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Abstract

An understanding of physics requires knowledge of mathematics. The contrary is not true. By defi-
nition, pure mathematics contains no physics. Yet historically, mathematics has a rich history filled
with physical applications. Mathematics was developed by people with intent of making things work.
In my view, as an engineer, I see these creators of early mathematics, as budding engineers. This book
is an attempt to tell this story, of the development of mathematical physics, as viewed by an engineer.

The book is broken down into three topics, called streams, presented as five chapters: 1) Intro-
duction, 2) Number systems, 3) Algebra Equations, 4) Scalar Calculus, and 5) Vector Calculus. The
material is delivered as 40 “Lectures” spread out over a semester of 15 weeks, three lectures per week,
with a 3 lecture time-out for administrative duties. Problems are provided for each week’s assign-
ment. These problems are written out in IATEX, with built in solutions, that may be expressed by
un-commenting one line. Once the home-works are turned in, each student is given the solution. With
regard to learning the material, the students rated these Assignments as the most important part of the
course. There is a built in interplay between these assignments and the lectures. On many occasions
I solved the homework in class, as motivation for coming to class. Four exams were given, one at the
end of each of the three sections, and a final. Some of the exams were in class and some were evening
exams, that ran over two hours. The final was two hours. Each of the exams, like the assignments, is
provided as a WTEX file, with solutions encoded with a one line software switch. The Exams are largely
based on the Assignments. It is my philosophy that, in principle, the students could see the exam in
advance of taking it.

Author’s Personal Statement

An expert is someone who has made all the mistakes in a small field. I don’t know if I would be
called and expert, but I certainly have made my share of mistakes. I openly state that “I love making
mistakes, because I learn so much from them.” One might call that the “expert’s corollary.”

This book has been written out of both my love for the topic of mathematical physics, and a
frustration for wanting to share many key concepts, and even new ideas on these basic concepts. Over
the years I have developed a certain physical sense of math, along with a related mathematical sense
of physics. While doing my research,' I have come across what I feel are certain conceptual holes that
need filling, and sense many deep relationships between math and physics, that remain unidentified.
While what we presently teach is not wrong, it is missing these relationships. What is lacking is an
intuition for how math “works.” We need to start listening to the language of mathematics. We need
to let mathematics guide us toward our engineering goals.

It is my strong suspicion that over the centuries many others have had similar insights, and like me,
have been unable to convey this slight misdirection. I hope these views can be useful to open young
minds.

This marriage of math and physics will help us make progress in understanding the physical world.
I turn to mathematics and physics when trying to understand the universe. I have arrived in my views
following a lifelong attempt to understand human communication. This research arose from my 32
years at Bell Labs in the Acoustics Research Department. There such lifelong pursuits were not only
possible, they were openly encouraged. The idea was that if you were successful at something, take it

"http://auditorymodels.org/index . php/Main/Publications
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as far as you can. But on the other side, don’t do something well that’s not worth doing. People got
fired for the latter. I should have left for University after a mere 20 years,? but the job was just too
cushy.

In this text it is my goal to clarify some of the conceptual errors when telling the story about
physics and mathematics. My views have been often inspired by classic works, as documented in the
bibliography. This book was inspired by my careful reading of Stillwell (2002), through Chapter 21
(Fig. 2). Somewhere in Chapter 22 I stopped reading and switched to the third edition (Stillwell,
2010), where I saw there was much more to master. At that point I saw that teaching this material to
sophomores would allow me to absorb the more advanced material at a reasonable pace, which led to
to this book.

Back Cover Summary

This is foremost a math book, but not the typical math book. First, this book is for the engineering
minded, for those who need to understand math to do engineering, to learn how things work. In that
sense it is more about physics and engineering. Math skill are critical to making progress in building
things, be it pyramids or computers, as clearly shown by the many great civilizations of the Chinese,
Egyptians, Arabs (people of Mesopotamia), Greeks and Romans.

Second, this is a book about the math that developed to explain physics, to allow people to engineer
complex things. To sail around the world one needs to know how to navigate. This requires a model
of the planets and stars. You can only know where you are on earth if you understand where earth
is, relative to the heavens. The answer to such a deep questions will depend on who you ask. The
utility and accuracy of that answer depends critically on the depth of understanding of how the worlds
and heavens work. Who is qualified to answer such question? It is best answered by those who study
mathematics applied to the physical world.

Halley (1656-1742), the English astronomer, asked Newton (1643-1727) for the equation that de-
scribes the orbit of the planets. Halley was obviously interested in comets. Newton immediately
answered “an ellipse.” It is said that Halley was stunned by the response (Stillwell, 2010, p. 176), as
this was what had been experimentally observed by Kepler (c1619), and thus he knew Newton must
have some deeper insight (Stillwell, 2010, p. 176).

When Halley asked Newton to explain how he knew this correct answer, Newton said he calculated
it. But when challenged to show the calculation, Newton was unable to reproduce it. This open
challenge eventually led to Newton’s grand treatise, Philosophiae Naturalis Principia Mathematica
(July 5, 1687). It had a humble beginning, more as a letter to Halley, explaining how to calculate the
orbits of the planets. To do this Newton needed mathematics, a tool he had mastered. It is widely
accepted that Isaac Newton and Gottfried Leibniz invented calculus. But the early record shows that
perhaps Bhaskara IT (11141185 AD) had mastered this art well before Newton.?

Third, the main goal of this book is to teach engineering mathematics, in a way that it can be
understood, remembered, and mastered, by anyone motivated to learn this topic. How can this near
impossible goal be achieved? The answered is to fill in the gaps with “who did what, and when.” There
is an historical story that may be told and mastered, by anyone serious about the science of making
things.

One cannot be an expert in a field if they do not know the history of that field. This includes
who the people were, what they did, and the credibility of their story. Do you believe the Pope or
Galileo, on the topic of the relative position of the sun and the earth? The observables provided
by science are clearly on Galileo’s side. Who were those first engineers? They are names we all
know: Archimedes, Pythagoras, Leonardo da Vinci, Galileo, Newton, .... All of these individuals
had mastered mathematics. This book teaches the tools taught to every engineer. Do not memorize

2I should have left when AT&T Labs was formed, c1997. I started around December 1970, fresh out of Graduate
school, and retired in December 2002.
3http://www-history.mcs.st-and.ac.uk/Projects/Pearce/Chapters/Ch8_5.html
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complex formulas, rather make the equations “obvious” by teaching the simplicity of the underlying
concept.

Credits

Besides thanking my parents, I would like to credit John Stillwell for his constructive, historical sum-
mary of mathematics. My close friend and colleague Steve Levinson somehow drew me into this project,
without my even knowing it. My brilliant graduate student Sarah Robinson was constantly at my side,
grading home-works and exams, and tutoring the students. Without her, I would not have survived the
first semester the material was taught. Her proof-reading skills are amazing. Thank you Sarah for your
infinite help. Finally I would like to thank John D’Angelo for putting up with my many silly questions.
When it comes to the heavy hitting, John was always there to provide a brilliant explanation that I
could easily translate into Engineer’ese (Matheering?) (i.e., Engineer language).

To write this book I had to master the language of mathematics (John’s language). I had already
mastered the language of engineering, and a good part of physics.* But we are all talking about the
same thing. Via the physics and engineering, I already had a decent understanding of the mathematics,
but I did not know that language. Hopefully, now I can get by.

Finally T would like to thank my wife (Sheau Feng Jeng aka Patricia Allen) for her unbelievable
support and love. She delivered constant piece of mind, without which this project could never have
been started, much less finish.

There are many others who played important roles, but they must remain anonymous, out of my
fear of offending someone I forgot to mention.

—Jont Allen, Mahomet IL, Dec. 24, 2015

4Each genre (i.e, group ) speaks their own dialect. One of my secondary goals is to bring down this scientific Tower of
Babble.



Preface

It is widely acknowledged that interdisciplinary science is the backbone of modern scientific investiga-
tion. This is embodied in the STEM (Science, Technology, Engineering, and Mathematics) programs.
Contemporary research is about connecting different areas of knowledge, thus it requires an under-
standing of cross-disciplines. However, while STEM is being taught, interdisciplinary science is not,
due to its inherent complexity and breadth. Furthermore there are few people to teach it. Mathematics,
Engineering and Physics (MEP) are at the core of such studies.’?

STEM vs. MEP

Mathematics is based on the application rigor. Mathematicians specifically attend to the definitions
of increasingly general concepts. Thus mathematics advances slowly, as these complex definitions
must be collectively agreed upon. Mathematics shuns controversy, and embraces rigor, the opposite
of uncertainty. Physics explores the fringes of uncertainty. Physicists love controversy. Engineering
addresses the advancement the technology. Engineers, much like mathematicians, are uncomfortable
with uncertainty, but are trained to deal with it.

To create such an interdisciplinary STEM program, a unified MEP curriculum is needed. In my
view this unification could (should) take place based on a core mathematical training, from a historical
perspective, starting with Euclid or before (i.e., Chinese mathematics), up to modern information
theory and logic. As a bare minimum, the fundamental theorems of mathematics (arithmetic, algebra,
calculus, vector calculus, etc.) mneed to be appreciated by every MEP student. The core of this
curriculum is outlined in Table 1.1 (p. 21).

If, in the sophomore semester, students are taught a common MEP methodology and vocabulary,
presented in terms of the history of mathematics, they will be equipped to

1. Exercise interdisciplinary science (STEM)
2. Communicate with other MEP trained (STEM) students and professors.

The goal is a comprehensive understanding of the fundamental concepts of mathematics, defined as
those required for engineering. We assume that students with this deep understanding will end up
being in the top 0.1% of Engineering. Time will tell if this assumption is correct.

The key tool is methodology. The traditional approach is a five to six course sequence: Calc I,
II, III, DiffEq IV, Linear Algebra V and Complex Variables VI, over a time frame of three years
(six semesters). This was the way I learned math. Following such a formal training regime, I felt I
had not fully mastered the material, so I started over. I now consider myself to be self-taught. We
need a more effective teaching method. I am not suggesting we replace the standard 6 semester math
curriculum, rather I am suggesting replacing Calc I, II with this mathematical physics course, based
on the historical thread, for those students who have demonstrated advanced ability. One needs more
than a high school education to succeed in college engineering courses.

By teaching mathematics in the context of history, the student can fully appreciate the underlying
principles. Including the mathematical history provides a uniform terminology for understanding the

51 prefer MEP over STEM, as being better focused on the people that do the work, organized around their scientific
point of view.
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A%

Figure 1: There is a natural symbiotic relationship between Physics, Mathematics and Engineering, as depicted by this
Venn diagram. Physics explores the boundaries. Mathematics provides the method and rigor. engineering transforms the
method into technology. While these three disciplines work well together, there is poor communication due to a different
vocabulary.

fundamentals of mathematics. The present teaching method, using abstract proofs, with no (or few)
figures or physical principles, by design removes intuition and the motivation that was available to
the creators of these early theories. This present six semester approach does not function for many
students, leaving them with a poor intuition.
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Chapter 1

Introduction

Much of early mathematics centered around the love of art and music, due to our sensations of light
and sound. Exploring our physiological senses required a scientific understanding of vision and hearing,
as first explored by Newton (1687) and Helmholtz (1863a) (Stillwell, 2010, p. 261).! Our sense of color
and musical pitch are determined by the frequencies of light and sound. The Chinese and Pythagoreans
are well known for their early contributions to music theory. Pythagoras strongly believed that “all is
integer,” meaning that every number, and every mathematical and physical concept, could be explained
by integral relationships. It is likely that this belief was based on Chinese mathematics from thousands
of years earlier. It is also known that his ideas about the importance of integers were based on what
was known about music theory in those days. For example it was known that the relationships between
the musical notes (pitches) obey natural integral relationships.
Other important modern applications of number theory are present with

e Public-private key encryption: which requires the computationally intensive factoring of large
integers

e IEEE Floating point?
As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today

With the digital computer, digital audio, and digital video coding everything, at least
approximately into sequences of whole numbers, we are closer than ever to a world in which
“all is number.”

Mersenne (1588-1647) contributed to our understanding of the relationship between the wavelength
and the length of musical instruments. These results were extended by Galileo’s father, and then by
Galileo himself (1564-1642). Many of these musical contributions resulted in new mathematics, such as
the discovery of the wave equation by Newton (c1687), followed by its one-dimensional general solution
by d’Alembert (c1747).

By that time there was a basic understanding that sound and light traveled at very different speeds
(thus why not the velocities of different falling weights?).

Ole Romer first demonstrated in 1676 that light travels at a finite speed (as opposed to
instantaneously) by studying the apparent motion of Jupiter’s moon To. In 1865, James
Clerk Maxwell proposed that light was an electromagnetic wave, and therefore traveled at
the speed ¢ appearing in his theory of electromagnetism.?

Galileo famously conceptualized an experiment in 1589 where he suggested dropping two different
weights from the Leaning Tower of Pisa, and showed that they must take the same time to hit the

"ttps://en.wikipedia.org/wiki/Acoustics
’https://en.wikipedia.org/wiki/IEEE_floating_point\#Formats
*nttps://en.wikipedia.org/wiki/Speed_of_light
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14 CHAPTER 1. INTRODUCTION

ground. Conceptually this is an important experiment, driven by a mathematical argument in which
he considered the two weights to be connected by an elastic cord. This resulted in the concept of
conservation of energy, one of the cornerstones of modern physical theory.

s

Mass

Mass

Figure 1.1:  Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses
(weight) must fall with identical velocity. By joining them with an elastic cord they become one. Thus if the velocity
were proportional to the mass, the joined masses would fall even faster. This results in a logical fallacy. This may have
been the first time that the principle of conservation of energy was clearly stated.

While Newton may be best known for his studies on light, he was the first to predict the speed of

sound. However his theory was in error by* \/Cp/ew = v/1.4 = 1.183. This famous error would not be
resolved for over two hundred years, awaiting the formulation of thermodynamics by Laplace, Maxwell
and Boltzmann, and others. What was needed was the concept of constant-heat, or adiabatic process.
For audio frequencies (0.02-20 [kHz]), the small temperature gradients cannot diffuse the distance of a
wavelength in one cycle (Pierce, 1981; Boyer and Merzbach, 2011), “trapping” the heat energy in the
wave. There were several other physical enigmas, such as the observation that sound disappears in a
vacuum and that a vacuum cannot draw water up a column by more than 34 feet.

There are other outstanding examples where physiology impacted mathematics. Leonardo da Vinci
is well known for his studies of the human body. Helmholtz’s theories of music and the percep-
tion of sound are excellent examples of under-appreciated fundamental mathematical contributions
(Helmholtz, 1863a). Lord Kelvin (aka William Thompson),® was one of the first true engineer-scientists,
equally acknowledged as a mathematical physicist and well known for his interdisciplinary research,
knighted by Queen Victoria in 1866. Lord Kelvin coined the term thermodynamics, a science more
fully developed by Maxwell (the same Maxwell of electrodynamics). Thus the interdisciplinary nature
of science has played many key roles in the development of thermodynamics.® Lord Rayleigh’s book on
the theory of sound (Rayleigh, 1896) is a classic text, read even today by anyone who studies acoustics.

It seems that we have detracted from this venerable interdisciplinary view of science by splitting the
disciplines into into smaller parts whenever we perceived a natural educational boundary. Reforging
these natural connections at some point in the curriculum is essential for the proper training of students,
both scientists and engineers.”

WEEK 1

4The square root of the ratio of the specific heat capacity at constant pressure to that at constant volume

5Lord Kelvin was one of half a dozen interdisciplinary mathematical physicists, all working about the same time, that
made a fundamental change in our scientific understanding. Others include Helmholtz, Stokes, Green, Heaviside, Rayleigh
and Maxwell.

SThermodynamics is another example of a course that needs reworking along historical lines.

"Perhaps its time to put the MEP Humpty Dumpty back together.
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1.1 Early Science and Mathematics

The first 5,000 years is not well document, but the basic record is clear, as outlined in Fig. 1.2. Thanks
to Euclid and later Diophantus (¢250 CE), we have some limited understanding of what they studied.
For example, Euclid’s formula (Fig. 2.3, Eq. 2.3) provides a method for computing all Pythagorean
triplets (Stillwell, 2010, pp. 4-9).

Chinese Bells and stringed musical instruments were exquisitely developed in their tonal quality, as
documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was
so rich that one must question why the Chinese failed to initiate the industrial revolution. Specifically,
why did Europe eventually dominate with its innovation when it was the Chinese who did the extensive
early invention?

According to Lin (1995) this is known as the Needham question:

“Why did modern science, the mathematization of hypotheses about Nature, with all its
implications for advanced technology, take its meteoric rise only in the West at the time of
Galileo|, but] had not developed in Chinese civilization or Indian civilization?”

Needham cites the many developments in China:®

“Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon consid-
ered as the three most important inventions facilitating the West’s transformation from the
Dark Ages to the modern world, were invented in China.” (Lin, 1995)

“Needham’s works attribute significant weight to the impact of Confucianism and Taoism on
the pace of Chinese scientific discovery, and emphasizes what it describes as the ‘diffusionist’
approach of Chinese science as opposed to a perceived independent inventiveness in the
western world. Needham held that the notion that the Chinese script had inhibited scientific
thought was ‘grossly overrated” ” (Grosswiler, 2004).

Lin was focused on military applications, missing the importance of non-military applications. A
large fraction of mathematics was developed to better understand the solar system, acoustics, musical
instruments and the theory of sound and light. Eventually the universe became a popular topic, and
still is today.

1.1.1 Lec 1 The Pythagorean theorem

While early Asian mathematics is not fully documented, it clearly defined the course for at least several
thousand years. The first recorded mathematics was that of the Chinese (5000-1200 BCE) and the
Egyptians (3,300 BEC). Some of the best early record were left by the people of Mesopotamia (Iraq,
1800 BEC). Thanks to Euclid’s Elements (c323 BEC) we have an historical record, tracing the progress
in geometry, as defined by the Pythagorean theorem for any right triangle

& =a®+ b (1.1)

having sides of lengths (a, b, c) that are positive real numbers with ¢ > [a,b] and a + b > ¢. Solutions
were likely found by trial and error rather than by an algorithm.

If a,b,c are lengths, then a?,b?, ¢? are areas. Equation 1.1 says that the area a? of a square plus
the area b? of a square equals the area ¢? of square. Today a simple way to prove this is to compute
the magnitude of the complex number ¢ = a + bj, which forces the right angle

e = (a +bg)(a — by) = a® +b°,

®https://en.wikipedia.org/wiki/Joseph_Needham\#cite_note-11
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16 CHAPTER 1. INTRODUCTION

However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers
and algebra had yet to be invented.

Almost 700 years after Euclid’s Elements, the Library of Alexandria was destroyed (391 EC) by
fire, taking with it much of the accumulated Greek knowledge. Thus one of the best technical records
may be Euclid’s Elements, along with some sparse mathematics due to Archimedes (¢300 BEC) on
geometrical series, computing the volume of a sphere, and the area of the parabola, and elementary
hydrostatics. Additionally, a copy of a book by Diophantus Arithmetic was discovered by Bombelli
(c1572) in the Vatican library (Stillwell, 2010, p. 51).

Chronological history pre 16" century 1.1.2a

200" BCE Chinese (Primes; quadratic equation; Euclidean algorithm (GCD))
180" BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)

6t"  BCE Pythagoras (Thales) and the Pythagorean “tribe”

4" BCE Archimedes 300BCE; Euclid (quadratic equation)

3" CE Diophantus :
4" CE Alexandria Library destroyed ;
7" CE Brahmagupta (negative numbers; quadratic equation)
9" CE al-Khwarizmi (algebra)
10" CE Bhaskara (calculus)
15" Leonardo & Copernicus
16" Tartaglia (cubic eqs); Bombelli ; Galileo Galilei

Time Line

1500BCE |0CE |500 |1000  |1400|1650
Chinese Pythagoreans Brahmagupta Leonardo
Babylonia Euclid Diophantus Bhaskara Bombelli
Archimedes al-Khawarizmi Copernicus
Christ

Figure 1.2: Mathematical time-line between 1500 BCE and 1650 CE.

1.1.2 Pythagorean Triplets

Well before Pythagoras, the Babylonians had tables of Pythagorean triplets (PTs), integers [a,b, (]
that obey Eq. 1.1. An example is [3,4,5]. A stone tablet (Plimpton-322) dating back to 1800 [BCE]
(Fig. 1.9) was found with integers for [a, c¢|. Given such sets of two numbers, which determined a third
positive integer b such that b = /¢ — a?, this table is more than convincing that the Babylonians were
well aware of PTs, but less convincing that they had access to Euclid’s formula (Eq. 1.3).

It seems likely that Euclid’s Elements was largely the source of the fruitful 6th century era due to
the Greek Mathematician Diophantus (Fig. 1.2), who developed the concept of discrete mathematics,
now known as Diophantine analysis.

The work of Diophantus was followed by a rich mathematical era, with the discovery of 1) early cal-
culus (Brahmagupta, 7" CE), 2) algebra (al-Khwarizmi, 9" CE), and 3) complex arithmetic (Bombelli,
15th CE). This period overlapped with the European middle (i.e., dark) ages. Presumably European in-
tellectuals did not stop thinking during these many centuries, but what happened in Europe is presently
unclear given the available records.”

°Tt might be interesting to search the archives of the monasteries, where the records were kept, to figure out what
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1.1. EARLY SCIENCE AND MATHEMATICS 17

1.1.3 What is mathematics?

Mathematics is a language, not so different from other languages. Today’s mathematics is a written
language with an emphasis on symbols and glyphs, biased toward Greek letters. The etymology of these
symbols would be interesting to study. Each symbol is dynamically assigned a meaning, appropriate
for the problem being described. These symbols are then assembled to make sentences. It is similar
to Chinese in that the spoken and written version are different across dialects. In fact, like Chinese,
the sentences may be read out loud in the language (dialect) of your choice, while the mathematical
sentence (like Chinese) is universal.

Math is a language: It seems strange when people complain that they “can’t learn math,”'% but
they claim to be good at languages. Math is a language, with the symbols taken from various languages,
with a bias toward Greek, due to the popularity of Euclid’s Elements. Learning a new language is fun
because it opens doors to other cultures.

Math is different due to the rigor of the rules of the language, along with the way it is taught (e.g.,
not as a language). A third difference between math and the romance languages is that math evolved
from physics, with important technical applications. This was the concept behind the Pythagorean
school, a band of followers called the Pythagoreans. Learning languages is an advanced social skill.
Thus the social outcomes are very different between learning a romance language and math. A further
problem is that pre-high-school, students confuse arithmetic with math. The two topics are very
different, and students need to understand this. One does not need to be good at arithmetic to be
good at math (but it doesn’t hurt).

There are many rules that must be mastered. These rules are defined by algebra. For example the
sentence a = b means that the number a has the same value as the number b. The sentence is spoken
as “a equals b.” The numbers are nouns and the equal sign says they are equivalent, playing the role of
a verb, or action symbol. Following the rules of algebra, this sentence may be rewritten as a — b = 0.
Here the symbols for minus and equal indicate two types of actions.

Sentences can become arbitrarily complex, such as the definition of the integral of a function, or a
differential equation. But in each case, the mathematical sentence is written down, may be read out
loud, has a well defined meaning, and may be manipulated into equivalent forms following the rules
of algebra and calculus. This language of mathematics is powerful, with deep consequences, known as
proofs.

The writer of an equation should always translate (explicitly summarize the meaning of the expres-
sion), so the reader will not miss the main point. This is simply a matter of clear writing.

Language may be thought of as mathematics (turning this idea on its head). To properly write
correct English it is necessary to understand the construction of the sentence. It is important to
identify the subject, verb, object, and various types of modifying phrases. If you wish to read about
this, look up the distinction between the words that and which, which make a nice example of this
concept. Most of us work directly with what we think “sounds right,” but if you’re learning English as
a second language, it is very helpful to understand these mathematical rules, which are arguably easier
to master than the foreign phones (i.e., speech sounds).

1.1.4 Early Physics as Mathematics

Mathematics has many functions, but basically it summarizes an algorithm (a set of rules). It was
clear to Pythagoras (and many others before him), that there was an important relationship between
mathematics and the physical world. Pythagoras may have been one of the first to capitalize on this
relationship, using science and mathematics to design and make things.!! This was the beginnings
of technology as we know it, coming from the relationship between physics and math, impacting

happened during this strange time.
10«1t Jooks like Greek to me.”
171t is likely that the Chinese and Egyptians also did this, but this is more difficult to document.
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Figure 13.10: Portrait of Jakob Bernoulli by Nicholas Bernoulli Figure 13.11: Johann Bemnoulli

Figure 10.4: Leonhard Euler

Figure 1.3: Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli; Below: Leonhard Euler (1707) and Jean le
Rond d’Alembert (1717-1783). The figure numbers are from Stillwell (2010).
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1.1. EARLY SCIENCE AND MATHEMATICS 19

map making, tools, implements of war (the wheel, gunpowder), art (music), sound, water transport,
sanitation, secure communication, food, ..., etc.

Why is Eq. 1.1 called a theorem, and what exactly needs to be proved? We do not need to prove
that (a,b,c) obey this relationship, since this is a condition that is observed. We do not need to prove
that a? is the area of a square, as this is the definition of the area of a square. What needs to be proved
is that this relation only holds if the angle between the two shorter sides is 90°.

To appreciate the significance of this development it is helpful to trace the record back to before
the time of the Greeks. The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras.
Rather Euclid and Pythagoras appreciated the importance of these ideas and documented them.

In the end the Pythagoreans were destroyed by fear. This may be the danger of mixing technology
and politics:

“Whether the complete rule of number (integers) is wise remains to be seen. It is said that
when the Pythagoreans tried to extend their influence into politics they met with popular
resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 scr.”

—Stillwell (2010, p. 16)

1.1.5 The birth of modern mathematics

Modern mathematics (what we know today) was born in the 15-16" century, in the hands of Leonardo
da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Stillwell, 2010). Many of these early
master were, like the Pythagoreans, secretive to the extreme about how they solved problems. They
had no interest in sharing their ideas. This soon changed by Mersenne, Descartes and Newton, causing
mathematics to blossom.

The amazing Bernoulli family The first individual that seems to have openly recognized the
importance of mathematics, to actually teach it, was Jacob Bernoulli (Fig. 1.3). Jacob worked on what
is now view as the standard package of analytic “circular” (i.e., periodic) functions: sin(z), cos(z),
exp(x), log(r).1? Eventually the full details were developed (for real variables) by Euler (Section 1.3.8
and 3.4.1).

From Fig. 1.4 we see that he was contemporary to Galileo, Mersenne, Descartes, Fermat, Huygens,
Newton, and Euler. Thus it seems likely that he was strongly influenced by Newton, who in turn was
influenced by Descartes,'® Vite and Wallis (Stillwell, 2010, p. 175). With the closure of Cambridge
University due to the plague of 1665, Newton returned home, Woolsthorpe-by-Colsterworth (95 [mi]
north of London), to worked by himself, for over a year.

Jacob Bernoulli, like all successful mathematicians of the day, was largely self taught. Yet Jacob
was in a new category of mathematicians, because he was an effective teacher. Jacob taught his sibling
Johann, who then taught his sibling Daniel. But most importantly, Johann taught Leonhard Euler
(Figs. 1.4, 1.3), the most prolific (thus influential) of all mathematicians. This resulted in an explosion
of new ideas and understanding. It is most significant that all four mathematicians published their
methods and findings. Much later, Jacob studied with students of Descartes'# (Stillwell, 2010, p. 268-9).

Euler went far beyond all the Bernoulli family, Jacob, Johann and Daniel, (Stillwell, 2010, p. 315).
A special strength of Euler was the degree to which he published. First he would master a topic, and
then he would publish. His papers continued to appear long after his death (Calinger, 2015).

Another individual of that time of special note, who also published extensively, was d’Alembert
(Figs. 1.4, 1.3). Some of the most important tools were first proposed by d’Alembert. Unfortunately,
and perhaps somewhat unfairly, his rigor was criticized by Euler, and later by Gauss (Stillwell, 2010).

>The log and tan functions are related by tan™"(2) = —% In( B;z ).

Bhttps://en.wikipedia.org/wiki/Early_life_of_Isaac_Newton
1Tt seems clear that Descartes was also a teacher.
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Once the tools were being openly published, mathematics grew exponentially. It was one of the
most creative times in mathematics. Figure 1.4 shows the list of the many famous names, and their
relative time-line. To aid in understand the time line, note that Leonhard Euler was a contemporary
of Benjamin Franklin, James Clerk Maxwell of Abraham Lincoln.!®

Chronological history post 16" century 1.1.2b

17" Galileo , Kepler , Newton Principia ; Mersenne;
Huygen; Pascal; Fermat, Descartes (analytic geometry); Bernoullis Jakob, Johann &
son Daniel

18" Euler Student of Johann Bernoulli; d’Alembert ; Kirchhoff; Lagrange;
Laplace; Gauss

19" Mébius, Riemann , Galois, Hamilton, Cauchy , Maxwell, Heavi-
side, Cayley, von Helmholtz, Rayleigh

20" Hilbert; Einstein; . ..

Time Line

[1525 [1600 [1700 [1800 |1875 1925
Bombelli Newton Maxwell
Descartes Johann Bernoulli Gauss Hilbert
Mersenne Euler Riemann
Huygens  Daniel Bernoulli Rayleigh
Galileo Jacob Bernoulli Cauchy Einstein
Fermat d'Alembert von Helmholtz
Ben Franklin US Civil War

Figure 1.4: Time-line of the four centuries from the 16" and 20'" CE

1.1.6 Three Streams from the Pythagorean theorem

From the outset of his presentation, Stillwell (2010, p. 1) defines “three great streams of mathematical
thought: Numbers, Geometry and Infinity,” that flow from the Pythagorean theorem, as summarized
in Table 1.1. Namely the Pythagorean theorem is the spring from which flow the three streams of
all mathematics. This is a useful concept, based on reasoning not as obvious as one might think.
Many factors are in play here. One of these was the strongly held opinion of Pythagoras that all
mathematics should be based on integers. The rest are tied up in the long, necessarily complex history
of mathematics, as best summarized by the Fundamental theorems, which are each discussed in detail
in the appropriate chapter.

Stillwell’s concept of three streams following from the Pythagorean theorem is the organizing prin-
ciple behind the this book, organized by chapter:

1. Introduction (Chapter 1) A detailed overview of the fundamentals and the three streams are
presented in Sections 1.2-1.5.

2. Number Systems (Chapter 2: Stream 1) Fundamentals of number systems, starting with prime
numbers, through complex numbers, vectors and matrices.

3. Algebraic Equations (Chapter 3: Stream 2) Algebra and its development, as we know it today.
The theory of real and complex equations and functions of real and complex variables. Complex
impedance Z(s) of complex frequency s = o + wj is covered with some care, given its importance
for engineering mathematics.

15Tincoln traveled through Mahomet IL (where I live) on his way to the Urbana Court house.
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4. Scalar Calculus (Chapter 4: Stream 3a) Ordinary differential equations. Integral theorems.
Acoustics.

5. Vector Calculus: (Chapter 5: Stream 3b) Vector Partial differential equations. Gradient, diver-
gence and curl differential operators. Stokes, and Green’s theorems. Maxwell’s equations.

Table 1.1: Three streams followed from Pythagorean theorem: Number Systems
(Stream 1), Geometry (Stream 2) and Infinity (Stream 3).

e The Pythagorean Theorem is the mathematical spring which bore the three streams.

e =~=Several centuries per stream:

1) Numbers:

N counting numbers, Q (Rationals), P Primes
Z. Common Integers, I Irrationals
zero € 7

2) Geometry: (e.g., lines, circles, spheres, toroids, ... )
Composition of polynomials (Descartes, Fermat)
Euclid’s Geometry + algebra = Analytic Geometry
Fundamental Theorem of Algebra

3) Infinity: (co — Sets)
F Taylor series, Functions, Calculus (Newton)
R Real, C Complex
Set theory

1.2 Stream 1: Number Systems

This era produced a new stream of fundamental theorems. A few of the individuals who played a
notable role in this development, in chronological (birth) order, include Galileo, Mersenne, Newton,
d’Alembert, Fermat, Huygens, Descartes and Helmholtz. These individuals were some of the first
to develop the basic ideas, in various forms, that were then later reworked into the proofs, that today
we acknowledge as The fundamental theorems of mathematics.

