m ˜=025

A=m; B=n;26

m=max(A,B); n=min(A,B); %m>n27

m=m-n;28

end29

This program keeps looping until m = 0. It first finds the min and max of the inputs, sets m as the30

max and n as the minimum. The next line m = m − n removes the smaller number from the larger31

one. It then loops back and repeats the cycle. Thus the EA is a two step recursive method.32

Division with rounding method: This method implements gcd(a, b). In matrix form we have
(m,n, k ∈ N) [

mk+1

nk+1

]
=

[
0 1
1 −

⌊
m
n

⌋
] [
mk

nk

]
. (2.3)

This starts with k = 0,m0 = a, n0 = b. With this method there is no need to test if nn < mn, as it is33

built into the proceedure. The method uses the floor function ⌊x⌋, which finds the integer part of x34

(⌊x⌋ rounds toward −∞). Following a step we will see that the value nk+1 < mk+1.35

The method terminates when Nk+1 = 0 with gcd(a, b) = mk+1. The previous values mk, nk are the36

solutions to Bézout’s identity (gcd(n,m)=1, namely mkm0 + nkn0 = 1), since the terminal state and37

the GCD of a, b is m− n⌊m/n⌋ = 0, for which n = gcd(a, b).38
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Below is 1-line vectorized code that is much more efficient than the direct matrix method:1

k = gcd(m,n) %entry point: input m,n; output k=gcd(m,n)2

M=[abs(m),abs(n)]; %init M3

while M(2) ˜=0 % < n*eps to ‘‘almost work’’ with irrational inputs4

M = [M(2) - M(1)*floor(M(2)/M(1)); M(1)]; %M = [M(1); M(2)] with M(1)<M(2)5

end6

With a minor extension in the test for “end,” this code can be made to work with irrational inputs7

(e.g., (nπ,mπ)).8

This method calculates the number of times n < m must subtract from m using the floor function.
This operation is the same as the mod function.3 Specifically

nk+1 = mk −mk modulonk,

so that the output is the definition of the remainder of modular arithmetic. This would have been9

obvious to anyone using an abacus, which explains why it was discovered so early.10

Note that the next value of m (M(1)) is always less than n (M(2)), and must remain greater or11

equal to zero. This one-line vector operation is then repeated until the remainder (M(1)) is 0. The gcd12

is then n (M(2)). When using irrational numbers, this still works except the error is never exactly zero,13

due to IEEE 754 rounding. Thus the criterion must be that the error is within some small factor times14

the smallest number (which in Matlab is the number eps = 2.220446049250313 ×10−16, as defined in15

the IEEE 754 standard.)16

Thus without factoring the two numbers, the Euclidean algorithm recursively finds the gcd simply17

by ordering the two numbers and then updating them. Perhaps this is best seen with some examples.18

The GCD is an important and venerable method, useful in engineering and mathematics, but, as19

best I know, is not typically taught in the traditional engineering curriculum.20

Graphical meaning of the GCD: The Euclidean algorithm is actually very simple when viewed21

graphically. In Fig. 2.1 we show what is happening as one approaches the threshold. After reaching22

the threshold, the two number must be swapped, which is addressed by upper row of Eq. 2.3.23

m

m-n

m-2n

m-3n

m-6n

m-7n

m
-k

n

k
n n

Figure 2.1: The Euclidean Algorithm recursively subtracts n from m until the remainder m − kn is either less than
n or zero. Note that this is similar to mod(m,n). The GCD recursively computes mod, then swaps m,n so that n < M ,
and repeats, until it finds the GCD. For the case depicted here the value of k that renders the remainder less than n is
k = 6. If one more step were taken (k = 7) the remainder would become negative. By linear interpolation we can find
that m− kn = 0 when k = floorm/n. For this example k = 6.5, thus k = 6. thus 6 = floor(m/n) < n. This is nonlinear
arithmetic, which is the key to the GCD.

Multiplication is simply recursive addition, and finding the gcd takes advantage of this fact. Lets
take a trivial example, (9,6). Taking the difference of the larger from the smaller, and writing mul-
tiplication as sums, helps one see what is going on. Since 6=3*2, this difference may be written two

3https://en.wikipedia.org/wiki/Modulo_operation
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different ways

9− 6 = (3 + 3 + 3)− (3 + 3) = 0 + 0 + 3 = 3,

or

9− 6 = (3 + 3 + 3)− (2 + 2 + 2) = 1 + 1 + 1 = 3.

Written out the first way, it is 3, because subtracting (3+3) from (3+3+3) leaves 3. Written out1

in the second way, each 3 is matched with a -2, leaving 3 ones, which add to 3. Of course the two2

decompositions must yield the same result because 2 · 3 = 3 · 2. Thus finding the remainder of the3

larger number minus the smaller yields the gcd of the two numbers.4

Coprimes: When the gcd of two integers is 1, the only common factor is 1. This is of key importance5

when trying to find common factors between the two integers. When 1=gcd(m,n) they are said to be6

coprime, which can be written as m ⊥ n. By definition, the largest common factor of coprimes is 1.7

But since 1 is not a prime (π1 = 2), they have no common primes.8

Generalizations of GCD: The GCD may be generalized in several significant ways. For example
3x3 matrix case?

9

what is the GCD of two polynomials? To answer this question one must factor the two polynomials to10

identify common roots. This will be discussed in more detail in Section 3.2.2.11

2.1.4 Lec 6 Continued Fraction Expansion (CFA)12

Move to Ch. 3
Continued Fractions and circuit theory: One of the most powerful generalizations of the CFA13

seems to be the expansion of a function of a complex variable, such as the expansion of an impedance14

Z(s), as a function of complex frequency s. This idea is described in Fig. 2.2 and Eq. 2.4. This15

is especially interesting in that it leads to a physical interpretation of the impedance in terms of a16

transmission line (horn), a structure well know in acoustics having a variable area A(x) as function of17

the range variable x.18

The CFA expansion is of great importance in circuit theory, where it is equivalent to an infinitely19

long segment of transmission line, composed of series and shunt impedance elements. Thus such a20

cascade network composed of 1 ohm resistors, has an input impedance of (1 +
√

5)/2 ≈ 1.6180 [ohms].21

The CFA may be extended to monomials in s. For example consider the input impedance of a
cascade L-C transmission line as shown in Fig. 2.2. The input impedance of this transmission line is
given by a continued fraction expansion of the form

Zin = sL+
1

sC +
1

sL+
1

sC +
1

· · ·

=: [sL; sC, sL, sC, · · · ]. (2.4)

where we have again used the bracket notation to describe the CFA coefficients.22

In some ways, Eq. 2.4 is reminiscent of the Taylor series expansion about s = 0, yet very different.
In the limit, as the frequency goes to zero (s→ 0), the impedance of the inductors go to zero, and that
of the capacitors go to ∞. In physical terms, the inductors become short circuits, while the capacitors
become open circuits. The precise relation may be quantified by the use of composition, described in
Fig. 1.13 of Section 2.1.4 (p. 59). Specifically

[
P1

U1

]
=

[
1 sL
0 1

] [
1 0
sC 1

]
· · ·
[
1 sL
0 1

] [
1 0
sC 1

] [
1 sL
0 1

] [
1 0
sC 1

] [
P2

−U2

]
. (2.5)

It seems possible that this is the CFA generalization of the Taylor series expansion, built on composition.23

If we were to do the algebra we would find that A(s), B(s), C(s), D(s) (i.e., Sections 1.3.7, 3.3.2)24
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are ratios of polynomials having rational expansions as Taylor series. This seems like an important1

observation, that should have support beyond that of the engineering literature (Campbell, 1903;2

Brillouin, 1953; Ramo et al., 1965). Its interesting that (Brillouin, 1953) credits (Campbell, 1903).3

+ +

x = X0

1
2
Z2(x, s)∆1

2
Z2(x, s)∆1

2
Z1(x, s)∆1

2
Z1(x, s)∆

x = X0 + ∆

P3(x, ω)

U3(x, ω)U1(x, ω)

+P1(x, ω) +

U2(x, ω)

U2(x, ω)− U3(x, ω)U1(x, ω)− U2(x, ω)

Y1(x, s)∆ Y2(x, s)∆

−

+

− −

P2(x, ω)

∆ ∆

Figure 2.2: This transmission line (TL) is known as a low-pass filter wave-filter (Campbell, 1922), composed of series
inductors having an impedance Zk = sL and shunt admittance Yk = sC. The characteristic resistance of the TL is

r0 =
√
Zk/Yk and the wave velocity is κ =

√
ZkYk = s/

√
LC = s/c. Thus the wave velocity is c = 1/

√
LC. The length

∆ [m] defines the physical size of each cell. For long wavelengths the wave-filter acts as a pure delay. But when the
frequency increases above a cutoff frequency fc > c/∆, the wavelength λ = c/f is less than the size of a section ∆, and
the system response becomes very high-order low-pass filter.

In terms of the TL, it is a long piece of wire, with a delay determined by the velocity and the length,
in units of cells each of length ∆. There are two basic parameters that characterize a transmission line,
the characteristic resistance r0 =

√
Z/Y and the wave number

κ = 1/
√
ZY = s/

√
LC = s/c,

which gives c =
√
LC. Each of these is a constant as ∆→ 0, and in that limit the waves travel as

f(t− x/c) = e−κxe−st,

with a wave resistance (r0 =
√
L/C). The total delay T = L/c where ∆ is the TL cell length in meters4

and c is the velocity c = 1/
√
LC in meters/second.5

Since the CFA has a physical representation as a transmission line, as shown in Fig. 2.2, it can be6

of high utility for the engineer.4 The theory behind this will be discussed in greater detail in Chapter7

5. If you’re ready to jump ahead, read the interesting book by Brillouin (1953) and the collected works8

of Campbell (1937).9

2.2 Week 310

2.2.1 Lec 7 Pythagorean triplets (PTs) and Euclid’s formula11

Pythagorean triplets (PTs) have many applications in architecture and scheduling, which explains why12

they are important and heavily studied. For example, if one wished to construct a triangle with a13

perfect 90◦ angle, then the materials need to be squared off as shown in Fig. 1.8. The lengths of the14

sides need to satisfy PTs.15

Derivation of Euclid’s formula: The problem is to find integer solutions to the Pythagorean16

theorem (Eq. 1.1, p. 17). The solution method, said to be due to Diophantus, is call a chord/tangent17

method (Stillwell, 2010, p. 48). The method composes (Section 1.3.4) a line and a circle, where the18

line defines a chord within the circle (its not clear where the tangent line might go). The slope of the19

line is then taken to be rational, allowing one to determine integer solutions of the intersections points.20

This solution for Pythagorean triplets [a, b, c] is known as Euclid’s formula (Eq. 1.4, p. 1.4 (Stillwell,21

2010, p. 4–9, 222).22

4Continued fraction expansions of functions are know in the circuit theory literature as a Cauer synthesis (Van Valken-
burg, 1964b).
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The derivation methods of Diophantus have been lost, but Fermat and Newton figured out what1

Diophantus must have done (Stillwell, 2010, p. 49). Since Diophantus worked before algebra was2

invented, he described all the equations in prose (Stillwell, 2010, p. 93).3

Derivation of Euclid’s formula: The derivation is outlined in Fig. 2.3. Starting from two integers4

[p > q > 0] ∈ N, composing a line having a rational slope t = p/q, with a circle (Stillwell, 2010, p. 6),5

reveals the formula for the Pythagorean triplets.6

Euclid’s formula for Pythagorean triplets [a, b, c] 5.2.4

1) 2φ + η = π

2) η + Θ = π
3) ∴ φ = Θ/2

Euclidean Proof:

1) t = p/q ∈ Q

2) a = p2 − q2

3) b = 2pq

4) c = p2 + q2

2) b(a) = t(a + c)

1) c2 = a2+ b2

4) ζ = |c|eiθ = |c|1+it
1−it = |c|(cos(θ) + i sin(θ))

3) ζ(t) ≡ a+b = 1−t2+2t
1+t2

Diophantus’s Proof:

(a, b)b

a
φ

η

φ

b(a) = t (a + c)

O
c2 = a2 + b2

c =
p
2 +

q
2

b
=

2p
q

Θ a = p2 − q2

Y

X

Pythagorean triplets:

Figure 2.3: Derivation of Euclid’s formula for the Pythagorean triplets [a, b, c], based on a composition of a
line, having a rational slope t = p/q ∈ Q, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This analysis is attributed
to Diophantus (Di·o·phan·tus) (250 CE), and today such equations are called Diophantine (Di·o·phan′·tine)
equations. PTs have applications in architecture and scheduling, and many other practical problems.

The construction starts with a circle and a line, which is terminated at the point (−1, 0). The slope7

of the line is the free parameter t. By composing the circle and the line (i.e., solving for the intersection8

of the circle and line), the formula for the intersection point (a, b) may be determined in terms of t,9

which will then be taken as the rational slope t = p/q ∈ Q.10

In Fig. 2.3 there are three panels, two labeled “Proofs.” The Euclidean Proof shows the angle11

relationships of two triangles, the first an isosceles triangle formed by the chord, having slope t and12

two equal sides formed from the radius of the circle, and a second right triangle having its hypotenuse13

as the radius of the circle and its right angle vertex at (a, 0). As shown, it is this smaller right triangle14

that must satisfy Eq. 1.1. The inner right triangle has its hypotenuse c between the origin of the circle15

(O) to the point (a, b). Side a forms the x axis and side b forms the y ordinate. Thus by construction16

Eq. 1.1 must be obeyed.17

The Diophantus Proof is the heart of Diophantus’ (250 CE) derivation, obtained by composing a18

line and a circle, as shown in Fig. 2.3. Diophantus’s approach was to fix the line at x = −c having a19

rational slope t = p/q ∈ Q. He then solved for the intersection of the line and the circle, at (a, b).20

The formula for the line is b(a) = t(a + c), which goes through the points (−c, 0) and (a, b). The
circle is given by a2 + b2 = c2. Composing the line with the circle gives

a2 + (t(a+ c))2 = c2

a2 + t2(a2 + 2ac+ c2) = c2

(1 + t2)a2 + 2ct2a+ c2(t2 − 1) = 0

This last equation is a quadratic equation in a. In some sense it is not really a quadratic equation,
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since we know that a = −c is a root. Dividing by 1 + t2

a2 +
2ct2

1 + t2
a+

c2(t2 − 1)

1 + t2
= 0,

makes it easier to complete the square, delivering the roots:

(
a+

ct2

1 + t2

)2

−
(

ct2

1 + t2

)2

+
c2(t2 − 1)

1 + t2
= 0

(
a+

ct2

1 + t2

)2

− c2t4

(1 + t2)2
+
c2(t2 − 1)(t2 + 1)

(1 + t2)2
= 0

(
a+

ct2

1 + t2

)2

−✟✟✟c2t4 + c2(✓✓t4 − 1)

(1 + t2)2
= 0

(
a+

ct2

1 + t2

)2

=

(
c

1 + t2

)2

The second to last equation simplifies (magic happens) because the known root a = −c is embedded1

in the result.2

Taking the square root gives the two roots

a± +
ct2

1 + t2
= ± c

1 + t2

(1 + t2)a± = −ct2 ± c = −c(t2 ∓ 1)

a± = −ct
2 ∓ 1

1 + t2
.

The known root is a+ = −c, because when the sign is +, the numerator and denominator terms cancel.3

The root we have been looking for is a−

a− = c
1− t2
1 + t2

,

which allows us to solve for b−

b− = ±
√
c2 − a2

−

= ±c
√

1−
(

1− t2
1 + t2

)2

= ±c
√

(1 + t2)2 − (1− t2)2

(t2 + 1)2

= ± 2ct

t2 + 1
.

Therefore the coordinates (a, b), the intersection point of the line and circle, are

(a(t), b(t)) = c
[1− t2, 2t]

1 + t2
.

4

To obtain the Pythagorean triplets, as given in Fig. 2.3 and Eq. 1.4 of Section 1.2.6 (p. 40), set5

t = p/q, assuming p > q ∈ Z, and simplify.6
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Complex roots: Defining the root as a complex number ζ(Θ) ≡ a+ b forces a ⊥ b (i.e., forces the
right triangle) and gives us polar coordinates, as defined by the figure as the Euclidean Proof

ζ(Θ) = |c|eΘ = |c| (cos(Θ) +  sin(Θ)) .

This naturally follows since

ζ = |c|eΘ(t) = |c|1− t
2 + 2t

1 + t2
= |c|✘✘✘✘(1 + t)(1 + t)

✘✘✘✘(1 + t)(1− t) = (q + p)

√
q + jp

q − p .

Examples of PTs include a = 22 − 12 = 3, b = 2 · 2 · 1 = 4, and c = 22 + 12 = 5, 32 + 43 = 52.1

Defining p = q +N (N ∈ N) gives slightly better parametric representation of the answers, as the2

pair (q,N) are a more systematic representation than (p, q), because the condition p > q is accounted3

for, so the general properties of the solutions are expressed more naturally. Note that b+c must always4

be a perfect square since b+ c = (p+ q)2 = (2q +N)2, as first summarized by Fermat Stillwell (2010,5

p. 212).6

Newton was fully aware of these developments as he reconstructed Diophantus chord/tangent7

method (Stillwell, 2010, p. 7, 49, 218).8

2.2.2 Lec 8 Pell’s Equation9

Eigenvalue solution to Pell’s equation: To provide a full understanding of what was known to10

the Pythagoreans, it is helpful to provide the full solution to this recursive matrix equation, based on11

what we know today.12

As shown in Fig. 1.10, (xn, yn) may be written as a power series of the 2x2 matrix A. To find the13

powers of a matrix, the well know modern approach is to diagonalize the matrix. For the 2x2 matrix14

case, this is relatively simple. The final result written out in detail for the general solution (xn, yn), as15

detailed in Appendix D (p. 181):16

[
xn
yn

]
= n

[
1 2
1 1

]n [
1
0

]
= E

[
λn+ 0
0 λn−

]
E

−1

[
1
0

]
. (2.6)

The eigen-values are λ± = (1±
√

2) while the eigen-matrix and its inverse are

E =
1√
3

[√
2 −

√
2

1 1

]
=

[
0.8165 0.8165
0.5774 −0.5774

]
, E−1 =

√
3

2
√

2

[
1
√

2

1 −
√

2

]
=

[
0.6124 0.866
0.6124 −0.866

]

The relative “weights” on the two eigen-solutions are equal, as determined by

E−1

[
1
0

]
=

√
3

2
√

2

[
1
√

2

1 −
√

2

] [
1
0

]
=

√
3

2
√

2

[
1
1

]
.

We still need to prove that
xn
yn
→∞
√
N,

which follows intuitively from Pell’s equation, since as (xn, yn) → ∞, the difference between x2 and17

2y2, the (±1) becomes negligible.18

Given the development of linear algebra c19th century, this may be evaluated by eigenvector diag-19

onalization.520

5https://en.wikipedia.org/wiki/Transformation_matrix#Rotation
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Pell’s Equation and irrational numbers: Since the eigenvalues of Eq. 1.6 (λ± = 1 ∓
√
N 6∈ N),1

solutions to Pell’s equation raised the possibility that all numbers are not rational. This discovery2

of irrational numbers forced the jarring realization that the Pythagorean dogma “all is integer” was3

wrong. The significance of irrational numbers was far from understood.4

WEEK 45

6

2.3 Week 47

2.3.1 Lec 9 Fibonacci Numbers8

The Fibonacci sequence is famous in number theory. It is said that the sequence commonly appears in9

physical systems. Fibonacci numbers are related to the “golden ratio” (1 +
√

5)/2, which could explain10

why these numbers appear in nature.11

But from a mathematical point of view, the Fibonacci sequence does not seem special. It is generated
by a linear recursion relationship, where the next number is the sum of the previous two (Eq. 1.7, p.
43)

xn+1 = xn + xn−1. (2.7)

The term linear means that the principle of superposition holds (P1 (linear/nonlinear) of Section12

3.5.1). To understand the meaning of this we need to explore the z-transform, the discrete-time version13

of the Laplace transform. We will return to this in Chapter 4.14

A related linear recurrence relation is that the next output be the average of the previous two

xn+1 =
xn + xn−1

2
.

In some ways this relationship is more useful than the Fibonacci recursion, since it perfectly removes15

oscillations of the form −1n (it is a 2-sample moving average, a trivial form of low-pass filter). And it16

is stable, unlike the Fibonacci sequence, with stable real eigenvalues (digital-poles) at λ± = (1,−0.5).17

Perhaps biology prefers unstable poles (to propagate growth?).18

The most general 2d order recurrence relationships (i.e., digital filter) is

xn+1 = −bxn − cxn−1,

with filter constants b, c ∈ R and poles at (completing the square), λ± = −b/2±
√
c− b/2.19

Equation 2.7 may be written as a 2x2 matrix relationship. If we define yn+1 = xn then Eq. 2.7 is
equivalent to (Eq. 1.8, p. 43) [

xn+1

yn+1

]
=

[
1 1
1 0

] [
xn
yn

]
. (2.8)

The first equation is xn+1 = xn + yn while the second is yn+1 = xn, which is the same as yn = xn−1.20

Note that the Pell 2x2 recursion is similar in form to the Fibonacci recursion. This removes mystique21

from both equations.22

In the matrix diagonalization of the Pell equation we found that the eigenvalues were λ± = 1∓
√
N ,23

and the two solutions turned out to be powers of the eigenvalues. The solution to the Fibonacci recursion24

may similarly be expressed in terms of a matrix. These two cases may thus be reduced by the same25

2x2 eigenvalue solution method.26

The eigenvalues of the Fibonacci matrix are

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1 = (λ− 1/2)2 − (1/2)2 − 1 = (λ− 1/2)2 − 5/4 = 0
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General properties of the Fibonacci numbersa

xn = xn−1 + xn−2

• This is a 2-sample moving average difference equation with an unstable pole

• xn = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · ], assuming x0 = 0, x1 = 1:

• Analytic solution (Stillwell, 2010, p. 194):
√

5 xn ≡
(

1+
√

5

2

)n

−
(

1−
√

5

2

)n

→
(

1+
√

5

2

)∞

– limn→∞
xn+1

xn
= 1+

√
5

2

– Example: 34/21 = 1.6190 ≈ 1+
√

5

2
= 1.6180 0.10% error

• Matlab’s rat(1 +
√

5) = 3 + 1/(4 + 1/(4 + 1/(4 + 1/(4)))) =: [3; 4, 4, 4, · · · ]
ahttps://en.wikipedia.org/wiki/Fibonacci_number

Figure 2.4: Properties of the Fibonacci numbers (Stillwell, 2010, p. 28).

thus λ± = 1±
√

5
2 = [1.618,−0.618].1

Note that this 2x2 equation is similar to Pell’s equation, suggesting that an eigenfunction expansion2

of Eq. 1.8 may be used to analyze the sequence, as shown in Section 2.3.1 (p. 121) (Stillwell, 2010,3

192). It is also related to a $10,000 prize, that was eventually solved.64

2.3.2 Lec 10 Exam I5

6http://www.nytimes.com/1988/08/30/science/intellectual-duel-brash-challenge-swift-response.html



Chapter 31

Algebraic Equations: Stream 22

3.1 Week 43

3.1.1 Lec 11 Algebra and geometry as physics4

Before Newton could work out his basic theories, algebra needed to be merged with Euclid’s early
quantification of geometry. The key to putting geometry and algebra together is the Pythagorean
theorem (Eq. 1.1), which is both geometry and algebra. To make the identification with geometry the
sides of the triangle needed to be viewed as a length. This is done by recognizing that the area of a
square is the square of a length. Thus a geometric proof requires one to show that the area of the
square A = a2 plus the area of square B = b2 must equal the area of square C = c2. There are many
such constructions that show A+B = C for the right triangle. It follows that in terms of coordinates
of each vertex, the length of c is given by

c =
√

(x2 − x1)2 + (y2 − y1)2, (3.1)

with a = x2−x1 and b = y2− y1. Thus Eq. 1.1 is both an algebraic and a geometrical statement. This5

is not immediately obvious.6

Analytic geometry is based on coordinates of points, with the length given by Eq. 3.1. Geometry7

treats lines as lengths without specifying the coordinates (Eq. 1.1). Algebra gave a totally new view8

to the quantification of geometrical lengths by introducing a coordinate system. This resulted in an9

entire new way to work with conic sections, which were now explained in terms of equations having10

coordinate systems. When viewed through the lens of algebra, Eq. 1.1 is a circle having radius c.11

Complex numbers provide an equivalent representations, since if z = x + y, the unit circle is z = eθ12

and |z|2 = x2 + y2. Here we explore the relationships between points, represented as coordinates,13

describing geometrical objects. We shall do this with simple examples from analytic geometry.14

For example, in terms of the geometry, the intersection of two circles can occur at two points, and15

the intersection of two spheres gives a circle. These ideas may be verified using algebra, but in a very16

different, since the line can traverse through the circle, like a piece of thread going through the eye of17

a needle. In such cases the intersections are complex intersections.18

For each of these problems, the lines and circles may intersect, or not, depending on how they are19

drawn. Yet we now know that even when they do not intersect on the sheet of paper, they still have20

an intersection, but the solution is ∈ C. Finding such solutions require the use of algebra rather than21

geometry. These ideas were in the process of being understood, first by Fermat and Descartes, then by22

Newton, followed by the Bernoulli family and Euler.23

Complex analytic functions: A very delicate point, that seems to have been ignored for centuries,24

is that the roots of Pn(x) are, in general, complex, namely xk ∈ C. It seems a mystery that complex25

numbers were not accepted once the quadratic equation was discovered, but they were not. Newton26

called complex roots imaginary, presumably in a pejorative sense. The algebra of complex numbers27

123
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is first attributed to Bombelli in 1575, more than 100 years before Newton. One can only begin to1

imagine what Bombelli learned from Diophantus, following his discovery of Diophantus’ Arithmetic,2

that he discovered in the Vatican library (Stillwell, 2010, p. 51).3

It is interesting that Newton was using power series with fractional degree, thus requiring multi-4

valued solutions, much later to be known as branch cuts (c1851). These topics will be explored in5

Section 3.1.1.6

When the argument is complex, analytic functions takes on an entirely new character. For example
Euler’s identity (1748) with z = x+ y ∈ C results in ez ∈ C (Stillwell, 2010, p. 315)

ez = ex(cos(y) +  sin(y)).