Number theory (discrete, i.e., integer mathematics) was a starting point for many key ideas. For
example, in Euclid’s geometrical constructions the Pythagorean theorem for {a, b, c} € R was accepted
as true, but the emphasis in the early analysis was on integer constructions, such as Euclid’s formula
for Pythagorean triplets (Eq. 1.3, Fig. 2.3) k As we shall see, the Pythagorean theorem is a rich source
of mathematical constructions, such as composition of polynomials, and solutions of Pell’s equation by
eigenvector and recursive analysis methods. Recursive difference equation solutions predate calculus, at
least going back to the Chinese (c2000 BCE). These are early (pre-limit) forms of differential equations,
best analyzed using an eigenfunction expansion (Appendix D), a powerful geometrical concept from
linear algebra, of an expansion in terms of an orthogonal set of normalized (unit-length) vectors.

The first use of zero and oco: It is hard to imagine that one would not appreciate the concept of
zero and negative numbers when using an abacus. If five beads are moved up, and one is moved down,
then four are left. Then if four more are move down, that leaves zero. Taking away is the opposite
of addition, and taking away from four to get zero beads, is no different than taking four away from
zero, to get negative four beads. Subtraction, the inverse of addition, seems like an obvious idea, on
an abacus.
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However, understanding the concept of zero and negative numbers is not the same as having a
symbolic notation. The Roman number system had no such symbols. The first recorded use of a
symbol for zero is said to be by Brahmagupta in 628 CE.'® Thus it does not take much imagination
to go from counting numbers N to the set of all integers Z, including zero, but apparently it takes 600
years to develop a terminology that represents these ideas. Defining the rules of subtraction required
the creation of algebra ¢830 CE (Fig. 1.2). The concept that caused far more difficulty was co. Until
Riemann’s thesis in 1851 it was not clear if co was a number, many numbers, or even definable.

1.2.1 Lec 2: The Taxonomy of Numbers: P,N,Z, Q,I,R,C

Once symbols for zero and negative numbers were defined (and accepted), progress was made. In
a similar manner, to fully understand numbers, a transparent notation is required. First one must
differentiate between the different classes (genus) of numbers, providing a notation that defines each of
these classes, along with their relationships. It is logical to start with the most basic counting numbers,
which we indicate with the double-bold symbol N. All the double-bold symbols and their genus are
summarized in Appendix A.

Counting numbers N:  These are known as the “natural numbers” {1,2,3,---} € N, denoted by
the double-bold symbol N. For increased clarity we shall refer to the natural numbers as counting
numbers, to clarify that natural means integer. The mathematical sentence 2 € N is read as 2 is a
member of the set of counting numbers. The word set means the sharing of a specific property.

Primes P: A prime number P C N (set P is a subset of N) is an integer that may not be factored,
other than by 1 and itself. Since 1 =1-1, 1 ¢ P, as it is seen to violate this basic definition of a prime.
Prime numbers P are a subset of the counting numbers (P C N). We shall use the convenient notation
7y, for the prime numbers, indexed by n € N. The first 12 primes (n = 1,...,12) are 7, = 2, 3,5, 7, 11,
13, 17, 19, 23, 29, 31, 37. Since, 4 = 22 and 6 = 2-3 may be factored, {4,6} & P (read as: 4 and 6 are
not in the set of primes). Given this definition, multiples of a prime, i.e., nmp = [2,3,4,5, ... timesmy
of any prime 7, cannot be prime. It follows that all primes except 2 must be odd and every integer
N is unique in its factorization.

Coprimes are number whose factors are distinct (they have no common factors). Thus 4 and 6 are
not coprime, since they have a common factor of 2, whereas 21 = 3 -7 and 10 = 2 - 5 are coprime. By
definition all distinct primes are coprime. The notation m L n indicates that m,n are coprime.

The Fundamental Theorem of Arithmetic states that all integers may be uniquely expressed as a
product of primes. The Prime Number Theorem estimates the mean density of primes over N.

Integers Z:  These include positive and negative counting numbers and zero. Notionally we might
indicate this using set notation as Z : {—N,0,N}. Read this as The integers are in the set composed of
the negative of the natural numbers (—N), zero, and counting numbers N. Note that N C Z.

Rational numbers Q:  These are defined as numbers formed from the ratio of two integers. Since
the integers Z include 1, it follows that integers are a subset of rational numbers (Z C Q). For example
the rational number 3/1€ Z). The main utility of rational numbers is that that they can efficiently
approximate any number on the real line, to any precision. For example 7 ~ 22/7 with a relative error
of ~0.04%. Of course, if the number is rational the error is zero.

Fractional number F : The utility of rational numbers is their power to approximate irrational
numbers (R ¢ Z). It follows that a subset of the rationals, that excludes the integers, has great value.
We call these numbers Fractional numbers and assign them the symbol F. They are defined as the
subset of rationals that are not integers. From this definition F L Z, F C Q = Z UF. Because of their

16The fall of the Roman Empire was Sept. 4, 476.
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approximating property, the fractional set F represent the most important (and the largest) portion
of the rational numbers, dwarfing the size of the integers, another good reason for defining the two
distinct subsets.

Once factored and common factors canceled, the subset F' C QQ of rational numbers is always the
ratio of coprimes. For example 7 ~ 22/7 =11-2/7=3+1/7 with 22 1L 7, and 9/6 =3/2=1+1/2
with 3 1 2.17

Irrational numbers [:  Every real number that is not rational (@) is #rrational (Q L I). Irrational
numbers include 7, e and the square roots of most integers (i.e., v/2). These are decimal numbers that
never repeat, thus requiring infinite precision in their representation.

Irrational numbers (I) were famously problematic for the Pythagoreans, who incorrectly theorized
that all numbers were rational. Like oo, irrational numbers require a new and difficult concept before
they may even be defined: They were not in the set of fractional numbers (I ¢ F). It was easily
shown, from a simple geometrical construction, that most, but not all of the square roots of integers
are irrational. It was essential to understand the factorization of counting numbers before the concept
of irrationals could be sorted out.

Real numbers R: Reals are the union of rational and irrational numbers, namely R : {I,Q}
(R =ZUF UTI). Reals are the lengths in Euclidean geometry. Many people assume that IEEE 75
floating point numbers (c1985) are real (i.e., € R). In fact they are rational (Q : {FUZ}) approximations
to real numbers, designed to have a very large dynamic range. There can be no machine realization
of irrational numbers, since such a number would require infinite precision (oo bits). The hallmark of
fractional numbers (F) is their power in making highly accurate approximations of any real number.

Using Euclid’s compass and ruler methods, one can make line length proportionally shorter or
longer, or (approximately) the same. A line may be made be twice as long, an angle bisected. However,
the concept of an integer length in Euclid’s geometry was not defined.'® Nor can one construct an
imaginary or complex line as all lines are assumed to be real.

Real numbers were first fully accepted only after set theory was developed by Cantor (1874) (Still-
well, 2010, pp. 461, 525...). It seems amazing, given how widely accepted real numbers are today. But
in some sense they were accepted by the Greeks, as lengths of real lines.

Complex numbers C:  Complex numbers are best defined as ordered pairs of real numbers.'® They
are quite special in engineering mathematics, since roots of polynomials having either real or complex
coefficients may be complex. The best known example is the quadratic formula for the roots of a 2¢
degree polynomial, with either real or complex coefficients.

The common way to write a complex number is using the common notation z = a + by € C, where
a,b € R. Here 1) = v/—1. We also define 12 = —17 to account for the two possible signs of the square
root. Accordingly 172 = 122 = —1.

Multiplication of complex numbers follows the rules of real algebra, similar to multiplying two
polynomials. Multiplication of two first degree polynomials gives

(a + bz)(c + dz) = ac + (ad + be)x + bda?

If we substitute 1) for x, and use the definition 19> = —1, we obtain the product of the two complex
numbers
(a+by)(c+ dy) = ac—bd + (ad + be)y.

"HW problem: How to define F given two integers (n,m) C Z? Sol: Not sure how to approach this, but it seems like
a fun problem. Here two simple methods that do not work: (1) One cannot define F as the ratio x = n/m, since given
m =1,z € Z. (2) One cannot define F as the ratio of two coprimes, since then z = 1/m ¢ F (since 1 P).

18 As best I know.

19 A polynomial a + bz and a 2-vector [a, b}T = {Z} are also examples of ordered pairs.
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Thus multiplication of complex numbers obeys the accepted rules of algebra.

Polar representation: A alternative for complex multiplication is to work with polar coordinates.
The polar form of complex number z = a + by is written in terms of its magnitude p = Va2 + b? and
angle § = Zz = tan~'(2) = arctanz, as z = pe’7. From the definition of the complex natural log
function

In pe?” =1np + 6y,

which is useful in engineering calculations.?’

Matrix representation: A second alternative and useful way to represent complex numbers is in
terms of 2x2 matrices. This relationship is defined by the mapping from a complex number to a 2x2
matrix (along with several examples)

a —b 20 0 1 ; sin(f#) — cos(0)
atbyo [b a]’ 2o [O 2]’ e [—1 0]’ eV [cos(@) sin(0) ]

You might verify that

a+by  ab+bd+ (be— ad) a b [ec —d™ Ja =b|[e d] 1
ct+dy 2+ d? b a|l|d ¢ b oal|—-d c|c2+d?

By taking the inverse of the 2x2 matrix one can define the ratio of one complex number by another,
Until you try out this representation, it may not seem obvious, or even that it could work.

This representation proves that 15 is not necessary to define a complex number. What 15 can
do is simplify the algebra, both conceptually and for numerical results. It is worth your time to
become familiar with the matrix representation, to clarify any possible confusions you might have
about multiplication and division of complex numbers. This matrix representation can save you time,
heartache and messy algebra. Once you have learned how to multiply two matrices, it’s a lot simpler
than doing the complex algebra. In many cases we will leave the results of our analysis in matrix form,
to avoid the algebra altogether.2! More on this topic may be found in Chapter 2.

Real versus complex numbers: All numbers may be viewed as complex. Namely every real number
is complex if we take the imaginary part to be zero (Boas, 1987). For example, 2 € P C C. Likewise
every purely imaginary number (e.g., 0 + 1j) is complex with zero real part. It follows that 2 € Py.
Integers are a subset of reals, which are a subset of complex numbers?? Gaussian integers are complex
integers (Z € R C C).?» From the above discussion it should be clear that each of these different
classes of number are nested in a hierarchy, in the following embeddings

m, ePCNCZCZUF=QCcQuUI=RcC.

The integers Z and fractionals F split the rationals (Q : ZUF, Z L F), each of which is a subset of
the rationals (Z € Q, F C Q). The rationals Q and irrationals I split the reals (R: QUI, Q L I), each
of which is a subset of the reals (Q € R, I € R).

The roots of polynomials x, are complex (z3 € C), independent of the genus of the coefficients (e.g.,
real integer coefficients give rise to complex roots). Each genus plays an important role in algebra, with
prime numbers at the bottom (root of the tree) and complex numbers at the top. We shall explore this
further in Chaps. 2 and 3.

20Chapter 2 discusses the definition of the phase, i.e., how is it computed (i.e., arctan(ce]) , arctan2(x,y)), and the
importance of the unwrapped phase, as in the example §(t — 7) <> e~ 7.

21Sometimes we let the computer do the final algebra, numerically, as 2x2 matrix multiplications.

22The plural complexs (a double /s/) seems an unacceptable word in English.

2Tt follows that integers are a subset of Gaussian integers (the imaginary or real part of the Gaussian integer may be
zero).
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Finally, note that complex numbers C do not have “order,” meaning one cannot be larger, smaller
or equal to another. It makes no sense to say that 3 > 1 or y = 1 (Boas, 1987). The real and imaginary
parts and the magnitude and phase have order.

History of complex numbers: It is notable how long it took for complex numbers to be accepted
(1851), relative to when they were first introduced by Bombelli (16'" century CE). In fact, complex
integers (aka, Gaussian integers) were accepted before non-integral complex numbers. Apparently real
numbers (R) were not accepted (i.e., proved to exist, thus mathematically defined) until even later. It
took the development of set theory in the late 19*" century to sort out a proper definition of the real
number, due to the existence of irrational numbers.

Computer Representations of [, R, C: When doing numerical work, one must consider how we may
compute within the family of reals (i.e., irrationals). There can be no irrational number representation
on a computers. IEEE floating point numbers, which are the international standard of computation,
are actually rational approximations. The mantissa and the exponent are each integers, having sign
and magnitude. The size of each integer depends on the precision of the number being represented.
An IEEE floating-point number is rational because it has a mantissa integer multiplied by a base to
the power of an exponent integer.

Floating point numbers contain irrational numbers, which must be approximate by rational num-
bers. This leads to the concept of fractional representation, which requires the definition of the man-
tissa, exponent and base. Numerical results must not depend on the base. For example, when using
base ten?*

m-10° ~ 314159.27... =3-10° +1-10* +4-103+--- +9-10°+2-107* - - .
According to Matlab’s DEC2BIN() routine, the binary representation is
727 & 1310720 - 22/7 = 110, 0100, 1001, 0010, 01015,
where 1 and 0 are multipliers of powers of 2, which are then added together as follows
918 4 917 4 old 4 oIl 4 98 | 95 | 92 4 o0

In base 16 (i.e, hexadecimal) 217 . 22/7 = 218 . 815 /71.

One may keep track of the decimal point using the exponent, which in this case is a factor of 217
= 13107219. The concept of a number having a decimal point is replaced by an integer, having the
desired precision, and a scale factor of any base (radix). This scale factor may be thought of as moving
the decimal point to the right (larger number) or left (smaller number). The mantissa “fine-tunes” the
value about a scale factor (the exponent).

Here is # = 2!7 x 22/7 at IEEE 754 full double precision, as computed by an IEEE-754 floating
point converter? x = 411940.5625,9 = 2°* x 1198372 = 010010, 001, 10010, 010010, 010010, 0100105 =
0248c9249216. The commas in the binary string of ones and zeros, are to help visualize the quasi-
periodic nature of the bit-stream. The mantissa is 479349019 and the exponent is 2'¥. The numbers
are stored in a 32 bit format, with 1 bit for sign, 8 bits for the exponent and 23 bits for the mantissa.
Perhaps a more instructive number is x = 4793490.0 = 01, 001, 010, 100, 100, 100, 100, 100, 100, 100, 1004
= 0zda, 924,924, which has a repeating binary bit pattern of ((100))s, only broken by the scale factor
Oz4a. Another with even higher symmetry is = 6.344,131,191,146,9 x 10717 = 0224, 924, 9245 =
00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1002. In this example the repeating pattern is clear in the
Hex representation as a repeating ((942))s. As before, the commas are to help with readability, and
have no other meaning.

24Base 10 is the natural world-wide standard simply because we have 10 fingers.
*http://www.h-schmidt.net/FloatConverter/IEEE754 . html
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There are other important types of representations. As pairs of reals, complex numbers have similar
approximate representations. An important representations of complex numbers is e* = cosh(z) +
jsinh(z), which includes the famous formula of Euler ¢ = cos 6 + jsinf. Some of these concepts can
be generalized to include vectors, matrices and polynomials.

Integers and the Pythagoreans The integer is the corner stone of the Pythagorean doctrine, so
much so that it caused a fracture within the Pythagoreans when it was discovered that not all numbers
are rational. The famous example is the isosceles triangle 1,1,+/2, which lead to the next triangle
[1,2,4/3], etc. This is known as the Spiral of Theodorus: the short side is 1 and the hypotenuse is
extended by one, using a simple compass-ruler construction.

There are right-triangles with integral lengths, the best known being [3,4,5]. Such triplets of
integers [a, b, c] that satisfy the Pythagorean formula (Eq. 1.1) are denoted Pythagorean triplets, which
may be verified using Euclid’s formula (Eq. 1.3).

To form triangles with perfect 90° angles, the lengths need to satisfy Eq. 1.1. Such triangles are
also useful in constructing buildings or roads made from of bricks having a uniform size.

Public-private key Security: An important application of prime numbers is public-private key
(RSA) encryption, essential for internet security applications (e.g., online banking). To send secure
messages the security (i.e., utility) of the internet is dependent on key encryption.?® Most people
assume this is done by a personal login and passwords. Passwords are simply not secure, for many
reasons. The proper method depends on factoring integers formed from products of primes having
thousands of bits.2” The security is based on the relative ease in multiplying large primes, but the
virtual impossibility of factoring them.

When a computation is easy in one direction, but its inverse is impossible, it is called a trap-door
function. We shall explore the reasons for this in Chapter 2. If everyone switched from passwords to
public key encryption, the internet would be much more secure.

Puzzles: A third application of integers are imaginative problems that use integers. An example is
the classic Chinese Four stone problem: “Find the weight of four stones that can be used with a scale
to weigh any object (e.g., salt, gold) between 0, 1, 2, ..., 40 [gm].” As with the other problems, the
answer is not as interesting as the method, since the problem may be easily recast into a related one.
This type of problem can be found in airline magazines as entertain on a long flight. The solution to
this problem is best cast as a linear algebra problem, with integer solutions. Again, once you know the
trick, it is “easy.”?®

1.2.2 Lec 3: The role of physics in mathematics

Bells, chimes and Eigenmodes Integers naturally arose in art, music and science. An example
are the relations between musical notes, the natural eigenmodes (tones) of strings and other musical
instruments. These relations were so common and well studied, it appeared that to understand the
physical world (aka, the Universe), one needed to understand integers. This was a seductive view, but
not actually correct. As will be discussed in Sections 1.3.1 and 3.1.1, it is best to view the relationship
between acoustics, music and mathematics as historical, since these topics played such an important
role in the development of mathematics. Also interesting is the role that integers seem to play in
quantum mechanics, for much the same reasons.

260ne might say this is either: i) a key application of primes, or ii) it is primary application of keys. Its a joke.

27Tt would seem that public key encryption could work by having two numbers with a common prime, and then by
using Euclidean algorithm, that GCD could be worked out. One of the integers could be the public key and the second
could be the private key. Given the difficulty of factoring the numbers into their primes, and ease of finding the GCD
using Euclidean algorithm, a practical scheme may be possible. Ck this out.

Z8When ever someone tells you something is “easy,” you should immediately appreciate that it is very hard, but there
is a concept, that once you learn, the difficulty evaporates.
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Engineers are so accustomed to working with real (or complex) numbers, the distinction between
real (i.e., irrational) and fractional numbers are rarely acknowledged. Integers on the other hand
arise in many contexts. One cannot master programming computers without understanding integer,
hexadecimal, octal, and binary representations, since all numbers in a computer are represented in
numerical computations in terms of rationals (Q = ZUF).

As discussed in Section 1.2.1, the primary reason integers are so important is their absolute precision.
Every integer n € Z is unique,?? and has the indexing property, which is essential for making lists that
are ordered, so that one can quickly look things up. The alphabet also has this property (e.g., a book’s
index). Other than for hexadecimal numbers, which for notional reasons use the alphabet, letters are
equivalent to integers.

Because of the integer’s absolute precision, the digital computer overtook the analog computer,
once it was practical to make logic circuits that were fast. The first digital computer was thought
to be the Eniac at the University of Pennsylvania, but it turned out that the code-breaking effort in
Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer (The
Colossus) to break the WWII German “Enigma” code. Due to the high secrecy of this war effort, the
credit was only acknowledged in the 1970s when the project was declassified.

There is zero possibility of analog computing displacing digital computing, due to the importance
of precision (and speed). But even with binary representation, there is a non-zero probability of error,
for example on a hard drive, due to physical noise. To deal with this, error correcting codes have been
developed, to reduce the error by several orders of magnitude. Today this is a science, and billions of
dollars are invested to increase the density of bits per area, to increasingly larger factors. A few years
ago the terabyte drive was unheard of; today it is the standard. In a few years petabyte drives will
certainly become available. It is hard to comprehend how these will be used by individuals, but they
are essential for on-line (cloud) computing.

Fundamental theorems

Modern mathematics is build on a hierarchical construct of fundamental theorems, as summarized in
Table 1.2. The importance of such theorems cannot be overemphasized. Every engineering student
needs to fully appreciate the significance of these key theorems. If necessary, memorize them. But
that will not do over the long run, as each and every theorem must be fully understood. Fortunately
most students already know several of these theorems, but perhaps not by name. In such cases, it is a
matter of mastering the vocabulary.

The theorems are naturally organized, starting with two theorems on prime numbers (Table 1.2).
These may also be thought of in terms of Stillwell’s three streams. For Stream 1 there is the Fundamen-
tal Theorem of Arithmetic and the Prime Number Theorem. For Stream 2 there is the Fundamental
Theorem of Algebra and Bézout’s theorem, while for Stream 3 there are a host of theorems on calcu-
lus, ordered by their dimensionality. Some of these theorems verge on trivial (e.g., the Fundamental
Theorem of Arithmetic). Others are more challenging, such as the Fundamental Theorem of Vector
Calculus and Green’s theorem.

Complexity should not be confused with importance. Each of these theorems is, as stated, funda-
mental. Taken as a whole, they are a powerful way of summarizing mathematics.

Stream 1: Prime Number theorems:

There are two fundamental theorems about primes,

1. The Fundamental Theorem of Arithmetic: This states that every counting number n > 1 € N
may be uniquely factored into prime numbers. This raises the question of the meaning of factor
(split into a product).

29Check out the history of 1729 = 13 +12%2 =92 +10°.
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Table 1.2: The Fundamental theorems of mathematics

INTRODUCTION

1. Fundamental theorems of:

(a) Number Systems: Stream 1

o Arithmetic
e Prime Number

(b) Geometry: Stream 2

e Algebra
e Bézout

(c) Calculus: Stream 3¢
e Leibniz R!
e Complex C C R?
e vectors R3 R? R>®

2. Other key concepts:

e Complex analytic functions (complex roots are finally accepted!)

— Complex Taylor Series (complex analytic functions)

— Region of convergence (ROC) of complex analytic series

— Laplace transform, and its inverse
— Causal time = complex frequency s
— Cauchy Integral Theorem
— Residue integration (i.e., Green’s Thm in R?)
e Riemann mapping theorem (Gray, 1994; Walsh, 1973)

e Complex Impedance (Ohm’s Law) Kennelly

“Flanders, Harley (June—July 1973). “Differentiation under the integral sign.” American Math-

ematical Monthly 80 (6): 615-627. doi:10.2307/2319163. JSTOR 2319163.

2. The Prime Number Theorem: One would like to know how many primes there are. That is easy:
|P| = co. (The cardinality, or size of the set of primes, is infinite). The proper way of asking
this questions is What is the average density of primes, in the limit as n — oo? This question
was answered, for all practical purposes, by Gauss, who as a pastime computed the first million
primes by hand. He discovered that, to a good approximation, the primes are equally likely on
a log scale. This is nicely summarized by the jingle attributed to the mathematician Pafnuty

Chebyshev

Chebyshev said, and I say it again: There is always a prime between n and 2n.

(Stillwell, 2010, p. 585)

When the ratio (interval) of two frequencies (pitch) is 2, the relationship is called an octave. Thus we
might say there is at least one prime per octave. This makes on wonder about the maximum number
of primes per octave. In modern music the octave is further divided into 12 intervals called semitones
(factors), equal to the %/2. The product of 12 semitones is an octave. Thus we must wonder how

many primes there is per semitone?
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Stream 2: Fundamental theorem of Algebra

This theorem states that every polynomial has at least one root. When that root is removed then the
degree of the polynomial is reduced by 1. Thus when applied recursively, a polynomial of degree N
has N roots.

Besides the Fundamental Theorem of Algebra, a second important theorem is Bézout’s theorem,
which is a generalization of the Fundamental Theorem of Algebra. It says3’ that the composition of
two polynomials has degree equal to the product of the degrees of each polynomial. For example, if
P3(z) = 2% and Ps(z) = 2°, then P3(Ps5)(x) = (z°)% = 2. Tt further states that when counting the
N roots of a polynomial of degree N, one must include the imaginary roots, double roots and roots at
infinity, some of which may difficult to identify.

Stream 3: Fundamental theorems of calculus

There are at least four theorems related to integral calculus:

Table 1.3: Summary of the fundamental theorems of integral calculus.

Name Mapping | Description

Leibnez R — RO | Area under a real curve.

Cauchy C — C° | Residue integration and analytic functions.

Gauss’s Law | R — R? | Conservation of mass and charge crossing a closed surface.

Stokes R3 — R! | Relates line integrals to the rate of change of the flux crossing
an open surface.

Green R? — Ry | Special case of Stokes for a plane

Helmholtz Every differentiable vector field may be decomposed into a
dilatation and a rotation.

In Sections 1.5.3, 1.5.5 and 5.1.3 we will deal with each of the theorems for Stream 3, where we
consider the several Fundamental theorems of integration, starting with Leibniz’s formula for integra-
tion on the real line (R), then progressing to complex integration in the complex plane (C) (Cauchy’s
theorem), which is required for computing the inverse Laplace transform. Then we discuss Gauss’ and
Stokes’ Laws for R?, with closed and open surfaces. One cannot understand Maxwell’s equations,
fluid flow, or acoustics without understanding these theorems. Any problem that deals with the wave
equation in more than one dimension requires an understanding of these concepts. The derivation of
the Kirchhoff voltage and current laws is based on these theorems.

Other key concepts

Besides the widely recognized fundamental theorems for the three streams, there are a number of
equally important theorems that have not yet been labeled as “fundamental.”3!

The widely recognized Cauchy Integral Theorem is an excellent example, since it is a stepping stone
to the Fundamental Theorem of Complex Integral Calculus. In Chapter 4 we clarify the contributions
of each of these special theorems.

Once these Fundamental theorems of integration (Stream 3) have been mastered, the student is
ready for the complex frequency domain, which takes us back to Stream 2 and the complex frequency
plane (s = 0 +wy € C). While the Fourier and Laplace transforms are taught in Mathematics courses,

30Gtatements of the theorem speak of intersections and constructions of curves, rather than compositions. I find
this somewhat confusing. For example, how does intersection differ from elimination, or construction from composition
(Stillwell, 2010, p. 119)?

311t is not clear what it takes to reach this more official sounding category.

Helmholtz image
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typically few physical connections are made, accordingly the concept of complex frequency is rarely
mentioned. The complex frequency domain and causality are fundamentally related, and critical for
the analysis of signals and systems.

Without the concept of time and frequency, one cannot develop an intuition for the Fourier and
Laplace transform relationships, especially within the context of engineering and mathematical physics.

WEEK 2

1.2.3 Lec 4: Prime numbers

If someone came up to you and asked for a theory of counting numbers, I suspect you would look them
in the eye with a blank stare, and start counting. It sounds like either a bad joke or a stupid question.
Yet integers are rich topic, so the question is not even slightly dumb. It is somewhat amazing that
even birds and bees can count. While I doubt birds and bees can recognize primes, cicadas and other
insects only crawl out of the ground in multiples of prime years, (e.g., 13 or 17 year cycles). If you have
ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally, there is
an analytic function, first introduced by Euler, based on his analysis of the Sieve, now known as the
Riemann zeta function ((s), which is complex analytic, with its poles at the logs of the prime numbers.
The exact relationship between the primes and the poles will be discussed in Sections 1.4.12 and 4.5.2.
The properties of this function are truly amazing, even fun. It follows that primes are fundamental
properties of the counting numbers, that the theory of numbers (and primes) is an important topic of
study. Many of the questions, and some of the answers, go back to at least the time of the Chinese
(Stillwell, 2010).

The most relevant question at this point is “Why are integers so important?” We addressed this
question in Section 1.2.9. First we count with them, so we can keep track of “how much.” But there
is much more to numbers than counting: We use integers for any application where absolute accuracy
is essential, such as banking transactions (making change), and precise computing of dates (Stillwell,
2010, p. 70) or location (I'll meet you at location Le N at time T€ N), building roads or buildings
out of bricks (objects of a uniform size). If you go to 34" street and Madison and they are at 33th
and Madison, that’s a problem. To navigate we need to know how to predict the tides, the location of
the moon and sun, etc. Integers are important because they are precise: Once a month there is a full
moon, easily recognizable. The next day its slightly less than full.

Sieves

A recursive sieve method for finding primes was first devised by the Greek Eratosthenes,?? and sum-
marized in Fig. 1.5.

1. Write N — 1 counting number from 2 to N (List)

2. Define loop index k = 1 and a multiplier n € N denoted n := {2,--- | N}.
3. The next number on the list is prime 7 € P

4. Remove (Cross out) all multiples n - m,, of 7y

5. k =k + 1: return to step 3.

Starting from the first prime m; = 2, one successively strikes out all the multiples of that prime.
For example, starting from 7 = 2 one strikes out 2-2,2-3,2-4,2-5,--- ,2-(N/2). By definition the

3nttps://en.wikipedia.org/wiki/Sieve_of _Eratosthenes\#Euler.27s_Sieve
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multiples are products of the target prime (2 in our example) and every another integer (n > 2). All
the even numbers are removed in the first iteration. One then considers the next integer not struck
out (3 in our example), which is identified as the next (second) prime my. Then all the (N — 2)/2
non-prime multiples of 7o are struck out. The next number which has not been struck out is 5, thus is
prime 73. All remaining multiples of 5 are struck out (10, 15, 25, ---). This process is repeated until
all the numbers on the starting list have been processed.

As the word sieve implies, this sifting process takes a heavy toll on the integers, rapidly pruning
the non-primes. In four loops of the sieve algorithm, all the primes below N = 50 are identified in red.
The final set of primes is displayed at the bottom of Fig. 1.5.

1. Write N integers from 2 to N — 1. Let k = 1. The first element m; = 2 is a prime. Cross out
n-my: (e.g., n-m =4,8,16,32,---).

2 3 4 5 6 7T 8 9 W
1 ¥ 13 ¥4 15 ¥ 17 18 19 20
21 27 23 24 25 26 27 28 29 30
31 37 33 34 35 36 37 38 39 40
41 47 43 M 45 46 47 48 49 50
2. Let k =2, mp = 3. Cross out nm (6,9,12,15,...):
2 3 4 5 6 7 8 4 W
1 ¥ 13 M4 15 1 17 18 19 20
20 22 23 24 25 26 27 28 29 30
31 327 38 34 35 36 37 38 39 40
41 47 43 M 45 46 47T 48 49 0
3. Let k = 3,m3 = 5. Corss out nms. (Cross out 25, 35).
2 3 4 5 6 7 8 9 W
11 ¥ 13 4 15 1 17 18 19 20
2 22 23 24 25 26 27 28 29 30
31 3727 33 34 35 36 37 38 39 4
A1 427 43 M 45 A6 AT A8 49 50

4. Finally let k = 4,74 = 7. Remove nmy: (Cross out 49). Thus there are 15 primes less than
N =50: m, ={2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47}.

Figure 1.5: Sieve of Eratosthenes for the case of N = 50.

Once a prime greater than N/2 has been identified, we may stop, since twice that prime is greater
than N, the maximum number under consideration. Once you have reached v/N all the primes have
been struck out (this follows from the fact that the next prime 7, is multiplied by an integer n =
1,...N). Once this number nm, > N the list has been exhausted, which must be n < V'N.

There are various schemes for making the sieve more efficient. For example the recursion nm, =
(n — 1), + mg. could speed up the process, by replacing the multiply by an add by a known quantity.
When using a computer, memory efficiency and speed are the main considerations.

The importance of prime numbers

Likely the first insight into the counting numbers starts with the sieve, shown in Fig. 1.5. A sieve
answers the question “What is the definition of a prime number?” which is likely the first question to
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be asked. The answer comes from looking for irregular patterns in the counting numbers, by playing
the counting numbers against themselves.

A prime is that subset of positive integers P € N that cannot be factored. The number 1 is not a
prime, for some non-obvious reasons, but there is no pattern in it since it is always a (useless) factor
of every counting number.