It should be clear that the complex analytic functions results in a new category of algebra, with no7

further assumptions beyond allowing the argument to be complex.8

Prior to 1851 most of the analysis assumed that the roots of polynomials were real (xk ∈ R),9

even though there was massive evidence that they were complex (xn ∈ C). This is clearly evident in10

Newton’s work (c1687): When he found a non-real root, he ignore it (Stillwell, 2010, pp. 115-7). Euler11

(c1748) first derived the Zeta function as a function of real arguments ζ(x) with ζ, x ∈ R. Cauchy12

(c1814) broke this staid thinking with his analysis of complex analytic functions, but it was Riemann13

thesis (c1851), when working with Gauss (1777-1855), which had a several landmark breakthroughs.14

In this work Riemann introduced the extended complex plane, which explained the point at infinity. He15

also introduced Riemann sheets and Branch cuts, which finally allowed mathematics to better describe16

the physical world (Section 1.4.2).17

Once the argument of an analytic function is complex, for example an impedance Z(s), or the Rie-18

mann Zeta function ζ(s), The development of complex analytic functions led to many new fundamental19

theorems. Complex analytic functions have poles and zeros, branch cuts, Riemann sheets and can be20

analytic at the point at infinity. Many of these properties were first worked out by Augustin-Louis21

Cauchy (1789-1857), who drew heavily on the much earlier work of Euler, expanding Euler’s ideas into22

the complex plane (Chapter 4).23

Systems of equations24

We don’t need to restrict ourselves to polynomials in one variable. In some sense y(x) = ax + b is
already an equation in two variables. Moving beyond such a simple example, we can work with the
equation for a circle, having radius r

y2 + x2 = r2,

which is quadratic in two variables. Solving for roots y(xr) = 0 (y2(xr) = r2 − x2
r = 0) gives (r −25

xr)(r + xr), which simply says that when the circle crosses the y = 0 line at xr = ±r.26

This equation may also be factored as

(y − x)(y + x) = r2,

as is easily demonstrated by multiplying out the two monomials. This does not mean that a circle has27

complex roots. A root is defined by either y(xr) = 0 or x(yr) = 0.28

Writing the conic as a 2d degree polynomial gives

P2(x) = ax2 + bx+ c,

with y2(x) = −P2(x). Setting this equal to zero and completing the square (Eq. 1.13, p. 46), gives the
equation for the roots (

x± +
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0,

or

x± = − b

2a
±
√(

b

2a

)2

− c

a
.
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The polynomial in factored form is

y2 = −
(
x− b

2a

)2

+

(
b

2a

)2

− c

a
,

is a conic section, and becomes a circle with a = 1, b = 0 and c = −r2.1

3.2 Week 52

3.2.1 Lec 12 The physics behind complex analytic expressions: linear vs. nonlinear3

4

The question we address here is “When do multi-variable complex analytic expressions appear in
physics?” The most common example comes from the solution of the wave equation (Eq. 1.9) in three
dimensions. Such cases arise in wave-guide problems, semiconductors, plasma waves, or for acoustic
wave propagation in crystals (Brillouin, 1960) and the earth’s mantel (e.g., seismic waves, earthquakes,
etc.). The solutions to these problems are based on the eigenfunction for the vector wave equation (see
Chapter 5),

P (s,x) = este−κ·x, (3.2)

where vector x = [x̂i + ŷj + zk̂] ∈ R3 points in the direction of the wave, unit vectors [̂i, ĵ, k̂] are ∈ R3
5

and s = σ + ω ∈ C [rad] is the Laplace frequency. The vector function κ(s) ∈ R3 is the complex6

vector wave number, which describes the propagation of a plane wave of radian frequency ω, in the x7

direction.8

Just as the frequency s = σ + ω must be complex, it is important to allow the wave number
function1 to be complex,2 because in general it will have a real part, to account for losses as the wave
propagates. While it is common to assume there are no losses, in reality this assumption cannot be
correct. In many cases it is an excellent approximation (e.g., even the losses of light in-vacuo are not
zero) that gives realistic answers. But it is important to start with a notation that accounts for the
most general situation, so that when losses must be accounted for, the notation need not change. With
this in mind, we take the vector wave number to be complex

κ = kr + k,

where vector expression for the lattice vector is the imaginary part of κ

ℑκ = k =
2π

λx
î +

2π

λy
ĵ +

2π

λz
k̂, (3.3)

is the vector wave number for three dimensional lossless plane-wave solutions (kr = 0).
Add figure explaining

[λx, λy, λz ].

9

Equation Eq. 3.2 is linear in x. If one takes the derivative with respect to either time or space,

∂

∂t
este−κ·x = seste−κ·x,

∂

∂x
este−κ·x =

2π

λx
este−κ·x, ∇este−κ·x = κeste−κ·x

we find the eigenvalue of that derivative.10

The units of κ are reciprocal length [m−1] since κ · x has units of radians. When there are losses11

κr(s) = ℜκ(s) must be a function of frequency, due to the physics behind these losses. In many12

important cases, such as loss-less wave propagation in semiconductors, κ(x) is a function of direction13

and position (Brillouin, 1960).14

1This function has many names in the literature, all of which are confusing. It is called the wave number, propagation
constant and the Brillouin zone dispersion function (Brillouin, 1953, Ch. 1). However, its neither a number nor constant.

2In fact κ(s) is a complex analytic function of the Laplace frequency s.
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When the eigenfunction Eq. 3.2 is applied to the wave equation, a quadratic (degree 2) algebraic
expression results, known as the dispersion relation. The three dimensional dispersion relation

(
s

c

)2

= κ · κ =

(
2π

λx

)2

+

(
2π

λy

)2

+

(
2π

λz

)2

= k2
x + k2

y + k2
z (3.4)

is a complex analytic algebraic relationship in four variables, frequency s and the three complex lattice1

wave numbers. This represents a three-dimensional generalization of the well know relation between2

wavelength and frequency, i.e., fλ = c. For lossless plane waves propagating in free space, |κ(s)| =3

±|s/c|, where the sign accounts for the direction of the plane wave.4

This scalar relation (fλ = c) was first deduced by Galileo in the 16th century and was then explored5

further by Mersenne a few years later.This relationship would have been important to Newton when6

formulating the wave equation, which he needed to estimate the speed of sound. We shall return to7

this in Chapters 4 and 5.8

Inner product space: Another important example of algebraic expressions in mathematics is Hilbert’s9

generalization of Eq. 1.1, known as the Schwarz inequality, shown in Fig. 3.1. What is special about10

this generalization is that it proves that when the vertex is 90◦, the length of the leg is minimum.11

Vectors may be generalize to have∞ dimensions: ~U, ~V = [v1, v2, · · · , v∞]). The inner product (i.e.,
dot product) between two such vectors generalizes the finite dimentional case

~U · ~V =
∞∑

k=1

ukvk.

As with the finite case, the norm ||~U || =
√
~U · ~U =

√∑
u2
k is the dot product of the vector with itself,12

defining the length of the infinite component vector. Obviously there is an issue of convergence, if the13

norm for the vector to have a finite length.14

It is a somewhat arbitrary requirement that a, b, c ∈ R for the Pythagorean theorem (Eq. 1.1).
This seems natural enough since the sides are lengths. But, what if they are taken from the complex
numbers, as for the lossy vector wave equation, or the lengths of vectors in Cn? Then the equation
generalizes to

c · c = ||c||2 =
n∑

k=1

|ck|2,

where ||c||2 = (c, c) is the inner (dot) product of a vector c with itself, where |ck| is the magnitude the15

complex ck. As before, ||c|| =
√
||c||2 is the norm of vector c, akin to a length.16

V + 0.5UE
(α

)
=

V
−

α
U

|V · U |/||V ||
UE

(α
∗ )

=
V
−

α
∗
U

V

α∗U αU

Figure 3.1: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the two

vectors. ||U || =
√

(U · U) as the dot product of that vector with itself.

Schwarz inequality The Schwarz inequality3 says that the magnitude of the inner product of two
vectors is less than or equal to the product of their lengths

U · V ≤ ||U || ||V ||.
3A simplified derivation is provided in Sect. 1.3.4 (p. 54).
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This may be simplified by normalizing the vectors to have unit length (Û = U/||U ||, V̂ = V/||V ||),
in which case −1 < Û · V̂ ≤ 1. Another simplification is to define the scaler product in terms of the
direction cosine

cos(θ) = |Û · V̂ | ≤ 1.

A proof of the Schwarz inequality is as follows: From these definitions we may define the minimum
difference between the two vectors as the perpendicular from the end of one to the intersection of the
second. As shown in Fig. 3.1, U ⊥ V may be found by minimizing the length of the vector difference:

min
α
||V − αU ||2 = ||V ||2 + 2αV · U + α2||U ||2 > 0

0 = ∂α (V − αU) · (V − αU)

= V · U − α∗||U ||2

∴ α∗ = V · U/||U ||2.

The Schwarz inequality follows:

Imin = ||V − α∗U ||2 = ||V ||2 − |U · V |
2

||U ||2 > 0

0 ≤ |U · V | ≤ ||U || ||V ||
An important example of such a vector space includes the definition of the Fourier Transform,

where we may set

U(ω) = e−ω0t V (ω) = eωt U · V =

∫

ω
eωte−ω0t

dω

2π
= δ(ω − ω0).

It seems that the Fourier transform is a result that follows from a minimization, unlike the Laplace1

transform that follows from causal system parameters. This explains the important differences between2

the two, in terms of their properties (Unlike the LT, the FT is not complex analytic). We also explored3

this topic in Lecture 1.3.10 (p. 64).4

Power vs. power series, linear vs. nonlinear5

Another place where equations of second degree appear in physical applications is in energy and power
calculations. The electrical power is given by the product of the voltage v(t) and current i(t) (or in
mechanics as the force times the velocity). For example if we define P = v(t)i(t) to be the power P
[Watts], then the total energy [Joules] at time t is (Van Valkenburg, 1964a, Chapter 14)

E(t) =

∫ t

0
v(t)i(t)dt.

From this observe that the power is the rate of change of the total energy

P(t) =
d

dt
E(t).

Ohm’s Law and impedance: The ratio of voltage over the current is call the impedance which has
units of [Ohms]. For example given a resistor of R = 10 [ohms],

v(t) = R i(t).

Namely 1 amp flowing through the resistor would give 10 volts across it. Merging the linear relation
due to Ohm’s law with the definition of power, shows that the instantaneous power in a resistor is
quadratic in voltage and current

P = v(t)2/R = i(t)2R. (3.5)
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Note that Ohm’s law is linear in its relation between voltage and current whereas the power and energy1

are nonlinear.2

Ohm’s Law generalizes in a very important way, allowing the impedance (e.g., resistance) to be3

a linear complex analytic function of complex frequency s = σ + ω (Kennelly, 1893; Brune, 1931b).4

Impedance is a fundamental concept in many fields of engineering. For example:4 Newton’s second law
vector, pressure and
a potentials.

5

F = ma obeys Ohm’s law, with mechanical impedance Z(s) = sm. Hooke’s Law F = kx for a spring6

is described by a mechanical impedance Z(s) = k/s. In mechanics a “resistor” is called a dashpot and7

its impedance is a positive and real constant.58

Kirchhoff’s Laws KCL, KVL: The laws of electricity and mechanics may be written down using9

Kirchoff’s Laws current and voltage laws, (KCL, KVL), which lead to linear systems of equations in10

the currents and voltages (velocities and forces) of the system under study, with complex coefficients11

having positive real parts.12

Points of major confusion are a number of terms that are misused, and overused, in the fields of13

mathematics, physics and engineering. Some of the most obviously abused terms are linear/nonlinear,14

energy, power, power series. These have multiple meanings, which can, and are, fundamentally in15

conflict.16

Transfer functions (Transfer matrix): The only method that seems to work, to sort this out,
is to cite the relevant physical application, in specific contexts. The most common touch point is a
physical system that has an input x(t) and an output y(t). If the system is linear, then it may be
represented by its impulse response h(t). In such cases the system equation is

y(t) = h(t) ⋆ x(t)↔ Y (ω) = H(s)|σ=0X(ω),

namely the convolution of the input with the impulse response gives the output. From Fourier analysis17

this relation may be written in the real frequency domain as a product of the Laplace transform of the18

impulse response, evaluated on the ω axis and the Fourier transform of the input X(ω) ↔ x(t) and19

output Y (ω)↔ y(t).20

Mention ABCD Transfer matrix21

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and22

Laplace transforms have no obvious meaning.23

The question that must be addressed is why is the power said to be nonlinear whereas a power series24

of H(s) said to be linear. Both have powers of the underlying variables. This is massively confusing,25

and must be addressed. The question will be further addressed in Section 3.5.1 in terms of the system26

postulates of physical systems.27

Whats going on? The domain variables must be separated from the codomain variables. In our28

example, the voltage and current are multiplied together, resulting in a nonlinear output, the power.29

If the frequency is squared, this is describing the degree of a polynomial. This is not nonlinear because30

it does not impact the signal output, it characterizes the Laplace transform of the system response.31

3.2.2 Lec 13 Root classification of polynomials32

Root classification for polynomials of Degree * = 1–4 (p.102);33

Quintic (* = 5) cannot be solved: Why?34

Fundamental Thm of Algebra (d’Alembert, ≈1760)35

36

Add intro & merge convolution discussions.37

4In acoustics the pressure is a potential, like voltage. The force per unit area is given by f = −∇p thus F = −
∫

∇p dS.
Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is v = −∇φ.

5https://en.wikipedia.org/wiki/Impedance_analogy
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Convolution1

As we discussed in Chapter 1, given the roots, the construction of higher degree polynomials, is greatly2

assisted by the convolution method. This has physical meaning, and gives insight into the problem of3

factoring higher order polynomials. By this method we can obtain explicit relations for the coefficients4

of any polynomial in terms of its roots.5

Extending the example of Section 1.3.2, let’s find the relations for the cubic. For simplicity, assume
that the polynomial has been normalized so that the lead x3 term has coefficient 1. Then the cubic in
terms of its roots [a, b, c] is a convolution of three terms

[1, a] ⋆ [1, b] ⋆ [1, c] = [1, a+ b, ab] ⋆ [1, c] = [1, a+ b+ c, ab+ c(a+ b), abc].

Working out the coefficients for a quartic gives

[1, a+b+c, ab+c(a+b), abc]⋆[1, d] = [1, a+b+c+d, d(a+b+c)+c(a+b)+ab, d(ab+ac+bc)+abc, abcd].

It is clear what is going on here. The coefficient on x4 is 1 (by construction). The coefficient for x3 is6

the sum over the roots. The x2 term is the sum over all possible products of pairs of roots, The linear7

term x is the sum over all triple products of the four roots, and finally the last term (a constant) is the8

product of the four roots.9

In fact this is a well known, a frequently quoted result from the mathematical literature, and trivial10

to show given an understand of convolution. If one wants the coefficients for the quintic, it is not even11

necessary to use convolution, as the pattern (rule) for all the coefficients is now clear.12

You can experiment with this numerically using Matlab’s convolution routine conv(a,b). Once13

we start studying Laplace and Fourier transforms, convolution becomes critically important because14

multiplying an input signal in the frequency domain by a transfer function, also a function of frequency,15

is the same a convolution of the time domain signal with the inverse Laplace transform of the transfer16

function. So you didn’t need to learn how to take a Laplace transform, and then learn convolution.17

We have learned convolution first independent of the Fourier and Laplace transforms.18

When the coefficients are real, the roots must appear as conjugate pairs. This is an important19

symmetry.20

For the case of the quadratic we have the relations between the coefficients and the roots, found by
completing the square. This required isolating x to a single term, and solving for it. We then proceeded
to find the coefficients for the cubic and quartic case, after a few lines of calculation. For the quartic

a4 = 1

a3 = a+ b+ c+ d

a2 = d(a+ b+ c) + c(a+ b) + ba

a1 = d(ab+ ac+ bd) + abc

a0 = abcd

These relationships are algebraically nonlinear in the roots. From the work of Galois, for N ≥ 5, this21

system of equations is impossible to invert. Namely, given ak, one may not determine the four roots22

[a, b, c, d] analytically. One must use numeric methods.23

To gain some insight, let us look at the problem for N = 2, which has a closed form solution:

a2 = 1

a1 = a+ b

a0 = ab

We must solve for [a, b] given twice the mean, 2(a+b)/2, and the square of the geometric mean
(√

ab
)2

.24

Since we already know the answer (i.e, the quadratic formula). The solution was first worked out by the25
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Babylonians (2000 BCE) Stillwell (2010, p. 92). It is important to recognize that for physical systems,1

the coefficients ak are real. This requires that the roots come in conjugate pairs (b = a∗), thus ab = |a|22

and a+ b = 2ℜa, which makes the problem somewhat more difficult, due to the greater symmetry.3

Once you have solved this problem, feel free to attempt the cubic case. Again, the answer is known,4

after thousands of years of searching. The solution to the cubic is given in (Stillwell, 2010, pp. 97-9),5

as discovered by Cardano in 1545. According to Stillwell “The solution of the cubic was the first6

clear advance in mathematics since the time of the Greeks.” The ability to solve this problem required7

algebra, and the solutions were complex numbers. The denial of complex numbers was, in my view, the8

main stumbling block in the progress of these solutions. For example, how can two parallel lines have9

a solution? Equally mystifying, how can a circle and a line, that do not intersect, have intersections?10

From the algebra we know that they do. This was a basic problem that needed to be overcome. This11

story is still alive,6 because the cubic solution is so difficult.7 One can only begin to imagine how much12

more difficult the quartic is, solved by Cardano’s student Ferrair, and published by Cardano in 1545.13

The impossibility of the quintic was finally resolved in 1826 by Able (Stillwell, 2010, p. 102).14

Finally with these challenges behind them, Analytic Geometry, relating of algebra and geometry,15

via coordinate systems, was born.16

3.2.3 Lec 14: Analytic Geometry17

Lec 14: Early Analytic Geom (Merging Euclid and Descartes): Composition of degrees n,m gives18

degree m · n19

Composition, Intersection and Gaussian elimination20

The first “algebra” (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory21

of polynomial equations in one variable, Taylor series, and composition versus intersections of curves.22

The solution of the quadratic equation had been worked out thousands of year earlier, but with algebra23

a general solution could be defined. The Chinese had found the way to solve several equations in24

several unknowns, for example, finding the values of the intersection of two circles. With the invention25

of algebra by al-Khwarizmi, a powerful tool became available to solve the difficult problems.26

Composition, Elimination and Intersection In algebra there are two contrasting operations on27

functions: composition and Elimination.28

Composition: Composition is the merging of functions, by feeding one into the other. If the two29

functions are f, g then their composition is indicated by f ◦ g, meaning the function y = f(x) is30

substituted into the function z = g(y), giving z = g(f(x)).31

Composition is not limited to linear equations, even though that is where it is most frequently32

applied. To compose two functions, one must substitute one equation into the other. That requires33

solving for that substitution variable, which is not always possible in the case of nonlinear equations.34

However many tricks are available that may work around this restrictions. For example if one equation35

is in x2 and the other in x3 or
√
x, it may be possible to multiply the first by x or square the second.36

The point is that one of the variables must be isolated so that when it is substituted into the other37

equations, the variable is removed from the mix.38

Examples: Let y = f(x) =: x2 − 2 and z = g(y) =: y + 1. Then

g ◦ f = g(f(x)) = (x2 − 2) + 1 = x2 − 1. (3.6)

6M. Kac, How I became a mathematician.” American Scientist (72), 498–499.
7https://www.google.com/search?client=ubuntu&channel=fs&q=Kac+\%22how+I+became+a\%22+1984+pdf&ie=

utf-8&oe=utf-8
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In general composition does not commute (i.e., f ◦ g 6= g ◦ f), as is easily demonstrated. Swapping the
order of composition for our example gives

f ◦ g = f(g(y)) = z2 − 2 = (y + 1)2 − 2 = y2 + 2y − 1. (3.7)

Intersection: Complimentary to composition is intersection (i.e., decomposition) (Stillwell, 2010,1

pp. 119,149). For example, the intersection of two lines is defined as the point where they meet. This
Not

right.

2

is not to be confused with finding roots. A polynomial of degree N has N roots, but the points where3

two polynomials intersect has nothing to do with the roots of the polynomials. The intersection is a4

function (equation) of lower degree, implemented with Gaussian elimination.5

Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear
algebra this may be written as 2 linear equations (left) along with the intersection point [x1, x2]T , given
by the inverse of the 2x2 set of equations (right).8

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
, (3.8)

where ∆ = ab − cd is called the determinant. By substituting the right expression into the left, and6

taking the inverse we obtain the intersection point. If ∆ = 0 there can be no solution, in which case7

the two lines are parallel (they meet at infinity.)8

Algebra will give the solution when geometry cannot. When the two curves fail to intersect on the9

real plane, the solution still exists, but is complex valued. In such cases, geometry, which only considers10

the real solutions, fails. For example, when the coefficients [a, b, c, d] are complex, the solution exists,11

but the determinant can be complex. Thus algebra is much more general than geometric. Geometry12

fails when the solution has a complex intersection.13

3.3 Week 614

3.3.1 Lec 15 Gaussian Elimination of linear equations15

Example problems using Gaussian Elimination: Gaussian Elimination is valid for nonlinear16

systems of equations. Till now we have emphasized the reduction of linear systems of equations.17

Problem 1: Two lines in a plane either intersect or are parallel, in which case they are said to meet
at ∞. Does this make sense? The two equations that describe this may be written in matrix form as
Ax = b, which written out as [

a11 a12

a21 a22

] [
x1

x2

]
=

[
b1

b2

]
(3.9)

The intersection point x0, y0 is given by the solution two these two equations

[
x1

x1

]
=

1

∆

[
a22 −a12

−a21 a11

] [
b1

b2

]
, (3.10)

where ∆ = a11a22 − a12a21 is the determinant of matrix A (Matlab’s det(A) function).18

8It is very important to note when writing the equations in matrix format, the unknowns are x1, x2 whereas in the
original equations they were y, x. The starting equations are ay1 + bx1 = c and cy1 + dx2 = d but in matrix format the
names are changed. The first equation is ax1 + bx2 = y1 and cx1 + dx2 = y2. The first time you meet this scrambling of
terminology it can be very confusing. In matrix equations the coordinates of the graph are (x1, x2) rather than the usual
x, y.
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It is useful to give an interpretation of these two equations. Each row of the 2x2 matrix defines a
line in the (x, y) plane. The top row is

a11x+ a12y = b1.

Normally we would write this equation as y(x) = αx + β, where α is the slope and β is the intercept
(i.e., y(0) = β). In terms of the elements of matrix A, the slope of the first equation is α = −a11/a12

while the slope of the second is α = −a21/a22. The two slopes are equal (the lines are parallel) when
−a11/a12 = −a21/a22, or written out

∆ = a11a22 − a12a21 = 0.

Thus when the determinate is zero, the two lines are parallel and there is no solution to the equations.1

This 2x2 matrix equation is equivalent to a 2d degree polynomial. If we seek an eigenvector solution
[e1, e2]T such that [

a11 a12

a21 a22

] [
e1

e2

]
= λ

[
e1

e2

]
(3.11)

the 2x2 equation becomes singular, and λ is one of the roots of the polynomial. One may proceed by
merging the two terms to give [

a11 − λ a12

a21 a22 − λ

] [
e1

e2

]
=

[
0
0

]
. (3.12)

Clearly this new matrix has no solution, since if it did, [e1, e2]T would be zero, which is nonsense. If it
has no solution, then the determinant of the matrix must be zero. Forming this determinate gives

(a11 − λ)(a22 − λ)− a12a21 = 0

thus we obtain the following quadratic equation for the roots λ± (eigenvalues)

λ2
± − (a11 + a22)λ± + ∆ = 0.

When ∆ = 0, one eigenvalue is zero while the other is a11 + a22, which is known as the trace of the2

matrix.3

In summary: Given a “linear” equation for the point of intersection of two lines, we see that there4

must be two points of intersection, as there are always two roots of the quadratic characteristic poly-5

nomial. However the two lines only intersect at one point. Whats going on? What is the meaning of6

this second root?7Needs work.

Some simple examples will help. The eigenvalues depend on the relative slopes of the lines, which8

in general can become complex. The intercepts are dependent on b. Thus when the RHS is zero, the9

eigenvalues are irrelevant. This covers the very simple examples. When one eigenvalue is real and the10

other is imaginary, more interesting things are happening since the slope of one line is real and the11

slope of the other is pure imaginary. The lines can intersect in the real plane, and again in the complex12

plane.13

Lets try an example of two lines, slopes of 1 and 2: y1 = x+ a and y2 = 2x+ b. In matrix form Let

[
1 −1
1 −2

] [
y
x

]
=

[
a
b

]
(3.13)

The determinate is ∆ = −1, thus the solution is

[
y0

x0

]
= −1

[
−2 1
−1 1

] [
a
b

]
=

[
2 −1
1 −1

] [
a
b

]
=

[
2a− b
a− b

]
. (3.14)
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Thus the two real lines having slopes of 1 and 2 having intercepts of a and b, meet (x0, y0) = (2a−b, a−b).1

We may verify by substituting x = a − b into the starting equations y1 = (a − b) + a = 2a − b and2

y2 = 2(a− b) + b = 2a− b, which each 2a− b.3

While there is a unique solution, there are two eigenvalues, given by the roots of

(1− λ±)(−2− λ±) + 1 = 0.

If we transfer the sign from one monomial to the other

(−1 + λ±)(2 + λ±) + 1 = 0

and reorder for simplicity

(λ± − 1)(λ± + 2) + 1 = 0

we obtain the quadratic for the roots

λ2
± + λ± − 1 = 0.

Completing the square gives

(λ± + 1/2)2 = 3/4.

or

λ± = −1/2±
√

3/2.

The question is, what is the relationship between the eigenvalues and the final solution, if any? Maybe4

none. The solution (x0, y0) is reasonable, and its not clear that the eigenvalues play any useful role5

here, other than to predict there is a second solution. I’m confused.6

Two lines in 3-space: In three dimensions



a11 a12 a13

a21 a22 a23

a31 a32 a33






x
y
z


 =



b1

b2

b3


 (3.15)

Each row of the matrix describes a plane, which is said to be linear in the unknowns (x, y, z). Thus the7

system of linear equations represents three planes, which must intersect at one point. If two planes are8

parallel, there is no real solution. In this case the intersection by the third plane generates two parallel9

lines.10

As in the 2x2 case, one may convert this linear equation into a cubic polynomial by setting the11

determinant of the matrix, with −λ subtracted from the diagonal, equal to zero. That is, det(A−λI) =12

0. Here I is the matrix with 1 on the diagonal and zero off the diagonal.13

Simple example: As a simple example, let the first plane be z = 0 (independent of x, y), the second
parallel plane be z = 1 (independent of (x, y)) and the third plane be x = 0 (independent of y, z). This
results in the system of equations




0 0 a13

0 0 a23

a31 0 0






x
y
z


 =




0
1
0


 (3.16)

Writing out the three equations we find a13z = 0, a23z = 1, and a31x = 0. Note that det(A) = 0 (we14

need to learn how to compute the 3x3 determinant). This means the three planes never intersect at15

one point. Use Matlab to find the eigenvalues.16
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3.3.2 Lec 16 Matrix composition: Bilinear and ABCD transformations1

The Transmission matrix2

A transmission matrix is a 2x2 matrix that characterizes a 2-port circuit, one having an input and
output voltage and current, as shown in Fig. 1.13. The input is the voltage and current V1, I1 and the
output is the voltage and current V2,−I2, with the current always defined to flow into the port. For
any such a linear network, the input-output relations may be written in a totally general way as

[
V1

I1

]
=

[
A(s) B(s)
C(s) D(s)

] [
V2

−I2

]
.

In Section 1.3.7 we showed that a cascade of such matrices is composition. We shall show below that3

the justification of this relationship is based on the composition of bilinear transformations.4

Expanding Eq. 5.8 into its individual equations demonstrates the linear form of the relations

V1 = A(s)V2 −B(s)I2 I1 = C(s)V2 −D(s)I2,

quantifying the relationship between the input voltage and current to its output voltage and current.5

Define H(s) = V2/V1 as the transfer function, as the ratio of the output voltage V2 over the input6

voltage V1, under the constraint that the output current I2 = 0. From this definition H(s) = 1/A(s).7

In a similar fashion we may define the meaning of all four functions as

A(s) ≡ V1

V2

∣∣∣∣
I2=0

B(s) ≡ −V1

I2

∣∣∣∣
V2=0

(3.17)

C(s) ≡ I1

V2

∣∣∣∣
I2=0

D(s) ≡ −I1

I2

∣∣∣∣
V2=0

(3.18)

From Eq. 5.8 one may compute any desired quantity, specifically those quantities defined in Eq. 3.18,8

the open circuit voltage transfer function (1/A(s)), the short-circuit transfer current (1/D(s)) and the9

two transfer impedances B(s) and 1/C(s).10

In the engineering fields this matrix composition is called the Transmission matrix, also known as11

the ABCD method. It is a powerful method that is easy to learn and use, that gives important insights12

into transmission lines, and thus even the 1 dimensional wave equation.13

Derivation of ABCD matrix for example of Fig. 1.13 (p. 59).14

The derivation is straight forward by the application of Ohm’s Law, as shown in Section 1.3.7.15

The convenience of the ABCD matrix method is that the output of one is identically the input of
the next. Cascading (composing) the results for the series inductor with the shunt compliance leads to
the 2x2 matrix form that precisely corresponds to the transmission line CFA shown in Fig. 2.2,

[
Vn(s)
In(s)

]
=

[
1 sLn
0 1

] [
Vn+1(s)
−In+1(s)

]
. (3.19)

This matrix relation characterizes the series mass term sLn. A second equation maybe be used for the
shunt capacitance term sYn(s)

[
Vn(s)
In(s)

]
=

[
1 0
sCn 1

] [
Vn+1(s)
−In+1(s)

]
. (3.20)

The positive constants Ln, Cn ∈ R represent the series mass (inductance) and the shunt compliance16

(capacitance) of the mechanical (electrical) network. The integer n indexes the series and shunt sections,17

that are composed one following the next.18
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A more detailed analysis shows that for the case of no losses, the wave velocity is

c = 1/
√
LC. (3.21)

Also the wave number is

κ =
√
ZY =

√
sL · sC = s

√
LC =

s

c
. (3.22)

Finally the characteristic resistance is

ro =
√
Z/Y =

√
sL/sC =

√
L/C. (3.23)

All of these based on a unit lenth ∆x as shown in Fig. 2.2 (p. 117).1

Matrix composition and the bilinear transform: Now that we have defined the composition of2

two functions, we will use it to define the Möbius or bilinear transformation. Once you understand how3

this works, hopefully you will understand why it is the unifying element in many important engineering4

problems.5

The bilinear transformation is given by

w =
a+ bz

c+ dz

This takes one complex number z = x+ iy and transforms it into another complex number w = u+ iv.
This transformation is bilinear in the sense that its linear in both the input and output side of the
equation. This may be seen when written as

(c+ dz)w = a+ bz,

since this relation is linear in the coefficients [a, b, c, d]. An important example is the transformation
between impedance Z(s) and reflectance Γ(s),

Γ(s) =
Z(s)− r0

Z(s) + r0
,

which is widely used in transmission line problems. In this example w = Γ, z = Z(s), a = −r0, b =6

1, c = r0, d = 1.7

If we define a second bilinear transformation (this could be the transformation from reflectance
back to impedance)

r =
α+ βw

γ + δw
,

and then compose the two something astray wrt arguments

w ◦ r =
a+ b r

c+ d r
=
a(γ + δw) + b(α+ βw)

c(γ + δw) + d(α+ β)w
=
aγ + bα+ (aδ + bβ)w

cγ + dα+ (cδ + dβ)w
,

something surprising happens. The composition w ◦ r may be written in matrix form, as the product
of two matrices that represents each bilinear transform. This may be seen as true by inspecting the
coefficients of the composition w ◦ r (shown above) and the product of the two matrices

[
a b
c d

] [
α β
γ δ

]
=

[
(aγ + bα) (aδ + bβ)
(cγ + dα) (cδ + dβ)

]
.

The the power of this composition property of the bilinear transform may be put to work solving8

important engineering problems, using transmission matrices.9
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3.3.3 Lec 17 Introduction to the Branch cut and Riemann sheets1

Branch cuts are required to preserve the single-valued nature of complex analytic functions. When an2

analytic function is multi-valued, some method needs to be devised to allow the multi-valued complex3

analytic function to be expanded as a Taylor series, which is necessarily single-valued. It follows that4

each single-valued sheet must have a different expansion, valid out to the nearest pole (or singularity).5

We shall explain these ideas with the simplest case, the double-valued square root function w(z) = ±√z,6

as shown in Fig. 1.17 (p. 79).7

3.4 Week 78

3.4.1 Lec 18 Complex analytic mappings (domain coloring)9

When one uses complex analytic functions it is helpful to understand their properties in the complex10

plane. In this sections we explore several well-known functions using domain coloring, discussed in11

some detail in Section 1.3.9, p. 62. For the following figures the coordinate systems are defined by12

s = σ + ω =
√
x2 + y2eθ and w = u+ v =

√
u2 + v2eψ.13

For the first example (Fig. 1.18) w(s) = s2 and its inverse s(w) =
√
w are shown. On the left the14

red region, corresponding to 0◦ [degrees], appears at both 0 and 180 (u = ±1) in the w plane. This15

is because in polar coordinates s2 = |s|2e2θ where θ is the angle of s = |s|e2θ. The square causes16

the phase to rotate twice around for once around the s plane. Namely the angle is doubled, and the17

magnitude squared. Due to the faster changing phase in w, there are two red regions, one when θ = 018

and the second at θ = π (∠w(s) = 2θ). The black spot is dilated due to the squaring of the radius19

(expanding it).20

On the right the
√
w =

√
|w|eφ/2. Because the angle of w is divided by two, it takes twice as much21

phase (in w) to cover the same angle. Thus the red region (0◦) is expanded. We barely see the violet22

90◦ and yellow −90◦ angles. There is a branch cut running from w = 0 to w =∞. As the branch cut23

is crossed, the function switches Riemann sheets, going from the top sheet (shown here) to the bottom24

sheet (not shown). Figure 1.17 in Section 3.3.3 depicts what is going on with these two sheets, and25

show the branch cut from the origin (point O) to ∞. In this depiction the first sheet (+
√
z) is on the26

bottom, while the second sheet (
√
z) is on top. For every value of z there are two possible outcomes,27

±√z, represented by the two sheets.28

u+jv = cos(pi*(x+jy))

x

jy

−2 −1  0  1  2

 2

 1

 0

−1

−2

u+jv = besselj(0,pi*(x+jy))

x

jy

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 3.2: On the left is w(s) = cos(πz) and on the right is the Bessel function J0(πz), which is similar to cos(πz),
except the zeros are distorted away from s = 0 by a small amount due to the cylindrical geometry. The Bessel function is
the solution to the wave equation in cylindrical coordinates while the cos is the solution in rectangular coordinates. The
zeros in the function are the places where the pinned boundary condition is satisfied (where the string is restricted, by
the boundary, from moving). The Bessel function J1(πz) is similar to sin(πz) in a like manner.
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Two more examples are given in Fig. 3.2 to interpret the two complex mappings w = cos(πs) (left)1

and the Bessel function J0(πz). Note how the white and black contour lines are always perpendicular2

where they cross, just as in the calibration plots for the x and y axes, shown in Fig. 1.15 in Section3

1.3.9 (p. 62).4

Along the σ axis the cos(πx is the periodic with a period of π. The dark spots are at the zeros.5

at ±π/2,±3π/2, . . .. When we stray off the ω = 0 axis, the function either goes to zero (black) or6

∞ (white). This behavior carries the same π periodicity as it has along the ω = 0 line. On the right7

is the Bessel function J0(πz), which is similar to cos(πz), except the zeros are distorted away from8

the orgin. These figure are worthy of careful study to develop an intuition for complex functions of9

complex variables. In Section 1.3.9 we shall explore more complex mappings, and in greater detail.10

w = tan((x+jy))

x

jy

−2 −1  0  1  2

 2

 1

 0

−1

−2

s = atan((u+jv))

u

iv

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 3.3: On the left is the function w(z) = tan(z). On the right is the inverse s = tan−1(w). Of special interest is
zviz atan(i*Z) (i/2)*log((1+Z)./(1-Z)).

In the third example (Fig. 3.3) we show w = tan(z) and its inverse z = tan−1(w). The tangent11

function has zeros where sin(z) has zeros (e.g., at z = 0) and poles where cos(z) is zero (e.g., at ±π/2.12

The inverse function s = atan(w) has a zero at w = 0 and branch cuts eliminating from z = ±π.13

The command zviz besselj(0,pi*Z) besseli(0,j*pi*Z) gives exactly the same plot, demon-14

strating that I0(z) = J0(z).15

It is fun, easy and interesting to study polynomials, say of degree 5 and 4 (i.e, with one zero16

removed), to demonstrate the Fundamental Theorem of Algebra.17

3.4.2 Lec 19 Signals and Systems: Fourier vs. Laplace Transforms18

Signals and Systems: Fourier vs. Laplace Transforms AE-319

3.4.3 Lec 20 Role of Causality and the Laplace Transform20

Role of Causality and the Laplace Transform:21

u(t)↔ 1/s (LT)22

2ũ(t) ≡ 1 + sgn(t)↔ 2πδ(ω) + 2/ω (FT)23

3.5 Week 824

3.5.1 Lec 21 The 9 postulates of System of algebraic Networks25

Phyical system obey very important rules, that follow from the physics. It is helpful to summarize26

these physical restrictions in terms of postulates, presented in terms of a taxonomy, or catagorization27

method, of the fundmental properties of physical systems. Nine of these are listed below. These nine28
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come from a recently published paper (Kim and Allen, 2013). It is possible that given time, others1

could be added.2

A taxonomy of physical systems comes from a systematic summary of the laws of physics, which3

includes at least the nine basic network postulates, described in Section 1.3.12. To describe each of4

the network postulates it is helpful to begin with the 2-port transmission (aka ABCD, chain) matrix5

representation, discussed in Section 3.3.2 (p. 134).6
as shown in black

(p. 35), as examples of
ostulates.

Figure 3.4: A schematic representation of a 2-port ABCD electro-mechanic system using Hunt parameters
Ze(s), zm(s), and T (s): electrical impedance, mechanical impedances, and transduction coefficient (Hunt, 1952;
Kim and Allen, 2013). Also V (f), I(f), F (f), and U(f) are the frequency domain voltage, current, force, and
velocity respectively. Notice how the matrix method ‘factors’ the 2-port model into three 2×2 matrices. This
allows one to separate the physical modeling from the algebra. It is a standard impedance convention that the
flows I(f), U(f) are always defined into the port. Thus it is necessary to apply a negative sign on the velocity
−U(f) so that it has an outward flow, to feed the next cell with an inward flow. Replace Φ with V .

As a specific example we show the 2-port transmission matrix for an acoustic transducer (loud-
speaker), shown in Fig. 3.4, characterized by the equation

[
Φi

Ii

]
=

[
A(s) B(s)
C(s) D(s)

] [
Fl
−Ul

]
=

1

T

[
zm(s) ze(s)zm(s) + T 2

1 ze(s)

] [
Fl
−Ul

]
. (3.24)

This equation comes from the product of the three 2x2 matrices representing each of the three elements7

of the figure.8

This figure represents the motor of the loudspeaker (not the box that it comes in). The system con-9

sists of three elements, the electrical input impedance Ze(s), a gyrator, which is similar to a transformer,10

but relates current to force, and an output mechanical impedance Zm(s). This circuit describes what11

is needed to fully characterize it operation, from electrical input to mechanical (acoustical) output.12

The input is electrical (voltage and current) [Φi, Ii] and the output (load) are the mechanical (force13

and velocity) [Fl, Ul]. The first matrix is the general case, expressed in terms of four unspecified14

functions A(s), B(s), C(s), D(s), while the second matrix is for the specific example of Fig. 3.4. The15

four entries are the electrical driving point impedance Ze(s), the mechanical impedance zm(s) and the16

transduction T = B0l where B0 is the magnetic flux strength and l is the length of the wire crossing the17

flux. Since the transmission matrix is anti-reciprocal, its determinate ∆T = −1, as is easily verified.18

Other common transduction examples of cross-modality transduction include current–thermal (ther-19

moelectric effect) and force–voltage (piezoelectric effect). These systems are all reciprocal, thus the20

transduction has the same sign.21

Impedance matrix22

These nine postulates describe the properties of a system having an input and an output. For the
case of an electromagnetic transducer (Loudspeaker) the system is described by the 2-port, as show in
Fig. 3.4. The electrical input impedance of a loudspeaker is Ze(s), defined by

Ze(s) =
V (ω)

I(ω)

∣∣∣∣
U=0

.

Note that this driving-point impedance must be causal, thus it has a Laplace transform and therefore is23

a function of the complex frequency s = σ+jω, whereas the Fourier transforms of the voltage V (ω) and24

current I(ω) are functions of the real radian frequency ω, since the time-domain voltage v(t)↔ V (ω)25

and the current i(t) ↔ I(ω) are signals that may start and stop at any time (they are not typically26

causal).27
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The corresponding 2-port impedance matrix for Fig. 3.4 is
[
Φi

Fl

]
=

[
z11(s) z12(s)
z21(s) z22(s)

] [
Ii
Ul

]
=

[
Ze(s) −T (s)
T (s) zm(s)

] [
Ii
Ul

]
. (3.25)

Such a description allows one to define Thèvenin parameters, a very useful concept used widely in1

circuit analysis and other network models from other modalities.2

The impedance matrix is an alternative description of the system, but with generalized forces [Φi, Fl]3

on the left and generalized flows [Ii, Ul] on the right. A rearrangement of the equations allows one to4

go from the ABCD to impedance set of parameters (Van Valkenburg, 1964b). The electromagnetic5

transducer is anti-reciprocal (P6), z12 = −z21 = T = B0l.6

Additional or modified postulates7

The postulates must go beyond postulates P1-P6 defined by Carlin and Giordano (Section 1.3.12,8

p. 70), when there are interaction of waves and a structured medium, along with other properties not9

covered by classic network theory. Assuming QS, the wavelength must be large relative to the medium’s10

lattice constants. Thus the QS property must be extended to three dimensions, and possibly to the11

cases of an-isotropic and random media.12

Causality: P1 As stated above, due to causality the negative properties (e.g., negative refractive13

index) must be limited in bandwidth, as a result of the Cauchy-Riemann conditions. However even14

causality needs to be extended to include the delay, as quantified by the d’Alembert solution to the15

wave equation, which means that the delay is proportional to the distance. Thus we generalize P116

to include the space dependent delay. When we wish to discuss this property we denote it Einstein17

causality, which says that the delay must be proportional to the distance x, with impulse response18

δ(t− x/c).19

Linearity: P2 The wave properties of may be non-linear. This is not restrictive as most physical20

systems are naturally nonlinear. For example, a capacitor is inherently nonlinear: as the charge builds21

up on the plates of the capacitor, a stress is applied to the intermediate dielectric due to the electrostatic22

force F = qE. In a similar manner, an inductor is nonlinear. Two wires carrying a current are attracted23

or repelled, due to the force created by the flux. The net force is the product of the two fluxes due to24

each current.25

In summary, most physical systems are naturally nonlinear, it’s simply a matter of degree. An26

important counter example is a amplifier with negative feedback, with very large open-loop gain.27

There are, therefore, many types of non-linear, instantaneous and those with memory (e.g., hysteresis).28

Given the nature of P1, even an instantaneous non-linearity may be ruled out. The linear model is so29

critical for our analysis, providing fundamental understanding, that we frequently take P1 and P2 for30

granted.31

Passive/Active: P3 This postulate is about conservation of energy and Otto Brune’s positive Real32

(PR aka physically realizable) condition, that every passive impedance must obey. Following up on33

the earlier work of his primary PhD thesis advisor Wilhelm Cauer (1900-1945) and Ernst Guillemin,34

along with Norbert Weiner and Vannevar Bush at MIT, Otto Brune mathematically characterized the35

properties of every PR 1-port driving point impedance (Brune, 1931a).36

When the input resistance of the impedance is real, the system is said to be passive, which means the
system obeys conservation of energy. The real part of Z(s) is positive if and only if the corresponding
reflectance is less than 1 in magnitude. The definition of the reflectance of Z(s) is defined as a bilinear
transformation of the impedance, normalized by its surge resistance r0 (Campbell, 1903)

Γ(s) =
Z(s)− r0

Z(s) + r0
.
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The surge resistance is defined in terms of the inverse Laplace transform of Z(s) ↔ z(t), which must
have the form

z(t) = r0δ(t) + ζ(t),

where ζ(t) = 0 for t < 0. It naturally follows that γ(t) ↔ Γ(s) is zero for negative and zero time,1

namely γ(0) = 0, t ≤ 0. at2

Given any linear PR impedance Z(s) = R(σ, ω)+ jX(σ, ω), having real part R(σ, ω) and imaginary
part X(σ, ω), the impedance is defined as being PR (Brune, 1931a) if and only if

R(σ ≥ 0, ω) ≥ 0. (3.26)

That is, the real part of any PR impedance is non-negative everywhere in the right half s plane (σ ≥ 0).3

This is a very strong condition on the complex analytic function Z(s) of a complex variable s. This4

condition is equivalent to any of the following statements (Van Valkenburg, 1964a):5

1. There are no poles or zeros in the right half plane (Z(s) may have poles and zeros on the σ = 06

axis).7

2. If Z(s) is PR then its reciprocal Y (s) = 1/Z(s) is PR (the poles and zeros swap).8

3. If the impedance may be written as the ratio of two polynomials (a limited case, related to the9

quasi-statics approximation, P9) having degrees N and L, then |N − L| ≤ 1.10

4. The angle of the impedance θ ≡ ∠Z lies between [−π ≤ θ ≤ π].11

5. The impedance and its reciprocal are complex analytic in the right half plane, thus they each12

obey the Cauchy Riemann conditions there.13

Energy and Power: The PR (positive real or Physically realizable) condition assures that every
impedance is positive-definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and
Saxon, 1968, p.17). This means that the total energy absorbed by any PR impedance must remain
positive for all time, namely

E(t) =

∫ t

−∞
v(t)i(t) dt =

∫ t

−∞
i(t)⋆z(t) i(t) dt > 0,

where i(t) is any current, v(t) = z(t) ⋆ i(t) is the corresponding voltage and z(t) is the real causal14

impulse response of the impedance, e.g., z(t) ↔ Z(s) are a Laplace Transform pair. In summary, if15

Z(s) is PR, E(t) is PD.16

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a
partial fraction expansion, which can be expanded into first-order poles as

Z(s) = K
ΠL
i=1(s− ni)

ΠN
k=1(s− dk)

=
∑

n

ρn
s− sn

ej(θn−θd), (3.27)

where ρn is a complex scale factor (residue). Every pole in a PR function has only simple poles and17

zeros, requiring that |L−N | ≤ 1 (Van Valkenburg, 1964b).18

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear.19

Specifically what is the physical meaning of the specific constraints on Z(s)? In many ways, the20

impedance concept is highly artificial, as expressed by P1-P7.21

When the impedance is not rational, special care must be taken. An example of this is the semi-22

inductor M
√
s and semi-capacitor K/

√
s due, for example, to the skin effect in EM theory and viscous23

and thermal losses in acoustics, both of which are frequency dependent boundary-layer diffusion losses24

(Vanderkooy, 1989). They remain positive-real but have a branch cut, thus are double valued in25

frequency.26
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Real time response: P4 The impulse response of every physical system is real, vs. complex. This1

requires that the Laplace Transform have conjugate-symmetric symmetry H(s) = H∗(s∗), where the ∗2

indicates conjugation (e.g., R(σ, ω) +X(σ, ω) = R(σ, ω)−X(σ,−ω)).3

Time invariant: P5 The meaning of time-invariant requires that the impulse response of a system4

does not change over time. This requires that the system coefficients of the differential equation5

describing the system are constant (independent of time).6

Rayleigh Reciprocity: P6 Reciprocity is defined in terms of the unloaded output voltage that
results from an input current. Specifically

[
z11(s) z12(s)
z21(s) z22(s)

]
=

1

C(s)

[
A(s) ∆T

1 D(s)

]
, (3.28)

where ∆T = A(s)D(s) − B(s)C(s) = ±1 for the reciprocal and anti-reciprocal systems respectively.
This is best understood in term of Eq. 3.25. The off-diagonal coefficients z12(s) and z21(s) are defined
as

z12(s) =
Φi

Ul

∣∣∣∣
Ii=0

z21(s) =
Fl
Ii

∣∣∣∣
Ul=0

.