To identify the primes we start from the first candidate on the list, which is 2 (since 1 is not a
prime), and strike out all multiples by the counting numbers greater than 1 [(n 4+ 1) -2 =4,6,8,---].
While not obvious, this is our first result, that 2 is a prime, since it has no other factors but 1 and
itself. This leaves only the odd numbers. We need a notation to indicate this result so we shall set
71 = 2, as the first prime.?3

Two Fundamental Theorems of Primes: FEarly theories of numbers revealed two fundamental
theorems (there are many more than two), as discussed in Section 1.2.2. The first of these is the
Fundamental Theorem of Arithmetic, which says that every integer greater than 1 may be uniquely
factored into a product of primes (Eq. 2.1). Our demonstration of this is empirical, using Matlab’s
factor (N) routine, which delivers the prime numbers that compose N.3* Typically the prime factors
appear more than once, for example 4 = 22. To make the notation compact we define the multiplicity
Bk of each prime factor 7 (Eq. 2.1).

Each counting number is uniquely represented by a product of primes. There cannot be two integers
with the same factorization. Once you multiply the factors out, the result is a unique N. Note that it’s
easy to multiply integers (e.g., primes), but nearly impossible to factor them. Factoring is not the same
as dividing, as one needs to know what to divide by. Factoring means dividing by some integer and
obtaining another integer with a zero remainder. This is what makes it so difficult (nearly impossible).

So the question remains: “What is the utility of the FTA?” which brings us to the topic of internet
security. Unfortunately at this time I can not give you a proper summary of how it works. The full
answer requires a proper course in number theory, beyond what is presented here.

The basic concept is that it is easy to construct the product of two primes, even very long primes
having hundreds, or even thousands, of digits. It is very costly (but not impossible) to factor them.
Why not use Matlab’s factor(N) routine to find the factors? This is where cost comes in. The
numbers used in RSA are too large for Matlab’s routine to deliver an answer. In fact, even the largest
computer in the world (such as the University of Illinois’ super computer (NCSA Water) cannot do
this computation. The reason has to do with the number of primes. If we were simply looking up a few
numbers from a short list of primes, it would be easy, but the density of primes among the integers, is
huge (see Section 2.1.1). This take us to the Prime Number Theorem (PNT). The security problem is
the reason why these two theorems are so important: 1) Every integer has a unique representation as a
product of primes, and 2) the number of primes is very dense (their are a very large number of them).
Security reduces to the needle in the haystack problem, the cost of a search. A more formal way to
measure the density is called the entropy, which is couched in terms of the probability of events, which
in this case is “What is the probability of finding a prime between N and 2N?”

Rational numbers Q

The most important genus of numbers are the rational numbers since they maintain the utility of
absolute precision, and they can approximate any irrational number (e.g., 7 ~ 22/7) to any desired
degree of precision. However, the subset of rationals we really are interested in are the fractionals F.
Recall that Q : FUZ and F 1 Z. The fractionals are the numbers with the approximation utility,
with arbitrary accuracy. Integers are equally important, but for a very different reason. All numerical

33There is a potentially conflicting notation since w(N) is commonly defined as the number of primes less than index N.
Be warned that here we define ., as the n*" prime, and II(N) as the number of primes < N, since having a convenient
notation for the n*" prime is more important that for the number of primes less than N.

341f you wish to be a Mathematician, you need to learn how to prove theorems. If you're an Engineer, you are happy
that someone else has already proved them, so that you can use the result.
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computing today is done with Q. Indexing uses integers Z, while the rest of computing (flow dynamics,
differential equations, etc.) is done with the fractionals F. Computer scientists are trained on these
topics, and engineers need to be at least conversant with them.

Irrational numbers: The cardinality of numbers may be ordered: |I| >> |Q| > |N| = |P|

The real line may be split into the irrationals and rationals. The rationals may be further split into
the integers and the fractionals. Thus, all is not integer. If a triangle has two integer sides, then the
hypotenuse must be irrational (v/2 = /12 + 12). This leads us to a fundamental question: “Are there
integer solutions to Eq. 1.17” We need not look further than the simple example {3,4,5}. In fact this
example does generalize, and the formula for computing an infinite number of integer solutions is called
FEuclid’s Formula, which we will discuss in Section 2.1.3.

However, the more important point is that the cardinality of the irrationals is much larger than
any set other than the reals (i.e., complex numbers). Thus when we use computers to model physical
systems, we are constantly needing to compute with irrational numbers. But this is impossible since
every irrational numbers would require an infinite number of bits to represent it. Thus we must compute
with rational approximations to the irrationals. This means we need to use the fractionals. In the end,
we must work with the IEEE 754 floating point numbers,3® which are fractionals, more fully discussed
in Section 2.1.1.

1.2.4 Lec 5: Greatest common divisor (Euclidean algorithm)

The Euclidean algorithm is a method to find the greatest common divisor (GCD) k between two integers
n,m, denoted k = ged(n, m), where n,m,k € N. For example 15 = ged(30, 105) since when factored
(30,105) = (2-3-5, 7-3-5) =3-5-(2,7) = 15-(2,7). The Euclidean algorithm was known to the
Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41).

Why is the GCD important? Computing the GCD is simple, whereas a full factoring is extremely
expensive. The GCD is important precisely because of the fundamental difficulty of factoring large
integers into their primes. This utility surfaces when the two numbers are composed of very large
primes. When two integers have no common factors they are said to be coprime, thus their GCD is 1.
The ratio of two integers which are coprime is automatically in reduced form (they have no common
factors).

For example 4/2 € Q is not reduced since 2=gcd(4,2). Canceling out the common factor 2, gives
the reduced form 2/1=2 € N. Thus if we wish to form the ratio of two integers, first compute the ged
and remove it from the two numbers, then form the ratio. This assures the rational number is in its
reduced form. If the GCD were 10? digits it is obvious that the common factor must be removed before
any computation should proceed.

An example: Take the two integers [873,582]. In factored form these are [mas5 - 32, 725 - 3 - 2]. Given
the factors, we see that the largest common factor is mo5 - 3 = 291. When we take the ratio of the two
numbers this common factor cancels

873 ms-3-3 3
582  mas-3-2 2

Of course if we divide 582 into 873 this we will numerically obtain the answer 1.5 € R. If the common
factor is large, a floating point number in F is returned, since all floating point numbers are in F.
But due to rounding errors, it may not be 3/2. To obtain the exact answer, in F, we need the GCD.
Removing large common factors, without actually factoring the two numbers, has obvious practical
utility.

3°IEEE 754: http://www.h-schmidt.net/FloatConverter/IEEE754.html.
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Greatest Common Divisor: k=gcd(m,n)

e Examples (m,n,k € Z):

— ged(13*5,11*%5) = 5 (The common 5 is the ged)

— ged(13*10,11%10) = 10 (The ged(130,110) = 10 = 2*5, is not prime)

— ged(1234,1024) = 2 (1234=2%617, 1024=2"°)

— ged (T Tm, TKTn) = Tk

— k=gcd(m,n) is the part that cancels in the fraction m/n € F

— m/ged(m,n) € Z

e Co-primes (m L n) are numbers with no common factors: i.e., ged(m,n)=1

The ged of two primes is always 1: ged(13,11) = 1, ged(mm, mn)=1
—m=7-13,n=5-19= (7-13) L (5-19)

— If m L n then ged(m,n) =1

If ged(m,n) =1 then m L n

e The GCD may be extended to polynomials: e.g., ged(az® + bz + ¢, az® + Bz +7)
ged((z = 3)(x = 4), (z = 3)(z —5))=(z = 3)

— ged(x? — Tz + 12, 3(2® — 8z + 15))= 3(x — 3)

— ged(x? — Tz +12, (32% — 24z + 45)=3(x — 3)

— ged( (x —2m)(x — 4), (x — 27)(x —5) )= (z — 2m) (Needs long division)

Figure 1.6: The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathematics,
and is highly relevant today. It is both powerful and simple. It was used by the Chinese during the Han dynasty (Stillwell,
2010, p. 70) for reducing fractions. It may be used to find pairs of integers that are coprime (their gcd must be 1), and it
may be used to identify factors of polynomials by long division. It has an important sister algorithm called the continued
fraction algorithm (CFA), that is so similar in concept that Gauss referred to the Euclidean algorithm as the“continued
fraction algorithm” (Stillwell, 2010, p. 48).

Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers
be 6,9. At each step the smaller number (6) is subtracted from the larger (9) and the difference
(the remainder) and the smaller numbers are saved. This process continues until the two resulting
numbers are equal, at which point the GCD equals that final number. If we were to take one more
step, the final numbers would be the ged and zero. For our example step 1 gives 9-6=3, leaving 6 and
3. Step 2 gives 6-3=3 and 3. Since the two numbers are the same, the GCD=3. If we take one more
difference we obtain (3,0). We can easily verify this result since this example is easily factored (e.g.,
3-3,3-2) =3(3,2). It may be numerically verified using the Matlab GCD command gcd(6,9), which
returns 3.

In Chapter 2, Section 2.1.2 (p. 77), we shall describe two methods for implementing this procedure
using matrix notation, and explore the deeper implications.

Coprimes

Related to the prime numbers are co-primes, which are integers that when factored, have no common
primes. For example 20 = 5-2-2 and 21 = 7-3 have no common factors, thus they are coprime. Coprimes
[m,n] may be indicated with the “perpendicular” notation n L m, spoken as “n is perpendicular (perp)
to m.” One may use the GCD to determine if two numbers are coprime. When ged(m,n) = 1, m and
n are coprime. For example since gcd(21,20)=1 (i.e., 21 L 20) the are coprime.

1.2.5 Lec 6: Continued fraction algorithm (CFA)

The Continued fraction algorithm was mentioned in Section 1.2.4 at the end of the discussion on
the GCD. These two algorithms (CFA vs. GCD) are closely related, enough that Gauss referred to
the Euclidean algorithm as the Continued fraction algorithm (i.e., the name of the CFA algorithm)
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s (Stillwell, 2010, P. 48). This question of similarity needs some clarification, as it seems unlikely that
660 Gauss would be confused about such a basic algorithm.

670 In its simplest form the CFA starts from a real decimal number and recursively expands it as
o1 a fraction. It is useful for finding rational approximations to any real number. The GCD uses the
62 Euclidean algorithm on a pair of integers m > n € N and finds their greatest common divisor k£ € N.
673 At first glance it is not clear why Gauss would call the CFA the Euclidean algorithm. One must assume
674 that Gauss had some deeper insight into the relationship. If so, it would be valuable to understand.
675 In the following we refine the description of the CFA and give examples that go beyond the simple
676 cases of expanding numbers. The CFA of any number, say xg, is defined as follows:

677 1. Start with n = 0 and input target (starting value) xo € R.

678 2. If |x,| > 1/2 define a,, = round(x,), which rounds to the nearest integer.
679 3. rp, = xp — ayp is the remainder. If r,, = 0, the recursion terminates.
680 4. Define x,11 = 1/r, and return to step 2 (with n =n +1).

An example: Let zo = 7 ~ 3.14159.... Thus ag = 3, 19 = 0.14159, 1 = 7.065 ~ 1/rg, and a1 = 7.
If we were to stop here we would have

1 1 22
— & == — 1.2
+7—{—0.0625... 3+7 7 (1.2)

T 1~ 3
This approximation of 7 &~ 22/7 has a relative error of 0.04%

22/7—m
T

—4x107%

For the second approximation we continue by reciprocating the remainder 1/0.0625 ~ 15.9966 which
rounds to 16, resulting in the second approximation

Ry~ 3+1/(T+1/16)=3+16/(7-16+1) = 3+ 16/113 = 355/113.

es1  Note that if we had truncated 15.9966 to 15, the remainder would have been much larger, resulting
62 in a less accurate rational approximation. The recursion may continue to any desired accuracy as
683 convergence is guaranteed.

Rational approximation examples

22
== [3;7] ~7+0(1.3x1073)
355
— = 3,7, ~ T X 10T
13 = 137,16 0(2.7x 1077
10434
30323158 = [3;7,16, —249] ~m+0(3.3x10710)

Figure 1.7: The expansion of 7 to various orders using the CFA, along with the order of the error of
each rational approximation. For example 22/7 has an absolute error (|22/7 — 7|) of about 0.13%.
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Notation: Writing out all the fractions can become tedious. For example, expanding e using the
Matlab command rat (exp(1)) gives the approximation

34+1/(—4+1/2+1/(G+1/(=2+1/(=7))))).

A compact notation for this these coefficients of the CFA is [3; —4,2,5, —2, —7]. Note that the leading
integer may be indicated by an optional semicolon to indicate the decimal point. Unfortunately Matlab
does not support the bracket notation.

If the process is carried further, the values of a, € N give increasingly more accurate rational
approximations. If the floor rounding is used 7 = [3;7,15,1,292,1,1,1,2,1,3,1,...] whereas true
rounding gives m = [3; 7,16, —294, 3, —4,5, —15, .. ], thus rounding introduces negative coefficients each
time a number rounds up.

When the CFA is applied and the expansion terminates (r, = 0), the target is rational. When
the expansion does not terminate (which is not always easy to determine), the number is irrational.
Thus the CFA has important theoretical applications regarding irrational numbers. You may try this
yourself using Matlab’s rats(pi) command. Also try the Matlab command rat (1+sqrt(2)).

One of the useful things about the procedure, besides its being so simple, are its generalizations,
one of which will be discussed in Section 2.1.2 (p. 77).

A continued fraction expansion can have a high degree of symmetry. For example, the CFA of

1+v5 1

1+ ———5— = 1.618033988749895. . .,
Here the lead term in the fraction is always 1 (a, = [1;1,1,--]), thus the sequence will not terminate,

proving that /5 € I. A related example is rat (1+sqrt(2)), which gives [2;2,2,2,...].

When expanding a target irrational number (zog € I), and the CFA is truncated, the resulting
rational fraction approximates the irrational target. For the example above, if we truncate at three
coefficients ([1;1,1]) we obtain

1 14+v5

1+ ——5=1+1/2=3/2=15= +0.118+....

Truncation after six steps gives

[1.1,1,1,1,1,1] = 13/8 ~ 1.6250 = +.0070....

1+45
2

Because all the coefficients are 1, this example converges very slowly, When the coefficients are large
(i.e., remainder small), the convergence will be faster. The expansion of 7 is an example of faster
convergence.

In summary: Every rational number m/n € F, with m > n > 1, may be uniquely expanded as a
continued fraction, with coefficients ay determined using the CFA. When the target number is irrational
(xo € Q), the CFA does not terminate, thus each step produces a more accurate rational approximation,
converging in the limit as n — oc.

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational,
but with an important caveat: one must determine if the expansion terminates. In cases where the
expansion produces a repeating coefficient sequence, it is clear that the sequence cannot terminate.
The fraction 1/3 = 0.33333... is an example of such a target where the CFA will terminate.30

WEEK 3

36Taking the Fourier transform of the target number, represented as a sequence, could identify a periodic component.
The number 1/7 = [[1,4,2,8,5,7]]¢ has a 50 [dB] notch at 0.8 [rad] due to its 6 digit periodicity, carried to 15 digits
(Matlab precision), Hamming windows, and then zero padded to 1024 samples.
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1.2.6 Labor day
1.2.7 Lec 7: Pythagorean triplets (Euclid’s formula)

Euclid’s formula is a method for finding three integer lengths [a,b,c] € N, that satisfy Eq. 1.1. It is
important to ask “Which set are the lengths [a,b,c] drawn from?” There is a huge difference, both
practical and theoretical, if they are from the real numbers R, or the counting numbers N. Given
p > q € N, the three lengths [a,b,c] € N of Eq. 1.1 are given by

a=p’—¢, b = 2pq, c=p'+¢. (1.3)
This result may be directly verified, since
p* + ¢ = [p* — ¢ + [2pg)?

or
P+ ¢+ 2050 = 0+ ¢t — 2P+ P

Thus, this result is easily proven, given the solution. Construction the solution is more difficult.

Figure 1.8: Beads on a string form perfect right triangles when number of beads on each side satisfy Eq. 1.1.

A well known example is the right triangle depicted in Fig. 1.8, defined by the integers [3,4,5] € N,
having angles [0.54,0.65, /2] [rad], which satisfies Eq. 1.1. As quantified by Euclid’s formula Eq. 1.3
(Section 2.2.1), there are an infinite number of Pythagorean triplets (PTs). Furthermore the seemingly
simple triangle, having angles of [30,60,90] € N [deg] (i.e., [7/6,7/3,7/2] € I [rad]), has one irrational
(I) length ([1,+/3,2]).

The technique for proving Euclid’s formula for PTs [a, b, c] € Q, derived in Fig. 2.3 of Section 2.1.3,
is much more interesting than the P'Ts themselves.

The set from which the lengths [a, b, ¢| are drawn was not missed by the Indians, Chinese, Egyptians,
Mesopotamians, Greeks, etc. Any equation whose solution is based on integers is called a Diophantine
equation, named after the Greek mathematician Diophantus of Alexandria (c250 CE).

A stone tablet having the numbers engraved on it, as shown in Table 1.9 was discovered in
Mesopotamia and from the 19" century [BCE] and cataloged in 1922 by George Plimpton.?”, 3® These
numbers are a and ¢ pairs from PTs [a,b,c]. Given this discovery, it is clear that the Pythagoreans were
walking in the footsteps of those well before them. Recently a second similar stone, dating between
350 and 50 [BCE] has been reported, that indicates early calculus on the orbit of Jupiter’s.??

1.2.8 Lec 8: Pell’s Equation

Pell’s equation
22— Ny =1, (1.4)

3™http://www.nytimes.com/2010/11/27/arts/design/27tablets . html
3®https://en.wikipedia.org/wiki/Plimpton_322
3nttp://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy- jupiter.html
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ExXercIsSEs

The integer pairs (@, ¢) in Plimpton 322 are

a c
119 169
3367 | 4825
4601 | 6649
12709 | 18541
65 97
319 481
2291 3541
799 1249
481 769
4961 gl61
45 75
1679 | 2929
161 289
1771 3229
56 106

Figure 1.3: Pairs in Plimpton 322

1.2.1 For each pair (a, ¢) in the table, compute ¢* — a2, and confirm that it is a
perfect square, b2, (Computer assistance is recommended.)

You should notice that in most cases b is a “rounder” number than a or c.

1.2.2 Show that most of the numbers b are divisible by 60, and that the rest are
divisible by 30 or 12.

Figure 1.9: “Plimpton-322” is a stone tablet from 1800 BCE, displaying a and c¢ values of the Pythagorean
triplets [a, b, c]. Numbers (a,c € N), with the property b = v/¢? — a? € N, known as Pythagorean triplets, were
found carved on a stone tablet from the 19'" century [BCE]. Several of the c values are primes, but not the a
values. The stone is item 322 (item 3 from 1922) from the collection of George A. Plimpton. —Stillwell (2010,
Exercise 1.2)

with non-square N € N specified and a, b € N unknown, is related to the Euclidean algorithm (Stillwell,
2010, 48). For example, with N = 2, one solution is @ = 17,b = 12 (172 — 2- 122 = 1). This equation
has a long history (Stillwell, 2010).

A 2x2 matrix recursion algorithmic, used by the Pythagoreans to investigate the v/2,

=T k] =

with [1,0]7, results in solutions of Pell’s equations (Stillwell, 2010, p. 44). Their approach was likely
motivated by the Euclidean algorithm (GCD, p. 33), since y,/z, — /2 (Stillwell, 2010, p. 37,55).
Note that this is a composition method, of 2x2 matrices, since the output of one matrix multiply is the
input to the next.

Asian solutions: The first intended solutions of Pell’s was presented by Brahmagupta (c628), who
independently discovered the equation (Stillwell, 2010, p. 46). Brahmagupta’s novel solution introduced
a different composition method (Stillwell, 2010, p. 69), and like the Greek result, these solutions were
incomplete.

Then in 1150CE, Bhaskara II obtained solutions using Eq. 1.5 (Stillwell, 2010, p.69). This is the
solution method we shall explore here, as summarized in Fig. 1.10.
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The best way to see how this recursion results in solutions to Pell’s equation, is by example.
Initializing the recursion with the trivial solution zo = [1,0]%, gives

HENHREIE e
eI R
:?j:f - ; - 1 ? 3 (M2 -2-(5)2%=—1
ﬁ N E; N 1 f ; 172 —2.122 =1
5? - Bé - 1 ? E] (41)2 — 2. (20)? = —1

Thus the recursion results in a modified version of Pell’s equation
= 2y = (=1)",

thus only even values of n are solutions. This sign change had no effect on the Pythagoreans, who only
cared about y, /z, — V2.

Solution to Pell’s equation: By multiplying the matrix by 13, all the solutions to Pell’s equation
are determined. This solution is shown in Fig. 1.10 for the case of N = 2, and again in Appendix D,
Eq. D.1, for N = 3. The math is straightforward and is easily verified using Matlab. From Fig. 1.10
we can see that every output this slightly modified matrix recursion gives solutions to Pell’s equation
(Eq. 1.4).

For n = 0 (the initial solution) [z¢,yo] is [1,0], [z1,¥1] = Jj[1,1], and [z2,y2] = —[3,2]. These are
easily computed by this recursion, and easily checked on a hand calculator (or using Matlab). Without
the 7 factor the sign would alternate; the 17 factor corrects the alternation in sign, so every iteration
yields a solution.

e Case of N =2 & [wg,y0]T = [1,0]

Note: 22 — 292 =1, xn/yn;}\/ﬁ
Zi:jH:]H ﬂ H 22 2=
:Z:ZJQB]:]E ﬂjm 92 9. 92_1q
o= e
o) lal =0
=t = -2

Figure 1.10:  This summarizes the solution of Pell’s equation for N = 2 using a slightly modified matrix
recursion. Note that ©,/y, — V2 as n — oo, which was what the Pythagoreans were pursuing.
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At each iteration, the ratio x,/y, approaches /2 with increasing accuracy, coupling it to the
Euclidean algorithm (GCD). The value of 41/29 =~ /2, with a relative error of <0.03%. The solution
for N = 3 is discussed at the end of Appendix D.

Relations to digital signal processing: Today we recognize Eq. 1.5 as a difference equation, which
is a pre-limit (pre Stream 3) form of differential equation. The Greek 2x2 form is an early precursor to
17" and 18" century developments in linear algebra. Thus the Greek’s recursive solution for the /2
and Bhaskara’s (1030 CE) solution of Pell’s equation, is an early precursor to discrete-time processing,
as well as to calculus. Newton was fully aware of these developments as he reconstructed Diophantus
chord/tangent method (Stillwell, 2010, p. 7, 49, 218).

Given the development of linear algebra c19" century, as discussed in Section 2.2.2 (page 83), this
may be evaluated by eigenvector diagonalization.*°

There are similarities between Pell’s Equation and the Pythagorean theorem. As we shall see in
Chapter 2, Pell’s equation is related to the geometry of a hyperbola, just as the Pythagorean equation
is related to the geometry of a circle. One might wonder if there is a Euclidean formula for the solutions
of Pell’s Equations. After all, these are all conic sections with closely related geometry, in the complex
plane.

Pell’s Equation and irrational numbers: Since the eigenvalues of Eq. 1.5 (A = 1 F VN ¢ N),
solutions to Pell’s equation raised the possibility that all numbers are not rational. This discovery
of irrational numbers forced the jarring realization that the Pythagorean dogma “all is integer” was
wrong. The significance of irrational numbers was far from understood.

WEEK 4

1.2.9 Lec 9: Fibonacci sequence

Another classic problem, formulated by the Chinese, was the Fibonacci sequence, generated by the
relation

fn+1 :fn+fn71- (16)
Here the next number f,4; is the sum of the previous two. If we start from [0, 1], this difference
equation leads to the Fibonacci sequence f, =[0,1,1,2,3,5,8,13,---]. The solution may be generated

by the recursion of a 2x2 matrix equation, or by the z-transform method. Alternatively, if we define

Yn+1 = Tn, then
Tpt1| |1 1] |z
[%H—l] B [1 0] [yn] (L.7)

is equivalent to Eq. 1.6. The correspondence is easily verified. Starting with [z,,,y,]T = [0,1]7

obtain for the first few steps

1 e R e

From the above z, = [0,1,1,2,3,5,...] is the Fibonacci sequence since the next number is the sum of
the last two.

Note that this 2x2 equation is similar to Pell’s equation, suggesting that an eigenfunction expansion
of Eq. 1.7 may be used to analyze the sequence, as shown in Section 2.3.1 (p. 83) (Stillwell, 2010, 192).

we

“Onttps://en.wikipedia.org/wiki/Transformation_matrix#Rotation
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1.2.10 Lec 10: Exam I (In class)
WEEK 4-AE 12.5.0

L 11 Stream 2: Algebra and geometry as physics (Physics drives early mathematics)
The first "algebra” (al-jabr) al-Khwarizmi (9"*CE)
Polynomial equations in one and two variables (Stillwell, 2010, Ch. 6, p. 87)
Solution of the Quadratic Equation; Taylor series
Composition and intersection of polynomials

AE-1 (HW4) for 9/16/16; Add convolution problem. Verify due date.

1.3 Algebraic Equations: Stream 2

1.3.1 Lec 11 Algebra and geometry as physics

Following Stillwell’s history of mathematics, Stream 2 is geometry, which led to the merging of Euclid’s
geometrical methods and the 9" century development of algebra by al-Khwarizmi (830 CE). This
integration of ideas lead Descartes and Fermat to develop of analytic geometry. While not entirely a
unique and novel idea, it was late in coming, given what was known at that time.

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served
students of mathematics for more than two thousand years. Algebra and geometry were, at first, inde-
pendent lines of thought. When merged, the focus returned to the Pythagorean theorem, generalized as
analytic conic sections rather than as geometry in Euclid’s Elements. With the introduction of Algebra,
numbers, rather than lines, could be used to represent a geometrical length. Thus the appreciation for
geometry grew given the addition of the rigorous analysis using numbers.

Physics inspires algebraic mathematics: The Chinese used music, art, navigation to drive math-
ematics. With the invention of algebra this paradigm did not shift. A desire to understand motions of
objects and planets precipitated many new discoveries. Galileo investigated gravity and invented the
telescope. Kepler investigated the motion of the planets. While Kepler was the first to appreciate that
the planets were described by ellipses, it seems he under-appreciate the significance of this finding, and
continued with his epicycle models of the planets. Using algebra and calculus, Newton formalized the
equation of gravity, forces and motion (Newton’s three laws) and showed that Kepler’s discovery of
planetary elliptical motion naturally follows from these laws. With the discovery of Uranus [in 1781]
“Kepler’s theory was ruined.” (Stillwell, 2010, p. 23).
Once Newton proposed the basic laws of gravity, he proceed to calculate, for the first time, the
speed of sound. This required some form of the wave equation
2 2
o bl50) = 5 oop(a, ) (1.9

a key equation in mathematical physics. The speed of sound is ¢ = 343 [m/s], which is a function of
the density p = 1.12 [kg/m®] and the dynamic stiffness nP, of air.*!

If we substitute for the pressure
plo, 1) = e2mfihe), (1.9)

where ¢ is time and x is position, we find that (7k)? = s2/c?, or k = 21/\ = 27 f/c.
While Newton’s value for ¢ was incorrect by the thermodynamic constant /7, a problem that would
take more than two hundred years to resolve, his success was important because it quantified the physics

e = \/nPy/p, n = ¢p/cy = 1.4 is the ratio of two thermodynamic constants, and Py = 10° [Pa] is the barometric
pressure of air.

verify eqs
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behind the speed of sound, and demonstrated that momentum muv, not mass m, was transported by the
wave. His concept was correct, and his formulation using algebra and calculus represented a milestone
in science.

Newton’s Principia was finally published in 1687, and the general solution to Newton’s wave equa-
tion [i.e., p(z,t) = G(t£z/c)], where G is any function, was first published 60 years later by d’Alembert
(c1747), which showed that for sounds of a single frequency, the wavelength A and frequency f were
related by

fA=c

Today d’Alembert’s analytic wave solution is frequently written as Eq. 1.9 where k = ¢/ is the wave
number. This formulation led to the frequency domain concept of Fourier analysis, based on the
linearity (i.e., superposition) property of the wave equation (Postulate P2: Lec. 1.3.11, p. 61).

The corresponding discovery for the formula for the speed of light was made 114 years later by
Maxwell (c1861). Maxwell’s formulation also required great ingenuity, as it was necessary to hypothesize
an experimentally unmeasured term in his equations, to get the mathematics to correctly predict the
speed of light.

The first Algebra: Prior to the invention of algebra, people worked out problems as sentences using
an obtuse description of the problem (Stillwell, 2010, p. 93). Algebra solved this problem. Algebra
may be thought of as a compact language, where numbers are represented as abstract symbols (e.g., =
and «). The problems they wished to solve could be formulated in terms of sums of powers of smaller
terms, the most common being powers of some independent variable (i.e., time or frequency). Today
we call such an expression a polynomial of degree n

n n
Po(2) = 2"+ an_12"" 4+ +ap2 = > apz® = Iz = ). (1.10)
k=0 k=0

Here we have set a,, = 1. The coefficient a,, cannot be zero, or the polynomial would not have degree
n. The solution is to force a,, = 1. This does not change the roots.

The key question was “What values of the z = z; result in P,(zx) = 0.” In other words, what are
the roots zj of the polynomial? The quest for the answer to this question consumed thousands of years,
with intense efforts by many aspiring mathematicians. In the earliest attempts, it was a competition
to evaluate mathematical acumen. Results were held as a secret to the death bed. It would be fair
to view this effort as an obsession. Today the roots of any polynomial may be found by numerical
methods, to very high accuracy. There are also a number of important theorems.

Of particular interest was composing a circle with a line, for example when the line does not touch
the circle, and finding the roots. There was no solution to this problem using geometry.

Finding roots of polynomials The problem of factoring polynomials has a history more than
a millennium in the making. While the quadratic (degree N = 2) was solved by the time of the
Babylonians (i.e., the earliest recorded history of mathematics), the cubic solution was finally published
by Cardano in 1545. The same year, Cardano’s student solved the quartic (N = 4). In 1826 it was
proved that the quintic (N = 5) could not be factored by analytic methods.

As a concrete example we begin with trivial but important case of the quadratic

Py(z) = az® + bz + c. (1.11)

The roots are those values of x such that Py(xp) = 0. One of the first results (recorded by the
Babylonians, ¢2000 BCE) was the factoring of this equation by completing the square (Stillwell, 2010,
p. 93). One may rewrite Eq. 1.11 as

EPQ(:U) — (z+b/20)2 — (b/20)2 + c/a, (1.12)
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which is easily verified by expanding the squared term and canceling (b/2a)?

1
JPa(2) = [2% + (b/a)z + (bf2a)?] — (b/2a)" + c/a.
Setting Eq. 1.12 to zero and solving for the two roots x+, gives the quadratic formula*?

b= Vb% — dac
a 2a '

Ty (1.13)
If b? + ac > 0, then the two roots are real (z+ € R). Otherwise, they are complex. If a, b, ¢ € R, which
is typically the case, then this condition simplifies to ac < 0 (i.e., ¢/a > 0).

No insight is gained by memorizing the quadratic formula (Eq. 1.13). On the other hand, an
important concept is gained by learning Eq. 1.12, which can be very helpful when doing analysis.
I suggest that instead of memorizing Eq. 1.13, memorize Eq. 1.12. Arguably, the factored form is
easier to remember (or learn). Perhaps more importantly, the term b/2a has significance [Py(—b/2a) =
c/a — (b/2a)?], the sign of which determines if the roots are real or complex.

In third grade I learned the trick*3

9-n=(n—-1)-10+ (10 — n). (1.14)

With this simple rule I did not need to depend on my memory for the 9 times tables. How one thinks
about a problem can have great impact.

Analytic Series: When the degree of the polynomial is infinite (i.e., n=00), Ps(x), € R the series
is called a power series. For values of x where the power series converges, it is said to be analytic.
When the coefficients are determined by derivatives of P(x) evaluated at x = 0, then it is called a
Taylor series. These various series play a special role in mathematics, as the coefficients of the series
uniquely determine a function (e.g., via the derivatives). Two well known examples are the geometric
series

1 2., .2 -
m:1+x+x +x +...:n¥0x”

and exponential

D IIPTEN ¥C ST S STE S :ill‘n
2 3.2 4-3-2 el

Region of convergence: The set of values for which the series is analytic is called the region of
convergence, or simply the ROC. Knowing how to determine the ROC for a given analytic function is
quite important, and may not always be obvious. For the geometric series, the ROC is |z| < 1. The
function 1/(z%+ 1) has the same ROC as the geometric series, since it may be written as (Section A.6,
p. 128)

1 1 _1( 1 1 )
224+1 (41 -17) 2\z-1 z+13/)°

Each term has an ROC of |z| < |1j] = 1. In other words, it is the sum of two geometric series, each
having a pole at £1j.