When these off-diagonal elements are equal [z12(s) = z21(s)] the system is said to obey Rayleigh7

reciprocity. If they are opposite in sign [z12(s) = −z21(s)], the system is said to be anti-reciprocal.8

If a network has neither of the reciprocal or anti-reciprocal characteristics, then we denote it as non-9

reciprocal (McMillan, 1946). The most comprehensive discussion of reciprocity, even to this day, is that10

of Rayleigh (1896, Vol. I). The reciprocal case may be modeled as an ideal transformer (Van Valkenburg,11

1964a) while for the anti-reciprocal case the generalized force and flow are swapped across the 2-port.12

An electromagnetic transducer (e.g., a moving coil loudspeaker or electrical motor) is anti-reciprocal13

(Kim and Allen, 2013; Beranek and Mellow, 2012), requiring a gyrator rather than a transformer, as14

shown in Fig. 3.4.15

Reversibility: P7 A second 2-port property is the reversible/non-reversible postulate. A reversible16

system is invariant to the input and output impedances being swapped. This property is defined by17

the input and output impedances being equal.18

Referring to Eq. 3.28, when the system is reversible z11(s) = z22(s) or in terms of the transmission19

matrix variables A(s)
C(s) = D(s)

C(s) or simply A(s) = D(s) assuming C(s) 6= 0.20

An example of a non-reversible system is a transformer where the turns ratio is not one. Also an21

ideal operational amplifier (when the power is turned on) is non-reversible due to the large impedance22

difference between the input and output. Furthermore it is active (it has a power gain, due to the23

current gain at constant voltage) (Van Valkenburg, 1964b).24

Generalizations of this lead to group theory, and Noether’s theorem. These generalizations apply25

to systems with many modes whereas quasi-statics holds when operate below a cutoff frequency (Table26

3.1), meaning that like the case of the transmission line, there are no propagating transverse modes.27

While this assumption is never exact, it leads to highly accurate results because the non-propagating28

evanescent transverse modes are attenuated over a short distance, and thus, in practice, may be ignored29

(Montgomery et al., 1948; Schwinger and Saxon, 1968, Chap. 9-11).30

We extend the Carlin and Giordano postulate set to include (P7) Reversibility, which was refined by31

Van Valkenburg (1964a). To satisfy the reversibility condition, the diagonal components in a system’s32

impedance matrix must be equal. In other words, the input force and the flow are proportional to the33

output force and flow, respectively (i.e., Ze = zm).34
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Spatial invariant: P8 The characteristic impedance and wave number κ(s, x) may be strongly1

frequency and/or spatially dependent, or even be negative over some limited frequency ranges. Due to2

causality, the concept of a negative group velocity must be restricted to a limited bandwidth (Brillouin,3

1960). As is made clear by Einstein’s theory of relativity, all materials must be strictly causal (P1),4

a view that must therefore apply to acoustics, but at a very different time scale. We first discuss5

generalized postulates, expanding on those of Carlin and Giordano.6

The QS constraint: P9 When a system is described by the wave equation, delay is introduced7

between two points in space, which depends on the wave speed. When the wavelength is large compared8

to the delay, one may successfully apply the quasi-static approximation. This method has wide-spread9

application, and is frequency used without mention of the assumption. This can lead to confusion,10

since the limitations of the approximation may not be appreciated. An example is the use of QS in11

Quantum Mechanics. The QS approximation has wide spread use when the signals may be accurately12

approximated by a band-limited signal. Examples include KCL, KVL, wave guides, transmission lines,13

and most importantly, impedance. The QS property is not mentioned in the six postulates of Carlin14

and Giordano (1964), thus they need to be extended in some fundamental ways.15

When the dimensions of a cellular structure in the material are much less than the wavelength, can16

the QS approximation be valid. This effect can be viewed as a mode filter that suppresses unwanted (or17

conversely enhances the desired) modes (Ramo et al., 1965). QSs may be applied to a 3 dimensional18

specification, as in a semiconductor lattice. But such applications fall outside the scope of this text19

(Schwinger and Saxon, 1968).20

Although I have never seen the point discussed in the literature, the QS approximation is applied21

when defining Green’s theorem. For example, Gauss’s Law is not true when the volume of the container22

violates QS, since changes in the distribution of the charge have not reached the boundary, when doing23

the integral. Thus such integral relationships assume that the system is in quasi steady-state (i.e., that24

QS holds).25

Table 3.1: There are several ways of indicating the quasi-static (QS) approximation. For network theory there
is only one lattice constant a, which must be much less than the wavelength (wavelength constraint). These three
constraints are not equivalent when the object may be a larger structured medium, spanning many wavelengths,
but with a cell structure size much less than the wavelength. For example, each cell could be a Helmholtz
resonator, or an electromagnetic transducer (i.e., an earphone).

Measure Domain

ka < 1 Wavenumber constraint

λ > 2πa Wavelength constraint

fc < c/2πa Bandwidth constraint

Formally, QS is defined as ka < 1 where k = 2π/λ = ω/c and a is the cellular dimension or the26

size of the object. Other ways of expressing this include λ/4 > a, λ/2π > a, λ > 4a or λ > 2πa. It is27

not clear if it is better to normalize λ by 4 (quarter-wavelength constraint) or 2π ≈ 6.28 > 4, which is28

more conservative by a factor of π/2 ≈ 1.6. Also k and a can be vectors, e.g., Eq. 1.57, p. 75, Section29

1.4.1.30

Schelkunoff may have been the first to formalize this concept (Schelkunoff, 1943) (but not the first31

to use it, as exemplified by the Helmholtz resonator). George Ashley Campbell was the first to use32

the concept in the important application of a wave-filter, some 30 years before Schelkunoff (Campbell,33

1903). These two men were 40 years apart, and both worked for the telephone company (after 1929,34

called AT&T Bell Labs) (Fagen, 1975).35

There are alternative definitions of the QS approximation, depending on the geometrical cell struc-36

ture. The alternatives are outlined in Table 3.1.37
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Summary1

A transducer converts between modalities. We propose the general definition of the nine system2

postulates, that include all transduction modalities, such as electrical, mechanical, and acoustical. It3

is necessary to generalize the concept of the QS approximation (P9) to allow for guided waves.4

Given the combination of the important QS approximation, along with these space-time, linearity,5

and reciprocity properties, a rigorous definition and characterization a system can thus be established.6

It is based on a taxonomy of such materials, formulated in terms of material and physical properties7

and in terms of extended network postulates.8

3.5.2 Lec 22 Exam II (Evening)9
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Chapter 41

Ordinary Differential Equations:2

Stream 3a3

WEEK 8 23.9.04

5

Week 8 Friday Stream 36

L 23 The amazing Bernoulli family; Fluid mechanics; airplane wings; natural logarithms7

The transition from geometry → algebra → algebreic geometry → real analytic → complex8

analytic9

From Bernoulii to Euler to Cauchy and Riemann10

4.1 Week 811

4.1.1 Lec 23 Newton and early calculus & the Bernoulli Family12

Newton and Calculus13

Bernoulli family14

Euler standard periodic (circular) function package15

The period of analytic discovery:16

Coming out of the dark ages, from algebra, to analytic geometry, to calculus.17

Starting with real analytic functions by Euler, we move to complex analytic functions with Cauchy.18

Integration in the complex plane is finally conquered.19

Lect DE 25.9 Stream 3: ∞ and Sets 25.9.1

The development of real representations proceeded at a deadly-slow pace:

• Real numbers R: Pythagoras knew of irrational numbers (
√

2)

• Complex numbers C: 1572 “Bombelli is regarded as the inventor of complex numbers . . . ” http://www-history.

mcs.st-andrews.ac.uk/Biographies/Bombelli.html http://en.wikipedia.org/wiki/Rafael_Bombelli

& p. 258

• Power Series: Gregory-Newton interpolation formula c1670, p. 175

• Point at infinity and the Riemann sphere 1851

• Analytic functions p. 267 c1800; Impedance Z(s) 1893

20

145
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Stream 3 Infinity

• Infinity ∞ was not “understood” until 19th CE

• ∞ is best defined in terms of a limit

• Limits are critical when defining calculus

• Set theory is the key to understanding Limits

• Open vs close sets determine when a limit exists (or not)

• Thus, to fully understand limits, one needs to understand set theory

• Related is the convergence of a series

• Every convergent series has a Region of Convergence (ROC)

• When the ROC is Complex:

– Example of 1
1−x vs. 1

i−x : The ROC is 1 for both cases

– Why?

– The case of the Heaviside step function u(t) & the Fourier Transform

1

Irrational numbers and limits (Ch. 4)

• How are irrational numbers interleaved with the integers?

• Between n and 2n there is always an irrational number:

Chebyshev said, and I say it again. There is always a prime between n and 2n. -p. 5852

• Prime number theorem: The number of of primes is approximately( the density of primes is
ρπ(n) ∝ 1/ ln(n).

• The number of primes less than n is n times the density, or

N(n) = n/ ln(n).

– The formula for entropy is H = −∑n pn log pn.
Could there be some hidden relationship lurking here?

2

Stream 3: ∞ and Sets 25.9.2

• Understanding ∞ has been a primary goals since Euclid

• The Riemann sphere solves this fundamental problem

• The point at ∞ simply “another point” on the Riemann sphere

3
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Open vs. closed sets1

Influence of open vs. closed set 7.3.6

• Important example: LT vs. FT step function: Dirac step vs Fourier step:

• u(t)↔ 1
s vs. ũ(t)↔ πδ(ω) + 1

jω

2

WEEK 9 23.9.03

4

Week 9 Monday5

L 24 Power series and integration of functions (ROC)6

Fundamental Theorem of calculus (Leibniz theorm of integration)7

1/(1− x) =
∑∞
k=0 x

k with x ∈ R8

L 25 Integration in the complex plane: Three theorems9

Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + i.10

11

L 26 Cauchy-Riemann conditions12

Real and imaginary parts of analytic functions obey Laplace’s equation.13

Infinite power Series and analytic function theory; ROC14

15

4.2 Week 916

4.2.1 Lec 24 Power series and complex analytic functions17

L 24: Power series and complex analytic function18

4.2.2 Lec 25 Integration in the complex plane19

L 25: Integration in the complex plane; Infinite power Series and analytic function theory; ROC20

Real and imaginary parts of analytic functions obey Laplace’s equation.21

Colorized plots of analytic functions. How to read the plots and what they tell us?22

4.2.3 Lec 26 Cauchy Riemann conditions: Complex-analytic functions23

L 26: Cauchy Riemann conditions: Complex-analytic functions24

WEEK 10 26.10.025

26

L 27 Z(s) = R(s) + X(s): real and imag parts obey Laplace]s Equation27

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation28

Motivation: Dispersion relation for the wave equation κ · κ = s2/c2
029

Examples.30
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L 28 Three Fundamental theorems of complex integral calculus1 ∫ z
0 = F (ζ)dζ = F (z)− F (0): dZ(s)/ds independent of direction2

Inverse Laplace transform3

Examples.4

L 29 Inverse Laplace transform: Poles and Residue expansions;5

Application of the Fundamental Thm of Complex Calculus6

The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality7

ROC as a function of the sign of time in est (How does causality come into play?)8

Examples.9

4.3 Integration and differentiation in the complex plane10

4.3.1 Lec 27 Differentiation in the complex plane11

L 27: Differentiation in the complex plane: CR conditions?12

Motivation: Inverse Laplace transform13

ROC in the complex plane14

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation15

Motivation: Dispersion relation for the wave equation κ · κ = s2/c2
016

4.3.2 Lec 28 Three complex Integral Theorems17

L 28: Integration in the complex plane: Basic definitions of Three theorems18

Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + i.19

20

Moved from Lec 3 (page 31)21

Set Theory: Set theory is a topic that can be inadequately addressed in the undergraduate Engi-22

neering and Physics curriculum, and is relatively young to mathematics. The set that a number is23

drawn from is crucially important when taking limits.24

4.3.3 Lec 29 Inverse Laplace Transform25

L 29: Inverse Laplace transform: Poles and Residue expansions;26

Application of the Fundamental Thm of Complex Calculus27

Examples.28

Stream 3: Infinity and irrational numbers Ch 4 2.1.6

• Limit points, open vs. closed sets are fundamental to modern mathematics

• These ideas first appeared with the discovery of
√

2, and
√

n https://en.wikipedia.org/
wiki/Spiral_of_Theodorus

and related constructions (factoring the square, Pell’s Eq. p. 44)

Infinity and irrational Q numbers29

WEEK 11 30.11.030

31
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The fundamental theorem of calculus 2.1.7

Let A(x) be the area under f(x). Then

d

dx
A(x) =

d

dx

∫ x

f(η)dη

= lim
δ→0

A(x + δ)− A(x)

δ

and/or

A(b)− A(a) =
∫ b

a
f(η)dη

• Stream 3 is about limits

• Integration and differentiation (Calculus) depend on limits

• Limits are built on open vs. closed sets

L 30 Inverse Laplace transform & Cauchy Residue Theorem1

L 31 General properties of Laplace transforms: Modulation, convolution, etc 1) Modulation, 2) Trans-2

lation, 3) convolution, 4) periodic functions3

Tables of common LTs4

L 32 Generalized impedance and transmission (ABCD) matricies5

4.4 Integration in the complex plane6

4.4.1 Lec 30 Inverse Laplace Transform & Cauchy residue theorem7

L30: The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality8

ROC as a function of the sign of time in est (How does causality come into play?)9

4.4.2 Lec 31 The case for causality10

L31: Closing the contour as s→∞; Role of ℜst11

12

4.4.3 Lec 32 Brune impedance: Working with experimental data13

L32: Detailed examples of the Inverse LT:14

1) Modulation, 2) Translation, 3) convolution, 4) periodic functions15

Tables of common LTs16

Estimating ck from numerical data: Assuming the poles of Z(s) have been accurately computed
(e.g., assuming D(s) has been numerically factored using P=root(D)), the partial fraction expansion
defines a linear system of equations in the residues ck, uniquely determined by N(s). One problem

Write

that needs to be addressed is that we don’t know Z(s), rather we know Z(ω). One could possibly
work with

ĉk = lim
ω→sk

(s− sk)Z(ω),
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but it is not clear how well this would work, if at all. Poles far from the ω could be a problem. Another1

possibility would be to work in the time-domain. A third possibility would be to use the impedance2

zeros (roots of N(s), poles of the admittance Y (s)).3

Generalized impedance: The Brune impedance is a restricted definition of impedance, more gen-4

erally defined via the reflectance Γ(s).5

1. The bilinear (Möbius) transformation is useful for the generalized impedance (i.e., extending the
Brune impedance)

Z(s) = ro
1 + Γ(s)

1− Γ(s)
, Γ(s) =

1− Z(s)/ro
1 + Z(s)/ro

, (4.1)

where Z(s) is the generalized impedance, having characteristic resistance ro, such that
define ro and

resistance

z(t) = roδ(t) + ζ(t), (4.2)

then the reflectance function Γ(s) has the properties

Γ(s) =
P−
P+
↔ γ(t ≤ 0) = 0 and |Γ(ω)| ≤ 1. (4.3)

Here the most general form of impedance is defined by the reflectance function. This brings the6

definition close to the physics of an impedance. The reflectance is determined by the internal7

scattering of the forward going pressure wave P+, which is induced by variations in the area8

function A(x) of the Webster horn equation. When the area function is constant (e.g., A(x) = Ao),9

Γ(s) = 0, and there are no internal reflections.10

A second, and important way that internal reflections are generated, is by propagation losses in11

the medium. In the case of acoustics a thin layer at the surface of the horn introduces viscous12

and thermal losses, modifying the propagation function κ(x, s), causing the propagation to be13

dispersive (i.e., frequency dependent). This will be discussed in greater detail in Chapter 4.14

When |Γ(φ(ω)| = 1 (φ(ω) is the system phase and τ(ω) = −∂φ/∂ω is called the group delay),15

the system is loss-less and all the poles and zeros lie on the ω axis (i.e., Foster Theorem applies).16

When the poles and zeros lie off the ω axis, this reflectance (|Γ| = 1) is called all–pass, which17

means it is a strictly causal dispersive delay. This is the case of a loss-less dispersive system. Semi-18

conductors are in this class, as are super-conductors. These systems are not Brune impedances.19

Examples:20

p.145
Important examples of generalized impedance include the semi-inductor Z(s) = lo

√
s and semi-21

capacitor Z(s) = 1/c
√
s, which correspond to evanescent wave penetration into the magnetic core22

of a transformer, or the losses in the acoustic wave, due to viscosity and thermal effects in acoustics.23

WEEK 12 33.12.024

25

L 33 Euler’s vs. Riemann’s Zeta function ζ(s): Poles at the primes26

colorized plot of ζ(s)27

DE-3 due28

L 34 Exam III29

Part IV Vector (partial) differential equations (9 lectures)30

L 35 Scalar wave equation31
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4.5 Complex plane concepts1

4.5.1 Lec 33 The Riemann Zeta function ζ(s)2

Riemann Zeta Function ζ(s) 4.2.5

• Integers appear as the “roots” (aka eigenmodes) of ζ(s)

• Basic properties (s = σ + iω)

ζ(s) ≡
∞∑

1

1

ns
σ = ℜ(s) > 0

– What is the region of convergence (ROC)?

• The amazing Euler-Riemann Product formula (Stillwell, 2010, Sect. 10.7:)

ζ(s) =
∏

k

1

1 − πk
−s

=
∏

k

1

1 −
(

1
πk

)s =
∏

k

1

1 − 1
πs

k

=
1

1 − 2−s
· 1

1 − 3−s
· 1

1 − 5−s
· 1

1 − 7−s
· · · 1

1 − π−s
n

· · ·

• Euler c1750 assumed s ⊂ R. Riemann c1850 extended s ⊂ C

Figure 4.1: The zeta function arguably the most important of the special functions of analysis
because it connects the primes to analytic function theory in a fundamental way.

Plot of ∠ζ(s) 4.2.6

Angle of Riemann Zeta function ∠ζ(z) as a function of complex z

Figure 4.2: ∠ζ(z): Red ⇒ ∠ζ(z) < ±π/2

Riemann Zeta Function ζ(s)3

This very important analytic function is the credible argument for true deeper understanding of the
power to the analytic function. Just like the Pythagorean theorem is important to all mathematics,
the zeta function is important to analysis, with many streams of analysis emanating from this form.
For example the analytic Gamma function Γ(s) is a generalization of the factorial by the relationship

n! == n(n− 1)!⇒ Γ(s) = sΓ(s− 1).
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Table 4.1: Physical meaning of each factor of ζ(s) 4.2.7

• Series expansion
1

1 − x
= 1 + x+ x2 + x3 + · · · ROC: |x| < 1

• If time T is a positive delay, then from the Laplace transform

δ(t− T ) ↔
∫

∞

0

δ(t− T )estdt = e−sT

• Each factor of ζ(s) is an ∞ sum of delays

• For example for π1 = 2, (T = ln(2), thus 2−2 = e−s ln 2)

∑

n

δ(t− nT ) ↔ 1

1 − 2−s
= 1 + e−sT + e−s2T + · · ·

Table 4.1: Each prime number defines a delay Tk = ln(πk), which in turn defines a pole in the
complex s plane. The series expansion of this pole is a train of delta functions that are one-sided
periodic in the delta T . Thus each factor in the ζ(s) function defines a pole, having an incommensurate
delay, since each pole is defined by a unique prime. Following this simple logic, we may interpret ζ(s)
as being the Laplace transform of Zeta(t), the cascade of quasi-periodic impulse responses, each with a
recursive delay, determined by a prime. Note that 48100 = 10 · (2 · 5 · 13 · 37) is the sampling frequency

[Hz] of modern CD players. This corresponds to the 20th harmonic of the US line frequency (60 [Hz]).b

aSince gcd(48100, 60) = 20 and gcd(48100, 50) = 50.
bSince gcd(48100, 60) = 20 and gcd(48100, 50) = 50.

Another useful relationship is
∞∑

k=n

k = nun = un ⋆ un

where the ⋆ represents convolution. If this is treated in the frequency domain the we obtain z-transforms
of a very simple second-order pole1

nun ↔
2

(z − 1)2
.

This follows from the geometric series
1

1− z =
∑

n

zn

with z = es, and the definition of convolution.1

The Laplace transform does not require that the series converge, rather that the series have a region
of convergence that is properly specified. Thus the non-convergent series nun is perfectly well defined,
just like

tu(t) = u(t) ⋆ u(t)↔ 1!

s2

is well defined, in the Laplace transform sense. More generally

tnu(t)↔ n!

sn+1
.

From this easily understood relationship we can begin to understand Γ(s), as the analytic extension
of the factorial. Its definition is simply related to the inverse Laplace transform, which is an integral.
But to go there we must be able to think in the complex frequency domain. In fact we have the very
simple definition for Γ(p) with p ∈ C

tp−1u(t)↔ Γ(p)

sp

1Need to verify the exact form of these relationships, not work from memory
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which totally explains Γ(p). Thinking in the time domain is crucial for my understanding.1

Since ∞∑

k=0

δ(t− kTp)↔ ζp(s) =
1

1− e−sTp
=

∞∑

0

e−snTp , (4.4)

by changing the sign of s we have

∞∑

k=0

δ(t+ kTp)↔ ζp(−s) =
1

1− esTp
=

∞∑

0

esnTp , (4.5)

Alternatively we may “shift” s→ s+ 1, resulting in

∞∑

k=0

δ(t− kTp)↔ ζp(s− 1) =
1

1− e−(s−1)Tp
=

∞∑

0

enTpe−snTp , (4.6)

4.5.2 Lec 34 Exam III2

L 34: Exam III3

Thanksgiving Holiday 11/19–11/27 20164



154 CHAPTER 4. SCALAR CALCULUS: STREAM 3A



Chapter 51

Vector Calculus: Stream 3b2

5.1 Stream 3b3

WEEK 12.34

5

5.1.1 Lec 35 Scalar vs. Vector wave equations6

Scalar vs. Vector wave equations7

WEEK 13 36.13.08

9

L 36 The Webster Horn equation; WKB method10

A real-world example of large delay, where the branch-cut placement is critical11

12

L 37 Gradient, divergence, curl, scalar Laplacian VC-113

L 38 More on the divergence and curl: Stokes’ and Gauss’ Laws; Vector Laplacian14

– Thanksgiving Holiday 11/19–11/27 201615

5.2 Stream 3b16

5.2.1 Lec 36 The Webster Horn equation17

The quasi-static approximation: There is an approximation that must play a subtle role, that of18

quasi-statics across the radius. In the typical application of the horn, the wavelength is much greater19

than the diameter of the horn. When this condition is violated higher order modes can play a significant20

role. In fact there is a frequency where the radius will be equal to a quarter wavelength. When this21

happens, the quasi-static approximation fails, and cross-modes will become significant. I have not seen22

any discussion of this in the context of Eq. 1.94.23

Role of admittance: Since every admittance is causal, it must be a function of Laplace frequency s,24

and thus has a Laplace transform (poles and zeros). We shall maintain the distinction that functions25

of ω are Fourier transforms, not analytic in jω, while functions of s correspond to Laplace transforms,26

which are necessarily analytic in s, in the right half plane (RHP) region of convergence (ROC) (i.e., a27

155
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causal function). This distinction is critical, since we typically describe impedance Z(s) and admittance1

Y (s) in terms of their poles and zeros, as analytic functions.12

In this document we shall consider four different cases of A(x), as summarized in Table 5.1. Given3

an area function A(x), each horn has a distinct wave equation, and thus a distinct solution.4

Table 5.1: Table of horns and their properties discussed in this document. The horn axis is defined by x, the
radius at x is r(x), the area is A(x) ≡ 2πr2(x), F (x) is the coefficient on Px and κ(s) ≡ s/c, where c is the speed
of sound. A dimensionless range variable may be defined as x ≡ (ξ−ξ0)/(L−ξ0), with ξ the linear distance along
the horn, where x = ξ0 to L corresponding to x = 0 to 1. The horn’s primitive solutions are P±(x, s)↔ ̺±(x, t).
When ± is indicated, the outbound solution corresponds to the negative sign. The function E(t) is discussed on
page 193. The last column is the radiation admittance normalized by A(x)/ρc, for a simplified expression.

#D Name radius Area/A0 F (x) P±(x, s) ̺±(x, t) Y ±
rad/y0

1D plane 1 1 0 e∓κ(s)x δ(t∓ x/c) 1
2D parabolic

√
x/x0 x/x0 1/x H±

0 (−jκ(s)x) — −jxH±
1 /H

±
0

3D conical x x2 2/x e∓κ(s)x/x δ(t∓ x/c)/x 1± c/sx
EXP exponential emx e2mx 2m e−(m±

√
m2+κ2)x e−mxE(t) —

ational discussion re-

Goals of the study: A primary focus of this study is to identify and characterize the physical5

significance of the reactance (imaginary) component of the loss-less horn’s radiation admittance Yrad(s)6

(and impedance Zrad(s)). Of course for the case of the uniform horn (i.e., plane-waves), the input7

(driving-point) admittance Yrad = y0 (impedance) must be real and positive (zero imaginary part).28

When A(x) is not constant the radiation admittance is always complex (Salmon, 1946a,b; Olson, 1947;9

Morse, 1948; Leach, 1996). Interestingly, in some special cases, Yrad is purely reactive (the real part is10

zero), as for the exponential horn below the cut-off frequency (see Fig. 5.1). We will see that the Horn11

equation generalizes Strum-Louville theory to situations where due to the choice of A(x), a separation12

of variables fails. This has interesting and wide-reaching consequences.13

As shown by3 Youla (1964); Sondhi and Gopinath (1971), there is a unique relationship between the14

reactive part of the input “driving point” admittance Yrad and the horn area functionA(x). Determining15

A(x) from Yrad(0, s) is known as the inverse problem.16

Alternate forms of the Webster Horn Equation17

Equation 5.4 is equivalent to the traditional second-order Webster horn equation in the pressure. To
see this take the partial derivative with respect to x (abbreviated ∂x) of the Newton pressure equation,
giving Pxx + ZxV + Z (s)Vx = 0. Next use the Newton and Hooke equations once again, to remove
the velocity, obtaining the Webster wave equation for the Laplace Transform pair ̺(x, t)↔ P(x, ω) for
pressure

Pxx − (Zx/Z )Px =
s2

c2
P ↔ 1

c2
̺tt. (5.1)

This is the more traditional form of the Webster equation (Webster, 1919; Morse, 1948; Morse and18

Feshbach, 1953; Pierce, 1981).19

1When an analytic function of complex variable s includes the pole it is called a Laurent series in s. For example,
the impedance of a capacitor C is Zc(s) = 1/sC, which is analytic in s everywhere other than s = 0. The capacitor

has a voltage time response given by the integral of the current, i.e., v(t) = 1
C

∫ t
i(t)dt = 1

C
u(t) ⋆ i(t), where u(t) is the

Heaviside step function and ⋆ represents convolution.
2Here we are only considering loss-less horns, i.e., those that satisfy Eq. 5.4.
3The publication of Youla (1964) seems easier to understand.
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General solutions of the Horn Equation1

In the mathematical literature the general solution of equation of this form are known as Strum-
Liouville (SL) problems, the solution of which may be obtained by integration by parts, following the
multiplication by an “integration factor” σ(x):

1

σ
∂x(σPx) ≡ Pxx + ∂x ln σ(x) Px(x) (5.2)

By a direct comparison of the above to Eq. 5.1, we see that σx/σ ≡ −Zx/Z . Thus ∂x ln(σ)/ ≡
−∂x ln(Z ) = ∂x ln(A), or

σ(x) ≡ A(x). (5.3)

One may conclude the very interesting observation that the integration factor is physically the area2

function. Physically this makes sense. It explains, for example, why the integration factor in the3

Sturm-Liouville theory must be strictly positive. We are not aware of this observation in the existing4

literature. While it seems likely that Morse (1948) must have been aware of this connection, to our5

knowledge he did explicitly state so in writing.6

Following this approach we put Eq. 5.3 into Eq. 5.2 to obtain the Webster Horn equation (Morse,
1948, p. 269)

1

A(x)

∂

∂x

(
A(x)

∂̺

∂x

)
=

1

c2

∂2̺

∂t2
. (5.4)

In summary, if one starts with the 3D wave equation, and by the application of Gauss’ law, trans-7

forms it into a “1 dimensional” (i.e., single range variable) equivalent horn equation, then a Sturm-8

Louville-like equation results. This may be integrated by the application of the area function as the9

integration factor.10

Primitive solutions ̺±(x, t)11

For each choice of area function used in Eq. 5.4 (or Eq. 1.94), there are two causal primitive solutions
of the homogeneous (i.e., undriven) equation, identified as an outbound (right-traveling) and inbound
(left-traveling) wave, denoted as the Laplace transform pair

P±(x, s) =

∫ ∞

0
̺±(x, t)e−stdt

(aka, ̺±(x, t)↔ P±(x, s)), normalized such that P±(x0, s) = 1, where x0 defines the input excitation12

location, as show in Fig. 1.21. This construction is equivalent to the seperation of time and place13

variables.14

Examples: The primitive solutions for the four horns are summarized in Table 5.1.15

For the uniform horn the two primitive solutions are the two plane waves

δ(t∓ x/c)↔ P±(x, κ) = e∓κ(s)x.

These two directed wave solutions are functions of Laplace frequency s, since they must be causal.16

They may be viewed as the impulse response of a semi-infinite section of horn, namely the causal17

solutions of Eq. 5.4, driven at their input by an impulse at t = 0. It is a convention that these primitive18

solutions are normalized to 1 at the input (x = 0 and x = L in this example).19

For the spherical geometry the two waves are

P± = e∓κr/r

where the + is the “outbound” wave and the − is the inbound wave. As we shall see, when the area20

is variable, each of the primitive solutions has local reflections due to this variation. This gives rise to21

a reactive mass-component in the radiation impedance.22
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Figure 5.1: Throat acoustical resistance rA

and acoustical reactance xA, frequency charac-
teristics of infinite parabolic, conical, exponen-
tial, hyperbolic and cylindrical horns having a
throat area of 1 square centimeter. Note how
the “critical” frequency (defined here as the fre-
quency where the reactive and real parts of the
radiation impedance are equal) of the horn re-
duces dramatically with the type of horn. For
the uniform horn, the reactive component is zero,
so there is no cutoff frequency. For the parabolic
horn (1), the cutoff is around 3 kHz. For the con-
ical horn (2), the cutoff is at 0.6 [kHz]. For the
exponential horn the critical frequency is around
0.18 [kHz], which is 16 times smaller than for the
parabolic horn. For each horn the cross-sectional
area of the parabolic, conical exponential and hy-
perbolic horns is defined as 100 square centime-
ters at a distance of 100 centimeters from the
throat (Olson, 1947, p. 101).

The case of the exponential horn

P±(x) = e−mxe∓j
√
ω2−ω2

c x/c, (5.5)

which is of special interest because the radiation impedance is purely reactive below the horn’s cutoff1

frequency (ω < ωc = mc) where the reflection coefficient has magnitude 1 (no energy can radiate from2

an open horn below this frequency.3

Def yo = 1/ro

Characteristic Admittance y0: A second key definition is the wave characteristic admittance y0(x)
defined as the square root of the ratio of Z and Y

y0(x) ≡
√

Y (x, s)

Z (x, s)
=

κ

Z
=
A(x)

ρoc
, (5.6)

which depends specifically on A(x), but not on frequency s. Based on physical requirements that the4

admittance must be positive, only the positive square root is allowed.5

Since Eq. 5.4 is loss less, y0(x) must be real (and positive). When losses are introduced, y0(s, x)6

and κ(s) must be complex function of the Laplace frequency s. While such cases are interesting, and7

realistic, they are outside of the traditional loss-less Webster horn equation formulation.8

Radiation Admittance: The radiation admittance at x is defined as the admittance looking into a
semi-infinite horn (Fig. 5.1)

Y ±
rad(x, s) ≡ ±

V±(x, ω)

P±(x, ω)
= ∓ 1

Z (x, s)

P±
x

P±

∣∣∣∣∣
x

= ∓ y0(x)

κ(s)

∂ lnP±

∂x

∣∣∣∣∣
x

. (5.7)

In general, Y ±
rad depends on the direction of the velocity, but the real part of the radiation impedance9

must always be positive. Care must be taken when fixing the signs to obey these conventions. It is10

helpful to always define the volume velocity V±(x, s) into the port.11

Typically the velocity and pressure are functions of frequency ω, not complex frequency s, since they12

need not be causal functions. However the ratio of the two, defines an admittance, which necessarily13

is causal, and therefore is necessarily a function of s. Since the primitive solutions must be causal and14

stable functions, they must be analytic functions of s for σ > 0.15
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Surge admittance: Every radiation admittance may be written as yrad(t)↔ Yrad(s) which may be
further split into a real surge admittance4 yoδ(t) (Campbell, 1922), and a causal remainder admittance
yr(t), as5

yrad(t) = yoδ(t) + yr(t).

Alternatively this may also be written as the sum of an impedance surge and remainder components1

zrad(t) = roδ(t) + zr(t). These functions are inverses of each other in the convolution sense, namely2

yrad(t) ⋆ zrad(t) = δ(t), which follows from Zrad(s)Yrad(s) = 1. Any function having a causal inverse3

is said to be minimum phase thus every impedance and admittance must be minimum phase. The4

remainder characterizes the dispersive component of the impedance, thus when it is zero, the impedance5

is purely real (e.g., the reactance is zero).6

Wave admittance Y (x, s): The driving-point wave admittance, defined as the ratio of the volume
velocity V(x, s) to the average pressure P(x, s) at any point x along the range axis, may be interpreted
as follows: If the horn were split at any point x (i.e., a node is defined), the pressure at the two throats
are the same (P+ = P−). The velocities are defined as into the port, thus V+ = −V−. Due to this
definition of the flow into the port, the total velocity is the difference of these two driving point node
velocites (V = V+−V−). Consistent with Kirchhoff’s laws, the wave admittance as the sum of the two
radiation admittances

Y (x, s) ≡ Y +
rad(x, s) + Y −

rad(x, s).

ABCD Transmission matrix: The transmission matrix is useful for computing the cascade of
several system, such as a horn driven by a Thévenin system and loaded by the radiation impedance or
a cascade of several horns. The solution of a horn having finite length may be expressed in terms of a
2-port ABCD matrix, that relates the pressure and volume velocity at the input and output ports (the
two ends) of the horn (x = 0 and x = L)

[
P0

V0

]
=

[
A(s) B(s)
C(s) D(s)

] [
PL
−VL

]
. (5.8)

Note that A(s) ≡ P0
PL

∣∣∣
VL=0

must not be confused with the horn area A(x) (note the different font).7

By definition, the output velocity VL, of an ABCD matrix is out of the port, hence the negative sign,8

since V0,VL are defined into their respective ports (Orfanidis, 2009). When the system is reversible,9

A = D, reciprocal when ∆T ≡ AD − BC = 1, and anti-reciprocal when ∆T = −1. With the trivial10

exception of the uniform horn, all horns are non-reversable and reciprocal.11

Boundary Conditions: The pressure and velocity at any point x be written in terms of a super-
position of the two homogeneous solutions P+(x, s) and P−(x, s) (aka, primative solutions) of Eq. 5.4
since by the d’Alembert principle P = P+ +P− and V = V+ −V−. The formula for the impedance at
any point x is given in terms of the forward and retrograde waves

Zrad(x) ≡ P(x, ω)

V(x, ω)
=
P+

V+

(
1 + P−/P+

1− V−/V+

)
= ro

1 + Γ(s, x)

1− Γ(x, s)
, (5.9)

Here the reflectance Γ(x, s) is defined as the ratio of the forward and retrograde traveling waves

Γ(x, s) ≡ P
−(x, ω)

P+(x, ω)
=
V−(x, ω)

V+(x, ω)
. (5.10)

4Since it is real it would best be called a surge conductance.
5It seem obvious that yo ≡ y0?
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At any point x there are two reflectances, for the forward waves and retrograde waves. The radiation1

admittance Yrad(x, s) is the sum of a forward Y +
rad(x, s) and retrograd Y −

rad(x, s) radiation admittances2

(see above).3

By a rearrangement of the above terms we may recover the definition of the characteristic impedance

ro(x) =
P+(x, ω)

V+(x, ω)
=
P−(x, ω)

V−(x, ω)
, (5.11)

where ro(x) = 1/yo(x) = ρoc/A(x) (Eq. 1.99)4

One must carefully in the definition the area A(x). This area is not the cross-sectional area of the5

horn, rather it is the wave-front area, as discussed in Appendix G.3.66

In matrix notation this superposition may be written as

[
P(x)
V(x)

]
=

[
1 1

y0(x) −y0(x)

] [
P+(x)
P−(x)

]
. (5.12)

Complex-analytic nature of Γ(s) and Zrad(s): A very important assumption has been made here7

when expressing the complex reflectance Γ(s) as a function of the complex frequency s = σ+ jω, even8

though it is defined by the ratio of two functions of real (radian) frequency ω. This assumption is based9

on the fact that, like the impedance, the reflectance must be causal. Namely γ(t) ↔ Γ(s) is zero for10

t < 0. The same may be assumed of the time-domain impedance ζ(t)↔ Zrad(s). That γ(t) and ζ(t) are11

causal is require by the physics. It follows that both Γ(s) and Zrad(x) are complex analytic functions12

of s, which means they must have a Taylor series expansion in s everywhere in the right-half s plane13

(σ > 0). This follow from the Cauchy’s integral theorem (aka The fundamental theorem of complex14

calculus.), which is a special case of the Cauchy’s integral formula (aka, The Residue theorem.).15

The forward and retrograde waves may be any function of frequency ω, since they depend on the16

source pressure (or velocity) at the input to the horn. The reflectance is a transfer function (thus the17

source term cancels), that only depends on the impedance (or reflectance) looking into the system (at18

any position x).19

As an alternative way to derive Γ(s, x), invert Eq. 5.12

[
P+(x)
P−(x)

]
=

1

2y0(x)

[
y0(x) 1
y0(x) −1

] [
P
V

]
=

1

2

[
1 Z(x)
1 −Z(x)

] [
P
V

]
(5.13)

and form the ratio of reflected to incident waves

Γ(s) =
P−

P+
=
P − ZV
P + ZV =

Zrad −Z
Zrad + Z . (5.14)

It is convenient to define the normalized radiation impedance Zrad/Z when working with this form of20

Γ(s).21

Given some experience with these two forms, Zrad ≡ 1/Yrad and Γ(s), one may quickly begin to22

appreciate the advantage of working with the refelctance over the radiation impedance/admittance23

(aka immittance). The impedance has so many different forms, each of which are complicated, whereas24

the reflectance is easily understood, as it is closer to the physics.25

Finite length Horns: For a horn of fixed length L these expressions may be rewritten in terms of
renormalized primative waves. If we define the foward wave P+(x) as launched from x = 0 and the

6I need to prove that the area is the same for the forward and backward waves. To the best of my knowlenge, this has
not been demonstrated. Note they both must satisfy Laplaces equation, thus making the two equal. But if the volume
velocities are not equal for a given range r, conservation of energy is violated. It may be a calculus of variations problem,
or better, related to the conformal map. Some work needs to be done to quantify this point.



5.2. WEEK 13 161

retrograde wave P−(x) as launched from x = L, we may also write the pressure and velocity in terms
of the primatives. [

P(x)
V(x)

]
=

[
P+(x) P−(x− L)

Y +
radP+(x) −Y −

radP−(x− L)

] [
α
β

]
. (5.15)

The radiation admittance Y ±
rad(x, s) depends on the range x and Laplace frequency s. Coefficients α(ω)1

and β(ω), which depend on frequency ω (but not x), are determined by the boundary condition at2

x = L. To find the four parameters [A(s),B(s), C(s),D(s)] we evaluate the inverse of Eq. 5.15 at x = L,3

substitute this result into 5.15, and then evaluated the matrix product at x = 0.4

For compactness we adopt the following simplified subscript notation: P±
0 ≡ P±(x = 0, s), P±

L ≡5

P±(x = L, s), i.e., PL ≡ P(x = L) and VL ≡ V(x = L). The normalization of the primitive solutions6

are taken as P+
0 = 1 and P−

L = 1.7

To compute ∆L we start with

−∆T (x, s) = P+(x) Y −
rad(x)P−(x− L) + P−(x− L) Y +

rad(x)P−(x)

evaluated at x = L (recall Yrad ≡ Y ±
rad(x = L), P+

0 = P−
L = 1) , giving

P −

0
should be 1.

−∆L = Yrad
[
P+
L P−

0 + P−
0 P−

L

]
.

Thus [
α
β

]
=
−1

∆L

[
Y −
radP−(x− L) P−(x− L)
Y +
rad P+(x) −P+(x)

]

L

[
PL
VL

]
, (5.16)

which when simplified is [
α
β

]
=
−1

∆L

[
Y −
rad(L) −1

Y +
rad(L) P+

L P+
L

]

L

[
PL
−VL

]
. (5.17)

This detailed set of computations results in the following:

[
P0

V0

]
=
−1

∆L

[
1 P−

−L
Y +
rad(r0) −Y −

rad(r0)P−
−L

]

0

[
Y −
rad(rL) −1

Y +
rad(rL) P+

L P+
L

]

L

[
PL
−VL

]
. (5.18)

The subscript to the right of each matrix indicates it is evaluated at x = 0 or x = L. Here P−
−L is8

P−(x− L) at x = 0. The sign of VL must be negative to satisfy the definition of every ABCD matrix,9

that the output velocity (i.e., −VL) is out of the port.10

The relationship of β/α has special significance because it specifies the ratio of the reflected wave
amplitude β(ω) in terms of the incident wave amplitude α(ω). This ratio is know as the reflectance

γL(t)↔ ΓL(s) ≡ β

α
. (5.19)

It has a critical role in the theory of horns, as we shall see as it is determined by the relative rate of11

change of the impedance (i.e., area) with range (i.e., d ln(Z )/dx).12

Impedance Matrix: For a finite section of horn, the 2 × 2 impedance matrix (a generalization of
Ohm’s Law) may expressed in terms of the ABCD matrix elements (Van Valkenburg, 1964b) as

[
P0

PL

]
=

1

C(s)

[
A(s) ∆T

1 D(s)

] [
V0

VL

]
. (5.20)

Note that ∆T = 1 since the horn must be reciprocal (Morse and Feshbach, 1953; Hunt, 1982; Pierce,13

1981).14
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While the Transmission (ABCD) matrix is convenient when modeling, the impedance matrix (and
its inverse, the admittance matrix) are useful when one makes experimental measurements. For example

Y0|VL=0 ≡
C(s)
A(s)

and YL|V0=0 ≡
C(s)
D(s)

are the unloaded input admittances of the horn looking into the two ports (Eq. 5.7). These admittances1

are typically easily measured experimentally, given access to the endpoints.2

In section 1.5.3 we work out these relationships for the trivial case of the 1D horn (Goldsmith and3

Minton, 1924; Olson, 1947).4

5.2.2 Lec 37 Partial differential equations of physics5

Scalar wave equations and the Webster Horn equation; WKB method6

Example of a large delay, where a branch-cut placement is critical (i.e., phase unwrapping)7

L 37: Partial differential equations of Physics8

Scalar wave equation and its solution in 1 and 3 Dimensions9

5.2.3 Lec 38 Gradient, divergence and curl vector operators10

L 38: Vector dot and cross products A ·B,A×B11

Gradient, divergence and curl vector operators12

WEEK 14 37.14.013

14

L 39 Gradient, divergence and curl: Gauss’s (divergence) and Stokes’s (curl) theorems15

L 40 J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light16

Basic definitions of E,H,B,D17

O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation18

How a loud-speaker works19

L 41 The Fundamental Thm of vector calculus20

Incompressable and Irrotational fluids and the two defining vector identities21

22

5.3 Thanksgiving Holiday 11/19–11/27 201623

Thanksgiving Vacation: 1 week of rest24

5.4 Vector Calculus25

5.4.1 Lec 39 Geometry of Gradient, divergence and curl vector operators26

Geometry of Gradient, divergence and curl vector operators27
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Lec 39: Review of vector field calculus 39.14.2

5.4.2 Lec 40 Introduction to Maxwell’s Equation

L 40: J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light
Basic definitions of E,H,B,D
O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation
How a loud-speaker works.

1

5.4.3 Lec 41 The Fundamental theorem of Vector Calculus2

L 41: The Fundamental Thm of vector calculus3

Incompressible and Irrotational fluids and the two defining vector identities4

WEEK 15 40.15.05

6

L 42 Quasi-static approximation and applications:7

The Kirchoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations The8

telegraph wave equation starting from Maxwell’s equations9

Quantum Mechanics10

L 43 Last day of class: Review of Fund Thms of Mathematics:11

Closure on Numbers, Algebra, Differential Equations and Vector Calculus,12

The Fundamental Thms of Mathematics & their applications:13

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9); Normal modes vs. eigen-14

states, delay and quasi-statics;15

– Reading Day16

VC-1 Due17

5.5 Kirchhoff’s Laws18

5.5.1 Lec 42: The Quasi-static approximation and applications19

L 42: The Kirchhoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations20

Quantum Mechanics21

The quasi-static approximation failure at high frequencies: At high frequencies the quasi-22

static approximation must break down. Thus at higher frequencies we need to consider other significant23

physics of the system, known as higher order modes. A further complication is that at higher frequencies,24

damping becomes an issue.25

In acoustics viscosity and thermal effects are typically ignored, by assuming that wave propagation
is irrotationa, thus is described by the scalar wave equation. It turns out that these two loss mechanisms
are related (Rayleigh, 1896). But to understand why is complex. Helmholtz, with help from Kirchhoff,
explained this interaction, and independently published them between 1863 (Helmholtz, 1863b) and
1868 (Kirchhoff, 1868). Their collective theory is summarized by Lord Rayleigh (Rayleigh, 1896), and
experimentally verified by Warren P. Mason (Mason, 1928). The nature of the correction is that the
wave number is extended to be of form

κ(s) =
s+ β0

√
s

c0
, (5.21)
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where the forwarded P− and backward P+ pressure waves propagate as

P±(s, x) = e−κ(s)x, e−κ(s)x (5.22)

with κ(s) the complex conjugate of κ(s), and ℜκ(s) > 0. The term β0
√
s effects both the real and1

imaginary parts of κ(s). The real part is a frequency dependent loss and the imaginary part introduces2

a frequency dependent velocity (Mason, 1928).3

The frequency where the loss-less part equals the lossy part is an important parameter of the system.4

This frequency is s0 + β0
√
s0 = 0, or

√
s0 = β0 or f0 = β2/2π.5

Assuming air at 23.5◦ [C], c0 =
√
η0P0/ρ0 ≈ 344 [m/s] is the speed of sound, η0 = cp/cv = 1.4 is6

the ratio of specific heats, µ0 = 18.5 × 10−6 [Pa-s] is the viscosity, ρ0 ≈ 1.2 [kgm/m2] is the density,7

P0 = 105 [Pa] (1 atm).8

The constant β0 = Pη′/2S
√
ρ0

η′ =
√
µ0

[
1 +

√
5/2

(
η

1/2
0 − η−1/2

0

)]

is a thermodynamic constant, P is the perimeter of the tube and S the area (Mason, 1928).9

For a cylindrical tube having radius R = 2S/P , β0 = η′
0/R
√
ρ. To get a feeling for the magnitude of10

β0 consider a 7.5 [mm] tube (i.e., the average diameter of the adult ear canal). Then η′ = 6.6180×10−3
11

and β0 = 1.6110. Using these conditions the wave-number cutoff frequency is 1.6112/2π = 0.4131 [Hz].12

At 1 kHz the ratio of the loss over the propagation is β0/
√
|s| = 1.6011/

√
2π103 ≈ 2%. At 100 [Hz]13

this is a 6.4% effect.714

Mason shows that the wave speed drops from 344 [m/s] at 2.6 [kHz] to 339 [m/s] at 0.4 [kHz], which15

is a 1.5% reduction in the wave speed. In terms of the losses, this is much larger effect. At 1 [kHz]16

the loss is 1 [dB/m] for a 7.5 [mm] tube. Note that the loss and the speed of sound vary inversely with17

the radius. As the radius approaches the boundary layer thickness (the radial distance such that the18

loss is e−1), the effect of loss dominates.19

In Section 5.5.1 we shall look at some simple problems where we use the quasi-static effect and20

derive the Kirchhoff voltage and current equations, starting from Maxwell’s equations.21

5.5.2 Lec 43: Last day of class: Review of Fund Thms of Mathematics22

L 43: Closure on Numbers, Algebra, Differential Equations and Vector Calculus,23

The Fundamental Thms of Mathematics & their applications:24

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9)25

Normal modes vs. eigen-states, delay and quasi-statics;26

Reading Day27

Properties28

Closure: Properties of fields of Maxwell’s Equations 39.14.6

The variables have the following names and defining equations:

Symbol Equation Name Units

E ∇× E = −Ḃ Electric Field strength [Volts/m]
D ∇ ·D = ρ Electric Displacement (flux density) [Col/m2]
H ∇×H = Ḋ Magnetic Field strength [Amps/m]
B ∇ ·B = 0 Magnetic Induction (flux density) [Weber/m2]

In vacuo B = µ0H , D = ǫ0E, c = 1√
µ0ǫ0

[m/s], r0 =
√

µ0

ǫ0
= 377 [Ω].

29

7/home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/m/MasonKappa.m
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Vector field properties1

Closure: Summary of vector field properties 39.14.7

• Notation: v(x, y, z) = −∇φ(x, y, z) + ∇×w(x, y, z)

• Vector identities:
∇×∇φ = 0; ∇ ·∇×w = 0

Field type Generator: Test (on v):

Irrotational v = ∇φ ∇× v = 0
Rotational v = ∇×w ∇× v = J

Incompressible v = ∇×w ∇ · v = 0
Compressible v = ∇φ ∇ · v = ρ

• Source density terms: Current: J(x, y, z), Charge: ρ(x, y, z)

– Examples: ∇×H = Ḋ(x, y, z), ∇·D = ρ(x, y, z)

2

Fundamental Theorem of integral Calculus3

Closure: Fundamental Theorems of integral calculus 39.14.8

1. f(x) ∈ R (Leibniz Integral Rule): F (x) = F (a) +
∫ x
a f(x)dx

2. f(s) ∈ C (Cauchy’s formula): F (s) = F (a) +
∫ s
a f(ζ)dζ

–When integral is independent of path, F (s) ∈ C obeys CR conditions

–Contour integration inverts causal Laplace transforms

3. F ∈ R3
(Helmholtz Formula): F (x, y, z) = −∇φ(x, y, z) + ∇×A(x, y, z)

–Decompose F (x, y, z) as compressible and rotational

4. Gauss’ Law (Divergence Theorem): Qenc =
∫∫∫

∇·D dV =
∫∫

S D ·n̂ dA

–Surface integral describes enclosed compressible sources

5. Stokes’ Law (Curl Theorem): Ienc =
∫∫

(∇×H)·n̂ dA =
∮
BH·dl

–Boundary vector line integral describes enclosed rotational sources

6. Green’s Theorem . . . Two-port boundary conditions

–Reciprocity property (Theory of Sound, Rayleigh, J.W.S., 1896)

4
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Closure: Quasi-static (QS) approximation 39.14.9

• Definition: ka≪ 1 where a is the size of object, λ = c/f wavelength

• This is equivalent to a≪ λ or

• ω ≪ c/a which is a low-frequency approximation

• The QS approximation is widely used, but infrequently identified.

• All lumped parameter models (inductors, capacitors) are based on QS
approximation as the lead term in a Taylor series approximation.

1



Appendix A

Notation

A.1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed.1 Where
the definition is sketchy, Page numbers are provided where these concepts are fully explained, along
with many other important and useful definitions. For example N may be found on page 24.

A.1.1 Units

Strangely, or not, math does not contain the concept of units. This makes it distinct from physics,
where almost everything has a unit attached. Presumably this makes mathematics more general (i.e.,
abstract). But for the engineering mind, this is not good, as it necessarly means that the physical
meaning has been removed, by design. We shall stick to SI units when ever possible. Spatial coordinates
are quoted in meters [m], and time in seconds [s]. Angles in degrees have no units, whereas radians
have units of inverse-seconds [s−1.

A.1.2 Symbols and functions

We use ln as the log function base e, log as base 2, and πk to indicate the kth prime (e.g., π1 = 2, π2 = 3).

When working with Fourier F and Laplace L transforms, lower case symbols are in the time
domain while upper case indicates the frequency domain, as f(t) ↔ F (ω). An important exception
are Maxwell’s equations, because they are so widely used as upper case bold letters (e.g., E(x, ω)). It
seems logical to change this to conform to lower case, with e(x, t)↔ E(x, ω) as the preferred notation.