The exponential series converges for every finite value of z (the ROC is the entire open plane), thus
the exponential is called an entire function.

42By direct substitution demonstrate that Eq. 1.13 is the solution of Eq. 1.11.
BEG:9-7=(7T-1)-10+(10—-7) =60+3and 9-3 =2-10+7 = 27. As a check note that the two digits of the
answer must add to 9.
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Analytic functions: Any function that has an analytic series representation is called an analytic
function. Polynomials, 1/(1 — zy) and e* are analytic functions. Because analytic functions are easily
manipulated, term by term, they may be used to find solutions of differential equations. The derivatives
are easily computed, since they may be uniquely determined, term by term. Every analytic function has
a corresponding differential equation, that is determined by the coefficients of the analytic power series.
An example is the exponential, which has the property that it is the eigenfunction of the derivative

operation
d

d;re
This relationship is a common definition of the exponential function, which is a very special function.

Analytic functions may also be easily integrated, term by term. Newton took full advantage of
these properties of analytic functions. To fully understand the theory of differential equations (DE),
one needs to master single valued analytic functions and their analytic power series. Newton used the
analytic series (Taylor series) to solve many problems, especially for working out integrals, allowing
him to solve DEs.

During the 16th and 17th century, it had becoming clear that DEs can characterize a law of nature
at a single point in space and time. For example the law of gravity (first formulated by Galileo to
explain the dropping to two objects of different masses) must obey conservation of energy. Newton
(c1687) went on to show that there must be a gravitational potential between to masses (m,ms) of
the form

axr — aeax

mi1msa

o(r) o ; (1.15)

r

where r = |z — 2| is the Euclidean distance between the two point masses at locations z; and x.
Note that this a power series, but with exponent of —1, which is called a pole.

Single- vs. multi-valued functions: Polynomials are single valued functions: for each z there is
a single value of P, (x). The set of z values of a function are called the domain and the set of y(z)
values are called the codomain. The roles of the domain and codomain may be swapped, to obtain
the inverse function, which is typically quite different in its properties compared to the function. For
example y(x) = 22 + 1 has the inverse z = ++/y — 1, which is double valued, and complex when y < 1.
Periodic functions such as y(r) = sin(x) are more exotic, since z(y) = arcsin(z) = sin~!(x) has an oo
number of x(y) values for each y.

Complex analytic functions: When the argument of and analytic function is complex, that is,
z € R is replaced by z = z + yj € C (recall that R € C), the function is said to be a complex analytic.
We shall delve further into this topic in Section 3.1.1 (p. 87).

When the argument of the exponential becomes complex, it is periodic since

et = (TNt — (TteIwt — ¢ [cog(wt) + gsin(wt)]

thus
el e

2
It should be clear that the exponential and circular functions are fundamentally related. This exposes
the family of entire circular functions [i.e., €®,sin(s), cos(s), tan(s), cosh(s),sinh(s)] and their inverses
[In(s),arcsin(s), arccos(s), arctan(s), cosh~!(s), sinh =1 (s)], first fully elucidated by Euler (c1750). Thus
there is a deep relationships between single vs. multi-valued functions, periodic functions, functions of
a complex variable, and their inverse functions, all of which are complex analytic. We shall explore
this in Lec 1.3.8 (p. 55).

Given a complex analytic function of a complex variable, one must resort to the extended complex
plane, Riemann sheets and branch cuts, as discussed in Section 1.3.7 (p. 53). The extended complex
plane is a tool that is needed throughout complex analytic functions, and into higher mathematics,

cos(w) =
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since at least the 16! century, and probably before. This topic is critically important in engineering

mathematics, and will be discussed in length in Sections 1.3.7-?7 (pp. 53-77).

There seems to be some disagreement as to the status of multivalued functions: Are they functions,
or is a function strictly single valued? If so, then we are missing out on a host of possibilities, including
all the inverses of every complex analytic function.

Impact on Physics: It seems likely, if not obvious, that the success of Newton in mathematics was
his ability to find mathematics in physics. He was inventing new mathematics at the same time as
he was explaining new physics. The same might be said for Galileo. It seems likely that Newton was
extending the successful techniques and results of Galileo. Galileo died on Jan 8, 1642, and Newton
was born Jan 4, 1643, just short of one year later. Certainly Newton was well aware of Galileo’s great
success, and naturally would have been influenced by them.

The application of complex analytic functions to physics was dramatic, as may be seen in the six
volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of his many (36)
students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg* and Seebach, to name a
few), notable coworkers (i.e., Leon Brillouin) and others (i.e., John Bardeen), upon whom he had a
strong influence. Sommerfeld is known for having many students who were awarded the Nobel Prize in
Physics, yet he was not (the prize is not awarded in Mathematics). Sommerfeld brought mathematical
physics (the merging of physical and experimental principles with mathematics) to a new level with
the use of complex integration of analytic functions to solve otherwise difficult problems, thus following
the lead of Newton who used real integration of Taylor series to solve differential equations, and later
Cauchy. While much of this work is outside the scope of the present discussion, it is helpful to know
who did what and when, and how people and concepts are connected.

WEEK 5 12.5.0

L 12 Examples of algebraic expressions in physics
Fundamental Thm of Algebra (d’Alembert, ~1760)
Analytic Geometry: Algebra + Geometry (Euclid to Descartes)
Newton and power series; Taylor series & ROC Composition of polynomial equations in two
variables.

L 13 Root classification for polynomials of Degree * = 1-4 (p.102);
Convolution of monomials gives polynomial construction; Work out convolution for cubic
Show that a,—_1 is sum of roots and ag is product of roots. Quintic (* = 5) cannot be solved

L 14 First Analytic Geometry (Fermat 1629; Descartes 1637) (p. 118) Descartes’ insight: Composition
of two polynomials of degrees (m,n — one of degree m - n)

Examples: 2% o 22 = 28. Discuss Composition vs. intersection of functions.

1.3.2 Lec 12 Physical equations quadratic in several variables

When lines and planes are defined, the equations are said to be linear in the independent variables. In
keeping with this definition of linear, we say that the equations are non-linear when the equations have
degree greater than 1 in the independent variables. The term bilinear has a special meaning, in that

“https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-1
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both the domain and codomain are linearly related by lines (or planes). As an example, an impedance
is defined in frequency as the ratio of the voltage over the current
Viw) _ N(s)

A7 0w T Do)

where Z(s) is the impedance and V and I are the voltage and current at radian frequency w. The
impedance is typically specified as the ratio of two polynomials, N(s) and D(s), as functions of complex
Laplace frequency s = ¢ + jw. An example will be given in Section 1.3.6, Fig. 1.11. The bilinear
function may be written as D(s)V = N(s)I. Since D(s) and N(s) are both polynomials in s, this
is called bilinear. It comes from a corresponding scalar differential equation (Appendix A, Eq. A.1,
p. 127).

As an example consider the well known problem in geometry: the intersection of a plane with a
cone, which leads to the conic sections: the circle, hyperbola, ellipse and parabola, along with some
degenerate cases, such as the intersection of two straight lines*®. If we stick to such 3-dimensional
objects, we can write equations in the three variables [z,y, z], and be sure that they each represent
some physical geometry. For example 22 + y? + 22 = r2 is a sphere of radius 7.

The geometry and the algebra do not always seem to agree. Which is correct? In general the
geometry only looks at the real part of the solution, unless you know how to tease out the complex
solutions. However the roots of any polynomial are from C, so we may not ignore the imaginary roots,
as Newton did. There is an important related fundamental theorems, known as Bézout’s theorem, that
address this case, as described next.

1.3.3 Lec 13: Polynomial root classification by convolution

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was
being formulated by d’Alembert. The idea behind this theorem is that every polynomial of degree NV
(Eq. 1.10) has at least one root. This may be written as the product of the root and a second polynomial
of degree of N — 1. By the recursive application of this concept, it is clear that every polynomial of
degree N has N roots. Today this result is known as the Fundamental Theorem of Algebra:

Every polynomial equation p(z) = 0 has a solution in the complex numbers. As Descartes
observed, a solution z = a implies that p(z) has a factor z — a. The quotient

p(z)
A —
q(z) = —
is then a polynomial of one lower degree. ... We can go on to factorize p(z) into n linear
factors.*6

—Stillwell (2010, p. 285).

The ultimate expression of this theorem is given by Eq. 1.10 (p. 42), which indirectly states that an
nt" degree polynomial has n roots.

Today this theorem is so widely accepted we may fail to appreciate it. Certainly about the time you
learned the quadratic formula, you were prepared to understand the concept. The simple quadratic case
may be extended a higher degree polynomial. The Matlab/Octave command roots ([as, a2, a1, ag]) will
provide the roots of the cubic equation, defined by the four coefficients ag,...,ag. I don’t know the
largest degree that can be accurately factored by Matlab/Octave, but I'm sure its well over N = 103.
Today, finding the roots numerically is a solved problem.

45Such problems were first studied algebraically and Descartes (Stillwell, 2010, p. 118) and Fermat (c1637).
4Look into expressing this in terms of complex 2x2 matrices, as on p. 26.
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Factorization versus convolution: The best way to gain insight into the polynomial factorization
problem is through the inverse operation, multiplication of monomials. Given the roots xj, there is
a simple algorithm for computing the coefficients ay of P,(z) for any n, no matter how large. This
method is called convolution. Convolution is said to be a trap-door since it is easy, while the inverse,
factoring (deconvolution), is hard, and analytically intractable for degree N > 5 (Stillwell, 2010, p. 102).

Convolution of monomials

As outlined by Eq. 1.10, a polynomial has two descriptions, first as a series with coefficients a, and
second in terms of its roots x,.. The question is “What is the relationship between the coefficients and
the roots?” The simple answer is that they are related by convolution.

Let us start with the quadratic

(z+a)(z+b) =2+ (a + b)x + ab,

where in vector notation [—a, —b|] are the roots and [1,a + b, ab] are the coefficients.
To see how the result generalizes, we may work out the coefficients for the cubic (N = 3). Multi-
plying the following three factors gives

(x—1)(z—2)(z—3) = (2? =32+ 2)(z — 3) = z(2? — 32+ 2) — 3(2® — 3z +2) = 2% — 62 + 11z — 6.

When the roots are [1,2, 3] the coefficients of the polynomial are [1,—6,11,—6]. To verify, substitute
the roots into the polynomial, and show that they give zero. For example r; = 1 is a root since
P;(1)=1-6+11-6=0.

As the degree increases, the algebra becomes more difficult; even a cubic becomes tedious. Imagine
trying to work out the coefficients for N = 100. What is needed is an simple way of finding the
coefficients from the roots. Fortunately, convolution keeps track of the book-keeping, by formalizing
the procedure.

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vectors
[1,a] and [1,b]. To find the coefficients we must convolve the root vectors, indicated by [1,a] * [1, ],
where * denotes convolution. Convolution is a recursive operation. The convolution of [1,a]  [1, ] is
done as follows: reverse one of the two monomials, padding unused elements with zeros. Next slide one
monomial against the other, forming the local dot product (element-wise multiply and add):

a 1 0 O a 1 0 a 1 0 0 a 1 0 0 a 1
0 0 1 b 0 1 b 1 b 0 1 b 0 1 6 0 0,
=0 = z? = (a+b)zx = abx? =0

resulting in coefficients [---,0,0,1,a + b, ab,0,0,---].

By reversing one of the polynomials, and then taking successive dot products, all the terms in the
sum of the dot product correspond to the same power of z. This explains why convolution of the
coefficients gives the same answer as the product of the polynomials.

As seen by the above example, the position of the first monomial coefficients are reversed, and then
slid across the second set of coefficients, the dot-product is computed, and the result placed in the
output vector. Outside the range shown, all the elements are zero. In summary;,

[1,—1]*[1,-2] = [1,-1—2,2] = [1,-3,2).

In general
[a,b] % [c,d] = [ac, bc + ad, bd],

Convolving a third term [1, —3] with [1, —3, 2] gives

[1,-3] % [1,-3,2] = [1,-3—3,9+2,—6] = [1, 6,11, —6],
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which is identical to the cubic example, found by the algebraic method.

By convolving one monomial factor at a time, the overlap is always two elements, thus it is never
necessary to compute more than two multiplies and an add for each output coefficient. This greatly
simplifies the operations (i.e., they are easily done in your head). Thus the final result is more likely
to be correct. Comparing this to the algebraic method, convolution has the clear advantage.

The product of monomial P;(z) with a polynomial Py(z) gives Pyi1(z): This statement is
another way of stating the Fundamental Theorem of Algebra. Each time we convolve a monomial with
a polynomial of degree N, we obtain a polynomial of degree N 4 1. The convolution of two monomials
results in a quadratic (degree 2 polynomial). The convolution of three monomials give a cubic (degree
3). In general, the degree k, of the product of two polynomials, of degree n,m, is the sum of the degrees
(k =n+m). For example, if the degrees are each 5 (n = m = 5), then the resulting degree is 10.

In summary, the product of two polynomials of degree m, n having m and n roots, give a polynomial
of degree m +n having m +n roots. This is an analysis process, of merging polynomials, by coeflicient
convolution. Multiplying polynomials is a merging process, into a single polynomial.

Note that the degree of a polynomial is one less than the length of the vector of coefficients. The
coefficient on the lead term should always be set to 1 since it cannot be zero, resulting in an illogical
result. Always normalize the lead term of P,(x) to 1 (i.e., ay = 1). This has no effect on the roots.

While you already know this theorem from high school algebra class, it is important to explicitly
state the Fundamental theorem of algebra.

1.3.4 Lec 14: Introduction to Analytic Geometry

Analytic geometry is the natural consequence of Euclid’s Geometry (which deals with conical geometry
(e.g., points, lines, triangles, circles, spheres, ellipses, cones, etc., in two and three physical dimensions),
merged with algebra (which deals with simultaneous equations, roots of polynomials, analytic functions,
and ultimately, solutions of differential equations). The combination of Euclid’s (323 BEC) geometry
and al-Khwarizmi’s (830 CE) algebra provides a new powerful tool, analytic geometry.

There are many important relationships between Euclidean Geometry and 16th century algebra.
Important similarities include vectors, their Pythagorean lengths [a, b, ]

¢= /(w2 — 21)2 + (2 — )%, (1.16)

a = xo—x1 and b = ys—y1, and the angles. Geometry had no concept of coordinates of the vectors. This
is one of the main differences, the ability of algebra to compute with numbers. A detailed comparison
is in order, attempted in Table 1.4.

There are several basic concepts that merged under the development of analytic geometry

1. Composition of functions: If y = f(x) and z = g(y) then the composition of functions f and g is
denoted z(z) = g o f(z) = g(f(z)).

2. Elimination: Given two functions f(z,y) and g(x,y), elimination removes either x or y. This
procedure, called Gaussian Elimination, was known to the Chinese.

3. Vectors: Euclidean geometry includes the concept of a vector, as a line with a length and a slope.
Analytic geometry defines a vector as an ordered set of points.

4. Analytic geometry extends the ideas of geometry with the introduction of the product of two
vectors, the dot product f - g and the cross product f x g (Appendix B).

5. Intersection: While one may speak of the intersection of two lines, the term intersection is also a
concept of set theory. To distinguish the very different uses of this important word, we shall coin
a new spelling for the case of set theory: intersetsion. The intersetsion of two sets is indicate by
ANB.
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Table 1.4: Comparison between Euclidean Geometry and Algebra. The concepts that are included in Euclidean
geometry are under the column Geometry. Those under the column Algebra are unique to Algebra (not present
in Geometry). The third column are uncertain.

Geometry Algebra Uncertain

Proof, Vector, Length, Point, | > 1 dimensional, Numbers, | Cross product, Recursion,
Direction, < 3 dimensional, | Analytic series and functions, | Iteration (Newton’s method)
Intersection, Conic Section, | Composition, Elimination,
Dot product, Square Root Fund. Thm. Algebra, sin(6),
cos(0), €%, log(z), Derivative,
Calculus, Polynomial & Roots

What algebra added to geometry was the ability to compute with numbers. For example, the length
of a line (Eq. 1.16) was measured in Geometry with a compass: numbers played no role. Once algebra
was available, the line’s Euclidean length could be computed from the coordinates of the two ends,
defined by the 3-vector

E=xT+yy+ 22,
which represents a point at (x,7,z) € R® € C? in three dimensions, having direction, from the origin
(0,0,0) to (x,y,2). A point, by itself, has no direction, thus is a scalar. An alternative matrix notation
is € = [z,y,2]7, a column vector of three numbers. These two notations are very different ways of
representing exactly the same thing. View them as equivalent concepts.

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative, be-
yond the physical drawing of an object (e.g., a sphere, triangle or line). With analytic geometry we
have the Euclidean concept of a vector, a line having a magnitude and direction (a slope), but in terms
of physical coordinates (i.e., numbers). The difference between two vectors defines a length, a concept
already present in Euclidean geometry, but not quantified other than by the spread of the compass
points placed at the two ends of the line.

Dot product of two vectors: When using algebra, many concepts in geometry are made precise.
There are many examples of how algebra extends Euclidean geometry, the most basic being the dot
product between two vectors

Z-C= (a2 +yd+ 22) - (o + B) +2)
= ax + By + vz.

The dot product takes two vectors in R? and returns a real positive scalar function of the coordinates
of the two vectors in R, which represents a length. In matrix notation the dot product is written as

€T 4 « (0%
#-{=y| |8]=|vvz] 8| =ax+By+z
z v Y

Recall that in matrix notation a vector, by default, is always a column. The transpose is a row-vector.

Norm of a vector: The vector € € C3 encompasses the scalar point (z,y,2) € C along with the
scalar origin (0,0,0), to define a the vector, having both a magnitude

lel] = Ve &= \/a? +y? + 22,
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and direction (i.e., three angles). The magnitude of the vector (its length) is given by the Pythagorean
theorem, in R3. Notionally, ||€]| is called the norm of the vector and is defined as the positive square
root of the dot product of the vector with itself. This is the generalization of a length, denoted the

norm of €, is
llel] = +Ve-é.

The sign of the square-root must be positive as the length of a vector is not a concept from complex
analytic functions. Rather the length is a concept of Euclidean geometry, and it must always be positive
and real. A zero-length vector is a point, which has no direction (thus it is not a vector).

More generally, the Euclidean length of a line is given as the norm of the difference between two
vectors

el — é3]]> = (€1 — &) - (&1 — &)

= (1 —22)? + (11 — y2)* + (21 — 22),

which is the Euclidean length between the two vectors. This length is not an analytic concept. Thus
the minus sign on the root makes no sense in this context.

Cross product of two vectors: The second type of product between two vectors is the cross-
product €1 x €3. While the dot product results in a scalar, the dot product results in a third vector,
having a third component, not in the plane of the two being multiplied. The cross product results in a
vector that points out of the plane defined by €7 and €3. For example, if the two vectors are in & and
j, then the cross-product has a component in 2. It is strictly in 2 if the two vectors are perpendicular
to each other (i.e., 2 =2 x 7).

The formula for computing the cross product is

axb= (ali" + a2y + a3§) X (bli’ + boy + bgﬁ) =la1 a as|.
b1 by b3

The cross product of a vector with itself (or the difference between two vectors) is zero.
The dot product of a third vector ¢ with the cross product Z x ( is computed from

i C2 (3
5-(67:)([)):@1 as agl.
by by b3

This computes the volume of a parallelepiped (sort of a squashed sugar cube).

Impact of Analytic Geometry: The most obvious development of algebra, given the creation
of analytic geometry, was a detailed analysis of the conic section, using algebra, rather than using
drawings made with a compass and ruler. A useful example is the composition of the line and circle, a
construction what was used many times over the history of mathematics. Once algebra was invented
the composition could be done using formulas.

The first two mathematicians to appreciate this mixture of Euclid’s geometry and the new algebra
were the French, Fermat and Descartes (Stillwell, 2010, p. 111-115); soon Newton contributed to this
effort, by the addition of physics (calculations in acoustics, orbits of the planets, and the theory of
gravity and light (Stillwell, 2010, p. 115-117).

Given these new methods, many new solutions to problems emerged. The complex roots of poly-
nomials continued to appear, without any obvious physical meaning. This seem to have been viewed
as more of an inconvenience that a problem. Newton’s solution to this dilemma was to simply ignore
the imaginary cases (Stillwell, 2010, p. 119). The resolution of this was eventually to be found in
Bézout’s theorem, which states the number of roots of composition of two functions is determined by
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the product of their degrees. This problem is described as the construct of equations (Stillwell, 2010,
p. 118). It was finally proved much later, by Bézout (1779), who showed how one needs to count all
the roots, including multiple roots, and roots at infinity (Stillwell, 2010, p. 295).

1.3.5 Lec 15 Gaussian Elimination

The method for finding the intersection of equations is based on the recursive elimination of all the
variables but one. This method, known as Gaussian elimination, works across a broad range of cases,
but may be defined in a systematic procedure when the equations are linear in the variables.*” Rarely
do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian
eliminations can still work in such cases (Stillwell, 2010, p. 90).

In Appendix B the inverse of a 2x2 linear system of equations is derived. Even for a 2x2 case,
the general solution requires a great deal of algebra. Working out a numeric example of Gaussian
elimination is more instructive. For example, suppose we wish to find the intersection of the equations

rT—y=3
20 +y =2

This 2x2 system of equations is so simple that you may immediately see the solution: Adding the
two equations, and the y term is eliminated, giving 3z = 5. But doing it this way takes advantage of
the specific example, and we need a method for larger systems of equations. We need a generalized
(algorithmic) approach. This general approach is Gaussian elimination.

Start by writing the equations in a standardized matriz format

s L )

Next, eliminate the lower left term (2x) using a scaled version of the upper left term (x). Specifically,
multiply the first equation by -2, add it to the second equation, replacing the second equation with the

result. This gives
1 -1 |z 3 3

Note that the top equation did not change. Once the matrix is “upper triangular” (zero below the
diagonal) you have the solution. Starting from the bottom equation, y = —4/3. Then the upper
equation then gives x — (—4/3) =3, or x =3 —4/3 =5/3.

In principle Gaussian elimination is easy, but if you make a calculation mistake along the way, it
is very difficult to find the error. The method requires a lot of mental labor, with a high probability
of making a mistake. You do not want to apply this method every time. For example suppose the
elements are complex numbers, or polynomials in some other variable such as frequency. Once the
coeflicients become more complicated, the seeming trivial problem becomes highly error prone. There
is a much better way, that is easily verified, which puts all the numerics at the end in a single step.

The above operations may be automated by finding a carefully chosen lower-diagonalization matrix
L that does the same operation. For example let

1 0
L= [_2 11 . (1.19)

Multiplying Eq. 1.17 by U we find

5B AIE-B ST - 2

“"https://en.wikipedia.org/wiki/System_of_linear_equations
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we obtain Eq. 1.18. With a little practice one can quickly and easily find a U that does the job of
removing elements below the diagonal.

In Appendix B the inverse of a general 2x2 matrix is summarized in terms of three steps: 1) swap
the diagonal elements, 2) reverse the signs of the off diagonal elements and 3) divide by the determinant

A = ab — cd. Specifically
-1
a b 11d -b
[c d] A l—c a] ’ (1.21)

There are very few things that you must memorize, but the inverse of a 2x2 is one of them. It needs
to be in your tool-bag of tricks, as you once did for the quadratic formula.
While it is difficult to compute the inverse matrix from scratch (Appendix B), it takes only a few

seconds to verify it (steps 1 and 2)
a bl|d —-bl |ad—bc —ab+ab| |A 0 (1.22)
c dl|—c al| l|led—cd —bc+ad| |0 Al ’
Finally, dividing by the determinant gives the 2x2 identity matrix. A good strategy, when you don’t

trust your memory, is to write down the inverse as best you can, and then verify.
Using 2x2 matrix inverse on our example, we find
5/3
= } 1.23
B (1.23)

el s

If you use this method, you will rarely (never) make a mistake, and the solution is easily verified.
Either you can check the numbers in the inverse, as was done in Eq. 1.22, or you can substitute the
solution back into the original equation.

)
—6+2

1.3.6 Lec 16: Transmission (ABCD) matrix composition method

In this section we shall derive the method of composition of linear systems, known by several names
as the ABCD Transmission matriz method, or in the mathematical literature as the Mdobius (bilin-
ear) transformation. By the application of the method of composition, a linear system of equations,
expressed in terms of 2x2 matrices, can represent a large family of differential equation networks.

By the application of Ohm’s law to the circuit shown in Fig. 1.11, we can model a cascade of such
cells. Since the CFA can also treat such circuits, as shown in Fig. 2.2 and Eq. 2.3, the two methods
are related to each other via the 2x2 matrix expressions.

L
+
I _ L
RN
C

Figure 1.11: This is a single LC segment (cell) of the transmission line show in Fig. 2.2. It may be modeled by the
ABCD model as the product of two matrices, as show below. A more detailed analysis shows that the wave number

is k = VZY = V/sL-sC = sV LC. It follows that the wave velocity is ¢ = 1/v/LC. The characteristic resistance is
re=1+/Z/Y =/sL/sC = /L/C.

Example of the use of the ABCD matrix composition: In Fig. 1.11 we see the network is
composed of a series inductor (mass) having an impedance Z; = sL, and a shunt capacitor (compliance)
having an impedance Z. = 1/sC, where s is the Laplace frequency. By Ohm’s Law, each impedance
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is describe by a linear relation between the current and the voltage. For the inductive impedance,
applying Ohm’s law, we find
Vi—Va=21

where Z; is the impedance of the inductor. For the capacitive impedance, applying Ohm’s law we find
Vo = (I + I2)Z,,

where Z. is the impedance of the capacitor. Each of these linear impedance relations may be written
in matrix form. The series inductor equation gives

wl 1oz [v
- 21 20

while the shunt capacitor equation yields

Vol _ |1 0Of |V
where Y, = 1/Z. is called the admittance.

When the second matrix equation for the shunt admittance (Eq. 1.25) is substituted into the series
impedance equation (Eq. 1.24), we find the composed form ABCD matrix for the cell, as the product

of two matrices
il |11 Zi| |1 O] [Va| _
Ll |0 1]|Y. 1| ||

This equation characterizes the relations between the input and output voltage and current of the cell
of Fig. 1.11 (p. 52).
For example, the ratio of the output to input voltage with the output unloaded (I3 = 0)

(1.26)

1+ 2)Y, Z Vo
Y. 1| |-

Va
Wi

1 1 Ze

o A 1+ 2ZY. Zet 7

is known as the voltage divider equation. Can you derive the formula for the current divider equation?
Hint: V5 = 0 For each matrix the input voltage and current are on the left (e.g., [V1, [1]7), while the
output voltage and current is on the right (e.g., [Va, —I2]7). The sign of the output current must be
negative, so that it is into the input node of the adjoining cell. In this way we may chain these matrices
together. On the left the input current is into the node. The sign of current I, must be reversed in
sign, so that it will be into the node of the adjacent cell to the right (every current is defined to be into
each node).

Matrix composition: Matrix multiplication represents a composition of 2x2 matrices, because the
output of the second matrix is the input of the first (this follows from the definition of composition).
Thus the ABCD matrix is also known as the chain matriz. The general expression for a “chain matrix”

is
Vil _|A B| |V
which is discussed in more detail in Section 3.3.2 (p. 97).

1.3.7 Lec 17: Riemann Sphere: 3¢ extension of chord and tangent method

Once algebra was formulated ¢830 CE, mathematics was able to expand beyond the limits placed on it
by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell, 2010,
p. 93). The geometry of Euclid’s Elements had paved the way, but after 2000 years, the addition of the
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language of algebra would change everything. The analytic function was a key development, heavily
used by both Newton and FEuler. Also the investigations of Cauchy made important headway with his
work on complex variables. Of special note was integration and differentiation in the complex plane of
complex analytic functions, which is the topic of stream 3.

It was Riemann, working with Gauss, who made the breakthrough, with the concept of the extended
complex plane. The idea was based on the composition of a line with the sphere, similar to the derivation
of Euclid’s formula for Pythagorean triplets (Fig. 2.3, p. 81). But the impact was unforeseen, and it
changed analytic mathematics forever, and the physics that was supported by it, by simplifying many
important integrals, to the extreme. This idea is captured by the Fundamental Theorem of Complex
Integral Calculus (Table 1.3 p. 29) and 4.3.1, p. 112).

N

R X c g

Figure 1.12: The left panel shows how the real line may be composed with the circle. Each real x value maps to a
corresponding point ' on on the unit circle. The point x — oo then naturally maps to the north pole N. This simple
idea may be extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the
sphere. As with the circle, the point on the complex plane z — oo maps onto the north pole N. This construction is
important because while the plane is open (does not include z — oo), the sphere is analytic at the north pole. Thus the
sphere defines the closed extended plane. Figure from Stillwell (2010, pp. 299-300).

The idea is outlined in Fig. 1.12. On the left is a circle and a line. The difference between this
case and the derivation of the Pythagorean Triplets is, that the line starts at the north pole, and ends
on the real z € R axis at point z. At point 2/, the line cuts through the circle. Thus the mapping
from z to 2’ takes every point on R to a point on the circle. For example, the point x = 0 maps to
the south pole (not indicated). To express 2’ in terms of z one must composition of the line and the
circle, similar to the composition used in Fig. 2.3 (p. 81). The points on the circle, indicated here by
2/, require a traditional polar coordinate system, having a unit radius and an angle defined between
the radius and a vertical line passing through the north pole. When z — oo the point 2’ — N, known
as the point at infinity. But this idea must go much further, as shown on the right half of Fig. 1.12.

Here the real tangent line is replaced by the a tangent complex z € C, and the complex puncture
point 2z’ € C, in this case on the complex sphere, called the extended complex plane. This is a natural
extension of the chord/tangent method on the left, but with significant consequences. The main
difference between the complex plane z and the extended complex plane, other than the coordinate
system, is what happens at the north pole. On the plane the point at |z| = oo is not defined, whereas
on the sphere the point at the north pole is simply another point, like every other point on the sphere.

Mathematically the plane is said to be an open set since the limit z — oo is not defined, whereas
on the sphere the point 2’ is a member of a closed set, since the north pole is defined. The distinction
between an open and closed set is important because the closed set allows the function to be analytic
at the north pole, which it cannot be on the plane (since the point at infinity is not defined).

The z plane may be replaced with another plane, say the w = F(z) € C plane, where w is some
function F' of z € C. We shall limit ourselves to complex analytic functions of z, namely w = F(z) =
u(@,y) +v(z,y)g =25l 2"

In summary, given a point z = x + yJ on the open complex plane, we map it to w = F(z) € C, the
complex w = u 4 v) plane, and from there to the closed extended complex plane w’(z). The point of
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doing this is that it allows us to allow the function w’(z) to be analytic at the north pole, meaning it
can have a convergent Taylor series at the point at infinity z — oo.

Mo6bius bilinear transformation

In mathematics the Mdbius transformation has special importance because it is linear in its action. In
the engineering literature this transformation is known as the bilinear transformation. Since we are
engineers we shall stick with the engineering terminology. But if you wish to read about this on the
internet, be sure to also search for the mathematical term, which may be better supported.

When a point on the complex plane z = z+y7 is composed with the bilinear transform (a, b, ¢, d € C),

the result is w(z) = u(z,y) +v(z,y)y

az+b
— 1.28
v cz+d ( )

the transformation is a cascade of four independent compositions

1. translation (w =z +b)

2. scaling (w = |a|z)
3. rotation (w = ﬁz) and
4. inversion (w = 1)

Each of these transformations are a special case of Eq. 1.28, with the inversion the most complicated.
A wonderful video showing the effect of the bilinear (Mobius) transformation on the plane is available
that I highly recommended you watch it: https://www.youtube.com/watch?v=0z1fIsUNh04

When the extended plane (Riemann sphere) is analytic at z = oo, one may take the derivatives
there, and meaningfully integrate through co. When the bilinear transformation rotates the Riemann
sphere, the point at infinity is translated to a finite point on the complex plane, revealing normal
characteristics. A second way to access the point at infinity is by inversion, which takes the north pole
to the south pole, swapping poles with zeros. Thus a zero at infinity is the same as a pole at the origin,
and vice-versa.