A.1.3 Greek letters

The Greek letters used in this text include (at least) α, β, γ, δ, ǫ, κ, ρ, ξ, ω, σ, φ, ψ, ζ, and upper-case
Γ,Ξ,Φ,Ψ,∆,Ω. Many of these are commonly associated with a physical meaning. For example, ω is
the radian frequency, ρ is typically a density. φ, ψ are commonly used to indicate angles of a triangle,
and ζ(s) is the Riemann zeta function. Many of these are so well established it makes no sense to
define new terms, so we will not do that.

Likely you do not know all of these Greek letters, commonly used in mathematics. Some of them
are pronounced in strange ways. The symbol ξ is pronounced “c,” ζ is “zeta,” β is “beta,” and χ is
“kie” (rhymes with pie). I will assume you know how to pronounce the others, which are more phonetic
in English. One advantage of learning LATEX is that all of these math sympols are built in, and thus
more easily learned, once you have adopted this powerful open-source math-oriented word-processing
system (e.g., used to write this book).

1https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols
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Table A.1: Double-bold notation for the types of numbers. (#) is a page number. Symbol with an
exponent denote the dimensionality. Thus R2 represents the real plane. An exponent of 0 denotes
point, e.g.,  ∈ C0.

Symbol (p. #) Genus Examples Counter Examples

N (24) Counting 1,2,17,3, 1020 0, -10, 5j
P (24) Prime 2,17,3, 1020 0, 1, 4, 32, 12, −5

Z (24) Integer -1, 0, 17, 5j, -1020 1/2,π,
√

5

Q (24) Rational 2/1, 3/2, 1.5, 1.14
√

2, 3−1/3, π

F (25) Fractional 1/2, 7/22 2/1, 1/
√

2

I (25) Irrational
√

2, 3−1/3, π, e Vectors

R (25) Reals
√

2, 3−1/3, π 2πj

C (152) Complex 1,
√

2j, 3−j/3, πj Vectors

A.1.4 Double-Bold notation

Table A.1 indicates the symbol followed by a page number indicationg where it is discussed, and the
Genus (class) of the number type. For example, N > 0 indicates the infinite set of counting numbers
{1, 2, 3, · · · }, not including zero. Starting from any counting number, you get the next one by adding
1. Counting numbers are also know as the Cardinal numbers.

We say that a number is in the set with the notation 3 ∈ N ∈ R, which is read as “3 is in the set
of counting numbers, which in turn in the set of real numbers,” or in vernacular language “3 is a real
counting number.”

Prime numbers (P ∈ N > 1) are taken from the counting numbers, do not include 1, and cannot be
factored.

The signed integers Z include 0 and negative integers. Rational numbers Q are historically defined
to include Z, a somewhat inconvient definition, since the more interesting class are the fractionals F,
a subset of rationals F ∈ Q that exclude the integers (i.e., F ⊥ Z). This is a useful definition because
the rationals Q = Z ∪ F are formed from the union of integers and fractionals.

Irrational numbers I are very special: They are formed by taking a limit of fractionals, as tne
numerator and denominator→∞, and apporach a limit point. It follows that irrational numbers must
be approximated by fractionals.

The reals (R) include complex numbers (C) having a zero imaginary part (i.e., R ⊂ C).

The cardinality of a set is denoted by taking the absolute value (e.g., |N|).

Classification of numbers: From the above definitions there exists a natural heiertical structure
of numbers:

P ∈ N, Z : {N, 0,−N}, F ⊥ Z, Q : Z ∪ F, R : Q ∪ I ⊂ C

1. The primes are a subset of the counting numbers: P ⊂ N.

2. The signed integers Z are composed of ±N and 0, thus N ⊂ Z.

3. The fractionals F do not include of the signed integers Z.

4. The rationals Q = Z ∪ F are the union of the signed integers and fractionals

5. Irrational numbers I have the special properity I ⊥ Q.

6. The reals R : Q, I are the union of rationals and irrationals I

7. Reals R may be defined as a subset of those complex numbers C having zero imaginary part.
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A.2 Complex vectors and the impedance matrix

Vectors as columns of ordered sets of scalars. When we write then out in text, we typically use row
notation, with the transpose symbol:

[a, b, c]T =



a
b
c


 .

This is strictly to save space on the page. The above example is said to be a 3 dimensional vector,
because it has three components. With rare exceptions, vectors are rows.

The transpose of a vector (a “so called” row-vector) are typically used as weights. A vector dot
product is defined between weights and vectors, resulting in a scalar. When the elements are complex
(∈ C), the transpose is defined as the complex conjugate of the elements. In such complex cases the
transpose conjugate is denoted with a † rather than T . For example




1
1
1


 ·




1
2
3


 =




1
1
1




T 


1
2
3


 =

[
1 1 1

]



1
2
3


 = 1 + 2 + 3 = 6.

Vectors are also frequency written using a bold font (e.g., aT =
[
2 −3 1

]
∈ C.) For this case the

dot product is
a · b = a†b = a∗

1b1 + a∗
2b2 + a∗

3b3.

Such a construction is useful when a and b are related by an impedance matrix

V (s) = Z(s)I(s).

For example, the impedance of a mass is ms and a capacitor is 1/sC. When given a system of equations
(a mechanical or electrical circuit) one may define a matrix impedance.

GIVE MORE EXAMPLES

Complex power: In this special case, the complex power P(s) ∈ R(s) is defined, in the complex
frequency domain (s), as

P(s) = I†(s)V (s) = I†(s)Z(s)I(s).

The complex power must be positive, with L−1 p(t)↔ P.
GIVE EXAMPLES

Norm of a vector: The dot product of a vector with itself is called the norm of a, designated as

||a|| =
√

a†a ≥ 0

which is always non-negative.

A.2.1 Vectors in R3

The case of three-dimensions is special, allowing definitions that are not defined in more dimensions.
A vector in R3 labels the point having the coordinates of that vector.

Dot product in R3: The dot B · C = ||B|| ||C|| cos(θ), and cos(θ) is called the direction cosine
between B and C.

Norm of a vector in R3: The norm of a vector is the dot product of it with itself

||A|| =
√

A ·A
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Euclidian distance between two points in R3: The dot product of the difference between two
vectors (A−B) · (A−B) is the Euclidian distance between the points they define

||A−B|| =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.

Cross product: and cross product A×B = ||A|| ||B|| sin(θ) are defined between the two vectors A
and B.

The cross product gives the area of the trapazoid (diamond) outlined by the two vectors (Fig. 1.12).

The triple product: This is defined between three vectors as

A · (B ×C) = det

∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

,

∣∣∣∣∣∣∣

also defined in Fig. 1.12. This may be indicated without the use of parentheses, since there can be no
other meaningful interpretation. However for rigor, parentheses should be used.

A.3 Matrices

Unfortunately when working with matrices, the role of the weights and vectors can change, depending
on the context. A useful way to view a matrix is as a set of column vectors, weighted by the elements
of the column-vector of weights multiplied from the right. For example




a11 a12 a13 · · · a1M

a21 a22 a32 · · · a3M

. . .

aN1 aN2 aN3 · · · aNM







w1

w2

· · ·
wM


 = w1




a11

a21

a21

· · ·
aN1




+ w2




a12

a22

a32

· · ·
aN2



. . . wM




a1M

a2M

a3M

· · ·
aNM



,

where the weights are
[
w1, w2, . . . , wM .

]T

Another way to view the matrix is a set of row vectors of weights, each of which re applied to the
vector [w1, w2, · · · ,WM ]T .

The determinant of a matrix is denoted either as det A or simply |A|, as in the absolute value. The
inverse of a square matrix is A−1 or invA. If |A| = 0, the inverse does not exist. AA−1 = A−1A.

Matlab’s notional convention for a row-vector is [a, b, c] and a column-vector is [a; b; c]. A prime on
a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the
prime. The : argument converts the array into a column vector, without conjugation. A tacit notation
in Matlab is that vectors are columns and the index to a vector is a row vector. Matlab defines the
notation 1 : 4 as the “row-vector” [1, 2, 3, 4], which is unfortunate as it leads users to assume that the
default vector is a row. This can lead to serious confusion later, as Matlab’s default vector is a column.
I have not found the above convention explicitly stated, and it took me years to figure this out for
myself.

When writing a complex number we shall adopt 1 to indicate
√
−1. Matlab/Octave prefer this as

well, as its explicit.
Units are SI; Angles in degrees [deg] unless otherwise noted. The units for π are always in radians

[rad]. Ex: sin(π), e90◦

eπ/2.

A.4 Periodic functions

Fourier series tells us that periodic functions are discrete in frequency, with frequencies given by nTx,
where Ts is the sample period (Ts = 1/2Fmax and Fmin = Fmax/NFT).



A.5. DIFFERENTIAL EQUATIONS VS. POLYNOMIALS 171

This concept is captured by the Fourier series, which is a frequency expansion of a periodic function.
This concept is quite general. Periodic in frequency implies discrete in time. Periodic and discrete in
time requies periodic and discrete in frequency (the case of the DFT). The modulo function mmodn is
periodic with period n.

A periodic function may be conveniently indicated using double-parentheses notation. This is
sometimes known as modular arithmetic. For example

f((t))T = f(t) = f(t± kT ),

is periodic on t, T ∈ R with a period of T and k ∈ Z. This notation is useful when dealing with Fourier
series of periodic functions.

When a discrete valued (e.g., time) sequence is periodic we use square brackets

f [[n]]N = f [n] = f [n± kN ],

with n, k,N ∈ Z and period N . This notation will be used with discrete-time signals that are periodic,
such as the case of the DFT.

A.5 Differential equations vs. Polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a cubic
has degree 3. We shall indicate a polynomial by the notation

PN (z) = zN + aN−1z
N−1 · · · a0.

Always normalize the polynomial so that aN = 1. This will not change the roots, defined by Eq. 1.11
(p. 45). The coefficient on zN−1 is always the sum of the roots zn (aN−1 =

∑N
n zn), and a0 is always

their product (a0 =
∏N
n zn).

Differential equations have order (polynomials have degree). If a second order differential equation
is Laplace transformed (Lec. 1.3.11, p. 67), one is left with a degree 2 polynomial. For example:

d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = α

(
d

dt
x(t) + βx(t)

)
↔ (A.1)

(s2 + bs+ c)Y (s) = α(s+ β)X(s). (A.2)

Y (s)

X(s)
= α

s+ β

s2 + bs+ c
≡ H(s)↔ h(t). (A.3)

Using the same argument as for polynomials, the lead coefficent must always be 1. The coefficent α ∈ R

is called the gain. The complex variable s is the Laplace frequency.
The ratio of the output Y (s) over the input X(s) is called the system transfer function H(s).

When H(s) is the ratio of two polynomials in s, the transfer function is said to be bilinear, since it
is linear in both the input and output. The roots of the numerator are called the zeros and those of
the denominator, the poles. The inverse Laplace transform of the transfer function is called the system
impulse response, which describes the system’s output signal y(t) for any given input signal x(t), via
convolution (i.e., y(t) = h(t) ⋆ x(t)).
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Appendix B

Linear algebra of 2x2 matrices

B.1 Notation

Definitions:

1. Scalar : A number, e.g. {a, b, c, α, β, · · · } ∈ {Z,Q, I,R,C}

2. Vector : A quantity having direction as well as magnitude, often denoted by a bold-face letter
with an arrow, x. In matrix notation, this is typically represented as a single row [x1, x2, x3, . . .]
or single column [x1, x2, x3 . . .]

T (where T indicates the transpose). In this class we will typically
use column vectors. The vector may also be written out using unit vector notation to indicate
direction. For example: x3×1 = x1̂i + x2̂j + x3k̂ = [x1, x2, x3]T , where î, ĵ, k̂ are unit vectors in
the x, y, z cartesian directions (here the vector’s subscript 3 × 1 indicates its dimensions). The
type of notation used may depend on the engineering problem you are solving.

3. Matrix: A =
[
a1,a2,a3, · · · ,aM

]
N×M

= {an,m}N×M , can be a non-square matrix if the number

of elements in each of the vectors (N) is not equal to the number of vectors (M). When M = N ,
the matrix is square. It may be inverted if its determinant |A| =

∏
λk 6= 0 (where λk are the

eigenvalues).

We shall only work with 2× 2 and 3× 3 square matrices throughout this course.

4. Linear system of equations: Ax = b where x and b are vectors and matrix A is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse
x = A−1b

(b) Equivalence: If two systems of equations A0x = b0 and A1x = b1 have the same solution
(i.e., x = A−1

0 b0 = A−1
1 b1), they are said to be equivalent.

(c) Augmented matrix: The first type of augmented matrix is defined by combining the matrix
with the right-hand-side. For example, given the linear system of equations Ax = y

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

]
,

then the augmented matrix is

A|y =

[
a b y1

c d y2

]

A second type of augmented matrix may be used for finding the inverse of a matrix (rather
than solving a specific instance of linear equations Ax = b). In this case the augmented
matrix is

A|I =

[
a b 1 0
c d 0 1

]
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Performing Gaussian elimination on this matrix, until the left side becomes the identity
matrix, yields A−1. This is because multiplying both sides by A−1 gives A−1A|A−1I =
I|A−1.

5. Permutation matrix (P ): A matrix that is equivalent to the identity matrix, but with scrambled
rows (or columns). Such a matrix has the properties det(P ) = ±1 and P 2 = I. For the 2x2 case,
there is only one permutation matrix:

P =

[
0 1
1 0

]
P 2 =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]

A permutation matrix P swaps rows or columns of the matrix it operates on. For example, in
the 2x2 case, pre-multiplication swaps the rows

PA =

[
0 1
1 0

] [
a b
α β

]
=

[
α β
a b

]
,

whereas post-multiplication swaps the columns

AP =

[
a b
α β

] [
0 1
1 0

]
=

[
b a
β α

]

For the 3x3 case there are 3 ·2 = 6 such matrices, including the original 3x3 identity matrix (swap
a row with the other 2, then swap the remaining two rows).

6. Gaussian elimination (GE) operations Gk: There are 3 types of elementary row operations, which
may be performed without fundamentally altering a system of equations (e.g. the resulting system
of equations is equivalent). These operations are (1) swap rows (e.g. using a permutation matrix),
(2) scale rows, or (3) perform addition/subraction of two scaled rows. All such operations can be
performed using matrices.

For lack of a better term, we’ll describe these as ‘gaussian elimination’ or ‘GE’ matrices.1 We will
categorize any matrix that performs only elementary row operations (but any number of them)
as a ‘GE’ matrix. Therefore, cascade of GE matrices is also a GE matrix.

Consider the GE matrix

G =

[
1 0
1 −1

]

(a) Pre-multiplication scales and adds the rows

GA =

[
1 0
1 −1

] [
a b
α β

]
=

[
a b

a− α b− β

]

The result is a Gaussian elimination operation.

(b) Post-multiplication adds and scales columns.

AG =

[
a b
α β

] [
1 0
−1 1

]
=

[
a− b b
α− β β

]

Here the second column is subtracted from the first, and placed in the first. The second
column is untouched. This operation is not a Gaussian elimination. Therefore, to

1The term ‘elementary matrix’ may also be used to refer to a matrix that performs an elementary row operation.
Typically, each elementary matrix differs from the identity matrix by one single row operation. A cascade of elementary
matrices could be used to perform Gaussian elimination.
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put Gaussian elimination operations in matrix form, we form a cascade of pre-multiply
matrices.

Here det(G) = 1, G2 = I, which won’t always be true if we scale by a number greater than

1. For instance, if G =

[
1 0
m 1

]
(scale and add), then we have det(G) = 1, Gn =

[
1 0

n ·m 1

]
.

B.1.1 Gaussian elimination exercises

Find the solution to the following 3x3 matrix equation Ax = b by Gaussian elimination. Show your
intermediate steps. You can check your work at each step using Matlab.




1 1 −1
3 1 1
1 −1 4






x1

x2

x3


 =




1
9
8


 .

1. Show (i.e., verify) that the first GE matrix G1, which zeros out all entries in the first column, is
given by

G1 =




1 0 0
−3 1 0
−1 0 1




Identify the elementary row operations that this matrix performs. Sol: Operate with GE matrix
on A

G1[A|b] =




1 0 0
−3 1 0
−1 0 1







1 1 −1 1
3 1 1 9
1 −1 4 8


 =




1 1 −1 1
0 −2 4 6
0 −2 5 7




It scales the first row by -3 and adds it to the second row, and scales the first row by -1 and adds
it to the third row.

2. Find a second GE matrix, G2, to put G1A in upper triangular form. Identify the elementary row
operations that this matrix performs. Sol:

G2 =




1 0 0
0 1 0
0 −1 1




which scales the second row by -1 and adds it to the third row. Thus we have

G2G1[A|b] =




1 0 0
0 1 0
0 −1 1







1 0 0
−3 1 0
−1 0 1







1 1 −1 1
3 1 1 9
1 −1 4 8


 =




1 1 −1 1
0 −2 4 6
0 0 1 1




3. Find a third GE matrix, G3, which scales each row so that its leading term is 1. Identify the
elementary row operations that this matrix performs. Sol:

G3 =




1 0 0
0 −1/2 0
0 0 1




which scales the second row by -1/2. Thus we have

G3G2G1[A|b] =




1 0 0
0 −1/2 0
0 0 1







1 0 0
0 1 0
0 −1 1







1 0 0
−3 1 0
−1 0 1







1 1 −1 1
3 1 1 9
1 −1 4 8


 =




1 1 −1 1
0 1 −2 −3
0 0 1 1



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4. Finally, find the last GE matrix, G4, that subtracts a scaled version of row 3 from row 2, and
scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix
(G4G3G2G1A = I). Sol:

G4 =




1 −1 −1
0 1 2
0 0 1




Thus we have

G4G3G2G1[A|b] =




1 −1 −1
0 1 2
0 0 1







1 0 0
0 −1/2 0
0 0 1







1 0 0
0 1 0
0 −1 1







1 0 0
−3 1 0
−1 0 1







1 1 −1 1
3 1 1 9
1 −1 4 8


 =




1 0 0 3
0 1 0 −1
0 0 1 1

5. Solve for [x1, x2, x3]T using the augmented matrix format G4G3G2G1[A|b] (where [A|b] is the
augmented matrix). Note that if you’ve performed the preceding steps correctly, x = G4G3G2G1b.
Sol: From the preceding problems, we see that [x1, x2, x3]T = [3,−1, 1]T

B.2 Inverse of the 2x2 matrix

We shall now apply Gaussian elimination to find the solution [x1, x2] for the 2x2 matrix equation
Ax = y (Eq. 3.8, left). We assume to know [a, b, c, d] and [y1, y2]. We wish to show that the intersection
(solution) is given by the equation on the right.

Here we wish to prove that the left equation has an inverse given by the right equation:

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
.

How to take inverse:
1) Swap the diagonal, 2) change the signs of the off-diagonal, and 3) divide by ∆.

B.2.1 Derivation of the inverse of a 2x2 matrix

1. Step 1: normalize the first column to 1.

2. Step 2: subtract the top equation from the lower.

3. Step 3: express result in terms of the determinate ∆ = ad− bc.

[
1 b

a

1 d
c

] [
x1

x2

]
=

[
1
ay1
1
cy2

] [
1 b

a

0 d
c − b

a

] [
x1

x2

]
=

[
1
a 0
− 1
a

1
c

] [
y1

y2

] [
1 b

a
0 ∆

] [
x1

x2

]
=

[
1
a 0
−c a

] [
y1

y2

]

4. Step 4: These steps give the solution for x2: x2 = − c
∆y1 + a

∆y2.

5. Step 5: Finally the top equation is solved for x1: x1 = 1
ay1 − b

ax2 ⇒ x1 = [ 1
a + b

a
c
∆ ]y1 − b

a
a
∆y2.

In matrix format, in terms of the determinate ∆ = ab− cd becomes:

[
x1

x2

]
=

[
1
a + bc

a∆ − b
∆

− c
∆

a
∆

] [
y1

y2

] [
x1

x2

]
=

1

∆

[
∆+bc
a −b
−c a

] [
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
.

Summary: This is a lot of algebra, that is why it is essential you memorize the formula for the
inverse.
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Eigenvector analysis

Here we show how to compute the eigenvalues and eigenvectors for the 2x2 Pell matrix

A =

[
1 N
1 1

]
.

The analysis applies to any matrix, but since we are concentrated on Pell’s equation, we shall use the
Pell matrix, for N = 2. By using a specific matrix we can check all the equations below with Matlab,
which I advise you to do.

The Matlab command [E,D]=eig(A) returns the eigenvector matrix E

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]
=

[
0.8165 −0.8165
0.5774 0.5774.

]

and the eigenvalue matrix Λ (Matlab’s D)

Λ ≡
[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
=

[
2.4142 0

0 −0.4142

]
.

The factor
√

3 on E normalizes each eigenvector to 1 (i.e., The Matlab command norm([
√

2, 1]) gives√
3).

In the following discussion we show how to determine E and D (i.e, Λ), given A.

Calculating the eigenvalue matrix (Λ): The matrix equation for E is

AE = EΛ. (C.1)

Pre-multiplying by E−1 diagonalizes A, given the eigenvalue matrix (D in Matlab)

Λ = E−1AE. (C.2)

Post-multiplying by E−1 recovers A
A = EΛE−1. (C.3)

Matrix power formula: This last relation is the entire point of the eigenvector analysis, since it
shows that any power of A may be computed from powers of the eigen values. Specifically

An = EΛnE−1. (C.4)

For example, A2 = AA = EΛ (E−1E) ΛE−1 = EΛ2E−1.
Equations C.1, C.2 and C.3 are the key to eigenvector analysis, and you need to memorize them.

You will use them repeatedly throughout this course, and for a long time after it is over.
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Showing that A − λ±I2 is singular: If we restrict Eq. C.1 to a single eigenvector (one of e±),
along with the corresponding eigenvalue λ±, we obtain a matrix equations

Ae± = e±λ± = λ±e±

Note the important swap in the order of e± and λ±. Since λ± is a scalar, this is legal (and critically
important), since this allows us to remove (factored out) e±

(A− λ±I2)e± = 0. (C.5)

This means that the matrix A−λ±I2 must be singular, since when it operates on e±, which is not zero,
it gives zero. It immediately follows that its determinant is zero (i.e., |(A−λ±I2)| = 0). This equation
is used to uniquely determine the eigenvalues λ±. Note the important difference between λ±I2 and Λ
(i.e., |(A− Λ)| 6= 0).

Calculating the eigenvalues λ±: The eigenvalues λ± of A may be determined from |(A−λ±I2)| = 0
∣∣∣∣∣
1− λ± N

1 1− λ±

∣∣∣∣∣ = (1− λ±)2 −N2 = 0.

For our case of N = 2, λ± = (1±
√

2).1

Calculating the eigenvectors e±: Once the eigenvalues have been determined, they are substitute

them into Eq. C.5, which determines the eigenvectors E =
[
e+, e−

]
, by solving

(A− λ±)e± =

[
1− λ± 2

1 1− λ±

]
e± = 0

where 1− λ± = 1− (1±
√

2) = ∓
√

2.
Recall that Eq. C.5 is singular, because we are using an eigenvalue, and each eigenvector is pointing

in a unique direction (This is why it is singular). You might respectively suggest that this equation
has no solution. In some sense you would be correct. When we solve for e±, the two equations defined
by Eq. C.5 co-linear (the two equations describe parallel lines). This follows from the fact that there
is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for e+ = [e+
1 , e

+
2 ]T ,

[
−
√

2 2

1 −
√

2

] [
e+

1

e+
2

]
= 0

This gives two identical equations −
√

2e+
1 + 2e+

2 = 0 and e+
1 −
√

2e+
2 = 0. This is the price of an over-

specified equation (the singular matrix is degenerate). The most we can determine is e+ = c [−
√

2, 1]T ,
where c is a constant. We can determine eigenvector direction, but not its magnitude.

Following exactly the same procedure for λ−, the equation for e− is
[√

2 2

1
√

2

] [
e−

1

e−
2

]
= 0

In this case the relation becomes e−
1 +
√

2e−
2 = 0, thus e− = c [

√
2, 1]T where c is a constant.

Normalization of the eigenvectors: The constant c may be determined by normalizing the eigen-
vectors to have unit length. Since we cannot determine the length, we set it to 1. In some sense the
degeneracy is resolved by this normalization. Thus c = 1/

√
3, since

c2
((
±
√

2
)2

+ 12
)

= 3c2 = 1.

1It is a convention to order the eigenvalues from largest to smallest.
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Summary: Thus far we have shown

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]

and

Λ =

[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
.

Verify that Λ = E−1AE: To find the inverse of E, 1) swap the diagonal values, 2) change the sign
of the off diagonals, and 3) divide by the determinant ∆ = 2

√
2/
√

3 (see Appendix B)

E−1 =

√
3

2
√

2

[
1
√

2

−1
√

2

]
=

[
0.6124 0.866
−0.6124 0.866

]
.

By definition for any matrix E−1E = EE−1 = I2. Taking the product gives

E−1E = ✚✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
· 1

✚✚
√

3

[√
2 −

√
2

1 1

]
=

[
1 0
0 1

]
= I2.

We wish to show that Λ = E−1AE
[
1 +
√

2 0

0 1−
√

2

]
. = ✚✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
·
[
1 2
1 1

]
· 1

✚✚
√

3

[√
2 −

√
2

1 1

]
,

which is best verified with Matlab.