This construction of the Riemann sphere and the Mbious (bilinear) transformation allow us to fully
understand the point at infinity, and treat it like any other point. If you felt that you never understood
the meaning of the point at oo (likely), then this should help.

1.3.8 Lec 18: Complex analytic mappings (Domain coloring)

One of the most difficult aspects of complex functions of a complex variable is understanding what’s
going on. For example, w = sin(o) is trivial when w = 0 (i.e., s is real), because sin(c¢) is then real.
But the general case, w(s) = sin(s) € C, is not so easily visualized, because with argument s € C, the
function w € C, since the mapping is from the s = o + wy plane to the w(o,w) = u(o,w) + v(o,w)y
plane, which in general is complicated. Fortunately with computer software today, this problem can
be solved by adding color to the graph. A Matlab script zviz.m has been used to make these make
the charts shown here.*® This tool is known as Domain coloring. Rather than plotting u(o,w) and
v(o,w) separately, domain coloring allows us to display the entire function on one plot. Note that for
this visualization we see the complex polar form of w(s), rather than a rectangular (u,v) graph.

In Fig. 1.13 we show this color code as a 2x2 dimensional domain-coloring graph. The color (hue)
represents the phase, and intensity (dark to light) the magnitude. On the left is the reference condition,
the identity mapping (w = s). Red is 0°, violet is 90°, blue is 135°, blue-green is 180° and sea-green
is —90° (or 270°). The hue (darkness) represents the magnitude. Since the function w = s has a dark

“8URL for zviz.m: http://jontalle.web.engr.illinois.edu/uploads/298/zviz.m
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spot (a zero) at s = 0, becoming brighter as we move radially away from the zero. The figure on the
right is w = F(z — 1), which moves the zero to the right by 1. In summary, domain coloring gives the
full picture of the complex analytic function mappings w(x,y) = u(z,y) + v(z,y).

Two examples are given in Fig. 1.14
to help you interpret the two complex
mappings w = e (left) and its in-
verse s = In(w). The exponential is
relatively easy to understand because
w = e’e*). The red region is where
w &~ 0 in which case w ~ €?. As o
becomes large and negative, w — 0 so
the entire field at the left becomes dark.
The field is becoming light on the right
where w = €7 — oco0. If we let 0 = 0
and look along the w axis, we see that
the function is changing phase, green (-
90°) at the top and violet (90°) at the
bottom.

Note the zero in In(w) at w = 1.
The root of the log function is log(s,) =

u+Hv = (x+jy)-sqrt()

utjiv=s

3 9

o X
Figure 1.13: On the left is a color map showing the definition
of the complex mapping from the s = o + w) plane to the w(s) =
u(o,w)+v(o,w)y plane. This mapping from one complex plane s = o+w)
to another w = u(o,w) + v(o,w)y, is visualized by the use of intensity
(light/dark) to indicate magnitude, and color (hue) to indicate angle
(phase). On the left w(s) = s = 0 +wy (i.e., u = 0 and v = v). On

the right is w(z) = z —+/7j, a shift to the right and up by v/2/2 = 0.707.

0 is s, = 1, since log(1) = 0. More generally, taking the log of w = |w|e?’ gives s = log(|w|) + ¢7. Thus
s can only be zero when the angle of w is zero (i.e., ¢ = 0).

u+jv = exp(s)

-2 -1 0 1

(o)

s = log((u+jv))

2 -2 -1 0 1 2

u

Figure 1.14: On the left is the function w(s) = e* and on the right is s = log(w).

1.3.9 Lec 19: Signals: Fourier transforms

Two basic transformations in engineering mathematics are the Fourier and the Laplace transforms,
which deal with time—frequency analysis.

The Fourier transform takes a time domain signal f(f) € R and transforms it to the frequency
domain w € R, where it is complex (F'(w) € C). For the Fourier transform, both the time —oo < ¢t < 00
and frequency oo < w < oo are strictly real. The time vs. frequency relationship, between f(¢) and its
transform F(w), is indicated by the double arrow symbol «»

f(t) < F(w).
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Since the F'T obeys superposition, it is possible to define a FT of a complex time function. This is
useful in certain applications (i.e, Hilbert envelope, Hilbert transforms), but because the FT is not
complex analytic, can be error prone if your not fully in charge of the method.

The Laplace transform takes real signals f(¢) € R as a function of real time ¢ € R, that are strictly
zero for negative time (f(t) = 0 for ¢ < 0), and transforms them into complex functions F(s) € C
of complex frequency s = o + wj. As for the Fourier transform, there is the convenient notation
f(t) < F(s).

When a signal is zero for negative time f(t < 0) = 0, it is said to be causal, and the resulting
transform F'(s) is then complex analytic over significant regions of the s plane. For a function of time
to be causal, time must be real, since if it were complex, it would lose the order property.

Restriction on a function (e.g., real, causal, periodic, positive real part, etc.) are called a symmetry
property. There are many forms of symmetry (Section 1.3.11, p. 61). The concept of symmetry is very
general and widely used in both mathematics and physics, where it is more generally known as Group
theory. We shall restrict ourselves to a few very basic symmetries.

Periodic signals: Besides these two basic types of time—frequency transforms, there are several
variants that depend on the symmetry in time and frequency. For example, when the time signal
is sampled (discrete in time), the frequency response becomes periodic, leading to the Discrete-time
Fourier transform (DTFT). When a time response is periodic, the frequency response is sampled (dis-
crete in frequency), leading to the Fourier Series. These two symmetries may be simply characterized
as periodic in time = discrete in frequency, and periodic in frequency = discrete in time. In Section
3.4.2 we shall explain these concepts in greater detail, with examples. When a function is both dis-
crete in time and frequency, it is necessarily periodic in time and frequency, leading to the Discrete
Fourier Transform (DFT). The DFT is typically computed with an algorithm called the Fast Fourier
Transform (FFT), which can dramatically speed up the calculation when the data is composite (e.g.,
a power of 2 in length).

A very important case is that of functions that are both causal (in time) and periodic (in frequency).
The best know example is the class of signals that have z transforms. These are causal (one-sided in
time), discrete-time signals. The harmonic series is the z-transform step function, discrete and one-sided
in time, and analytic within the ROC, in the complex frequency (z) domain.

Summary: The definitions of the FT and LT transforms are superficially similar. The key difference
is that the time response of the Laplace transform is causal, leading to complex analytic frequency
responses. The frequency response of the Fourier transform is real, thus typically not analytic. These
are not superficial differences. The concept of symmetry is helpful in understanding the many different
types of time-frequency transforms. Two fundamental types of symmetry are causality and periodicity.

Definition of the Fourier transform: The forward transform takes f(t) to F'(w) while the inverse
transform takes F'(w) to f(t). The tilde symbol indicates that in general recovered inverse transform
signal can be slightly different from f(¢). We will give examples of this below.

. 1 oo
/ Flb)e 74 dt fity= o L @) (1.29)
F(w) & f(t) f(t) & F(w). (1.30)

Properties of Fourier Transforms:

1. Both time ¢ and frequency w are real.

2. For the forward transform (time to frequency), the sign of the exponential is negative.
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. The limits on the integrals in both the forward and reverse FTs are [—o0, o0].

When taking the inverse FT (IFT), the normalization factor of 1/27 is required to cancel the 27
in the differential of the integral dw/2m = df, where f is frequency in [Hz], and w is the radian
frequency [rads].

. The Fourier step function may be defined by the use of superposition of 1 and sgn(t) = t/|t| as

1 ift>0
a(t)EHSan(”z 12 t=0
0 ift<0
Taking the FT of a delayed step function
1 [o° . ~ e JwTo
u(t — To) + 3 /_Oo [1 —sgn(t — Tp)] e 7¥tdt = mo(w) + T

Thus the FT of the step function has the term 76(w) due to the 1 in the definition of the Fourier
step. This term introduces a serious flaw with the FT of the step function: While it appears to
be causal, it is not.

The convolution @(t)  &(t) is not defined because both 11 and 62(w) do not exist (and cannot
be defined).

The inverse FT has convergence problems whenever there is a discontinuity in the time response.
This we indicate with a hat over the reconstructed time response. The error between the target
time function and the reconstructed is zero in the root-mean sense, but not point-wise.

Specifically, at the discontinuity point for the Fourier step function (¢t = 0), u(t) # u(t), yet
[|u(t) —u(t)|>dt = 0. At the point of the discontinuity the reconstructed function displays Gibbs
ringing (it oscillates around the step, hence does not converge at the jump).* More about this
in Section 3.4.2.

. The FT is not always analytic in w, as in this example of the step function. The step function

cannot be expanded in a Taylor series about w = 0, because (5~(w) is not analytic in w.

The Fourier § function is denoted d(¢), to differentiate it from the Laplace delta function §(¢).
They differ because the step functions differ, due to the convergence problem described above.

One may define
t
(t) = / 5(t)dt,

and define the somewhat questionable notation

since the Fourier step function is not analytic.

The rec(t) function is defined as

_ _ 0 ift>0
rec(t)—u(t>_u(t_TO)— 1/Ty 0<t<T
= T, = 0 <t <ldp-
0 ift<0

It follows that 6(¢) = limg,_,o. Like &(¢), the rec(t) has unit area.

“nttps://en.wikipedia.org/wiki/Gibbs_phenomenon
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Table 1.5:  The following table provides a short table of important Fourier Transforms. Note a > 0 € R has
units [rad/s]. To flag this necessary condition, we use |a| to assure this condition will be met. The other constant
Ty € R [s] has no restrictions, other than being real. Complex constants may not appear as the argument to a
delta function, since complex numbers do not have the order property.

f(t) < F(w) Name
5(t) & 1(w) Dirac
1(t) > 2m6(w) Dirac
2
sgn(t) = — < —
en(t) =G < 5
. 1(t) +sgn(t) ~ 1
u(t) = — mo(w) + o step
5(t — Tp) < e 70 delay
8(t —Tp) * f(t) <> Fw)e ™70 delay
1
dt)elalt oy =
u(t)e “ PRSP exp
rec(t) = Tlo ) — it — Ty)] T(l)s (1= ) pulse
u(t) « u(t) <+ 6%(w) Not defined NaN

LT Properties

f)xg(t) & F(w)G(w) conv

1.3.10 Lec 20: Laplace transforms

When dealing with engineering problems it is convenient to separate the signals we use from the systems
that process them. We do this by treating signals, such as a music signal, differently from a system,
such as a filter. In general signals may start and end at any time. The concept of causality has no
mathematical meaning in signal space. Systems, on the other hand, obey very rigid rules (to assure that
they remain physical). These physical restrictions are described in terms of nine Network Postulates,
which are briefly discussed in Lecture 1.3.11, and again in greater detail in Section 3.5.1.

Definition of the Laplace transform: The forward and inverse Laplace transforms are

00 Lt 1 o0+007 st
)= [~ fbea f(t):m/ao_oo] F(s)estds (1.31)
F(s) < f(t) f(t) < F(s) (1.32)

1. Time t € R and Laplace frequency is defined as s = 0 + wy € C.

2. When taking the forward transform (¢ — s), the sign of the exponential is negative. This is

necessary to assure that the integral converges when the integrand f(t) — oo as t — oo. For

example, if f(t) = elu(t) (i.e., without the negative o exponent), the integral does not converge.
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Table 1.6: The following table provides a brief table of important Laplace Transforms. Assume that:
f(£),0(t),u(t), rec(t), To, e, € R and F(s),G(s),s,a € C.

f(t) < F(s) Name
i(t) <1 Dirac
5(t — Ty) < e 510 delay
5(t — Ty) * f(t) <> F(s)e 10 -
1
u(t) <> 5 step
e u(t) < . i " exp
u(t) * u(t) = tu(t) < 1/s> ramp
u(t) * u(t) *u(t) = =t?u(t) < 1/s° -
rec(t) = ;,0 [u(t) —u(t — Tp)] <> Tis (1 - e_STO) pulse
LT Properties
d .
&f(t) < sF(s) eigen
f(t)xg(t) < F(s)G(s) conv
u(t) * f(t) = /07 f(t)dt « Fis) conv

1279 3. The target time function f(t < 0) =0 (i.e., it must be causal). The time limits are 07 < t < co.

1280 Thus the integral must start from slightly below ¢ = 0 to integrate over a delta functions at ¢t = 0.
1281 For example if f(t) = 6(t), the integral must include both sides of the impulse. If you wish to
1282 include non-causal functions such as (¢t + 1) it is necessary to extend the lower limit to include
1283 it. In such cases simply set the lower limit to —oo, and let the integrand to determine the limits.
1284 4. The limits on the integrals of the forward transform are ¢t : (07, 00) € R, and the reverse LTs are
1285 [00 — 007,00 + 00g] € C. These limits will be further discussed in Section 1.4.9 (p. 66).

1286 5. When taking the inverse FT (IFT), the normalization factor of 1/2m is required to cancel the
1287 27y in the differential ds of the integral.

1288 6. The frequency for the LT must be is complex, and in general F'(s) is complex analytic for o > 0.
1289 It follows that the real and imaginary parts of F'(s) are related. Given RF(s) it is possible to
1200 find SF(s) (Boas, 1987). More on this in Section 3.4.2 (p. 101).

1201 7. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane.

1202 This will be explained in Section 1.4.6 (p. 66).
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10.

11.

The Laplace step function is defined as

. 1 ift>0
u(t):/ 5(t)dt = { NaN £ =0
- 0 ift <0

Alternatively one could define §(t) = du(t)/dt.

It is easily shown that u(t) <> 1/s by direct integration

o0 est[* 1
F(s) = tye *tdt = — ==,
()= [ ult)e —| =

0

With the LT there is no Gibbs effect, as the step function, with a true discontinuity, is exactly
represented by the inverse LT.

In many physical applications, the Laplace transform takes the form of a ratio of two polynomials.
In such case the roots of the numerator polynomial are call the zeros while the roots of the
denominator polynomial are called the poles. For example the LT of u(t) <+ 1/s has a pole at
s = 0, which represents integration, since

F(s)

S

ut)« 50 = [ sy

The LT is quite different from the FT in terms of its analytic properties. For example, the step
function u(t) <» 1/s is complex analytic everywhere, except at s = 0. The FT of 1 +» 27d(w) is
not analytic anywhere.

Once complex integration in the complex plane has been defined (Section 1.4.3, p. 111), we can
justify the definition of the inverse LT (Eq. 1.31).

1.3.11 Lec 21: The 9 postulates of systems

Systems of differential equations, such as the wave equation, need a mathematical statement of under-
lying properties, which we present here in terms of nine network postulates:

(P1)
(P2)
(P3)
(P4)
(P5)
(P6)
(P7)
(P8)

(P9)

causality (non-causal /acausal)
linearity (nonlinear)

real (complex) time response
passive (active)

time-invariant (time varying)
reciprocal (non-reciprocal)
reversibility (non-reversible)
space-invariant (space-variant)

quasi-static (multi-modal).
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Each postulate has two (in one case three) categories. For example for (P2) a system is either linear
or non-linear and for (P1) is either causal, non-causal or acausal. P6 and P9 only apply to 2-port
networks (those having an input and an output). The others can apply to both a 2- or 1-port networks
(e.g., an impedance is a 1-port).

Include many examples of many types of systems.

Related forms of these postulates had been circulating in the literature for many years, widely
accepted in the network theory literature (Van Valkenburg, 1964a,b; Ramo et al., 1965). The first six
of these were formally introduced Carlin and Giordano (1964), and (P7-P9) were added by Kim et al.
(2016).

1.3.12 Lec 22: Exam II (Evening Exam)

WEEK 8 23.9.0

Week 8 Friday Stream &

L 23 The amazing Bernoulli family; Fluid mechanics; airplane wings; natural logarithms
The transition from geometry — algebra — algebreic geometry — real analytic — complex
analytic
From Bernoulii to Euler to Cauchy and Riemann

1.4 Stream 3: Scalar (Ordinary) Differential Equations

Stream 3 is 0o, a concept which inspires “very large.” In the case of calculus, co means “very small,”
since taking a limit requires small numbers. Taking the limit means you never reaching the target.
This is a concept that the Greeks called Zeno’s paradoz (Stillwell, 2010, p. 76).

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is
preferable, since the term “ordinary” is vague.

There are a special subset of Fundamental theorems for scalar calculus, the first being Leibniz’s
theorem. These will be discussed in Sections 1.4.3, 4.2.2 and 4.3.2.

1.4.1 Lec 23: Bernoulli, Euler, and the standard circular function package

The period of analytic discovery:
Coming out of the dark ages, from algebra, to analytic geometry, to calculus.
Starting with real analytic functions by Euler, we move to complex analytic functions with Cauchy.

Integration in the complex plane is finally conquered.
Beginning of real analytic functions. When do they converge? How are they used.

WEEK 9 23.9.0

Week 9 Monday

L 24 Power series and integration of functions (ROC)
Fundamental Theorem of calculus (Leibniz theorm of integration)
/(1 —x) =32 ,2" with z € R
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L 25 Integration in the complex plane: Three theorems
Integration of 1/s on the unit circle, and on a unit circle centered about s =1+ 1.

L 26 Cauchy-Riemann conditions
Real and imaginary parts of analytic functions obey Laplace’s equation.
Infinite power Series and analytic function theory; ROC

1.4.2 Lec 24: Complex Analytic functions and the ROC

To solve a differential equation, or integrate a function, Newton used the Taylor series to integrate one
term at a time. However he only use real functions of a real variable due to the fundamental lack of
appreciation of the complex analytic series. This same method is how one finds solutions to differential
equations today, but in a “plug-and-chug” approach, that makes it less obvious how it works. Rather
than working directly with the Taylor series, today we use the complex exponential. The reasoning is
that the complex exponential is the eigenfunction of the derivative, namely

d st st
—e = Se .
dt

Thus a linear differential equation in time may be simply transformed into a polynomial in complex
Laplace frequency s, by looking for solutions of the form A(s)e®!. This substitution transforms the
differential equation into a polynomial A(s) in complex frequency. The roots of A(s) are the eigenvalues
of the original differential equation. Thus the keys to understanding the solutions of differential equa-
tions, both scalar and vector, is to work in the Laplace frequency domain.’® The Taylor series has been
replaced by e®!, transforming Newton’s real Taylor series into the complex exponential eigenfunction.
In some sense, these are the same method, since

(e 9] n

z
c=35

n!’

This is heavily trodden soil, that every student now learns in the first course in scalar (ordinary)
differential equations. However what the modern approach frequently ignores is the fundamental role
of the complex power series, that is, the concept of the single-valued complex analytic function (Section
1.3.1 (p. 41).

F(s) = i st
0

If we take the term by term derivative we find
iF(s) = i kcpst 1
ds 5 ’

which is also complex analytic. Thus if the series for F'(s) is valid (i.e., it converges), then its derivative
is also valid, where it converges. This is a very powerful concept, fully exploited by Newton for real
functions of a real variable, and later by Cauchy and Riemann for complex functions of a complex vari-
able. The key here is “Where does the series fail to converge?” in which case, the entire representation
fails. This is the main message behind the Fundamental Theorem of Compler Calculus.  The full
power of this concept was first exploited by Bernard Riemann (1826-1866) in his PhD Thesis of 1851

50Make explicit the connection between the roots of the polynomial A(s) and the eigenvalues of the matrix of the vector
form of the same equation.
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at University of Gottingen, under the tutelage of Carl Friedrich Gauss (1777-1855), drawing heavily
on the work of Cauchy.

The key definition of a complex analytic function is that it has a Taylor series representation over
a region of the complex frequency plane s = o + jw, that converges in a region of convergence (ROC),
about each pole of that function. A surprising feature of all analytic functions is that within the ROC,
the inverse of that function also has an analytic expansion. Thus given w(s), one may also determine
s(w) to any desired accuracy, critically depending on the ROC.

This concept of analytic inverses becomes rich when the inverse function is multi-valued. For
example, if F(s) = s? then s(F) = +v/F. Riemann dealt with such extensions with the concept of
a branch-cut with multiple planes, labeled by a branch number. Each branch describes an analytic
function (Taylor series) that converges within some ROC, with a radius out to the nearest pole of that
function. This explicitly dealt with the defining a unique inverse to multi-valued functions.

Complex impedance functions

One of the most obvious applications of complex functions of a complex variable an impedance. The
impedance function Z(s) = R(o,w) + 7X(0,w) has resistance R and reactance X, as a function of
complex frequency s = o + yw. The function z(t) <> Z(s) are defined by a Laplace transform pair.
From the causality postulate (P1) of Section 3.5.1, z(t < 0) = 0.

As an example, a resistor Ry in series with an capacitor Cy has an impedance

Z(s) = Ry + 1/sCy. (1.33)

In mechanics a dash-pot (damper) and a spring have the same mechanical impedance. A resonant
system has an inductor, resistor and a capacitor, with an impedance given by

Z(s) = Ry +1/sCy + sMy (1.34)

which is a second degree polynomial in the complex frequency s. Thus it has two roots (eigenvalues).
When Ry > 0 these roots are in the left half s plane.

Systems (networks) containing many elements, and transmission lines, can be much more compli-
cated, yet still have a simple frequency domain representation. This is the key to understanding how
these physical systems work, as will be described below.

1.4.3 Lec 25: Integration in the complex plane

Leibniz’s formula gives the area under a curve as the difference in the integral between the two limits
such that the area only depends on the end points

x
F(a) = FO)+ [ f(€)de. (1.35)
This is based on a one-dimensional integration of real function f(z) along the real x axis. As is well
known,
L F() = f(@)
—F(x) = f(z
dz

because the total area only depends on the end points for real areas F(z).
For the complex case of an impedance, we define

F(s,t) = Z(s)e*, (1.36)

and the integrate in the complex plane, we may write a relation similar to the one-dimensional case

£(s) = £(0) + /0 " Z(s)ed. (1.37)
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Compare this to the real integral of the area over the real line x Eq. 1.35, Other than the limits, this
formulas are the same as the Inverse Laplace transform. The integral can only dependent on the end
points if

df

o= F(s.t). (1.38)

But what does it man to take the derivative of a function with respect to s?

In the 1 dimensional case (Leibniz formula) the area only depends on the end points. It is interesting
to determine if, or when, this condition holds for complex integration. In the complex case the end
points are in the complex plane, which for example is z from s = 0 to s. Thus the condition is that if
the integral of F'(z,t) only depends on the end points ([0, s]) then it must be independent of the path
taken in the complex z plane.

Many of these fundamental theorems of integration are closely related, in which case a teaching
moment is near. The best example is the relationship between the Fundamental Theorem of Calculus
(aka Leibniz formula) and the Fundamental Theorem of Complex Calculus (aka, the Cauchy Integral
Theorem). The Leibniz formula Eq. 1.35 states that the area under a curve f(x) € R only depends on
the end points. Equation 1.38 follows.

Thus when the integral of f(x) only depends on the limits, the function must be analytic. The
same holds true for the complex analytic case. When f(x) is not analytic (has no Taylor series) the
derivative may not exist.

1.4.4 Lec 26: Cauchy-Riemann conditions

For path independence the value of the integral (f(s,t)) must be the same for a path holding either
o or jw constant. This leads to a pair of equations called the Cauchy-Riemann conditions in terms of
the real and imaginary parts F(s) = R(o,w) + 71X (o,w) and s = o + jw:

OR(o,w) 0X (o,w) OR(o,w) 0X (o,w)

_ _ 1.
do J Ojw Ojw = (1.39)

These are the necessary conditions that the integral of the function F'(s) is independent of the path,
expressed in terms of the real and imaginary parts of the function and path. This assumption about
the function is a very strong condition on F'(s) which requires that it may be written as a Taylor series
in the complex argument s:

1
F(s)=Fy+ Fis+ §ng2 SR (1.40)

Any function that may be expressed as a Taylor series about a point is said to be complex analytic at
that point. The series is said to converge within a radius of convergence (ROC). This highly restrictive
conditions has significant physical consequences. For example, every impedance function Z(s) obeys
the CR conditions over large regions of the s plane, including the entire right half plane (RHP), defined
by o > 0. When this conditions is generalize to volume integrals, it is called Green’s theorem, which
is a special case of both Gauss’s and Stokes’s Laws, used heavily in the solution of boundary value
problems in Engineering-Physics (e.g., solving EM problems that start from Maxwell’s equations). The
last third of this course shall depend heavily on this concept and various generalizations.
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WEEK 10 26.10.0

L 27 Differentiation in the complex plane: Fundamental Thm of complex calculus (FTCC);
Complex Analytic functions; ROC in the complex plane
Z(s) = R(s) + 37X (s): real and imag parts obey Laplace]s Equation
Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation
Motivation: Dispersion relation for the wave equation & - k = s2/c3

L 28 Three Fundamental theorems of complex integral calculus
Jo = F(¢)d¢ = F(z) — F(0): dZ(s)/ds independent of direction
Integration in the complex plane; Integrals independent of limits
Cauchy-Riemann conditions

L 29 Inverse Laplace transform
Inverse Laplace transform: Poles and Residue expansions;
Application of the Fundamental Thm of Complex Calculus
The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality
ROC as a function of the sign of time in e (How does causality come into play?)
Examples.

1.4.5 Lec 27: Differentiation in the Complex plane
1.4.6 Lec 28: Three complex integration theorems
1.4.7 Lec 29: Inverse Laplace transform (Cauchy residue theorem)

Use of the Residue theorem to evaluate the inverse Laplace transform. Discuss causal and anti-causal
cases. How does this relate to Green’s theorem (in 2 dimensions).

WEEK 11 30.11.0

L 30 Inverse Laplace transform & Cauchy Residue Theorem

L 31 Case for causality Closing the contour as s — 0o; Role of Rst
DE-3

L 32 Properties of the LT:
1) Modulation, 2) Translation, 3) convolution, 4) periodic functions
Tables of common LTs

1.4.8 Lec 30: Inverse Laplace transform and the Cauchy Residue Thm
1.4.9 Lec 31: Case for causality: closing the contour

1.4.10 Lec 32: Properties of the LT (e.g., modulation, translation, etc.)

WEEK 12 33.12.0
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L 33 Multi-valued functions in the complex plane; Branch cuts
The extended complex plane (regularization at co) (Stillwell, 2010, p. 280)
Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)

L 34 Euler’s vs. Riemann’s Zeta function ((s): Poles at the primes
colorized plot of ((s)
77Sterling’s formula??

L 35 Exam III

1.4.11 Lec 33: Multi-valued functions Branch cuts
1.4.12 Lec 34: The Riemann zeta function

The LT of the complex Riemann zeta function {(x) (Fig. 4.1), as introduced by Euler for real arguments.

x € R as his way of proving that the number of primes is infinite (Goldstein, 1973). In the end, this
formulation provided detailed information about the structure of the primes. The zeta function depends
explicitly on the primes, which is why it is interesting (Section 4.5.2).

One might wonder why Euler’s zeta function is known as the Riemann zeta function. It is because
Riemann showed its properties when the argument is complex, namely he extended ((s) into the
complex plane (s € C) (Section 4.5.2). Given that ((s) is a function of complex (Laplace) frequency,
one might naturally ask if ((s) has an inverse Laplace transform. There seems to be very little written
on this topic,”! but we shall explore this interesting question further (Table 4.1). Perhaps even more
important is the taxonomy of {(s) is in question here, namely where are its poles and zeros? About
this there are volumes written.

The Riemann Zeta function is analytic with poles at log-primes

Why does the zeta function have zeros? Perhaps this is some extension of the Euler function that has
zeros, rather than zeta itself. Ask Andrew Odlyzko about this problem. Go to the Math dept first and
find someone qualified to discuss this with.

1.4.13 Lec 35: Exam III (Evening Exam)

WEEK 13 36.13.0

L 36 Scaler wave equations and the Webster Horn equation; WKB method
A real-world example of large delay, where the branch-cut placement is critical

L 37 Partial differential equations of Physics
Scaler wave equation and its solution in 1 and 3 Dimensions

VC-1

L 38 Vector dot and cross products A- B, A x B
Gradient, divergence and curl

Thanksgiving Holiday 11/19-11/27 2016

5!Cite book chapter on inverse LT of ((s).
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1.5 Vector Calculus (Stream 3b)

1.5.1 Lec 36: Scalar Wave Equation (Acoustics)

Acoustic waves; The scalar wave equation: scalar differential equation in the frequency
domain

The Webster Horn equation

The effect of a spatial area functions for waves in horns (the horn equation).
Derivation of the Horn equation, starting from the basic equations of acoustics.
Development of the basic equations of acoustics: Conservation of mass and momentum.
Sound in a uniform tube.
Sound propagation away from a point source (Helmholtz’s Equation)

V3 + k2 = 6(r).

1.5.2 Lec 37: Partial Diff Eqs of Physics
1.5.3 Lec 38: Vector dot and cross products
1.5.4 Thanksgiving Holiday 11/19-11/27 2016

WEEK 14 37.14.0

L 39 Gradient, divergence and curl: Gauss’s (divergence) and Stokes’s (curl) theorems

L 40 J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light
Basic definitions of £, H, B, D
O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation
How a loud-speaker works

L 41 The Fundamental Thm of vector calculus
Incompressable and Irrotational fluids and the two defining vector identities

1.5.5 Lec 39 V,V-, Vx & Vector operators

There are three key vector differential operators that we need to understand Maxwell’s equations. The
gradient transforms a potential, such as a voltage V(z,vy, z) into a vector, such as the electric field
vector E. The divergence V - E(z,y, z) transforms a vector field into a scalar field. Finally the curl
V x A(z,y, z) transforms a vector into a vector.

To define these three operations we first need to define scalar and vector fields. These are concepts
that you already understand. It is the terminology that needs to be mastered, not a new concept.
Think of a voltage field in space, say between two finite sized capacitor plates. In such a case, the
voltage is given by a scalar field V (z,y, z). A scalar field is also called a potential. Somewhat confusing
is that one may also define vector potentials which is three scalar potentials turned into a vector. So
this term is more than one use. It is therefore important to recognize the intended use of the filed.
This can be gleaned from the units. Volts is a scalar field.
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The simplest example of a scalar potential is the voltage between two very large (think oo) con-
ducting parallel planes, or plates (large so that we can ignore the edge effects). In this case the voltage
varies linearly between the two plates. For example

V(z,y,z) = Vo(1 —x)

is a scalar potential, thus it is scalar field (i.e., potential). At x = 0 the voltage is V and at = 1 the
voltage is zero. Between 0 and 1 the voltage varies linearly. Thus V(z,y, z) defines a scalar field.

If the same setup were used but the two plates were 1x1 [em?], with a 1 [mm)] air gap, there will
be a small “fringe” effect at the edges that would slightly modify the ideal fields. The hope is that
this effect can be made small so that it does not ruin the capacitor composed of the two plates. If we
are given a set of three scalar fields, we define a vector field. If the three elements of the vector are
potentials, then we have a vector potential.

Gradient operator V

The gradient operator takes a scalar fields and outputs a vector field. This is exactly what the gradient
does. Given any scalar field V (z,y, z) it outputs a vector field®?

E(z,y,2) = [Ex(2,y,2), By(2,y, 2), Ex (2,9, 2)]" = —=VV(z,y,2).

To understand these three operations we therefore need to define the domain and range of their
operation, as specified in Table 5.1.

1.5.6 Lec 40: Definitions of E, H, B, D and Maxwell’s equations
Maxwell’s Equations

Once you have mastered the three basic vector operations, the gradient, divergence and curl, you are
able to understand Maxwell’s equations. Like the vector operations, these equations may be written
in integral or vector form. The notation is basically the same since the concept is the same. The only
difference is that with Maxwell’s equations we are dealing with well defined physical quantities. The
scalar and vector fields take on meaning, and units. Thus to understand these important equations,
one must master the units, and equally important, the names of the four fields that are manipulated
by these equations.

We may now restate everything defined above in terms of two types of vector fields that decompose
every vector field. Thus another name for the Fundamental Theorem of Vector Calculus is the Helmholtz
decomposition. An irrotational field is define as one that is “curl free,” namely the vector potential is a
constant. An incompressible field is one that is “diverge free,” namely the scalar potential is a constant.
Just to confuse matters, the incompressible field is also called a solenoidal field. 1 recommend that you
know this term (as it is widely used), but never use it. Rather use incompressible as a more meaningful
and physical term.