Verify that A = EΛE−1: We wish to show that
[
1 2
1 1

]
=

1

✚✚
√

3

[√
2 −

√
2

1 1

]
·
[
1 +
√

2 0

0 1−
√

2

]
.✚

✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
,

which is best verified with Matlab (or Octave). All the above equations have been verified both with
Matlab and Octave.

I suggest that you verify EΛ 6= ΛE and AE = EΛ with Matlab. Here is the Matlab program
which does this:

A = [1 2; 1 1]; %define the matrix

[E,D] = eig(A); %compute the eigenvector and eigenvalue matrices

A*E-E*D %This should be $\approx 0$, within numerical error.

E*D-D*E %This is not zero

Symbolic analysis of E and Λ: Using Matlab/Octave’s sym A B C D M L and M=[A B;C D],

[E,L]=eig(M), the eigenvectors e± are

e± =

(
1

2C

[
(A−D)∓

√
(A−D)2 + 4BC

]

1

)

and eigenvalues are

λ± =
1

2

(
(A+D)−

√
(A−D)2 + 4BC

(A+D) +
√

(A−D)2 + 4BC

)

When T is symmetric (A = D) these simplify to

E =

[
−
√

B
C +

√
B
C

1 1

]
Λ =

[
A−
√
BC 0

0 A+
√
BC

]
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Appendix D

Solution to Pell’s Equation (N=2)

Section 2.2.2 (p. 120) showed that the solution [xn, yn]T to Pell’s equation, for N = 2, is given by
powers of Eq. 1.5. To find an explicit formula for [xn, yn]T , one must compute powers of

A = 1

[
1 2
1 1

]
. (D.1)

We wish to find the solution to Pell’s equation (Eq. 1.5), based on the recursive solution, Eq. 1.6
(p. 41). Thus we need is powers of A, that is An, which gives the a closed form expression for [xn, yn]T .
By the diagonalization of A, its powers are simply the powers of its eigenvalues. This diagonalization
is called an eigenvalue analysis, a very general method rooted in linear algebra. This type of analysis
allows us to find the solution to most of the linear the equations we encounter.

From Matlab with N = 2 the eigenvalues of Eq. D.1 are λ± ≈ [2.4142,−0.4142] (i.e., λ± =
1(1 ±

√
2)). The final solution to Eq. D.1 is given in Eq. 2.6 (p. 120). The solution for N = 3 is

provided in Appendix D.1 (p. 181).

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of the
eigenvalues. This results in the general solution given by

[
xn
yn

]
= 1nAn

[
1
0

]
= 1nEΛnE−1

[
1
0

]
.

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab command
[E,D]=eig(A) is helpful to find D and E given any A. As we saw above,

Λ = 1

[
1 +
√

2 0

0 1−
√

2

]
≈
[
2.414 0

0 −0.414

]
.

D.1 Pell equation for N=3

This summarizes the solution of Pell’s equation due to the Pythagoreans using matrix recursion, for the
case of N=3. The integer solutions are shown in on the right. Note that xn/yn →

√
3, in agreement

with the Euclidean algorithm.1 It seem likely that β0 could be absorbed in the starting solution, and
then be removed from the generating function, other than as the known factor βn0

Case of N = 3: [x0, y0]T = [1, 0]T , β0 = /
√

2; Pell-3: x2
n − 3y2

n = 1; xn/yn −→∞
√

3

Try other trivial solutions such as [−1, 0]T and [±, 0]T . Perhaps this can provide a clue to the
proper value of β0.

1The matlab program for generating this solution is PellSol3.m.
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[
x1

y1

]
= β0

[
1
1

]
= β0

[
1 3
1 1

] [
1
0

]
(1β0)2 − 3(1β0)2 = 1

[
x2

y2

]
= β2

0

[
4
2

]
= β2

0

[
1 3
1 1

] [
1
1

] (
4β2

0

)2
− 3

(
2β2

0

)2
= 1

[
x3

y3

]
= β3

0

[
10
6

]
= β3

0

[
1 3
1 1

] [
4
2

] (
10β3

0

)2
− 3

(
6β3

0

)2
= 1

[
x4

y4

]
= β4

0

[
28
16

]
= β4

0

[
1 3
1 1

] [
10
6

] (
28β4

0

)2
− 3

(
16β4

0

)2
= 1

[
x5

y5

]
= β5

0

[
76
44

]
= β5

0

[
1 3
1 1

] [
28
16

] (
76β5

0

)2
− 3

(
44β5

0

)2
= 1



Appendix E

Laplace transforms

Given a Laplace transform (L) pair f(t)↔ F (s), the frequency domain will always be upper-case [e.g.
F (s)] and the time domain lower case [f(t)] and causal (i.e., f(t < 0) = 0). The definition of the
forward transform (f(t)→ F (s)) is

F (s) =

∫ ∞

0−

f(t)e−stdt,

where s = σ + jω is the complex Laplace frequency in [radians] and t is time in [seconds].
The inverse Laplace transform (L−1), F (s)→ f(t) is defined as

f(t) =
1

2πj

∫ σ0+j∞

σ0−j∞
F (s)estds =

1

2πj

∮

C
F (s)estds

with σ0 > 0 ∈ R is a positive constant.
As discussed in the lecture notes (Section 1.4.7, p. 72) we must the Cauchy Residue Theorem

(CRT), requiring closure of the contour C at ω→ ±j∞
∮

C
=

∫ σ0+j∞

σ0−j∞
+

∫

⊂∞

where the path represented by ‘⊂∞’ is a semicircle of infinite radius. For a causal, ‘stable’ (e.g. doesn’t
“blow up” in time) signal, all of the poles of F (s) must be inside of the Laplace contour, in the left-half
s-plane.
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Spring

Dash−Pot (resistance)

Force

Mass

Figure E.1: This three element mechanical resonant circuit consisting of a spring, mass and dash-pot (e.g., viscous
fluid).

Hooke’s Law for a spring states that the force f(t) is proportional to the displacement x(t), i.e.,
f(t) = Kx(t). The formula for a dash-pot is f(t) = Rv(t), and Newton’s famous formula for mass is
f(t) = d[Mv(t)]/dt, which for constant M is f(t) = Mdv/dt.

The equation of motion for the mechanical oscillator in Fig. E.1 is given by Newton’s second law;
the sum of the forces must balance to zero

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t). (E.1)
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184 APPENDIX E. LAPLACE TRANSFORMS

These three constants, the mass M , resistance R and stiffness K are all real and positive.. The
dynamical variables are the driving force f(t) ↔ F (s), the position of the mass x(t) ↔ X(s) and its
velocity v(t)↔ V (s), with v(t) = dx(t)/dt↔ V (s) = sX(s).

Newton’s second law (c1650) is the mechanical equivalent of Kirchhoff’s (c1850) voltage law (KCL),
which states that the sum of the voltages around a loop must be zero. The gradient of the voltage
results in a force on a charge (i.e., F = qE).

Equation E.1 may be re-expressed in terms of impedances, the ratio of the force to velocity, once
it is transformed into the Laplace frequency domain.

The key idea that every impedance must be complex analytic and ≥ 0 for σ > 0 was first proposed
by Otto Brune in his PhD at MIT, supervised by a student of Arnold Sommerfeld, Ernst Guilliman,
an MIT ECE professor, who played a major role in the development of circuit theory. Brune’s primary
(non-MIT) advisor was Cauer, who was also well trained in 19th century German mathematics.1

1It must be noted, that Mac VanValkenburg, from the University of IL., was arguably more influential in circuit theory,
during the same period. Mac’s book are certainly more accessible, but perhaps less widely cited.



Appendix F

Transmission lines

F.0.1 Transfer functions

In this problem, we will look at the transfer function of a two-port network, shown in Fig. F.1. We
wish to model the dynamics of a freight-train having N such cars. The model of the train consists of
masses connected by springs.

The velocity transfer function for this system is defined as the ratio of the output to the input
velocity. Consider the engine on the left pulling the train at velocity V1 and each car responding with
a velocity of Vn. Then

H(s) =
VN (s)

V1(s)

is the frequency domain ratio of the last car having velocity VN to V1, the velocity of the engine, at
the left most spring (i.e., coupler).

M M
K K K

MM

f1 f2 f3 f4

v2 v3 v4v1
1
2
M 1

2
M

C

Figure F.1: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of stiffness K
or compliance C = 1/K. Below it is the electrical equivalent circuit, for comparison. The mass is modeled as an inductor
and the springs as capacitors to ground. The velocity is analogous to a current and the force fn(t) to the voltage vn(t).

To do: Use the ABCD method to find the matrix representation of Fig. F.1. Consistent with the
figure, break the model into cells each consisting of three elements: a series inductor representing half
the mass (L = M/2), a shunt capacitor representing the spring (C = 1/K), and another series inductor
representing half the mass (L = M/2). Each cell is symmetric, making the model a cascade of identical
cells.

At each node define the force fn(t)↔ Fn(ω) and the velocity vn(t)↔ Vn(ω) at junction n.

1. Write the ABCD matrix T for a single cell, composed of series mass M/2, shunt compliance C
and series mass M/2, that relates the input node 1 to node 2 where

[
F1

V1

]
= T

[
F2(ω)
−V2(ω)

]

Note that here the mechanical force F is analogous to electrical voltage, and the mechanical
velocity V is analogous to electrical current.
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T =

[
1 sM/2
0 1

] [
1 0
sC 1

] [
1 sM/2
0 1

]
=

[
1 + s2MC/2 (sM/2)(2 + s2MC/2)

sC 1 + s2MC/2

]
(F.1)

2. Assuming that N = 2 and that F2 = 0 (two mass problem), find the transfer function H(s) ≡
V2/V1. From the results of the T matrix you determined above, find

H21(s) =
V2

V1

∣∣∣∣
F2=0

From the lower equation we see that V1 = sCF2 − (s2MC/2 + 1)V2. Recall that F2 = 0, thus

V2

V1
=

−1

s2MC/2 + 1
=

(
c+

s− s+
+

c−
s− s−

)
.

with s± = ±
√

2
MC and c± = ±/

√
2MC.

3. Find h21(t), the inverse Laplace transform of H21(s).

h(t) =

∮ σ0+j∞

σ0−j∞

est

s2MC/2 + 1

ds

2πj
= c+e

−s+tu(t) + c−e
−s−tu(t).

The integral follows from the CRT. The poles are at s± = ±
√

2
MC and the residues are c± =

±/
√

2MC.

4. What is the input impedance Z2 = F2/V2 if F3 = −r0V3?

Starting from T calculated above, find Z2

Z2(s) =
F2

V2
= T

[
F3

−V3

]
=
−(1 + s2CM/2)r0��V3 − (sM/2)(2 + s2CM/2)��V3

−sCr0��V3 − (1 + s2CM/2)��V3

5. Simplify the expression for Z2 with N →∞ by assuming that:
1) F3 = −r0V3 (i.e., V3 cancels), 2) s2MC << 1: 3) r0 =

√
M/C

Z2(s) =
(1 + s2CM/2)r0 + (sM/2)(2 + s2CM/2)

sCr0 + (1 + s2CM/2)
≈ r0 + sM

sCr0 + 1

Assumption 3 gives

Z2 =
sM +

√
M
C

sC
√

M
C + 1

= r0
✟✟✟✟✟✟
1 + s

√
MC

1 + s
√
MC

The constant r0 is called the characteristic impedance.This shows that below the cutoff frequency
(approximation 2), the system approximates a transmission line.

6. State the ABCD matrix relationship between the first and Nth node, in terms of of the cell
matrix. [

F1

V1

]
= TN

[
FN (ω)
−VN (ω)

]

7. Given a T (ABCD) transmission matrix, the eigenvalues are and vectors are given in Appendix
C of the Notes (p. 143), repeated here.
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Eigenvalues: [
λ+

λ−

]
=

1

2

[
(A+D)−

√
(A−D)2 + 4BC

(A+D) +
√

(A−D)2 + 4BC

]

Due to symmetry, A = D, this simplifies to λ± = A∓
√
BC so that the eigen matrix is

Λ =

[
A−
√
BC 0

0 A+
√
BC

]

Eigenvectors: The eigenvectors are

[
e±
]

=

[
1

2C

[
(A−D)∓

√
(A−D)2 + 4BC

]

1

]
.

The determinant of E is

∆E = − 1

2C

√
(A−D)2 + 4BC.

In the symmetric case when A = D

E =

[
−
√

B
C +

√
B
C

1 1

]
, E−1 =

1

2


−
√

C
B 1

+
√

C
B 1


 ,

and

∆E = −2

√
B

C
= −2ro.

There are two important invariants for the transmission lines, the wave number k =
√
BC = s/c,

and the characteristic resistance ro =
√
B/C.

Transfer functions of the transmission line: The velocity transfer function HN,1 = VN
V1

is
given by [

F1

V1

]
= TN

[
FN (ω)
−VN (ω)

]

along with the eigenvalue expansion

TN = EΛNE−1 = E

[
λN+ 0
0 λN−

]
E−1.
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Appendix G

2D parabolic horn

For 2D cylindrical waves the area function is A(x) = A0x, (horn radius r ∝ √x) thus the Webster horn
equation reduces to the cylindrical wave equation (Appendix G.3.)

Pxx(x, ω) +
1

x
Px(x, ω) = κ2(s)P(x, ω)

having Bessel function primitive solutions

P+(x, ω) = J0(ωx/c)− iY0(ωx/c) = H+
0 (−jκx)

and
P−(x, ω) = J0(ωx/c) + iY0(ωx/c) = H−

0 (−jκx),

where J0 and Y0 are the standard Bessel (and Neumann) functions, and H∓
0 (x) are the Hankel function

of the first (-) and second (+) kind (respectively), all of order zero (indicated by the subscript) (Salmon,
1946a; Olson, 1947; Morse and Feshbach, 1953).

2D Radiation Admittance: Given a half-infinite section of parabolic horn, from Eq. 5.71

Y ±
rad(x, s) = ∓y0

κ

∂

∂x
lnH±

0 (−jκx) = ∓jy0
H±

1

H±
0

. (G.1)

2D ABCD Transmission matrix: Based on Eq. 5.18
[
P0

V0

]
=
−1

∆L

[
1 P−

−L
Y +
rad −Y −

radP−
−L

]

0

[
Y −
rad −1

Y +
radP+

L P+
L

]

L

[
PL
−VL

]
. (G.2)

Verify the following

[
P0

V0

]
= − 1

∆L

[
1 H−

0 (x− L)
Y +
rad −Y −

radH
−
0 (x− L)

]

x=0

[
Y −
rad −1

Y +
radH

+
0 (x) H+

0 (x)

]

x=L

[
PL
−VL

]
, (G.3)

where the subscript on each matrix indicates the value of x at which it is evaluated.

Impedance matrix: [
P0

PL

]
=

1

C(s)

[
A(s) 1

1 D(s)

] [
V0

VL

]
. (G.4)

1Note that
∂ lnH±

0 (kx)

∂x
= −kH

±

1 (kx)

H±

0 (kx)
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Figure G.1: Real and imaginary parts of the radiation admittance Yrad/y0 (upper) and impedance (lower), as
a function of frequency, for a infinite section of horn, as computed from Eq. G.1. The real and imaginary parts
of the impedance are very similar to the results of Olson (1947) shown in Fig. 5.1. The real and imaginary parts
of the admittance are much simpler to characterize: the imaginary part is a mass (i.e., is ∝ 1/s) while the real
part → 1 above the critical frequency (where the real and imaginary parts are equal) at ≈ 0.3 [kHz].

G.1 3D Conical Horn

For each horn we must find the natural normalization from the range variable to the normalize range
variable x. For the conical horn the radius is proportional to the range variable r thus

A(r) = 4π sin2 (Θ/2) r2 [m2].

The angle Θ is a measure of the solid (cone) angle. When Θ = π we have the case of the entire sphere
so the solid angle is 4π [steradians] and the area is 4πr2. The formula for the area may be simplified
by defining Aθ ≡ 4π sin2(Θ/2) r2

0 [m2], resulting in the more convenient relation

A(r) = Aθ (r/r0)2 [m2].

This is a bit tricky because Aθ is not a constant since it depends on the place where the area was
normalized, in this case r0.

Using the conical horn area in Eq. 1.94 results in the spherical wave equation [Appendix G.7,
(Olson, 1947; Morse, 1948; Benade, 1988)]

Prr(r, ω) +
2

r
Pr(r, ω) = κ2P(r, ω) (G.5)

(one must remember the steradian scale factor Aθ). Here F (r) = ∂r lnA(r) = 2
r (see Table 5.1).

Primitive solutions: We may now identify the two primitive d’Alembert solutions of Eq. G.5 (see
Appendix G.3)

P±(r, s) = P±
θ (r, s) e∓κ(s)r/r.

These are also known as the zero order spherical Hankel functions (i.e., h±
0 (κr)).

We wish to normalize these primitive solution such that they are 1 at the source locations r = r0

and r = rL (i.e., P+(r0, s) = 1 and P−(rL, s) = 1). The normalized primitive solutions are

P+(r, s) ≡ r0

r
e−κ(r−r0) P−(r, s) ≡ rL

r
e+κ(r−rL),

as may be easily verified by letting r = r0 in P+(r, s) and r = rL in P−(r, s).
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Z(r) ±ρ0/Aθ

Figure G.2: The equivalent circuit for the radiation impedance Z+

rad
(s, r) for a conical is a parallel combination

of the radiation resistance Z(r) = ρ0c/Aθ(r) and a mass given by M(r) = ±ρ0r/Aθ. Note that the inbound
primitive wave has a negative mass! This means that the inbound wave is not the time-reverse version of the
outbound wave. I take this to be due to the different curvature of the wavefronts of the waves.

Radiation Admittance: Given a half-infinite section of conical horn Eq. 5.7 gives

Y ±
rad(r, s) = ∓ y0(r)

κ(s)

∂ lnP±

∂r

∣∣∣∣∣
r0,rL

= y0(r)

(
1± c

rs

)
↔ y0(r)

(
δ(t)± c

r
u(t)

)
, (G.6)

Here are the gory details:

Y +
rad(r0, s) = − y0

κ

∂ lnP−

∂r

∣∣∣∣∣
r0

=
y0

κ

∂

∂r
(κr + ln r)

∣∣∣∣
r0

= y0(r)

(
1 +

c

sr0

)

Y −
rad(rL, s) = +

y0

κ

∂ lnP+

∂r

∣∣∣∣∣
rL

=
y0

κ

∂

∂r
(κr − ln r)

∣∣∣∣
rL

= y0(r)

(
1− c

srL

)

where κ(s) = s/c, δ(t) and u(t) are the Dirac and Heaviside functions, respectively.
As shown in Fig. G.2 there are two additive admittance terms, a real part equal to the characteristic

conductance y0(r), and a mass, equal to ±Zr/c = ±ρ0r/Aθ. For the reverse traveling primitive wave,
these conventions result in negative mass, an interesting and perhaps surprising result. Since the
admittances are summed, the impedances appear in parallel.

Figure 5.1 from Olson (1947, Fig. 5.3, p. 101) provides the real and imaginary impedance for each
of the horns discussed here. The difference between Olson and the present work, is in our intent here
to explain the physics behind the reactive term, in the time domain.

3D ABCD Transmission matrix: For clarity the relations are re-derive “from scratch”

[
P(r)
V(r)

]
=

[
r0
r e

−κ(r−r0) rL
r e

+κ(r−rL)

Y +
rad(r)

r0
r e

−κ(r−r0) −Y −
rad(r)

rL
r e

+κ(r−rL)

] [
α
β

]
. (G.7)

Evaluate at the boundary rL
[
P(rL)
V(rL)

]
=

[
r0
rL
e−κ(rL−r0) rL

rL
e+κ(rL−rL)

Y +
rad(rL) r0

rL
e−κ(rL−r0) −Y −

rad(rL) rL
rL
e+κ(rL−rL)

] [
α
β

]
(G.8)

= [
PL
VL

]
= −

[
− r0
rL
e−κ(rL−r0) −1

−Y +
rad(rL) r0

rL
e−κ(rL−r0) Y −

rad(rL)

] [
α
β

]
. (G.9)

and taking the inverse, gives the weights α, β and the boundary (load) impedance2

[
α
β

]

rL

=
−1

∆L

[
Y −
rad(rL) −1

Y +
rad(rL) r0

rL
e−κ(rL−r0) + r0

rL
e−κ(rL−r0)

] [
PL
−VL

]
(G.10)

2The three red signs have been changed to assign VL into the port.
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where

−∆L =
[
Y −
rad(rL) + Y +

rad(rL)
] r0

rL
e−κ(rL−r0) = 2y0(L)

r0

rL
e−κrL .

Substituting Eq. G.10 back into Eq. G.7

[
P(r)
V(r)

]
=
−1

∆L

[
r0
r e

−κ(r−r0) rL
r e

+κ(r−rL)

Y +
rad(r)

r0
r e

−κ(r−r0) −Y −
rad(r)

rL
r e

+κ(r−rL)

] [
Y −
rad(rL) −1

Y +
rad(rL) r0

rL
e−κ(rL−r0) + r0

rL
e−κ(rL−r0)

] [
PL
−VL

]
.

(G.11)
Evaluating this at the throat r = r0 we obtain the final ABCD matrix in factored form3

[
P0

V0

]
=
−1

∆L

[
1 rL

r0
e+κ(r0−rL)

Y +
rad(r0) −Y −

rad(r0) rL
r0
e+κ(r0−rL)

] [
Y −
rad(rL) −1

Y +
rad(rL) r0

rL
e−κ(rL−r0) + r0

rL
e−κ(rL−r0)

] [
PL
−VL

]
.

(G.12)
At this point it is not difficult to compute A(s),B(s), C(s),D(s).

For reference, the general case (Eq. 5.18) is4

[
P0

V0

]
=
−1

∆L

[
1 P−

L

Y +
rad(r0) −Y −

rad(r0)P−
L

] [
Y −
rad(rL) −1

Y +
rad(rL) P+

L P+
L

] [
PL
−VL

]
. (G.13)

here.

Impedance matrix: [
P0

PL

]
=

1

C(s)

[
A(s) 1

1 D(s)

] [
V0

VL

]
. (G.14)

G.2 Exponential Horn

Starting from the basic transmission line equations with an area function given by A(x) = A0e
2mx,

Eq.5.4 is
∂2P(x, ω)

∂x2
+ 2m

∂P(x, ω)

∂x
= κ2P(x, ω), (G.15)

thus F (x) ≡ 1
A(x)

∂A(x)
∂x =2m is a constant. Since Eq. G.15 is an ordinary constant coefficient differential

equation, it has a closed form solution (Olson, 1947; Salmon, 1946a,b; Morse, 1948; Beranek, 1954;
Leach, 1996; Beranek and Mellow, 2012). By the substitution P(x, ω) = P (κ(s))e−κ±(s)x, one may
solve for the characteristic roots κ±(s) = m±

√
m2 + κ2. Thus

P±(x) = e−mxe∓
√
m2+κ2x = e−mxe∓j

√
ω2−ω2

cx/c, (G.16)

which represent the horn’s right (+) and left (-) traveling pressure waves. The dispersion diagram
corresponding to the horn is shown in Fig. G.3. Note that the exponential horn has a dispersion
diagram identical to the electron’s wave properties in a semiconductor. Simply by changing the flare
function from conical to exponential, the horn impedance switches from a mass in parallel with a
resistor, to a horn in cutoff, with conduction and stop band (an evanescent wave band region), as in a
semiconductor.

The outbound time domain solution of the exponential (exp) horn is e−mxE(t), with5

E(t) = δ(t− x/c) +
x

c

J1(
√
t2 − x2/c2)√
t2 − x2/c2

U(t− x/c)↔ e−
√
m2+κ2x. (G.17)

3It is possible that this is useful in this format, say if β = 0.
4Notation changed to match that of Eq. G.12.
5See PowerWavesE paper for a more detailed expression.
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ω± ≡ ℑs(κ±)

ω+ = +c
√

κ2 + m2

k ≡ ℑκ±

ω− = −c
√

κ2 + m2

ωc = mc

ωc = −mc

Figure G.3: This shows the dispersion re-
lation between the frequency and the wave
number k for the exponential horn, with wave
propagation disallowed below the critical fre-
quency ωc = mc.

Exp-Horn ABCD Transmission matrix:

From Eq. 18
[
P0

V0

]
= − 1

∆L

[
1 P−

Y +
rad −Y −

radP−

]

0

[
Y −
rad −1

Y +
radP+ P+

]

L

[
PL
−VL

]
. (G.18)

Radiation Admittance: Given a half-infinite section of the exponential horn (Salmon, 1946b; Leach,
1996), from Eq. 5.7

Y ±
rad(x0, s) =

y0

s

(
ωc ∓

√
ω2
c + s2

)
. (G.19)

where ωc ≡ mc is the horn cutoff frequency. At very high frequencies this approaches a real value of
y0. Below cutoff it is a purely reactive admittance.

Discussion: Since Eq. G.15 contains no viscous or other loss terms, the solution is always loss-less.
The propagation function roots κ±(s) are imaginary when ω > ωc, but change to a purely real value
below the cutoff frequency, i.e., ω < ωc.

At all frequencies the wave propagation is dispersive, meaning that the speed is frequency dependent.
Above the cutoff frequency there is normal wave propagation. However the impedance of the wave
changes, making the horn an “ideal” acoustic transformer. As shown in Fig. fig:DispersionDiagram, at
very high frequencies (ω ≥ ωc = mc) the wave propagates without dispersion, but still with a decay,
due to the exponential change in area.

When the diameter of the horn becomes greater than half a wavelength, higher order modes start
to come into play, and the solution is no longer unique, as the quasistatic approximation totally breaks
down. Any imperfection in the area will introduce cross modes, which can then propagate.