1.5.7 Lec 41 Fundamental Theorem of Vector calculus (Helmholtz theorem)
The Fundamental Theorem of Vector Calculus

Here we define the basic vector operations based on the V “operator,” the gradient, divergence and
the curl. These operations may be defined in terms of integral operations on a surface in 1, 2 or 3
dimensions, and then taking the limit as that surface goes to zero. These operators are required to
understand Maxwell’s Equations, the crown jewel of mathematical physics.

52 As before vectors are columns, which take up space on the page, thus we write them as rows and take the transpose
to properly format them.
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Incompressible and Irrotational vector fields

One of the most important fundamental theorems is that of vector calculus. This is also known as
Helmholtz theorem. This theorem is very easily stated but less easily to appreciate. But a physical
description of what is going on will help.

A vector field may be split into two parts, that are independent. Think of linear and angular
momentum. They are also independent in that they represent different ways to store energy. An
object with mass can be moving along a path and rotating at the same time. The two modes of motion
define two different types of kinetic energy, transnational and rotational. In some real sense, Helmholtz
theorem quantifies this independence.

The Fundamental Theorem of Vector Calculus: This theorem is also known as Helmholtz’
theorem. It states that every differentiable vector field may be written as the sum of two terms, a
scalar part and a vector part expressed in terms of a scalar potential ¢(x,y, z) (think voltage) and a
vector potential (think magnetic vector potential). Specifically

E=-Vé+VxA. (1.41)

To show that this relationship splits the vector field E into two parts we need to add to the mix two
key vector identities, that are always true (assuming they exist, i.e, that the fields are differentiable):

V x Vo (x,y, ) = 0, (1.42)
or in words, the curl of the divergence =0, and
V-VxA=0 (1.43)

or the divergence of the gradient =0. These identities are easily verified by working out a few examples
based on the definitions of the three operators, for example in terms of their integral definitions. They
also have an important physical meaning, as indicated above, that every vector field may be split into
its transnational and rotational parts, as with our example of momentum.

If we apply these two identities to Helmholtz’s theorem
(Eq. 1.41), we can appreciate the significance of the theo-
rem. It is a form of proof actually, once you have satisfied
yourself that the vector identities are true. In fact one can
work backward using a physical argument, that rotational
momentum and thus energy is independent from transna-
tional momentum, thus energy. Again this all goes back to
the definitions of rotation and transnational forces, hidden
in the vector operations. Once these forces are made clear,
the meaning of the vector operations all take on a very well
defined meaning, and the mathematical constructions, cen-
tered around Helmholtz’s theorem, begins to provide some
common-sense meaning.

Specifically if we take the divergence of Eq. 1.41, and
use the divergence vector identity

V-E=V-{-V¢+VxA}=-V -Vp=-V%.

since the divergence vector identity removes the vector po-
tential A(z,y, 2).

Likewise if we take the curl of Eq. 1.41, and use the curl
vector identity

. 4, Belmboly,

Figure 1.15:  von Helmholtz portrait taken
from the English translation of his 1858 paper
“On integrals of the hydrodynamic equations
VXxE=VxXx {—V¢ 4+ V x A} =V X VXA, that correspond to Vortex motions” (in German)
(von Helmholtz, 1978).
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since using the curl vector identity, removes the scalar field ¢(z,y, z).
There is a third vector identity that needs to be mentioned for later use

Vx(VxA)=V(V-A) - V?A.

The best way to think of this relationship is that it defines the vector Laplacian V2A. In other words,
think of this identity the definition of the left hand side of

VEZA=V(V-A) -V x(VxA).

WEEK 15 40.15.0

L 42 Quasi-static approximation and applications:
The Kirchoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations The
telegraph wave equation starting from Maxwell’s equations
Quantum Mechanics

L 43 Last day of class: Review of Fund Thms of Mathematics:
Closure on Numbers, Algebra, Differential Equations and Vector Calculus,
The Fundamental Thms of Mathematics & their applications:
Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9); Normal modes vs. eigen-
states, delay and quasi-statics;

— Reading Day
VC-1 Due

1.5.8 Lec 42: Kirchhoff’s Laws and the quasistatic approximation

- The term quasistatics indicates a type of approximation that is widely used when reducing a problem
based on partial differential equations to one of a scalar differential equation. It is important to
understand the nature of this approximation so that it is not miss-applied. Quasistatics is a way of
reducing a three dimensional problem to a 1 dimensional problem. This approximation is at the heart
of transmission line theory. Lets begin with an example: The acoustic wave equation describes how
the scalar pressure p(z,y, z,t) propagates in three dimensions. If the wave propagation is restricted
to a pipe, such as an organ pipe, or to a string, as in a guitar string, we do not need to worry about
the transverse directions. What needs to be modeled by the equations is the wave propagation along
the pipe or string. Thus we replace the three-dimensional wave with a one-dimensional wave, without
further thought.

However if we wish to be more precise about this reduction in geometry, we need to consider
the quasistatic approximation, as it makes some assumptions about what is happening in the other
directions, and quantifies their effects. Taking the case of wave propagation in a tube, say the ear
canal, there is the main wave direction, down the tube. But there is also wave propagation in the
transverse direction, perpendicular to the direction of propagation. As shown in Table 3.1 (p. 107),
the key statement of the quasistatic approximation is that the wavelength in the transverse direction
is much larger that the radius of the pipe. This is equivalent to saying that the radial wave reaches the
walls and is reflected back, in a time that is small compared to the distance propagated down the pipe.
Clearly the speed of sound down the pipe and in the transverse direction is the same if the medium is
homogeneous (i.e., air or water). Thus the sound reaches the walls and is returned to the center line
in a time that the axial wave traveled about 1 diameter along the pipe. So if the distance traveled is
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several diameters, the radial parts of the wave have time to come to equilibrium. So the question one
must ask is, what are the conditions of such an equilibrium. The most satisfying answer to this is to
look at the internal forces on the air, due to the gradients in the pressure.

The pressure p(x, y, z, t is a potential, thus its gradient is a force density f(z,y, z,t) = —=Vp(z,y, 2, t).
What this equation tells us is that as the pressure wave approaches that of a plane wave, the radial
(transverse) forces go to zero. If the tube has a curvature, or a change in area, then there will be local
forces that create radial flow. But after traveling a few diameters, these forces will come to equilibrium
and the wave will return to a plane wave. The internal stress caused by a change is area must settle
out very quickly. There is a very important caveat however: it is only at low frequencies that the
plane wave can dominate. At frequencies such that the wavelength is very small compared to the
diameter, the distance traveled between reflections is much greater than a few diameters. Fortunately
the frequencies where this happens are so high that they play no role in frequencies that we care about.
This effect is referred to as cross-modes which imply some sort of radial standing waves. In fact such
modes exist in the ear canal, but on the eardrum where the speed of sound is much slower that that
of air. Because of the slower speed, the ear drum has cross-modes, and these may be seen in the ear
canal pressure. Yet they seem to have a negligible effect on our ability to hear sound with good fidelity.
The point here is that the cross modes are present, but we call upon the quasistatic approximation as
a justification for ignoring them, to get closer to the first-order physics.

Breakdown of the quasistatic approximation at high frequencies: If we wonder, for the sake
of wonderment, what happens at high frequencies where the quasistatic approximation begins to break
down, we need to consider other significant physics of the system. In acoustics there are two basic
effects that have been ignored by assuming that wave propagation is dictated by the wave equation,
viscosity and thermal effects. In fact, it turns out that these two loss mechanisms are related, but
to understand why is quite difficult. However Helmholtz, with some help from Kirchhoff, figured this
out and published it between 1863 (Helmholtz, 1863b) and 1868 (Kirchhoff, 1868).  Their theory
was summarized by Lord Rayleigh (Rayleigh, 1896) and then experimentally verified to be correct by
Warren P. Mason (Mason, 1928). The nature of the correction is that the wave number is extended
to be of form

K(s) = M7 (1.44)
€o
where the forwarded P_ and backward P, pressure waves propagate as
Pi(s,z) = e ") )z (1.45)

and &(s) is the complex conjugate of x(s), and Rk(s) > 0. The term [By4/s affects both the real and
imaginary parts of k(s). The real part is a frequency dependent loss and the imaginary part introduces
a frequency dependent velocity (Mason, 1928).

The frequency where the loss-less part equals the lossy part is an important parameter of the system.
This frequency is sg + Bo\/S0 = 0, or /3o = Bp or fo = 3%/2m.

Assuming air at 23.5° [C], co = /1noFPo/po ~ 344 [m/s] is the speed of sound, 1y = ¢,/c, = 1.4 is
the ratio of specific heats, u = 18.5 x 107% [Pa-s] is the viscosity, pp ~ 1.2 [kgm/m?] is the density,
Py = 10° [Pa] (1 atm).

The constant Sy = P’ /25/po

77/ _ \//7 {1 +1/5/2 (771/2 . 771/2)}

is a thermodynamic constant, P is the perimeter of the tube and S the area (Mason, 1928).

For a cylindrical tube having radius R = 25/P, 8y = n,/R./p. To get a feeling for the magnitude of
By consider a 7.5 [mm] tube (i.e., the average diameter of the adult ear canal). Then ' = 6.6180 x 1073
and By = 1.6110. Using these conditions the wave-number cutoff frequency is 1.611? /27 = 0.4131 [Hz].
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At 1 kHz the ratio of the loss over the propagation is 8y/v/]s| = 1.6011/v27103 ~ 2%. At 100 [Hz]
this is a 6.4% effect.?3

Mason shows that the wave speed drops from 344 [m/s] at 2.6 [kHz| to 339 [m/s] at 0.4 [kHz], which
is a 1.5% reduction in the wave speed. In terms of the losses, this is much larger effect. At 1 [kHz]
the loss is 1 [dB/m] for a 7.5 [mm] tube. Note that the loss and the speed of sound vary inversely with
the radius. As the radius approaches the boundary layer thickness (the radial distance such that the
loss is e 1), the effect of loss dominates.

In Section 5.4.1 we shall look at some simple problems where we use the quasistatic effect and
derive the Kirchhoff voltage and current equations, starting from Maxwell’s equations.

1.5.9 Lec 43: Final Review for Final Exam
Summary

Mathematics began as a simple way of keeping track of how many things there were. But eventually
Physics and Mathematics evolved together as tools to help us navigate our environment, not just phys-
ically around the globe, but how to solve daily problems such as food, water and waste management,
understand the solar system and the stars, defend ourselves, use tools of war, etc.

Based on the historical record of the abacus, one can infer that people precisely understood the
concept of counting, addition, subtraction and multiplication (recursive addition).

There is some evidence that the abacus, a simple counting tool, formalizing the addition of very
large numbers, was introduced to the Chinese by the Romans, where it was used for trade.

However this working knowledge of arithmetic did not to show up in written number systems. The
Roman numerals were not useful for doing calculations done on the abacus. The final answer would
then be expressed in terms of the Roman number system.

According to the known written record, the number zero (null) had no written symbol until the
time of Brahmagupta (628 CE). One should not assume the concept of zero was not understood simply
because there was no symbol for it in the Roman Numeral system. Negative numbers and zero would
be obvious when using the abacus. Numbers between the integers would be represented as rational
numbers Q since any number may be approximated with arbitrary accuracy with rations numbers.

Mathematics is the science of formalizing a repetitive method into a set of rules, and then general-
izing it as much as possible. Generalizing the multiplication and division algorithm, to different types
of numbers, becomes increasingly more complex as we move from integers to rational numbers, irra-
tional numbers, real and complex numbers and ultimately, vectors and matrices. How do you multiply
two vectors, or multiply and divide one matrix by another? Is it subtraction as in the case of two
numbers? Multiplying and dividing polynomials (by long division) generalizes these operations even
further. Linear algebra is further important generalization, fallout from the Fundamental Theorem of
Algebra, and essential for solving the generalizations of the number systems.

Many of the concepts about numbers naturally evolved from music, where the length of a string
(along with its tension) determined the pitch (Stillwell, 2010, pp. 11, 16, 153, 261). Cutting the string’s
length by half increased the frequency by a factor of 2. One forth of the length increases the frequency
by a factor of 4. One octave is a factor of 2 and two octaves a factor of 4 while a half octave is v/2. The
musical scale was soon factored into rational parts. This scale almost worked, but did not generalize
(sometimes known as Pythagoreas’ comma®?), resulting in today’s well tempered scale, which is based
on 12 equal geometric steps along one octave, or 1/12 octave ( V/2 ~ 1.05946 ~ 18/17 = 1 + 1/17).

But the concept of a factor was clear. Every number may be written as either a sum, or a product
(i.e., a repetitive sum). This led the early mathematicians to the concept of a prime number, which is
based on a unique factoring of every integer. At this same time (c5000 BCE), the solution of a second
degree polynomial was understood, which lead to a generalization of factoring, since the polynomial, a
sum of terms, may be written in factored form. If you think about this a bit, it is sort of an amazing

%3 /home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/m/MasonKappa.m
*https://en.wikipedia.org/wiki/Pythagorean_comma
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idea, that needed to be discovered (Stillwell, 2010, p. ). This concept lead to an important string of
theorems on factoring polynomials, and how to numerically describe physical quantities. Newton was
one of the first to master these tools with his proof that the orbits of the planets are ellipses, not circles.
This lead him to expanding functions in terms of their derivatives and power series. Could these sums
be factored? The solution to this problem led to calculus.

So mathematics, a product of the human mind, is a highly successful attempt to explain the physical
world. All aspects of our lives were impacted by these tools. Mathematical knowledge is power. It
allows one to think about complex problems in increasingly sophisticated ways. An equation is a
mathematical sentence, expressing deep knowledge. Witnessed F = mc? and V21 = 1.

Reading List: The above concepts come straight from mathematical physics, as developed in the
17019t centuries. Much of this was first developed in acoustics by Helmholtz, Stokes and Rayleigh,
following in Green’s footsteps, as described by Lord Rayleigh (1896). When it comes to fully appreciat-
ing Green’s theorem and reciprocity, I have found Rayleigh (1896) to be a key reference. If you wish to
repeat my reading experience, start with Brillouin (1953), followed by Sommerfeld (1952); Pipes (1958).
Second tier reading contains many items Morse (1948); Sommerfeld (1949); Morse and Feshbach (1953);
Ramo et al. (1965); Feynman (1970); Boas (1987). A third tier might include Helmholtz (1863a); Fry
(1928); Lamb (1932); Bode (1945); Montgomery et al. (1948); Beranek (1954); Fagen (1975); Lighthill
(1978); Hunt (1952); Olson (1947). It would be a mistake to ignore other massive physics writings by
stalwart authors, J.C. Slater®® and Landau and Lifshitz,%% and their impressive series of Mathematical
Physics books.

You must enter at a level that allows you to understand. Successful reading of these books critically
depends on what you already know. A rudimentary (high school) level of math comprehension must
be mastered first. Read in the order that helps you best understand the material.

Without a proper math vocabulary, mastery is hopeless. I suspect that one semester of college
math can bring you up to speed. This book is my attempt to present this level of understanding.

Shttps://en.wikipedia.org/wiki/John_C._Slater
*nttps://www.amazon.com/Mechanics-Third-Course-Theoretical-Physics/dp/0750628960
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Chapter 2

Number Systems: Stream 1

This chapter is devoted to Number Systems (Stream 1), starting with the counting numbers N. In this
chapter we delve more deeply into the details of the topics of Lectures 4-9.

2.1 Week 2

In Section 2.1.1 we explore in more detail the two fundamental theorems of prime numbers, working
out a sieve example, and explore the logarithmic integral Li(IN) which approximates the density of
primes pi(N) up to prime N.

The topics of Section 1.2.4 consider the practical details of computing the greatest common divisor
(GCD) of two integers m,n (Matlab’s routine 1=gcd(m,n)), with detailed examples and comparing
the algebraic and matrix methods. Homework assignments will deal with these two methods. Finally
we discuss the relationship between coprimes and the GCD. In Section 1.2.5 we defined the Continued
Fraction algorithm (CFA), a method for finding rational approximations to irrational numbers. The
CFA and GCD are closely related, but the relation needs to be properly explained. In Section 1.2.7 we
derive Fuclid’s formula, the solution for the Pythagorean triplets (PT), based on Diophantus’s chord/-
tangent method. This method is used many times throughout the course notes, first for computing
Euclid’s formula for the PTs, then for finding a related formula in Section 1.2.8 for the solutions to
Pell’s equation, and finally for finding the mapping from the complex plane to the extended complex
plane (the Riemann sphere).

Finally in Section 1.2.9 the general properties of the Fibonacci sequence is discussed. This equation
is a special case of the second order digital resonator (well known in digital signal processing), so it
has both historical and practical application for engineering. The general solution of the Fibonacci is
found by taking the Z-transform and finding the roots, resulting in an eigenvalue expansion (Appendix
D).

2.1.1 Lec 4 Two theorems on primes
Theorem 1: Fundamental Theorem of Arithmetic

Factoring integers: Every integer n € N has a unique factorization (Stillwell, 2010, p. 43)

I 7
n= Hlﬂ'kk, (2.1)

where k = 1,..., K indexes the integer’'s K prime factors 7 and their multiplicity Py.

Examples: 2312 =217 =7} 72 (le., m = 2,81 = 3,77 = 17,37 = 2)
2313 = 32 - 257 = 13 w55 (ie., ma = 3, B3 = 2,755 = 257, 355 = 1)
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Integers 2312 and 2313 are said to be coprime, since they have no common factors. Coprimes may
be identified via the greatest common divisor:

gcd(a,b) =1

using the Fuclidean algorithm (Stillwell, 2010, p. 41).

Theorem 2: Prime Number Theorem

The primes are a random field since there is no way to predict when the next prime will occur. Thus
one needs to use statistical methods to characterize their density. Based on a sample of approximately
3 million primes, Gauss showed empirically that the average total number of primes less than N is

i5 TN
" InN’
n=1

These primes were obtained by manual calculations “as a pastime” in 1792-3 (Goldstein, 1973).

Define 6, = 1 if n is a prime, and zero otherwise.!.

It follows that the average density of primes is pr(N) ~ 1/In N, thus

1 Y 1 1 [N de¢
=N bum o Li(N) =+ [
N;V NI =R ), e

pW(N)

where Li(N) is the offset logarithmic integral (Stillwell, 2010, p. 585). The primes are distributed
as 1/1In(n) since the average total number of primes is proportional to the logarithmic integral Li(n)
(Goldstein, 1973; Fine, 2007).

Here is a Matlab code that tests this formula:

%Computes density of primes from average density

NP=1e6; % 1076 primes

p=primes(NP); %compute primes

delta=zeros(1,NP); delta(p)=1; JYput 1 at each prime

PI=cumsum(delta); %Number of primes vs N

tho=PI./(1:NP); Yestimate of the density of primes= PI(N)./N

b

figure(1)

semilogy(rho); %plot of density vs number of primes

title(’Density of primes vs. N’); ylabel(’\rho(N)’); xlabel(’N’); grid on

From the Prime Number Theorem it is clear that the density of primes is large (they are not scarce).
As best I know there are no methods to find primes other than by the sieve method (Section ??, p. ?7).
If there is any good news it is that they only need to be computed once, and saved. In practical
applications this doesn’t help much given their large number. In theory, given primes 7, up ton = N,
the density pr(N) could help one search for a particular prime of known size N, by estimating how
many primes there are in the neighborhood of V.

Not surprisingly, playing with primes has been a popular pastime of mathematicians. Perhaps this
is because those who have made inroads, providing improved understanding, have become famous.

You may view &, for the first 100 numbers with the one-line Matlab/Octave command stem(isprime(1:100))
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2.1.2 Lec 5 Greatest common divisor (GCD)

Multiplying two numbers together, or dividing one by the other, is very inexpensive on today’s computer
hardware. However, factoring a large integer (i.e., 103 digits) into its primes, is very expensive. When
the integers are large, it is so costly that it cannot be done in a lifetime, even with the fastest computers.

The obvious question is: “Can we find the largest common factor k = ged(m,n) without factoring
(m,n)?” The answer is “yes,” with the Fuclidean algorithm (FEA). While the EA falls short of factoring,
it is fast and easily implemented.

If the two integer are in factored form, the answer is trivial. For example 5 = ged(5-13,5-17), and
17 = ged(17- 53,17 - 3 - 31). But what about ged(901,1581)7 So the problem that computing the GCD
solves is when the factors are not known. Since 901 = 5317 and 1581 = 3x17x31, gcd(901,1581) = 17,
which is not obvious.

In Matlab the GCD may be computed using k=gcd (m,n), which only allows integers as arguments
(and removes the sign).

Matrix method: The GCD may be written a matrix recursion, based on Eq. 2.1.2. The two starting
numbers are given by the vector (mg,ng). The recursion is then

el =[]

This recursion continues until mg41 < ng41, at which point m and n must be swapped. Because the
output depends on the input, this is a nonlinear recursion (Postulate P1 (Linear/nonlinear) of Section
3.5.1, p. 102).

The direct method is inefficient because in recursively subtract n many times until the resulting
m is less than n, as shown in Fig. 2.1. It also must test for m < n at each iteration, and then swap
m and n once that condition is met. This recursion is repeated until mg,; = 0. At that stage the
GCD is ngy1. Figure 2.1, along with the above matrix relation, give the best insight into the Euclidean
Algorithm, but at the cost of low efficiency.

Below is a Matlab code to find the ged based on the strict definition of the EA:

n = gcd(m,n)
while m "=0
A=m; B=n;
m=max (A,B); n=min(A,B); %m>n
m=m-n;
end

This program keeps looping until m = 0. It first finds the min and max of the inputs, sets m as the
max and n as the minimum. The next line m = m — n removes the smaller number from the larger
one. It then loops back and repeats the cycle. Thus the EA is a two step recursive method.

Division with rounding method: This method implements Eq. 2.2. It is not necessary to test
that mgy1 < nggq. After computing the new value of n, using the floor function, the old value of m is
saved as the new value of n (thus mygi1 > ngi1

M1 0 1 M
= . 2.2
i S .
where | x| finds the integer part of « (|« | rounds toward —oo). The method terminates when my1 = 0.
The previous values my, n, are the solutions to Bézout’s identity (gcd (n,m)=1, namely mgmo+ngng =

1), since the terminal state and the GCD of a,b is m —n|m/n| = 0, for which n = gcd(a, b).
Below is 1-line vectorized code that is much more efficient than the direct matrix method:
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k = gcd(m,n) %entry point: input m,n; output k=gcd(m,n)

M=[abs(m) ,abs(n)]; %init M

while M(2) =0 % < n*eps to ‘‘almost work’’ with irrational inputs
M= [M(2) - M(D)*floor(M(2)/M(1)); M(1)]; %M = [M(1); M(2)] with M(1)<M(2)
end

With a minor extension in the test for “end,” this code can be made to work with irrational inputs:
e.g.: (nm,mn).

This method calculates the number of times n < m must subtract from m using the floor function.
Note that the new value of m (M (1)) is always less than n (M(2)), and must remain greater or equal
to zero. This one-line vector operation is then repeated until the remainder (M (1)) is 0. The ged is
then n (M (2)). When using irrational numbers, this still works except the error is never exactly zero,
due to IEEE 754 rounding. Thus the criterion must be that the error is within some small factor times
the smallest number (which in Matlab is the number eps = 2.220446049250313 x10~16.

Thus without factoring the two numbers, the Euclidean algorithm recursively finds the ged simply
by ordering the two numbers and then updating them. Perhaps this is best seen with some examples.

The GCD is an important and venerable method, useful in engineering and mathematics, but, as
best I know, is not typically taught in the traditional engineering curriculum.

Graphical meaning of the GCD: The Euclidean algorithm is actually very simple when viewed
graphically. In Fig. 2.1 we show what is happening as one approaches the threshold. After reaching
the threshold, the two number must be swapped, which is addressed by upper row of Eq. 2.2.

m
o M-N
N e m-2n
~2 A
S ‘o 1N-31
" n. m-6n .
“em-Tn

Figure 2.1: The Euclidean Algorithm recursively subtracts n from m until the remainder m — kn is either less than
n or zero. For the case depicted here the value of k that renders the remainder less than n is k = 6. If one more step
were taken (k = 7) the remainder becomes negative. By linear interpolation we can find that m —an = 0 when a = m/n,
which for this example is close to a=6.5. In this example 6 = floor(m/n) < n.

Multiplication is simply recursive addition, and finding the gcd takes advantage of this fact. Lets
take a trivial example, (9,6). Taking the difference of the larger from the smaller, and writing mul-
tiplication as sums, helps one see what is going on. Since 6=3*2, this difference may be written two
different ways

9—6=(3+3+3)—(3+3)=0+0+3=3,

or
9-6=(3+3+3)—(2+2+2)=1+1+1=3.

Written out the first way, it is 3, because subtracting (3+3) from (3+3+3) leaves 3. Written out
in the second way, each 3 is matched with a -2, leaving 3 ones, which add to 3. Of course the two
decompositions must yield the same result because 2 -3 = 3 - 2. Thus finding the remainder of the
larger number minus the smaller yields the ged of the two numbers.
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Coprimes: When the ged of two integers is 1, the only common factor is 1. This is of key importance
when trying to find common factors between the two integers. When 1=gcd(m,n) they are said to be
coprime, which can be written as m L n. By definition, the largest common factor of coprimes is 1.
But since 1 is not a prime (7 = 2), they have no common primes.

Generalizations of GCD: The GCD may be generalized in several significant ways. For example
what is the GCD of two polynomials? To answer this question one must factor the two polynomials to
identify common roots. This will be discussed in more detail in Section 3.2.2.

2.1.3 Lec 6 Continued Fraction Expansion (CFA)

Continued Fractions and circuit theory: One of the most powerful generalizations of the CFA
seems to be the expansion of a function of a complex variable, such as the expansion of an impedance
Z(s), as a function of complex frequency s. This idea is described in Fig. 2.2 and Eq. 2.3. This
is especially interesting in that it leads to a physical interpretation of the impedance in terms of a
transmission line (horn), a structure well know in acoustics having a variable area A(x) as function of
the range variable x.

The CFA expansion is of great importance in circuit theory, where it is equivalent to an infinitely
long segment of transmission line, composed of series and shunt impedance elements. Thus such a
cascade network composed of 1 ohm resistors, has an input impedance of (1 ++/5)/2 ~ 1.6180 [ohms].

The CFA may be extended to monomials in s. For example consider the input impedance of a
cascade L-C transmission line as shown in Fig. 2.2. The input impedance of this transmission line is
given by a continued fraction expansion of the form

1
Zin = sL + =:[sL;sC,sL,sC,---]. (2.3)

sC +

1
sL +

1
sC+ —

where we have again used the bracket notation to describe the CFA coefficients.

In some ways, Eq. 2.3 is reminiscent of the Taylor series expansion about s = 0, yet very different.
In the limit, as the frequency goes to zero (s — 0), the impedance of the inductors go to zero, and that
of the capacitors go to co. In physical terms, the inductors become short circuits, while the capacitors
become open circuits. The precise relation may be quantified by the use of composition, described in
Fig. 1.11 of Section 2.1.3 (p. 52). Specifically

I e P e e P i [ |

It seems possible that this is the CFA generalization of the Taylor series expansion, built on composition.
If we were to do the algebra we would find that A(s), B(s),C(s), D(s) (i.e., Sections 1.3.6, 3.3.2)
are ratios of polynomials having rational expansions as Taylor series. This seems like an important
observation, that should have support beyond that of the engineering literature (Campbell, 1903;
Brillouin, 1953; Ramo et al., 1965). Its interesting that (Brillouin, 1953) credits (Campbell, 1903).

In terms of the TL, it is a long piece of wire, with a delay determined by the velocity and the length,
in units of cells each of length A. There are two basic parameters that characterize a transmission line,
the characteristic resistance rog = /Z/Y and the wave number

k=1/VZY =s/VLC = s/c,
which gives ¢ = v LC. Each of these is a constant as A — 0, and in that limit the waves travel as

ft —x/c)=e "t
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Yi(z, s)A Yo(z, s)A
v /‘Fh(zuw) — Us(z,w) B Tl\Uz(T,M) = Us(z,w) E
: x =Xy : r=Xo+A :

A A

Figure 2.2: This transmission line (TL) is known as a low-pass filter wave-filter (Campbell, 1922), composed of series
inductors having an impedance Z; = sL and shunt admittance Y, = sC. The characteristic resistance of the TL is

ro = \/Zr/Yr and the wave velocity is K = \/ZrYr = s/vV LC = s/c. Thus the wave velocity is ¢ = 1/v/LC. The length
A [m] defines the physical size of each cell. For long wavelengths the wave-filter acts as a pure delay. But when the

frequency increases above a cutoff frequency f. > ¢/A, the wavelength A = ¢/ f is less than the size of a section A, and
the system response becomes very high-order low-pass filter.

with a wave resistance (ro = \/L/C). The total delay T'= L/c where A is the TL cell length in meters
and c is the velocity ¢ =1/ VLC in meters /second.

Since the CFA has a physical representation as a transmission line, as shown in Fig. 2.2, it can be
of high utility for the engineer.? The theory behind this will be discussed in greater detail in Chapter
5. If you're ready to jump ahead, read the interesting book by Brillouin (1953) and the collected works
of Campbell (1937).

2.2 Week 3

2.2.1 Lec 7 Pythagorean triplets (PTs) and Euclid’s formula ,

Pythagorean triplets (PTs) have many applications in architecture and scheduling, which explains why
they are important and heavily studied. For example, if one wished to construct a triangle with a
perfect 90° angle, then the materials need to be squared off as shown in Fig. 1.8. The lengths of the
sides need to satisfy PTs.

Derivation of Euclid’s formula: The problem is to find integer solutions to the Pythagorean
theorem (Eq. 1.1, p. 15). The solution method, said to be due to Diophantus, is call a chord/tangent
method (Stillwell, 2010, p. 48). The method composes (Section 3.2.3) a line and a circle, where the
line defines a chord within the circle (its not clear where the tangent line might go). The slope of the
line is then taken to be rational, allowing one to determine integer solutions of the intersections points.
This solution for Pythagorean triplets [a, b, c] is known as Euclid’s formula (Eq. 1.3, p. 1.3 (Stillwell,
2010, p. 4-9, 222).

The derivation methods of Diophantus have been lost, but Fermat and Newton figured out what
Diophantus must have done (Stillwell, 2010, p. 49). Since Diophantus worked before algebra was
invented, he described all the equations in prose (Stillwell, 2010, p. 93).

Derivation of Euclid’s formula: The derivation is outlined in Fig. 2.3. Starting from two integers
[p > q > 0] € N, composing a line having a rational slope ¢t = p/q, with a circle (Stillwell, 2010, p. 6),
reveals the formula for the Pythagorean triplets.

The construction starts with a circle and a line, which is terminated at the point (—1,0). The slope
of the line is the free parameter ¢. By composing the circle and the line (i.e., solving for the intersection
of the circle and line), the formula for the intersection point (a,b) may be determined in terms of ¢,
which will then be taken as the rational slope t = p/q € Q.

2Continued fraction expansions of functions are know in the circuit theory literature as a Cauer synthesis (Van Valken-
burg, 1964b).
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Euclid’s formula for Pythagorean triplets [a, b, c| 5.2.4

Euclidean Proof:

D2p+n=m
2)?7+@:7T (a7b)
3)..¢0=0/2

Diophantus’s Proof: Pythagorean triplets:

1) E=a+1’ Dt=p/geQ
2) bla) =tla+c) a=p ¢
— 1—t"472 =

3) ((t) = atgb = L2 3)b=2pq
4) ¢ = [ele” = |e|;*5; = lel(cos(6) + isin(0)) He=p+¢

Figure 2.3: Derivation of Euclid’s formula for the Pythagorean triplets [a,b, c|, based on a composition of a
line, having a rational slope t = p/q € Q, and a circle ¢ = a? + b?,[a,b,c] € N. This analysis is attributed
to Diophantus (Di-o-phan-tus) (250 CE), and today such equations are called Diophantine (Di-o-phan’-tine)
equations. PTs have applications in architecture and scheduling, and many other practical problems.

In Fig. 2.3 there are three panels, two labeled “Proofs.” The Fuclidean Proof shows the angle
relationships of two triangles, the first an isosceles triangle formed by the chord, having slope t and
two equal sides formed from the radius of the circle, and a second right triangle having its hypotenuse
as the radius of the circle and its right angle vertex at (a,0). As shown, it is this smaller right triangle
that must satisfy Eq. 1.1. The inner right triangle has its hypotenuse ¢ between the origin of the circle
(O) to the point (a,b). Side a forms the z axis and side b forms the y ordinate. Thus by construction
Eq. 1.1 must be obeyed.

The Diophantus Proof is the heart of Diophantus’ (250 CE) derivation, obtained by composing a
line and a circle, as shown in Fig. 2.3. Diophantus’s approach was to fix the line at x = —c¢ having a
rational slope t = p/q € Q. He then solved for the intersection of the line and the circle, at (a,b).

The formula for the line is b(a) = t(a + ¢), which goes through the points (—c,0) and (a,b). The
circle is given by a? + b = ¢2. Composing the line with the circle gives

a’ 4 (tla+c))* =
a® +t%(a® + 2ac + ) = ¢*
(1+t%)a? + 2ct’a+ A2 —1) =0

This last equation is a quadratic equation in a. In some sense it is not really a quadratic equation,
since we know that a = —c is a root. Dividing by 1 + ¢?

5  2ct? A(t?-1)

1+ e T
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makes it easier to complete the square, delivering the roots:

n et \? e\’ n At? —1)
a+——| — -— =
1+ t2 1+ t2 14 ¢2

G+ d2>2_(8# AE -+ _

142 1+12)2 (1+12)?
2
N ct? A+ A1) 0
a _ =
1+ t2 (1+¢2)2
2
+ ct? ( c )2
a+——| =|——=
1+ ¢2 1+ 2
1804 The second to last equation simplifies (magic happens) because the known root a = —c is embedded
1805 in the result.
Taking the square root gives the two roots
ct? c
==+
S I R
(1+t)ag = —ct* £c= —c(t* F1)
?2F1
a4+ = —C—.
* 1+ 2
1896 ' The known root is a4 = —¢, because when the sign is 4+, the numerator and denominator terms cancel.
The root we have been looking for is a_
1— ¢
a_ =c )
1+¢2

which allows us to solve for b_
b =+,/c2 — a2
1—2\?
=4dci/l - | ——
¢ (14—ﬂ>

_ . Jurer—a—ep
= j:c\/ CEEE

2ct
241

Therefore the coordinates (a,b), the intersection point of the line and circle, are

42
(alt) (1)) = e 2

1898 To obtain the Pythagorean triplets, as given in Fig. 2.3 and Eq. 1.3 of Section 1.2.7 (p. 37), set
1899 ¢ = p/q, assuming p > q € Z, and simplify.

Complex roots: Defining the root as a complex number ((0) = a + by forces a L b (i.e., forces the
right triangle) and gives us polar coordinates, as defined by the figure as the Euclidean Proof

((©) = [cle® = |¢] (cos(®) + sin(6))
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This naturally follows since

—t2 42ty
1+ ¢2

OA-70)(1 + gt)
AAt7)(1 = 1)

Examples of PTs include a =22 —12=3,b=2-2-1=4,and ¢ = 2% + 12 = 5, 3% + 43 = 52,
Defining p = ¢ + N (N € N) gives slightly better parametric representation of the answers, as the
pair (¢, N) are a more systematic representation than (p, ¢), because the condition p > ¢ is accounted
for, so the general properties of the solutions are expressed more naturally. Note that b+ ¢ must always
be a perfect square since b+ c = (p + q)? = (2¢ + N)?, as first summarized by Fermat Stillwell (2010,
p. 212).
S

q+Jp

1
¢ = MGJ@(@ = || .
q—DpJ

= |c| =(q+pg)

2.2.2 Lec 8 Pell’s Equation

Eigenvalue solution to Pell’s equation: To provide a full understanding of what was known to
the Pythagoreans, it is helpful to provide the full solution to this recursive matrix equation, based on
what we know today.

As shown in Fig. 1.10, (z,,y,) may be written as a power series of the 2x2 matrix A. To find the
powers of a matrix, the well know modern approach is to diagonalize the matrix. For the 2x2 matrix
case, this is relatively simple. The final result written out in detail for the general solution (x,,y,), as
detailed in Appendix D (p. 137):

A A e el

The eigen-values are A+ = (1 £ v/2) while the eigen-matrix and its inverse are

1 l\/i _ﬂ] B [0.8165 0.81651 p1_ V3 [1 \/51

E=A11 1 05774 —0.5774 Tzl V2

The relative “weights” on the two eigen-solutions are equal, as determined by

e VBT V2 VB
0 " 2v2 |1 —=v2||0]  2y2 1]

0.6124  0.866
0.6124 —0.866

We still need to prove that

n VN,

Yn ©°

which follows intuitively from Pell’s equation, since as (z,,yn) — o0, the difference between 22 and
212, the (£1) becomes negligible.

WEEK 4

2.3 Week 4

2.3.1 Lec 9 Fibonacci Numbers

The Fibonacci sequence is famous in number theory. It is said that the sequence commonly appears in
physical systems. Fibonacci numbers are related to the “golden ratio” (14 +/5)/2, which could explain
why these numbers appear in nature.
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But from a mathematical point of view, the Fibonacci sequence does not seem special. It is generated
by a linear recursion relationship, where the next number is the sum of the previous two (Eq. 1.6, p.
40)

Tptl = T + Tp_1. (2.6)

The term linear means that the principle of superposition holds (P1 (linear/nonlinear) of Section
3.5.1). To understand the meaning of this we need to explore the z-transform, the discrete-time version
of the Laplace transform. We will return to this in Chapter 4.

A related linear recurrence relation is that the next output be the average of the previous two
Tn + Tn—1

2

In some ways this relationship is more useful than the Fibonacci recursion, since it perfectly removes
oscillations of the form —1" (it is a 2-sample moving average, a trivial form of low-pass filter). And it
is stable, unlike the Fibonacci sequence, with stable real eigenvalues (digital-poles) at AL = (1,—0.5).
Perhaps biology prefers unstable poles (to propagate growth?).

The most general 2d order recurrence relationships (i.e., digital filter) is

Tn4+1 =

Tpy1 = —bry — crp_1,

with filter constants b, ¢ € R and poles at (completing the square), Ay = —b/2 4+ \/c — b/2.
Equation 2.6 may be written as a 2x2 matrix relationship. If we define y,+1 = x, then Eq. 2.6 is

equivalent to (Eq. 1.7, p. 40)
Tnt1 1 1) |z,
= . 2.7
=0l &

The first equation is z,4+1 = x5, + y, while the second is y,+1 = x,, which is the same as y, = T,_1.
Note that the Pell 2x2 recursion is similar in form to the Fibonacci recursion. This removes mystique
from both equations.

General properties of the Fibonacci numbers*

Tn = Tp—1+ Tn—2
e This is a 2-sample moving average difference equation with an unstable pole

® Ty = [0,171727335a8713a21734= o ‘]7 assuming zo = 0,21 = 1:

e Analytic solution (Stillwell, 2010, p. 194): /5 z,, = (1+2\/g) - (172‘/?’) — (H‘/g)

2

: Tnil 1 5
_ hmn—)oo :: — +2f

— Example: 34/21 = 1.6190 ~ 145 = 1.6180 0.10% error

o Matlab’s rat(14v5) =3+ 1/(4+1/(4+1/(4+1/(4)))) =: [3;4,4,4, -]

“https://en.wikipedia.org/wiki/Fibonacci_number

Figure 2.4: Properties of the Fibonacci numbers (Stillwell, 2010, p. 28).

In the matrix diagonalization of the Pell equation we found that the eigenvalues were Ay = 1 Fv/'N,
and the two solutions turned out to be powers of the eigenvalues. The solution to the Fibonacci recursion
may similarly be expressed in terms of a matrix. These two cases may thus be reduced by the same
2x2 eigenvalue solution method.

The eigenvalues of the Fibonacci matrix are

det FA R} =N -A-1=(A-1/2° - (1/2° - 1=(\—-1/2)* =5/4=0

thus Ay = 255 — [1.618, —0.618).
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Algebraic Equations: Stream 2

3.1 Week 4

3.1.1 Lec 11 Algebra and geometry as physics

Before Newton could work out his basic theories, algebra needed to be merged with Euclid’s early
quantification of geometry. The key to putting geometry and algebra together is the Pythagorean
theorem (Eq. 1.1), which is both geometry and algebra. To make the identification with geometry the
sides of the triangle needed to be viewed as a length. This is done by recognizing that the area of a
square is the square of a length. Thus a geometric proof requires one to show that the area of the
square A = a? plus the area of square B = b? must equal the area of square C' = ¢2. There are many
such constructions that show A+ B = C for the right triangle. It follows that in terms of coordinates
of each vertex, the length of ¢ is given by

= /(22— 21)? + (12 - 01)?, (3.1)

with a = 29 —z1 and b = yo — y1. Thus Eq. 1.1 is both an algebraic and a geometrical statement. This
is not immediately obvious.

Analytic geometry is based on coordinates of points, with the length given by Eq. 3.1. Geometry
treats lines as lengths without specifying the coordinates (Eq. 1.1). Algebra gave a totally new view
to the quantification of geometrical lengths by introducing a coordinate system. This resulted in an
entire new way to work with conic sections, which were now explained in terms of equations having
coordinate systems. When viewed through the lens of algebra, Eq. 1.1 is a circle having radius c.
Complex numbers provide an equivalent representations, since if z = x + y7, the unit circle is z = e
and |z|? = 22 + y%. Here we explore the relationships between points, represented as coordinates,
describing geometrical objects. We shall do this with simple examples from analytic geometry.

For example, in terms of the geometry, the intersection of two circles can occur at two points, and
the intersection of two spheres gives a circle. These ideas may be verified using algebra, but in a very
different, since the line can traverse through the circle, like a piece of thread going through the eye of
a needle. In such cases the intersections are complex intersections.

For each of these problems, the lines and circles may intersect, or not, depending on how they are
drawn. Yet we now know that even when they do not intersect on the sheet of paper, they still have
an intersection, but the solution is € C. Finding such solutions require the use of algebra rather than
geometry. These ideas were in the process of being understood, first by Fermat and Descartes, then by
Newton, followed by the Bernoulli family and Euler.

Complex analytic functions: A very delicate point, that seems to have been ignored for centuries,
is that the roots of P,(x) are, in general, complex, namely z; € C. It seems a mystery that complex
numbers were not accepted once the quadratic equation was discovered, but they were not. Newton
called complex roots imaginary, presumably in a pejorative sense. The algebra of complex numbers

87
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is first attributed to Bombelli in 1575, more than 100 years before Newton. One can only begin to
imagine what Bombelli learned from Diophantus, following his discovery of Diophantus’ Arithmetic,
that he discovered in the Vatican library (Stillwell, 2010, p. 51).

It is interesting that Newton was using power series with fractional degree, thus requiring multi-
valued solutions, much later to be known as branch cuts (c1851). These topics will be explored in
Section 3.1.1.

When the argument is complex, analytic functions takes on an entirely new character. For example
Euler’s identity (1748) with z = 2 4y € C results in e* € C (Stillwell, 2010, p. 315)

e” = e”(cos(y) + gsin(y)).

It should be clear that the complex analytic functions results in a new category of algebra, with no
further assumptions beyond allowing the argument to be complex.

Prior to 1851 most of the analysis assumed that the roots of polynomials were real (z; € R),
even though there was massive evidence that they were complex (z,, € C). This is clearly evident in
Newton’s work (c1687): When he found a non-real root, he ignore it (Stillwell, 2010, pp. 115-7). Euler
(c1748) first derived the Zeta function as a function of real arguments ((z) with ¢,z € R. Cauchy
(c1814) broke this staid thinking with his analysis of complex analytic functions, but it was Riemann
thesis (c1851), when working with Gauss (1777-1855), which had a several landmark breakthroughs.
In this work Riemann introduced the extended complex plane, which explained the point at infinity. He
also introduced Riemann sheets and Branch cuts, which finally allowed mathematics to better describe
the physical world (Section 1.4.2).

Once the argument of an analytic function is complex, for example an impedance Z(s), or the Rie-
mann Zeta function ((s), The development of complex analytic functions led to many new fundamental
theorems. Complex analytic functions have poles and zeros, branch cuts, Riemann sheets and can be
analytic at the point at infinity. Many of these properties were first worked out by Augustin-Louis
Cauchy (1789-1857), who drew heavily on the much earlier work of Euler, expanding Euler’s ideas into
the complex plane (Chapter 4).

Systems of equations

We don’t need to restrict ourselves to polynomials in one variable. In some sense y(z) = ax + b is
already an equation in two variables. Moving beyond such a simple example, we can work with the
equation for a circle, having radius r

v+ a? =2,
which is quadratic in two variables. Solving for roots y(z,) = 0 (y?(x,) = r? — 22 = 0) gives (r —
xy)(r + x,), which simply says that when the circle crosses the y = 0 line at z, = +r.

This equation may also be factored as

(y— ) (y + ay) =17,

as is easily demonstrated by multiplying out the two monomials. This does not mean that a circle has
complex roots. A root is defined by either y(z,) = 0 or z(y,) = 0.
Writing the conic as a 2d degree polynomial gives

Py(z) = ax® + bz + ¢,

with y?(x) = —Py(z). Setting this equal to zero and completing the square (Eq. 1.12, p. 42), gives the

equation for the roots
(er3) - (32) +5 =0
€T _ — _ —_ =
=T 2 2a a ’

b b\? ¢
=——+4/(=) —-.
T 2a <2a) a

or
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The polynomial in factored form is

(e BV (L)
vy = 2a 2a a’
2

is a conic section, and becomes a circle with a =1, b =0 and ¢ = —r~.

3.2 Week 5

3.2.1 Lec 12 The physics behind complex analytic expressions: linear vs. nonlinear

The question we address here is “When do multi-variable complex analytic expressions appear in
physics?” The most common example comes from the solution of the wave equation (Eq. 1.8) in three
dimensions. Such cases arise in wave-guide problems, semiconductors, plasma waves, or for acoustic
wave propagation in crystals (Brillouin, 1960) and the earth’s mantel (e.g., seismic waves, earthquakes,
etc.). The solutions to these problems are based on the eigenfunction for the vector wave equation (see
Chapter 5),

P(s,x) = ele "X, (3.2)

where x = [22 + yy + 22| is a vector pointing in the direction of the wave, [£,7, 2] are unit vectors in
the three dimensions and s = o + wy [rad] is the Laplace frequency. The function k(s) is the complex
vector wave number, which describes the propagation of a plane wave of radian frequency w, in the x
direction.

Just as the frequency s = o + wj must be complex, it is important to allow the wave number
function' to be complex,? because in general it will have a real part, to account for losses as the wave
propagates. While it is common to assume there are no losses, in reality this assumption cannot be
correct. In many cases it is an excellent approximation (e.g., even the losses of light in-vacuo are not
zero) that gives realistic answers. But it is important to start with a notation that accounts for the
most general situation, so that when losses must be accounted for, the notation need not change. With
this in mind, we take the vector wave number to be complex

R:kr"_k]’

where vector expression for the lattice vector is the imaginary part of K

2w 2m 2m
Sk=k=—2+ 0+ —2 3.3
VR VD W (33)
is the vector wave number for three dimensional lossless plane-wave solutions (k, = 0).
Equation Eq. 3.2 is linear in x. If one takes the derivative with respect to either time or space,

%este—wx — Seste—n-x’ %este—mx — i:este—wx’
we find the eigenvalue of that derivative.

The units of k are reciprocal length [m~!] since & - x has units of radians. When there are losses
kr(s) = Rk(s) must be a function of frequency, due to the physics behind these losses. In many
important cases, such as loss-less wave propagation in semiconductors, k(x) is a function of direction
and position (Brillouin, 1960).

When the eigenfunction Eq. 3.2 is applied to the wave equation, a quadratic (degree 2) algebraic
expression results, known as the dispersion relation. The three dimensional dispersion relation

5\? 21\ 2 27 2 27\ 2 9 9 9
(2) === (5) +<A> (1) e 4

!This function has many names in the literature, all of which are confusing. It is called the wave number, propagation
constant and the Brillouin zone dispersion function (Brillouin, 1953, Ch. 1). However, its neither a number nor constant.
?In fact k(s) is a complex analytic function of the Laplace frequency s.
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is a complex analytic algebraic relationship in four variables, frequency s and the three complex lattice
wave numbers. This represents a three-dimensional generalization of the well know relation between
wavelength and frequency, i.e., fA = c¢. For lossless plane waves propagating in free space, |k(s)| =
+|s/c|, where the sign accounts for the direction of the plane wave.

This scalar relation (f\ = ¢) was first deduced by Galileo in the 16th century and was then explored
further by Mersenne a few years later.This relationship would have been important to Newton when
formulating the wave equation, which he needed to estimate the speed of sound. We shall return to
this in Chapters 4 and 5.

Inner product space: Another important example of algebraic expressions in mathematics is Hilbert’s
generalization of Eq. 1.1, known as the Schwarz inequality, shown in Fig. 3.1. What is special about
this generalization is that it proves that when the vertex is 90°, the length of the leg is minimum.

Vectors may be generalize to have oo dimensions: U,V = [U1,v2,++ ,Vso]). The inner product (i.e.,
dot product) between two such vectors generalizes the finite dimentional case

o0
U-V= Z ULV«
k=1

As with the finite case, the norm ||U|| = VU U = \/Z ug is the dot product of the vector with itself,
defining the length of the infinite component vector. Obviously there is an issue of convergence, if the
norm for the vector to have a finite length.

It is a somewhat arbitrary requirement that a,b,c¢ € R for the Pythagorean theorem (Eq. 1.1).
This seems natural enough since the sides are lengths. But, what if they are taken from the complex
numbers, as for the lossy vector wave equation, or the lengths of vectors in C™? Then the equation

generalizes to
n

c-c=lell’ =) lel?,

k=1
where ||c||? = (c, c) is the inner (dot) product of a vector ¢ with itself, where |cy| is the magnitude the
complex c. As before, ||c|| = v/||c||? is the norm of vector ¢, akin to a length.

Figure 3.1: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the two
vectors. ||U|| = /(U - U) as the dot product of that vector with itself.

Schwarz inequality The Schwarz inequality says that the magnitude of the inner product of two
vectors is less than or equal to the lengths of the product of the two vectors. This follows from Fig. 3.1
in terms of the geometry.

A proof of the Schwarz inequality is as follows: From these definitions we may define the minimum
difference between the two vectors as the perpendicular from the end of one to the intersection of the
second. As shown in Fig. 3.1, U L V may be found by minimizing the length of the vector difference:

min ||V — aU|[> = [|V]]* + 2aV - U + o?||U]]* > 0
0=0, (V—-aU)-(V-alU)
=V-U-a||U|J
o =V-U/|lU|?.
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The Schwarz inequality follows:

u-vP?

Imin = HV - CM*UH2 = HVH2 T i
U2

>0

0<[U-VI< U] IV]|
One may define the direction cosine between the two vectors as

Uu.-v
cos(l) = ——
HUTHIVI
which is a measure of the projection of one of the vectors onto the other, as shown by the figure. The
cos(f) does not represent a complex analytic function. Namely 0 € R, not € C (as best I know).
An important example of such a vector space includes the definition of the Fourier Transform,
where we may set

U(w) = e wost V(w) = et U-V= / e]“’te_mtg—w = 6(w — wp).
w i

We shall return to this topic in Lecture 1.3.9.

Power vs. power series, linear vs. nonlinear

Another place where equations of second degree appear in physical applications is in energy and power
calculations. The electrical power is given by the product of the voltage v(¢) and current i(¢) (or in
mechanics as the force times the velocity). For example if we define P = v(t)i(t) to be the power P
[Watts|, then the total energy [Joules| at time ¢ is (Van Valkenburg, 1964a, Chapter 14)

From this observe that the power is the rate of change of the total energy

d
P(t) = —£&(1).
(1) = Z£)
Ohm’s Law and impedance: The ratio of voltage over the current is call the impedance which has
units of [Ohms|. For example given a resistor of R = 10 [ohms],

o(t) = Ri(t).

Namely 1 amp flowing through the resistor would give 10 volts across it. Merging the linear relation
due to Ohm’s law with the definition of power, shows that the instantaneous power in a resistor is
quadratic in voltage and current

P =uv(t)?/R =1i(t)*R.

Note that Ohm’s law is linear in its relation between voltage and current whereas the power and energy
are nonlinear.

Ohm’s Law generalizes in a very important way, allowing the impedance (e.g., resistance) to be
a linear complex analytic function of complex frequency s = o + wjy (Kennelly, 1893; Brune, 1931a).
Impedance is a fundamental concept in many fields of engineering. For example:® Newton’s second law
F = ma obeys Ohm’s law, with mechanical impedance Z(s) = sm. Hooke’s Law F' = kx for a spring
is described by a mechanical impedance Z(s) = k/s. In mechanics a “resistor” is called a dashpot and
its impedance is a positive and real constant.*

3In acoustics the pressure is a potential, like voltage. The force per unit area is given by f = —Vp thus F = — f Vp dS.
Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is v = —V¢.
“https://en.wikipedia.org/wiki/Impedance_analogy

Force is a vector
voltage are a pote
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Kirchhoff’s Laws KCL, KVL: The laws of electricity and mechanics may be written down using
Kirchoff’s Laws current and voltage laws, (KCL, KVL), which lead to linear systems of equations in
the currents and voltages (velocities and forces) of the system under study, with complex coefficients
having positive real parts.

Points of major confusion are a number of terms that are misused, and overused, in the fields of
mathematics, physics and engineering. Some of the most obviously abused terms are linear/nonlinear,
energy, power, power series. These have multiple meanings, which can, and are, fundamentally in
conflict.

Transfer functions (Transfer matrix): The only method that seems to work, to sort this out,
is to cite the relevant physical application, in specific contexts. The most common touch point is a
physical system that has an input z(¢) and an output y(¢). If the system is linear, then it may be
represented by its impulse response h(t). In such cases the system equation is

y(t) = h(t) x z(t) < Y (w) = H(s)|,— X (w),

namely the convolution of the input with the impulse response gives the output. From Fourier analysis
this relation may be written in the real frequency domain as a product of the Laplace transform of the
impulse response, evaluated on the wj axis and the Fourier transform of the input X (w) <> z(¢) and
output Y(w) <> y(t).

Mention ABCD Transfer matrix

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and
Laplace transforms have no obvious meaning.

The question that must be addressed is why is the power said to be nonlinear whereas a power series
of H(s) said to be linear. Both have powers of the underlying variables. This is massively confusing,
and must be addressed. The question will be further addressed in Section 3.5.1 in terms of the system
postulates of physical systems.

Whats going on? The domain variables must be separated from the codomain variables. In our
example, the voltage and current are multiplied together, resulting in a nonlinear output, the power.
If the frequency is squared, this is describing the degree of a polynomial. This is not nonlinear because
it does not impact the signal output, it characterizes the Laplace transform of the system response.

3.2.2 Lec 13 Root classification of polynomials

Root classification for polynomials of Degree * = 1-4 (p.102);
Quintic (* = 5) cannot be solved: Why?
Fundamental Thm of Algebra (d’Alembert, ~1760)

Add intro & merge convolution discussions.

Convolution

As we discussed in Chapter 1, given the roots, the construction of higher degree polynomials, is greatly
assisted by the convolution method. This has physical meaning, and gives insight into the problem of
factoring higher order polynomials. By this method we can obtain explicit relations for the coefficients
of any polynomial in terms of its roots.

Extending the example of Section 1.3.3, let’s find the relations for the cubic. For simplicity, assume
that the polynomial has been normalized so that the lead x term has coefficient 1. Then the cubic in
terms of its roots [a, b, ¢] is a convolution of three terms

[1,a] x [1,b] x[1,c] = [l,a+b,ab] x [1,c] = [1,a 4+ b+ ¢,ab + c(a + b), abc].
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Working out the coefficients for a quartic gives

[1,a+b+c,ab+c(a+b),abc]x[1,d] = [1,a+b+c+d,d(a+b+c)+c(a+b)+ab,d(ab+ac+bc)+ abe, abed).

It is clear what is going on here. The coefficient on x* is 1 (by construction). The coefficient for 23 is

the sum over the roots. The z? term is the sum over all possible products of pairs of roots, The linear
term x is the sum over all triple products of the four roots, and finally the last term (a constant) is the
product of the four roots.

In fact this is a well known, a frequently quoted result from the mathematical literature, and trivial
to show given an understand of convolution. If one wants the coefficients for the quintic, it is not even
necessary to use convolution, as the pattern (rule) for all the coefficients is now clear.

You can experiment with this numerically using Matlab’s convolution routine conv(a,b). Once
we start studying Laplace and Fourier transforms, convolution becomes critically important because
multiplying an input signal in the frequency domain by a transfer function, also a function of frequency,
is the same a convolution of the time domain signal with the inverse Laplace transform of the transfer
function. So you didn’t need to learn how to take a Laplace transform, and then learn convolution.
We have learned convolution first independent of the Fourier and Laplace transforms.

When the coefficients are real, the roots must appear as conjugate pairs. This is an important
Symmetry.

For the case of the quadratic we have the relations between the coefficients and the roots, found by
completing the square. This required isolating x to a single term, and solving for it. We then proceeded
to find the coefficients for the cubic and quartic case, after a few lines of calculation. For the quartic

ag =1

az=a+b+c+d

az =d(a+b+c)+cla+0b)+ ba
ay = d(ab+ ac + bd) + abc

ap = abed

These relationships are algebraically nonlinear in the roots. From the work of Galois, for N > 5, this
system of equations is impossible to invert. Namely, given ap, one may not determine the four roots
[a,b, c,d] analytically. One must use numeric methods.

To gain some insight, let us look at the problem for N = 2, which has a closed form solution:

a2:1
ar=a—+b
ag = ab

We must solve for [a, b] given twice the mean, 2(a+b)/2, and the square of the geometric mean (\/@) 2.
Since we already know the answer (i.e, the quadratic formula). The solution was first worked out by the
Babylonians (2000 BCE) Stillwell (2010, p. 92). It is important to recognize that for physical systems,
the coefficients ay, are real. This requires that the roots come in conjugate pairs (b = a*), thus ab = |a|?
and a + b = 2Ra, which makes the problem somewhat more difficult, due to the greater symmetry.
Once you have solved this problem, feel free to attempt the cubic case. Again, the answer is known,
after thousands of years of searching. The solution to the cubic is given in (Stillwell, 2010, pp. 97-9),
as discovered by Cardano in 1545. According to Stillwell “The solution of the cubic was the first
clear advance in mathematics since the time of the Greeks.” The ability to solve this problem required
algebra, and the solutions were complex numbers. The denial of complex numbers was, in my view, the
main stumbling block in the progress of these solutions. For example, how can two parallel lines have
a solution? Equally mystifying, how can a circle and a line, that do not intersect, have intersections?
From the algebra we know that they do. This was a basic problem that needed to be overcome. This
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story is still alive,® because the cubic solution is so difficult.® One can only begin to imagine how much
more difficult the quartic is, solved by Cardano’s student Ferrair, and published by Cardano in 1545.
The impossibility of the quintic was finally resolved in 1826 by Able (Stillwell, 2010, p. 102).

Finally with these challenges behind them, Analytic Geometry, relating of algebra and geometry,
via coordinate systems, was born.

3.2.3 Lec 14: Analytic Geometry

Lec 14: Early Analytic Geom (Merging Euclid and Descartes): Composition of degrees n,m gives
degree m - n
Composition, Intersection and Gaussian elimination

The first “algebra” (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory
of polynomial equations in one variable, Taylor series, and composition versus intersections of curves.
The solution of the quadratic equation had been worked out thousands of year earlier, but with algebra
a general solution could be defined. The Chinese had found the way to solve several equations in
several unknowns, for example, finding the values of the intersection of two circles. With the invention
of algebra by al-Khwarizmi, a powerful tool became available to solve the difficult problems.

Composition, Elimination and Intersection In algebra there are two contrasting operations on
functions: composition and Elimination.

Composition: Composition is the merging of functions, by feeding one into the other. If the two
functions are f,g then their composition is indicated by f o g, meaning the function y = f(z) is
substituted into the function z = g(y), giving z = g(f(z)).

Composition is not limited to linear equations, even though that is where it is most frequently
applied. To compose two functions, one must substitute one equation into the other. That requires
solving for that substitution variable, which is not always possible in the case of nonlinear equations.
However many tricks are available that may work around this restrictions. For example if one equation
is in 22 and the other in 2 or \/z, it may be possible to multiply the first by = or square the second.
The point is that one of the variables must be isolated so that when it is substituted into the other
equations, the variable is removed from the mix.

Examples: Let y = f(z) =:2%2 — 2 and z = g(y) =y + 1. Then

gof=g(f(x)=(2"-2)+1=2-1 (3.5)

In general composition does not commute (i.e., fog # go f), as is easily demonstrated. Swapping the
order of composition for our example gives

fog=flgly)=2>-2=(@y+1)*-2=9y"+2y— 1. (3.6)

Intersection: Complimentary to composition is intersection (i.e., decomposition) (Stillwell, 2010,
pp. 119,149). For example, the intersection of two lines is defined as the point where they meet. This
is not to be confused with finding roots. A polynomial of degree N has N roots, but the points where
two polynomials intersect has nothing to do with the roots of the polynomials. The intersection is a
function (equation) of lower degree, implemented with Gaussian elimination.

’M. Kac, How I became a mathematician.” American Scientist (72), 498-499.
Shttps://www.google.com/search?client=ubuntu&channel=fs&q=Kac+\%22how+I+became+a\%22+1984+pdf&ie=
utf-8&oe=utf-8
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Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear
algebra this may be written as 2 linear equations (left) along with the intersection point [z1, 22]T, given

by the inverse of the 2x2 set of equations (right).”
a bl |z1| _|»n v 1 ]d =b||wn

where A = ab — cd is called the determinant. By substituting the right expression into the left, and
taking the inverse we obtain the intersection point. If A = 0 there can be no solution, in which case
the two lines are parallel (they meet at infinity.)

Algebra will give the solution when geometry cannot. When the two curves fail to intersect on the
real plane, the solution still exists, but is complex valued. In such cases, geometry, which only considers
the real solutions, fails. For example, when the coefficients [a, b, ¢, d] are complex, the solution exists,
but the determinant can be complex. Thus algebra is much more general than geometric. Geometry
fails when the solution has a complex intersection.

3.3 Week 6

3.3.1 Lec 15 Gaussian Elimination

Example problems using Gaussian Elimination: Gaussian Elimination is valid for nonlinear
systems of equations. Till now we have emphasized the reduction of linear systems of equations.

Problem 1: Two lines in a plane either intersect or are parallel, in which case they are said to meet
at 0o. Does this make sense? The two equations that describe this may be written in matrix form as

Az = b, which written out as
a1 a2l |x1 b1
= 3.8
[6121 (122] l:@] [bzl (38)

The intersection point xg, yo is given by the solution two these two equations

x1 1| axp —a2| |b1
= _ , 3.9
[1‘11 A [—am ar ] [521 (39)
where A = aj1a92 — ajzaz; is the determinant of matrix A (Matlab’s det (A) function).

It is useful to give an interpretation of these two equations. Each row of the 2x2 matrix defines a
line in the (x,y) plane. The top row is

a1« + ajpy = by.

Normally we would write this equation as y(z) = ax + 3, where « is the slope and 3 is the intercept

(i.e., y(0) = ). In terms of the elements of matrix A, the slope of the first equation is &« = —a11/a;2
while the slope of the second is & = —ag;/aze. The two slopes are equal (the lines are parallel) when
—ai1/a12 = —agy/age, or written out

A = ajraz2 — ajzaz; = 0.

Thus when the determinate is zero, the two lines are parallel and there is no solution to the equations.