In regions where the diameter is less than a half wavelength, higher order modes will not propagate.
This is best described by the quasistatic approximation. But the exact solution may be obtained by
solving Eq. eq:WHEN locally for the pressure.

Below cutoff requires further analysis, as the wave solution is still causal, but everywhere in phase.
To see this we may take the inverse Laplace transform of P+(x, s) to obtain the explicit wave behavior
in the time domain. It is very useful to look at this case in both the time and frequency domains, in
order to fully appreciate what is happening.

Appendices
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G.3 Derivation of the Webster Horn Equation

In this Appendix we transform the acoustic equations Eq. 1.87 and 1.88 into their equivalent integral
form. This derivation is similar (but not identical) to that of Hanna and Slepian (1924); Pierce (1981,
p. 360).

Conservation of momentum: The first step is an integration the normal component of Eq. 1.87
over the pressure iso-surface S, defined by ∇p = 0,

−
∫

S
∇p(x, t) · dA = ρ0

∂

∂t

∫

S
u(x, t) · dA. (C.1)

The average pressure ̺(x, t) is defined by dividing by the total area

̺(x, t) ≡ 1

A(x)

∫

S
p(x, t) n̂ · dA. (C.2)

From the definition of the gradient operator

∇p =
∂p

∂x
n̂, (C.3)

where n̂ is a unit vector perpendicular to the iso-pressure surface S. Thus the left side of Eq. 1.87
reduces to ∂̺(x, t)/∂x.

The integral on the right side defines the volume velocity

ν(x, t) ≡
∫

S
u(x, t) · dA. (C.4)

Thus the integral form of Eq. 1.87 becomes

∂

∂x
̺(x, t) = − ρ0

A(x)

∂

∂t
ν(x, t). (C.5)

Conservation of mass: Integrating Eq. 1.88 over the volume V gives

−
∫

V
∇ · u dV =

1

η0P0

∂

∂t

∫

V
p(x, t)dV. (C.6)

Volume V is defined by two iso-pressure surfaces between x and x + δx (Fig. G.4, shaded blue). On
the right hand side we use our definition for the average pressure (i.e., Eq. C.2), integrated over the
thickness δx.

Applying Gauss’ law to the left hand side6, and using the definition of ̺ (on the right), in the limit
δx→ 0, gives

∂ν

∂x
= −A(x)

η0P0

∂̺

∂t
. (C.7)

Finally, writing Eq. C.5 and Eq. C.7 in matrix form, in the frequency domain (∂t ↔ s), results in
Eq. 5.4.

6As shown in Fig. G.4, we convert the divergence into the difference between two volume velocities, namely ν(x +
δx) − ν(x), and ∂ν/∂x as the limit of this difference over δx, as δx → 0
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δx

x

A
(x

)

A
(x

+
δx

)

Figure G.4: Derivation of horn equation using
Gauss’s Law: The divergence of the velocity ∇ · u,
within δx, shown as the filled shaded region, is inte-
grated over the enclosed volume. Next the divergence
theorem is applied, transforming the integral to a sur-
face integral normal to the surface of propagation. This
results in the difference of the two volume velocities
δν = ν(x+ δx)− ν(x) = [u(x+ δx) ·A(x+ δx)−u(x) ·
A(x)].

G.4 The inverse problem

For each area function A(x) there is a unique driving point input impedance zrad(t)↔ Zrad(s). We de-
fine zr(t) as the impedance remainder after normalizing by the surge impedance z0 and then subtracting
the initial impulse (delta function)

zr(t) ≡ zrad(t)/z0 − δ(t). (D.8)

In the frequency domain Zr(s) = Zrad(s)/z0 − 1. The remainder is related to the reactive portion of
Z(s).

For each remainder there is a corresponding unique A(x). This relation is

f(a, ξ0) +
1

2c

∫ a

−a
zr(|ξ0/c− ξ/c|)f(ξ0, ξ)dξ = 1. (D.9)

Once this integral equation has been solved for f(x, x), the area function is A(x) = f2(x, x) (Sondhi
and Gopinath, 1971; Sondhi and Resnick, 1983).

G.5 WKB method

This method is use in approximating the solution to the horn equation under the assumption that the
reflections are minimal (no strong change in the area function with the range variable. Briefly, if

?Add WKB
(NeelyAllen08-MOH)??

d2

dx2
Φ(x, s) = F (x) Φ(x, s)

where the effective wave number is

F (x) =
2m

~2
[V (x)− E] .

The WKB approximation gives the solution

Φ(x, s) ≈ C0
ej
∫ √

F (x)dx

4
√
F (x)

.

Picking the right branch of the square root is essential in the application of the WKB method, as is
unwrapping the phase of each branch of the wave number.

This method is integrating the phase delay of the wave number as a function of the range variable.
Thus its complex-analytic properties are essential to obtaining the correct answer (the wave number is
not a single valued function of x and s).
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G.6 Rydberg series

Fundamental the quantum mechanics is the Rydberg series, which describes the quantized energy levels
of atoms

νn,m = cRZ2
n

(
1

n2
− 1

m2

)
(F.10)

where νn,m are the possible eigen-frequencies, c is the speed of light, R ≈ 1.097 × 107 is the Rydberg
constant, Zn is the atomic number, along with positive integers n and m (m > n) which represent two
principal quantum numbers that label all possible allowed atomic eigen-states. Integer n indicates the
lowest (initial) atomic eigen-state while m is the higher state7 When n = 1 the series is the Lyman
series corresponding to Hydrogen (Z1 = 1).

Given observed frequencies νn,m it is possible to find the area function that traps the photons into
the Rydberg eigen-states.

One way to think of eigen-modes is to make an analogy to a piano string, or an organ pipe. In
these much simpler systems, there is an almost constant delay, say τ due to a characteristic length,
say L = τc, such that the eigen-modes are given by integer multiples of a half wavelength νn = nc/2L.
This assumes the endpoint boundary conditions are pinned displacement (i.e, zero velocity). For an
organ pipe, closed at one end and open at the other the corresponding formula is multiples of a quarter
wavelength νn = nc/4L. In each case ν = n/τ where τ = 2L/c is the round trip delay, thus ν = nc/2L.
We suggest looking at the Rydberg series in the say way, but with the very different eigen frequencies
(Eq. F.10). Sommerfeld (1949, p. 201) makes a very interesting comment regarding Eq. F.10:

This equation reduces to a simple mathematical the enigma of the spectral lines, with their
finite cummulation point, the behavior of which differs so fundamentally from that of all
mechanical systems.

G.7 Laplacian operator in N dimensions

To show that the Webster equation is in agreement with the wave equation in 2 and three dimensions,
we need to express the Laplacian, and then determine F (n) of Table 5.1. In general it may be shown
that, in N dimensions (Sommerfeld, 1949, p. 227)8

∇2
rP ≡

1

rN−1

∂

∂r

(
rN−1∂P

∂r

)

This may be expanded as
∂2P

∂r2
+ F (r)

∂P

∂r
,

where F (r) = (N − 1)/r is the same as in Table 5.1. In terms of the Webster Horn equation, F (x) ≡
−∂ ln Z (x, s)/∂x. Thus we see there is a fundamental relation between Z and the dimensionality of
the horn.

For each N , rN−1 is proportional to the area function A(x). This generalizes to the Webster Horn
equation Eq. 1.94. For the case of N = 3 (the conical Horn) there is a special relationship

∇2
rP ≡

1

r2
∂rr

2∂rP =
1

r
∂rrrP

resulting in the general d’Alembert solutions

P±(r, s) = e∓κ(s)r/r.

7http://en.wikipedia.org/w/index.php?title=Rydberg_formula&action=edit&section=2.
8http://en.wikipedia.org/wiki/Laplacian#Three_dimensions
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Filter classification

Let z ≡ esT where T is the “sample period” at which data is taken (every T seconds). For example if
T = 22.7 = 1/44100 seconds then the data is sampled at 44100 k [Hz]. This is how a CD player works
with high quality music. Thus the unit-time delay operator z−1 as

δ(t− T )↔ e−sT

H.1 Given the function:

F (s) =
(s+ 1)(s− 1)

(s+ 2)
,

1. Find the minimum phase M(s) and all-pass A(s) parts. The minimum phase part has all of its
poles and zeros in the left half plane (LHP), while the all-pass part has its poles in the LHP and
mirrored zeros in the RHP. Thus we place a removable pole zero pair symmetrically across from
the RHP zero, and then write the expression as the product, that is F (s) = M(s) ·A(s):

F (s) =
(s+ 1)(s− 1)

(s+ 2)
· s+ 1

s+ 1
=

(s+ 1)2

s+ 2
· s− 1

s+ 1

Thus M(s) ≡ (s+1)2

s+2 and A(s) ≡ s−1
s+1

2. Find the magnitude of M(s) Take the real part of the log of M and then the anti-log. Thus
|M | = eℜ lnM(s)

3. Find the phase of M(s) In this case we use the imaginary part: ∠M = ℑ lnM(s)

4. Find the magnitude of A(s) 1, by definition.

5. Find the phase of A(s) ∠A = ℑ ln(A)

H.2 More questions

There are a number of question I would like to address in this report. Some of these are

1. Can we interpret the zeta function as a frequency domain quantity, and then inverse transform
it into the time domain?

The answer to this is yes, and the results are quite interesting.

2. Make a histogram of the entropy for the first million integers.

This is a 5 minute job in Matlab. It goes something line this: K=1e5; N=1:K; F=zeros(K,10);

for n=1:K; f=factor(n); F(n,1:length(f))=f; end; hist(F);

197
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H.3 Entropy analysis

According to the Fundamental theorem of arithmetic, every integer may be uniquely written as the
product of primes. Thus n =

∏Kn
k pαk

i (e.g., 12 = 22 ·3 with α2 = 2 and α3 = 1). If one thinks of Kn as
a random variable on n, then the constant Kn may be characterized by the concept of entropy. Thus
each integer is associated with an entropy, defined by Hn =

∑Kn log2(Kn).
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Stillwell’s Intersection vs. composition

-------------------------------------------------------------------------------------------------------

Page/c Group Comments

6BCE ------------------------------------------------------------------------------------------------

44 Pythagoreans Pyth’s used recursion to solve PE: y_n/x_n -> \sqrt{2}

46 Pythagoreans 2x2 recursion -> sqrt(2): possibly arose from Euclidean algorithm?

45 Greeks Find sides of 1xsqrt(2) rectangle with Euclidean Alg => Matrix recurrence relation

46 Greeks Other instances of PE occurred in Greek Math (anthyphairesis)

55 Pythagoreans First use of 2x2 recurrence gave sols to Pell’s Eq. (N=2): $xˆ2-2yˆ2= \pm1$

3BCE ------------------------------------------------------------------------------------------------

47 Archimedes Cattle problem: xˆ2 - 427,434 yˆ2 = 1

7CE -----------------------------------------------------------------------------------------------

46 Indians EA = "Pulverizer"

37 Bramagupta "Methods for solving PE first discovered by Indian Mathematicians" (Ch 5, p.69)

69 Bramagupta Rediscovered PE, both recurrence and composition methods

76 Bramagupta Composition sol method of Pell’s Eq (limited success, specific cases only)

12CE ------------------------------------------------------------------------------------------------

78 Bh\ˆaskara II Cyclic sol for N=61 $\in \P$ (1160CE)

17CE -----------------------------------------------------------------------------------------------

46 Brouncker CFA for sqrt{N} cite(Dickson 1920)

79 Fermat Rediscovered N=61 case (hard case p. 80) (1657)

80 Fermat Related to continued fractions and $sqrt{N}$ irrational case

The initial conditions determines the hidden large solutions

Discussion of CFA and Pell’s Eq. "Method of finding 1" (Ex. 5.5.1).

Newton Works out Diophantus’ chord/tangent methods (Stillwell p. 7, 49, 218)

18CE ------------------------------------------------------------------------------------------------

46 Lagrange First to prove why cyclic methods worked (Andrew Weil, 1984) (1768)

-------------------------------------------------------------------------------------------------------
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by this Venn diagram. Physics explores the boundaries. Mathematics provides the method and rigor.

engineering transforms the method into technology. While these three disciplines work well together,

there is poor communication due to a different vocabulary. For example, Matematics rarely, if ever, uses

a system of units, whereas Physics and Engineering depend critically on them. Mathematics strives to

abstract the ideas into proofs. Physics rarely, if ever, uses a proof. When they attempt abstract, they

usually get into some difficulity. Engineers blunder ahead, ignoring most of these defects. . . . . . . . 8

2 Table of contents of Stillwell (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses

(weight) must fall with identical velocity. By joining them with an elastic cord they become one. Thus

if the velocity were proportional to the mass, the joined masses would fall even faster. This results in a

logical fallacy. This may have been the first time that the principle of conservation of energy was clearly

stated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Mathematical time-line between 1500 BCE and 1650 CE. . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli; Below: Leonhard Euler (1707) and Jean

le Rond d’Alembert (1717-1783). The figure numbers are from Stillwell (2010). . . . . . . . . . . . . 20

1.4 Time-line of the four centuries from the 16th and 20th CE. Given the time line, it is likely that Bombelli’s

discovery of Diophantus’ book on “Arithmetic” in the Vatican library, triggered many of the ideas pre-

sented by Descarte and Fermat, followed by others (i.e., Newton). Bombelli’s discovery might be con-

sidered as a magic moment in mathematics. The vertical red lines connect mentor-student relationships.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Sieve of Eratosthenes for the case of N = 50. . . . . . . . . . . . . . . . . . . . . . 34

1.6 The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathe-

matics, and is highly relevant today. It is both powerful and simple. It was used by the Chinese during

the Han dynasty (Stillwell, 2010, p. 70) for reducing fractions. It may be used to find pairs of integers

that are coprime (their gcd must be 1), and it may be used to identify factors of polynomials by long

division. It has an important sister algorithm called the continued fraction algorithm (CFA), that is so

similar in concept that Gauss referred to the Euclidean algorithm as the“continued fraction algorithm”

(Stillwell, 2010, p. 48). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 The expansion of π to various orders, using the CFA, along with the order of the error
of each rational approximation. For example 22/7 has an absolute error (|22/7− π|) of
about 0.13%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.8 Beads on a string form perfect right triangles when number of beads on each side satisfy Eq. 1.1. 40

1.9 “Plimpton-322” is a stone tablet from 1800 [BCE], displaying a and c values of the Pythagorean

triplets [a, b, c], with the property b =
√
c2 − a2 ∈ N. Several of the c values are primes, but not

the a values. The stone is item 322 (item 3 from 1922), from the collection of George A. Plimpton.

–Stillwell (2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.10 This summarizes the solution of Pell’s equation for N = 2 using a slightly modified matrix

recursion. Note that xn/yn →
√

2 as n→∞, which was what the Pythagoreans were pursuing. 42

201



202 LIST OF FIGURES

1.11 Time-line of the three centuries from the 18th to 20th CE. This was one of the most productive of

all times, perhaps starting with the deep work of von Helmholtz, educated an experienced as a mili-

tary surgeon, who mastered classical music, acoustics, physiology, vision, hearing (Helmholtz, 1863b),

and, most important of all, mathematics. Kirchhoff frequently expanded on Helmholtz’s contribu-

tions. Is is reported that Lord Rayleigh learned German to be able to read Helmholtz’s great work.

The history during this time is complex. For example, Lord Kelvin wrote a letter to Stokes, sug-

gestion Stokes prove what is today known as “Stokes theorem.” Stokes posted a reward (the Smith

Prize), looking for one who could prove “Lord Kelvin’s theorem,” finally proved by Hankel (1839-73)

(https://en.wikipedia.org/wiki/Hermann Hankel). The birth dates of those who contributed to math-

ematics during this time display exponential growth. Many new concepts were being proved and appre-

ciated over this productive period. In 1863-65, Maxwell published his famous equations, followed by the

cleanup work of Heaviside, Gibbs and Hertz, who reformulated them in “modern” vector notation. The

vertical red lines connect mentor-student relationships. This figure should put to rest the idea that ones

best work is done in the early years. Many of these scientists were fully productive to the end of old age.

Those that were not, died early, due to poor health or accidents. . . . . . . . . . . . . . . . . . . 46

1.12 Definitions of vectors A,B,C used in the definition of A ·B, A×B and C · (A×B). The cross

product A×B is the area of the trapezoid formed by the two vectors, while the triple product

C · (A ×B) defines the volume of the formed parallelepiped (i.e., prism). When all the angles

are 90◦, the volume becomes a cuboid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.13 This is a single LC cell, of an LC transmission line of Fig. 2.2 (p. 117). It may be modeled by the

ABCD method, as the product of two matrices, as discussed below. The inductance L of the coil and

the capacitance C of capacitor are in units of [Henry/m] and [Farad/m], thus they depend on length ∆x

[m] that the cell represents. Note the flows are always defined as into the + node. . . . . . . . . . . 59

1.14 The left panel shows how the real line may be composed with the circle. Each real x value maps to a

corresponding point x′ on on the unit circle. The point x → ∞ maps to the north pole N . This simple

idea may be extended with the composition of the complex plane with the unit sphere, thus mapping

the plane onto the sphere. As with the circle, the point on the complex plane z → ∞ maps onto the

north pole N . This construction is important because while the plane is open (does not include z → ∞),

the sphere is analytic at the north pole. Thus the sphere defines the closed extended plane. Figure from

Stillwell (2010, pp. 299-300). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.15 On the left is a color map showing the definition of the complex mapping from the s = σ + ω plane

to the w(s) = u(σ, ω) + v(σ, ω) plane. This mapping from one complex plane s = σ + ω to another

w = u(σ, ω) + v(σ, ω), is visualized by the use of intensity (light/dark) to indicate magnitude, and color

(hue) to indicate angle (phase), of the mapping. On the left w(s) = s = σ + ω (i.e., u = σ and v = v).

On the right is w(z) = z − √
j, a shift to the right and up by

√
2/2 = 0.707. The white and black lines

are the iso-real and iso-imaginary contours of the mapping. . . . . . . . . . . . . . . . . . . . . . 63

1.16 On the left is the function w(s) = es and on the right is s = log(w). The color shows the phase, and the

intensity shows the magnitude of the mapping, as a function of s = σ + ω. The white lines are iso-real

part and black lines are iso-imaginary part of the mapping. For the mapping on the left, w(s) = es goes

to zero as σ → −∞, thus the domain coloring plot becomes dark for σ < −2. The white and black lines

are always perpendicular because es is complex analytic everywhere. On the right shows s = log(w),

the inverse of w = es, which has a zero at s = 1, since there log(1) = 0 (the imaginary part is zero).

When s = ejθ, the log(s) = jθ, thus is not zero unless θ = 0. Every time θ increases beyond πk, for

k ∈ Z, log(s) crosses the branch cut (white line at 180◦), causing the color to change abruptly along the

negative u axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES 203

1.17 Here we see the mapping for the square root function w(z) = ±√
z which has two single-valued sheets,
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complex analytic functions, 50, 51, 61–63, 73, 78
Complex numbers, History of, 27

composition, 23, 41, 54, 57, 59–62
compressible, 104

conjugate variables, 98

conservation of energy, 16, 49, 139, 140
conservative field, 75
convolution, 51, 52, 66, 84

coprime, 24, 25, 37, 111
Curl ∇×(), 32, 101, 162

d’Alembert, 15, 20–22, 44–46, 51, 75, 95, 106
deconvolution, 24

degrees of freedom, 102
Descartes, 21, 22, 44, 51, 123
determinant, 59, 93, 170

DFT, 64
Dicke, 109
Diophantus, 17, 18, 40, 120

dispersion relation, 76
dispersive wave propagation, 45
Divergence ∇·(), 32, 101, 162
DoF, 102

domain, 50
domain coloring, 62
dot product, 52

driving-point impedance, 138
DTFT, 64

eigen-values of d/dt, 84

eigenfunction expansion, 122
Einstein, 21, 46
elimination, 54
encryption, 15

entire function, 48
entropy, 35, 146
equipartition theorem, 16

Eratosthenes, 33, 34, 88
Euclid, 25, 36
Euclid’s formula, 17, 18, 23, 29, 40, 117–120

Euclidean algorithm, 36, 37, 111, 199
Euler, 20–22, 28, 46, 61, 88, 123
Euler zeta function, 33, 124
Euler’s functional zeta equation, 91

Ewald, 51
extended complex plane, 61

factoring, 45
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Fermat, 21, 22, 41, 44, 51, 123
Feshbach, 109
Feynman, 109
FFT, 64
Fibonacci sequence, 43
field: scalar, vector, 102
Fourier Series, 64
Fourier transform, 64
Fourier Transform Table, 65
frequency domain, 32, 45, 64, 76, 77
Fry, 109
function, circular, 50
function, inverse, 50
function, periodic, 50
functions, causal, 64
functions, periodic, 64
functions: Γ(s), 91
fundamental theorem of algebra, 51
Fundamental theorem of complex calculus, 73
fundamental theorem: of algebra, 53
fundamental theorem: of complex calculus, 71
fundamental theorem: of complex integral calcu-

lus, 61
Fundamental theorems, 30–32, 71, 73
fundamental theorems, 51

Galileo, 16, 21, 44
Gamma function, 91
Gauss, 21, 32, 46, 78, 112
Gaussian elimination, 58
GCD, 37
gcd, 36, 37, 114, 199
geometric series, 48
Gibbs phenomenon, 66, 69
gradient, 102
Gradient ∇(), 32, 101, 162
Green, 16, 32, 109

Heaviside, 16, 21, 46
Heisenberg, 51
Helmholtz, 16, 21, 32, 44, 46, 102, 109, 163
Helmholtz portrait, 103
Helmholtz Theorem, 102
higher order modes, 163
Hilbert, 21
Humpty Dumpty, 16
Hunt, 109
Huygens, 22, 44

impedance, 23, 60, 74, 76
impulse response, 171
integers, utility of, 27

internet security, 112, 113
intersection, 54
intersection of curves, 32, 53, 55, 58, 117–119, 123,

130–133
intersection of sets, 55
irrotational, 101, 102, 104, 105

Kepler, 21, 44
Kirchhoff, 21, 32, 46, 163
Kirchhoff portrait, 103

Lagrange, 21, 41
Lamb, 109
Laplace, 21
Laplace frequency, 60, 64, 67
Laplace transform, 31, 32, 64, 76
Laplace Transform Table, 68
lattice vector, 125
laws of gravity, 44
Leibniz, 32
Leonardo da Vinci, 21
Lighthill, 109
linear equations, 51
linearity, 71, 138, 139
Lord Kelvin, 16

Möbius, 21
Möbius transformation, 59, 135
Mason, Warren P., 163
Maxwell, 16, 21, 32, 46
Maxwell’s equations, 23, 32, 71, 105, 106, 164
Mersenne, 15, 21, 22, 44
modulo, 171
Montgomery, 109
Morse, 109

network postulates, 45, 67, 70, 71, 76, 137, 138
Newton, 16, 21, 22, 41, 44, 46, 61, 95, 109, 123,

128
Newton’s laws of motion, 44
nonlinear algebra, 70
norm, 55

Ohm’s law, 59, 60
Olson, 109

partial fraction expansion, 48, 78, 81, 86, 87
passive, 71, 138, 139
Pauli, 51
Pell’s equation, 41, 122
Pipes, 109
Poincare, 46
point at infinity, 61, 62
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poles, 48, 49, 69, 78, 81, 86, 171
positive-definite, 140
positive-real, 140
postulates, 45, 67, 70, 137
power, 128
power series, 47
prime, 24, 29, 30, 36, 88, 109, 112, 113
primes, utility of, 112
Principia, 9, 21, 45, 72
propagation constant, 125
Prucell, 109
Pythagorean theorem, 23
Pythagorean triplets, 18
Pythagoreans, 19, 21, 25, 28, 41, 121

quasi-static, 71, 86, 107, 138, 141, 142, 163, 164
quasi-statics, 70, 106, 107, 163
quasistatic, 106

radius of convergence, 47
Ramo, 109
Rayleigh, 16, 21, 46, 109, 163
Rayleigh reciprocity, 71, 138
reflectance, 85, 98, 99, 150
region of convergence, 48, 78
residue, 48, 78, 81, 82, 86
reversability, 138
reversibility, 71, 141
RHP, 74
Riemann, 21, 46, 78, 84
Riemann sheet, 78, 79, 136
Riemann sphere, 61
Riemann zeta function, 88
right half plane, 74
RoC, 47, 48, 78
roots, 45
roots of polynomials., 27
rotational, 104

Schwarz, 126
Shannon entropy, 35
sieve, 33, 34, 88
signals, 64
Slater, 109
Sommerfeld, 46, 51, 77, 85, 98, 106, 109
spacial-invariant, 71, 138
spatial invariant, 142
speed of light, 45
speed of sound, 44
Stokes, 16, 32, 109
Stokes’ theorem, 104
stream 1, 22, 23, 30

stream 2, 23, 30, 32, 44
stream 3, 23, 30, 32, 43, 71, 91
symmetry, 64, 71
systems, 64

Taylor series, 48, 49, 77, 78
Taylor series formula, 73
time domain, 64
time invariant, 141
time-invariant, 71, 138
transmission line, 141
trap door, 112

vector cross product, 57
vector identity ∇×∇×(), 103
vector identity ∇2(), 103
vector identity, ∇×(), 103
vector identity, ∇·(), 103
vector inner product, 57
vector triple product, 57
vector wave equation, 125
vector, three, 57
vector, unit, 57
vectors, 54
visco-thermal losses, 164

wave equation, 44, 105, 125
wave number, 45, 59, 76, 125, 163
wave number with losses, 164
wavelength, 45, 76

z-transform, 43, 64
Zeno’s paradox, 71
zeros, 69, 171
zviz.m, 62
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