"It is very important to note when writing the equations in matrix format, the unknowns are z;, x> whereas in the
original equations they were y,z. The starting equations are ay: + bx1 = ¢ and cy1 4+ drz = d but in matrix format the
names are changed. The first equation is ax1 + bx2 = y1 and cx1 + dzre2 = y2. The first time you meet this scrambling of
terminology it can be very confusing. In matrix equations the coordinates of the graph are (z1,z2) rather than the usual

,y.
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This 2x2 matrix equation is equivalent to a 2¢ degree polynomial. If we seek an eigenvector solution

[e1, e2]T such that ) )
lan a12] [61 1 [61 (3.10)
az a| |e2 €2

the 2x2 equation becomes singular, and A is one of the roots of the polynomial. One may proceed by

merging the two terms to give i i
ann—A a2 el 0
= . 11
al agy — A |F;| 0] (3 )

Clearly this new matrix has no solution, since if it did, [e, ea]” would be zero, which is nonsense. If it
has no solution, then the determinant of the matrix must be zero. Forming this determinate gives

(a11 — A)(ag2 — A) — azaz1 =0
thus we obtain the following quadratic equation for the roots Ay (eigenvalues)
)\3: — (a11 + a22) Ay + A =0.

When A = 0, one eigenvalue is zero while the other is a1 + as2, which is known as the trace of the
matrix.

In summary: Given a “linear” equation for the point of intersection of two lines, we see that there
must be two points of intersection, as there are always two roots of the quadratic characteristic poly-
nomial. However the two lines only intersect at one point. Whats going on? What is the meaning of
this second root?

Some simple examples will help. The eigenvalues depend on the relative slopes of the lines, which
in general can become complex. The intercepts are dependent on b. Thus when the RHS is zero, the
eigenvalues are irrelevant. This covers the very simple examples. When one eigenvalue is real and the
other is imaginary, more interesting things are happening since the slope of one line is real and the
slope of the other is pure imaginary. The lines can intersect in the real plane, and again in the complex
plane.

Lets try an example of two lines, slopes of 1 and 2: y; = x4+ a and y» = 2z + b. In matrix form Let

E :;] M B M (3.12)

The determinate is A = —1, thus the solution is

et 1 i i

Thus the two real lines having slopes of 1 and 2 having intercepts of @ and b, meet (x¢, yo) = (2a—b, a—b).
We may verify by substituting z = a — b into the starting equations y; = (a — b) + a = 2a — b and
y2 = 2(a — b) + b = 2a — b, which each 2a — b.

While there is a unique solution, there are two eigenvalues, given by the roots of

(1=X0)(-2—-Ap)+1=0.
If we transfer the sign from one monomial to the other
(—=14+20)24+ M) +1=0

and reorder for simplicity
()\:t—l)(A:t—l-Q)-l-l:O
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we obtain the quadratic for the roots
M4 —1=0.

Completing the square gives
(At +1/2)* = 3/4.

or

Ay =—1/2+3/2.

The question is, what is the relationship between the eigenvalues and the final solution, if any? Maybe
none. The solution (zg,yo) is reasonable, and its not clear that the eigenvalues play any useful role
here, other than to predict there is a second solution. I'm confused.

Two lines in 3-space: In three dimensions

a1 a2 aiz| |
a1 az ay| |y| = |b2 (3.14)
az1 agz asz| |z b3

Each row of the matrix describes a plane, which is said to be linear in the unknowns (z,y, z). Thus the
system of linear equations represents three planes, which must intersect at one point. If two planes are
parallel, there is no real solution. In this case the intersection by the third plane generates two parallel
lines.

As in the 2x2 case, one may convert this linear equation into a cubic polynomial by setting the
determinant of the matrix, with —\ subtracted from the diagonal, equal to zero. That is, det(A—\I) =
0. Here I is the matrix with 1 on the diagonal and zero off the diagonal.

Simple example: As a simple example, let the first plane be z = 0 (independent of z,y), the second
parallel plane be z = 1 (independent of (z,y)) and the third plane be x = 0 (independent of y, z). This
results in the system of equations

0 0 a3 x 0
0 0 a3 Yyl = 1 (3.15)
az; 0 O z 0

Writing out the three equations we find aj3z = 0, as3z = 1, and agiz = 0. Note that det(A) = 0 (we
need to learn how to compute the 3x3 determinant). This means the three planes never intersect at
one point. Use Matlab to find the eigenvalues.

3.3.2 Lec 16 Matrix composition: Bilinear and ABCD transformations

The Transmission matrix

A transmission matrix is a 2x2 matrix that characterizes a 2-port circuit, one having an input and
output voltage and current, as shown in Fig. 1.11. The input is the voltage and current V7, I; and the
output is the voltage and current Vo, —Io, with the current always defined to flow into the port. For
any such a linear network, the input-output relations may be written in a totally general way as

n] _[As) B[V
Il o C(S) D(S) —IQ ’
In Section 1.3.6 we showed that a cascade of such matrices is composition. We shall show below that

the justification of this relationship is based on the composition of bilinear transformations.
Expanding Eq. 1.27 into its individual equations demonstrates the linear form of the relations

V1 = A(S)VQ — B(S)IQ Il = C(S)VQ — D(S)IQ,
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quantifying the relationship between the input voltage and current to its output voltage and current.
Define H(s) = Va/V1 as the transfer function, as the ratio of the output voltage Va over the input

voltage Vi, under the constraint that the output current I3 = 0. From this definition H(s) = 1/A(s).
In a similar fashion we may define the meaning of all four functions as

A(s) = “2 o B(s) = _‘I/gl o (3.16)
2= o=
I I
C(s)= — D(s) = —— 3.17
(s) Valr,=o (5) I |y,—o (8:17)

From Eq. 1.27 one may compute any desired quantity, specifically those quantities defined in
Eq. 3.17, the open circuit voltage transfer function (1/A(s)), the short-circuit transfer current (1/D(s))
and the two transfer impedances B(s) and 1/C(s).

In the engineering fields this matrix composition is called the Transmission matriz, also known as
the ABCD method. It is a powerful method that is easy to learn and use, that gives important insights
into transmission lines, and thus even the 1 dimensional wave equation.

Derivation of ABCD matrix for example of Fig. 1.11 (p. 52).

The derivation is straight forward by the application of Ohm’s Law, as shown in Section 1.3.6.

The convenience of the ABCD matrix method is that the output of one is identically the input of
the next. Cascading (composing) the results for the series inductor with the shunt compliance leads to
the 2x2 matrix form that precisely corresponds to the transmission line CFA shown in Fig. 2.2,

Vn(S) o 1 SLn Vn 1()
lln(s)] N [1 0 ] [—I,;l(s)] ' (3.18)

This matrix relation characterizes the series mass term sL,. A second equation maybe be used for the

shunt capacitance term sY,,(s)
Vn(s) o 1 0 Vn 1(8)
lln(s)l N lsC’n O] [—I:H(s)} ' (3.19)

The positive constants L,,C, € R represent the series mass (inductance) and the shunt compliance
(capacitance) of the mechanical (electrical) network. The integer n indexes the series and shunt sections,
that are composed one following the next.

Matrix composition and the bilinear transform: Now that we have defined the composition of
two functions, we will use it to define the Mdbius or bilinear transformation. Once you understand how
this works, hopefully you will understand why it is the unifying element in many important engineering
problems.

The bilinear transformation is given by

a+ bz
c+dz

This takes one complex number z = z + iy and transforms it into another complex number w = u + iv.
This transformation is bilinear in the sense that its linear in both the input and output side of the
equation. This may be seen when written as

(c+dz)w =a+ bz,

since this relation is linear in the coefficients [a,b, ¢, d]. An important example is the transformation
between impedance Z(s) and reflectance I'(s),
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which is widely used in transmission line problems. In this example w = T',z = Z(s),a = —rg,b =
l,c=ry,d=1.
If we define a second bilinear transformation (this could be the transformation from reflectance
back to impedance)
a+ pw
r=——,
v+ dw

and then compose the two something astray wrt arguments

at+br a(y + dw) + b(a + fw) _ ay + ba + (ad + bf)w
ctdr  c(y+ow)+dla+pfw ey +da+(cd+df)uw’

something surprising happens. The composition w o r may be written in matrix form, as the product
of two matrices that represents each bilinear transform. This may be seen as true by inspecting the
coefficients of the composition w o r (shown above) and the product of the two matrices

a bl |la B

c dl |y 6|
The the power of this composition property of the bilinear transform may be put to work solving
important engineering problems, using transmission matrices.

(ay+ba) (a8 +bB)
(cy+da) (cd+dB)|"

3.3.3 Lec 17 Introduction to the Branch cut and Riemann sheets

Branch cuts are required to preserve the single-valued nature of complex analytic functions. When an
analytic function is multi-valued, some method needs to be devised to allow the multi-valued complex
analytic function to be expanded as a Taylor series, which is necessarily single-valued. It follows that
each single-valued sheet must have a different expansion, valid out to the nearest pole (or singularity).
We shall explain these ideas with the simplest case, the double-valued square root function w(z) = £4/z,
as shown in Fig. 3.2.

15.3 Branch Points 303

/2

3r/4 /4

2n

3m/2 n/2

2n

Figure 15.6: Branch point for the square root

Figure 3.2: Here we see the mapping for the square root function w(z) = #++/z which has two single-valued sheets,
corresponding to the two signs of the square root. The lower sheet is ++/z, and the upper sheet is —/z. The location of
the branch cut may be moved by rotating the z coordinate system. For example, w(z) = £v/z and w(z) = £+/—z have
a different branch cuts, as may be easily verified using the Matlab commands j*zviz(z) and zviz(-z). A function is
analytic on the branch cut, since the cut may be moved. If a Taylor series is formed on the branch cut, it will describe
the function on the two different sheets. Thus the Taylor series is agnostic to the location of the cut, as it only describes
the function uniquely (as a single valued function), valid in its local region of convergence. Figure from Stillwell (2010,
p. 303).
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Branch Cuts: The concept of a branch cut allows one to manipulate (and visualize) multi-valued
functions, by breaking each region into a single valued sheets. The concepts of the branch cut and the
sheets, along with the extended plane, were first devised by Riemann, working with Gauss (1777-1855),
first described in his thesis of 1851. Of course it was these three mathematical constructions that
provide the deep insight to complex analytic functions, supplementing the important earlier work of
Cauchy (1789-1857), on the calculus of complex analytic functions.

The branch cut is a line that separates the various single valued parts of a multi-valued function. For
example, in Fig. 3.2 we see the double-valued mapping of w(z) = ++/z. Since the square root function
has two overlapping regions, corresponding to the + of the radical, there must be two connected regions,
sort of like mathematical Siamese-twins, distinct, yet the same.

3.4 Week 7

3.4.1 Lec 18 Complex analytic mappings (domain coloring)

When one uses complex analytic functions it is helpful to understand their properties in the complex
plane. In this sections we explore several well-known functions using domain coloring, discussed in
some detail in Section 1.3.8, p. 55. For the following figures the coordinate systems are defined by
s=04w)= 22+ 12" and w = v+ vy = Vu2 + v2e??.

For the first example (Fig. 3.3) Uty = s.2
w(s) = s% and its inverse s(w) = \/w N
are shown. On the left the red region,
corresponding to 0° [degrees], appears : .
at both 0 and 180 (u = £1) in the w
plane. This is because in polar coordi-
nates s2 = |s|2¢2%7 where 0 is the an-
gle of s = |s]|e?%7. The square causes
the phase to rotate twice around for
once around the s plane. Namely the
angle is doubled, and the magnitude 2L /:\ - - 5 n :
squared. Due to the faster changing .. ° , . !

. ) Figure 3.3: Here the Cartesian coordinate map between s = o +wj and
phase in w, there are two red regions, w = u +v). The left shows the mapping w(s) = s*. The right shows the
one when ¢ = 0 and the second at lower branch of the inverse s(w) = \/w, as shown in Fig. 3.2.

0 = (Lw(s) = 20). The black spot
is dilated due to the squaring of the radius (expanding it).

On the right the v/w = /|w[e?/2. Because the angle of w is divided by two, it takes twice as much
phase (in w) to cover the same angle. Thus the red region (0°) is expanded. We barely see the violet
90° and yellow —90° angles. There is a branch cut running from w = 0 to w = co. As the branch cut
is crossed, the function switches Riemann sheets, going from the top sheet (shown here) to the bottom
sheet (not shown). Figure 3.2 in Section 3.3.3 depicts what is going on with these two sheets, and
show the branch cut from the origin (point O) to co. In this depiction the first sheet (+/z) is on the
bottom, while the second sheet (1/z) is on top. For every value of z there are two possible outcomes,
+,/2, represented by the two sheets.

Two more examples are given in Fig. 3.4 to interpret the two complex mappings w = s/(1 + s)
(left) and w = sin(ws) (right). On the left is s/(1 + s) which is a zero at s = 0, resulting in a dark
spot, and a pole at s = —1 resulting in a white spot. Note how the white and black contour lines are
always perpendicular where they cross, just as in the calibration plots for the x and y axes, shown in
Fig. 1.13 in Section 1.3.8 (p. 55).

The right-hand plot of w(s) = sin(ws) is equally interesting. Along the o axis (real part of s) the
function is the periodic sin(o) function. The dark spots are at ¢ = k7, with k& € Z. This is the normal
sin(mo) function with zeros at 0,+m,2 £ 7, .... When we stray off the wj = 0 axis, the function either

s = sqrt((u+jv))

jo
v
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u+jv = s./(1+s) u+jv = sin(pi*s)

Figure 3.4: On the left is the function w(s) = s/(1 + s), having a zero at s = 0 and a pole at s = —1. On the right is
w(s) = sin(7s). See the discussion in the text for an interpretation of these complex maps.

goes to zero (black) or oo (white). This behavior carries the same 27 periodicity as it has along the
w = 0 line. These figure are worthy of careful study to develop an intuition for complex functions of
complex variables. In Section 1.3.8 we shall explore more complex mappings, and in greater detail.

u+jv = tan((x+jy)) s = atan((u+jv))

-2 -1 0 1 2

u

Figure 3.5: On the left is the function w(z) = tan(z). On the right is the inverse s = tan™*(w).

In the third example (Fig. 3.5) we show w = tan(z) and its inverse z = tan~!(w). The tangent
function has zeros where sin(z) has zeros (e.g., at z = 0) and poles where cos(z) is zero (e.g., at +m/2.
The inverse function s = atan(w) has a zero at w = 0 and branch cuts eliminating from z = +7.

It becomes most interesting to study polynomials of degree 5 and 4, with one zero removed, to
demonstrate the Fundamental Theorem of Algebra. Recall that degree 5 is not analytically tractable,
and must be investigated numerically.

3.4.2 Lec 19 Signals and Systems: Fourier vs. Laplace Transforms

Signals and Systems: Fourier vs. Laplace Transforms AE-3

3.4.3 Lec 20 Role of Causality and the Laplace Transform

Role of Causality and the Laplace Transform:
u(t) «» 1/s (LT)
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2a(t) =1+ sgn(t) < 270(w) + 2/jw (FT)

3.5 Week 8

3.5.1 Lec 21 The 9 postulates of System of algebraic Networks

Taxonomy requires a proper statement of the laws of physics, which includes at least the nine basic
network postulates described in Section 1.3.11. To describe each of the network postulates one must
start from the Transmission matrix representation discussed in Section 3.3.2.

+ Ze\T Zm . 12170 T 2] [ F
(I_J;-N ) C 6\:5 = {ﬂz[o 1} [T*l 0} [0 1] [—u]

Figure 3.6: A schematic representation of a 2-port ABCD electro-mechanic system using Hunt parameters
Z.(8), zm(s), and T(s): electrical impedance, mechanical impedances, and transduction coefficient (Hunt, 1952;
Kim and Allen, 2013). Also V(f), I(f), F(f), and U(f) are the frequency domain voltage, current, force, and
velocity respectively. Notice how the matrix method ‘factors’ the 2-port model into three 2x 2 matrices. This
allows one to separate the physical modeling from the algebra. It is a standard impedance convention that the
flows I(f),U(f) are always defined into the port. Thus it is necessary to apply a negative sign on the velocity
—U(f) so that it has an outward flow, to feed the next cell with an inward flow. Replace ® with V.

The 2-port transmission matriz for an acoustic transducer (loudspeaker) shown in Fig. 3.6 is defined

;| [A(s) BG)| | B | 1 [zm(s) ze(s)zm(s) +T?] | A
[Ii] - lC(S) D(S)l l—IZJz] T [ 1 vo(s) l_(}l] : (3.20)

T

The input is electrical (voltage and current) [®;, I;] and the output (load) are the mechanical (force and
velocity) [F},U;]. The first matrix is the general case, expressed in terms of four unspecified functions
A(s), B(s),C(s), D(s), while the second matrix is for the specific example of Fig. 3.6. The four entries
are the electrical driving point impedance Z,(s), the mechanical impedance z,,(s) and the transduction
T = Byl where By is the magnetic flux strength and [ is the length of the wire crossing the flux. Since
the transmission matrix is anti-reciprocal, its determinate Ap = —1, as is easily verified.

Other common transduction examples of cross-modality transduction include current—thermal (ther-
moelectric effect) and force—voltage (piezoelectric effect). These systems are all reciprocal, thus the
transduction has the same sign.

Impedance matrix

These nine postulates describe the properties of a system having an input and an output. For the
case of an electromagnetic transducer (Loudspeaker) the system is described by the 2-port, as show in
Fig. 3.6. P6 is inherently a 2-port network property, while P1-P5 also apply to 1-ports networks (e.g.,
a driving point impedance is a 1-port). For example the electrical input impedance of a loudspeaker is
Ze(s), defined by
Ze(s) = Viw) .
I(w) ly=o
Note that this driving-point impedance must be causal, thus it has a Laplace transform and therefore is
a function of the complex frequency s = o+ jw, whereas the Fourier transforms of the voltage V (w) and
current I(w) are functions of the real radian frequency w, since the time-domain voltage v(t) > V(w)
and the current i(t) <» I(w) are signals that may start and stop at any time (they are not typically
causal).
The corresponding 2-port impedance matriz for Fig. 3.6 is

Q| |za(s) z2(8)| | Li| _ [Ze(s) =T(s)| | Li
[Fl] B [z;(é’) z;z(S)] [Ul] B [T(s) zm(s)] lUl] : (3.21)
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The impedance matrix is an alternative description of the system but with generalized forces [®;, Fj
on the left and generalized flows [I;,U;] on the right. A rearrangement of the equations allows one
to go from one set of parameters to the other (Van Valkenburg, 1964b). Since the electromagnetic
transducer is anti-reciprocal, z19 = —z91 = T = Byl. Such a description allows one to define Thévenin
parameters, a very useful concept used widely in circuit analysis and other network models from other
modalities.

Additional or modified postulates

The postulates must go beyond postulates P1-P6 defined by Carlin and Giordano (Section 1.3.11,
p. 61), when there are interaction of waves and a structured medium, along with other properties not
covered by classic network theory. Assuming QS, the wavelength must be large relative to the medium’s
lattice constants. Thus the QS property must be extended to three dimensions, and possibly to the
cases of an-isotropic and random media.

Causality: P1 As stated above, due to causality the negative properties (e.g., negative refractive
index) must be limited in bandwidth, as a result of the Cauchy-Riemann conditions. However even
causality needs to be extended to include the delay, as quantified by the d’Alembert solution to the
wave equation, which means that the delay is proportional to the distance. Thus we generalize P1
to include the space dependent delay. When we wish to discuss this property we denote it Einstein
causality, which says that the delay must be proportional to the distance x, with impulse response

St —z/c).

Linearity: P2 The wave properties of may be non-linear (P2). This is not restrictive as most
physical systems are naturally nonlinear. For example, a capacitor is inherently nonlinear: as the
charge builds up on the plates of the capacitor, a stress is applied to the intermediate dielectric due to
the electrostatic force ' = gF. In a similar manner, an inductor is nonlinear. Two wires carrying a
current are attracted or repelled, due to the force created by the flux. The net force is the product of
the two fluxes due to each current.

In summary, most physical systems are naturally nonlinear, it’s simply a matter of degree. An
important counter example is a amplifier with negative feedback, with very large open-loop gain.
There are, therefore, many types of non-linear, instantaneous and those with memory (e.g., hysteresis).
Given the nature of P1, even an instantaneous non-linearity may be ruled out. The linear model is so
critical for our analysis, providing fundamental understanding that we frequently take this postulate
for granted.

Real time response: P3 The impulse response of every physical system is real, vs. complex. This
requires that the Laplace Transform have conjugate-symmetric symmetry H(s) = H*(s*), where the x*
indicates conjugation (e.g., R(o,w) + X (0,w) = R(o,w) — X (0, —w)).

Passive/Active: P4 We greatly extend P4 by building in the physics behind conservation of energy:
Otto Brune’s positive Real (PR aka physically realizable) condition. Following up on the earlier work
of his primary PhD thesis advisor Wilhelm Cauer (1900-1945), and working with Norbert Weiner and
Vannevar Bush at MIT, Otto Brune mathematically characterized the properties of every PR 1-port
driving point impedance.

When the input resistance of the impedance is real, the system is said to be passive, which means the
system obeys conservation of energy. The real part of Z(s) is positive if and only if the corresponding
reflectance is less than 1 in magnitude. The definition of the reflectance of Z(s) is defined as a bilinear
transformation of the impedance, normalized by its surge resistance ro (Campbell, 1903)

Z(s)—r0

I'(s) = m
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The surge resistance is defined in terms of the inverse Laplace transform of Z(s) <> z(t), which must
have the form

2(t) = rod(t) + ¢(t),

where ((t) = 0 for t < 0. It naturally follows that v(t) <> I'(s) is zero for negative and zero time,
namely v(0) = 0,¢ < 0. at

Given any linear PR impedance Z(s) = R(o,w)+ jX (0,w), having real part R(c,w) and imaginary
part X (o,w), the impedance is defined as being PR (Brune, 1931b) if and only if

R(o > 0,w) > 0. (3.22)

That is, the real part of any PR impedance is non-negative everywhere in the right half s plane (o > 0).
This is a very strong condition on the complex analytic function Z(s) of a complex variable s. This
condition is equivalent to any of the following statements: 1) There are no poles or zeros in the right
half plane (Z(s) may have poles and zeros on the o = 0 axis). 2) If Z(s) is PR then its reciprocal
Y(s) = 1/Z(s) is PR (the poles and zeros swap). 3) If the impedance may be written as the ratio
of two polynomials (a limited case, related to the quasistatics approximation, P9) having degrees N
and L, then |N — L| < 1. 4) The angle of the impedance § = ZZ lies between [—7 < § < 7]. 5)
The impedance and its reciprocal are complex analytic in the right half plane, thus they each obey the
Cauchy Riemann conditions there.

The PR (positive real or Physically realizable) condition assures that every impedance is positive-
definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17).
This means that the total energy absorbed by any PR impedance must remain positive for all time,
namely

¢ t
£(t) :/ w(2)i(t) dt = / i(6)x2(t) i(t) dt > 0,
—0o0 — 00
where i(t) is any current, v(t) = z(t) = i(t) is the corresponding voltage and z(t) is the real causal
impulse response of the impedance, e.g., z(t) <> Z(s) are a Laplace Transform pair. In summary, if
Z(s) is PR, £(t) is PD.

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a
rational polynomial fraction expansion (residue expansion), which can be expanded into first-order
poles as

e (s — ny) p ;
Z(s) = K =1\ ") _ _Pn 5(0n—04) 3.93
(S) H]](/.Vzl(s_dk) ; S—Sne 9 ( )

where p,, is a complex scale factor (residue). Every pole in a PR function has only simple poles and
zeros, requiring that |[L — N| < 1 (Van Valkenburg, 1964b).

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear.
Specifically what is the physical meaning of the specific constraints on Z(s)? In many ways, the
impedance concept is highly artificial, as expressed by P1-P7.

When the impedance is not rational, special care must be taken. An example of this is the semi-
inductor M /s and semi-capacitor K//s due, for example, to the skin effect in EM theory and viscous
and thermal losses in acoustics, both of which are frequency dependent boundary-layer diffusion losses.
They remain positive-real but have a branch cut, thus are double valued in frequency.

By building in the physics behind conservation of energy: Otto Brune’s positive-real (PR) condition.
Following up on the earlier work of his primary PhD thesis advisor Wilhelm Cauer (1900-1945), and
working with Norbert Weiner and Vannevar Bush at MIT, Otto Brune mathematically characterized
the properties of every PR 1-port driving point impedance (Brune, 1931b).

Given any linear PR impedance Z(s) = R(o,w) + jX (o, w), having real part (resistance) R(co,w)
and imaginary part (reactance) X (o,w), the impedance is defined as being PR (Brune, 1931a) if and
only if

R(oc > 0,w) > 0. (3.24)
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That is, the real part of any PR impedance is non-negative everywhere in the right half s plane (o > 0).
This is a very strong condition on the complex analytic function Z(s) of a complex variable s. This
condition is equivalent to any of the following statements: 1) There are no poles or zeros in the right
half plane (Z(s) may have poles and zeros on the o = 0 axis). 2) If Z(s) is PR then its reciprocal
Y (s) =1/Z(s) is PR (the poles and zeros swap). 3) If the impedance may be written as the ratio of two
polynomials (a limited case) having degrees N and L, then |N — L| < 1. 4) The angle of the impedance
0 = /Z lies between [—m < 6 < 7|. 5) The impedance and its reciprocal are complez analytic in the
right half plane, thus they each obey the Cauchy Riemann conditions.

The PR (positive real or Physically realizable) condition assures that every impedance is positive-
definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17).
This means that the total energy absorbed by any PR impedance must remain positive for all time,
namely . .

E(t) = / w(#)i(t) dt = / i(6)%2(8) i(t) dt > 0,
—0o0 — 0o
where i(t) is any current, v(t) = z(t) x i(t) is the corresponding voltage and z(t) is the real causal
impulse response of the impedance, e.g., z(t) <> Z(s) are a Laplace Transform pair. In summary, if
Z(s) is PR, £(t) is PD.

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a
rational polynomial fraction erpansion (residue expansion), which can be expanded into first-order
poles as
— Pn J(en—ed)

Z(.s)_KHQ,1 Sidk Zs_Sne (3.25)
where p, is a complex scale factor (residue). Every pole in a PR function has only simple poles and
zeros, requiring that |[L — N| <1 (Van Valkenburg, 1964a).

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear.
Specifically what is the physical meaning of the specific constraints on Z(s)? In many ways, the
impedance concept is highly artificial, as expressed by P1-P7.

When the impedance is not rational, special care must be taken. An example of this is the semi-
inductor M /s and semi-capacitor K//s due, for example, to the skin effect in EM theory and viscous
and thermal losses in acoustics, both of which are frequency dependent boundary-layer diffusion losses.
They remain positive-real but have a branch cut, thus are double valued in frequency.

Time invariant: P5 The meaning of time-invariant requires that the impulse response of a system
does not change over time. This requires that the system coefficients of the differential equation
describing the system are constant (independent of time).

Rayleigh Reciprocity: P6 Reciprocity is defined in terms of the unloaded output voltage that
results from an input current. Specifically

wu(s) ()| _ 1 JA(s) Ar
lzm(s) z22(s)] — C(s) l 1 D(s)]’ (3.26)

where A = A(s)D(s) — B(s)C(s) = %1 for the reciprocal and anti-reciprocal systems respectively.
This is best understood in term of Eq. 3.21. The off-diagonal coefficients z12(s) and z91(s) are defined
as

[OF F;
z12(8) = UZ 221(8) = Tl o
(A 1=

The these off-diagonal elements are equal [212(5) = 221(s)] the system is said to obey Rayleigh reci-
procity. If they are opposite in sign [z12(s) = —z221(s)], the system is said to be anti-reciprocal. If
a network has neither of the reciprocal or anti-reciprocal characteristics, then we denote it as non-
reciprocal (McMillan, 1946). The most comprehensive discussion of reciprocity, even to this day, is that
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of Rayleigh (1896, Vol. I). The reciprocal case may be modeled as an ideal transformer (Van Valkenburg,
1964a) while for the anti-reciprocal case the generalized force and flow are swapped across the 2-port.
An electromagnetic transducer (e.g., a moving coil loudspeaker or electrical motor) is anti-reciprocal
(Kim and Allen, 2013; Beranek and Mellow, 2012), requiring a gyrator rather than a transformer, as
shown in Fig. 3.6.

Reversibility: P7 A second 2-port property is the reversible/non-reversible postulate. A reversible
system is invariant to the input and output impedances being swapped. This property is defined by
the input and output impedances being equal.

Referring to Eq. 3.26, when the system is reversible z11(s) = z92(s) or in terms of the transmission
matrix variables % = % or simply A(s) = D(s) assuming C(s) # 0.

An example of a non-reversible system is a transformer where the turns ratio is not one. Also an
ideal operational amplifier (when the power is turned on) is non-reversible due to the large impedance
difference between the input and output. Furthermore it is active (it has a power gain, due to the
current gain at constant voltage) (Van Valkenburg, 1964b).

Generalizations of this lead to group theory, and Noether’s theorem. These generalizations apply
to systems with many modes whereas quasistatics holds when operate below a cutoff frequency (Table
3.1), meaning that like the case of the transmission line, there are no propagating transverse modes.
While this assumption is never exact, it leads to highly accurate results because the non-propagating
evanescent transverse modes are attenuated over a short distance, and thus, in practice, may be ignored
(Montgomery et al., 1948; Schwinger and Saxon, 1968, Chap. 9-11).

We extend the Carlin and Giordano postulate set to include (P7) Reversibility, which was refined by
Van Valkenburg (1964a). To satisfy the reversibility condition, the diagonal components in a system’s
impedance matrix must be equal. In other words, the input force and the flow are proportional to the
output force and flow, respectively (i.e., Z, = zp,).

Spatial invariant: P8 The characteristic impedance and wave number k(s,x) may be strongly
frequency and/or spatially dependent, or even be negative over some limited frequency ranges. Due to
causality, the concept of a negative group velocity must be restricted to a limited bandwidth (Brillouin,
1960). As is made clear by Einstein’s theory of relativity, all materials must be strictly causal (P1),
a view that must therefore apply to acoustics, but at a very different time scale. We first discuss
generalized postulates, expanding on those of Carlin and Giordano.

The QS constraint: P9 When a system is described by the wave equation, delay is introduced
between two points in space, which depends on the wave speed. When the wavelength is large compared
to the delay, one may successfully apply the quasistatic approzimation. This method has wide-spread
application, and is frequency used without mention of the assumption. This can lead to confusion,
since the limitations of the approximation may not be appreciated. An example is the use of QS in
Quantum Mechanics. The QS approximation has wide spread use when the signals may be accurately
approximated by a band-limited signal. Examples include KCL, KVL, wave guides, transmission lines,
and most importantly, impedance. The QS property is not mentioned in the six postulates of Carlin
and Giordano (1964), thus they need to be extended in some fundamental ways.

When the dimensions of a cellular structure in the material are much less than the wavelength, can
the QS approximation be valid. This effect can be viewed as a mode filter that suppresses unwanted (or
conversely enhances the desired) modes (Ramo et al., 1965). QSs may be applied to a 3 dimensional
specification, as in a semiconductor lattice. But such applications fall outside the scope of this text
(Schwinger and Saxon, 1968).

Although I have never seen the point discussed in the literature, the QS approximation is applied
when defining Green’s theorem. For example, Gauss’s Law is not true when the volume of the container
violates QS, since changes in the distribution of the charge have not reached the boundary, when doing
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the integral. Thus such integral relationships assume that the system is in quasi steady-state (i.e., that
QS holds).

Table 3.1:  There are several ways of indicating the quasi-static (QS) approximation. For network theory there
is only one lattice constant a, which must be much less than the wavelength (wavelength constraint). These three
constraints are not equivalent when the object may be a larger structured medium, spanning many wavelengths,
but with a cell structure size much less than the wavelength. For example, each cell could be a Helmholtz
resonator, or an electromagnetic transducer (i.e., an earphone).

Measure | Domain

ka <1 Wavenumber constraint

A > 2ma | Wavelength constraint
fe < ¢/2ma | Bandwidth constraint

Formally, QS is defined as ka < 1 where k = 27/X = w/c and a is the cellular dimension or the size
of the object (k and a can be vectors). Schelkunoff may have been the first to formalize this concept
(Schelkunoff, 1943) (but not the first to use it, as exemplified by the Helmholtz resonator). George
Ashley Campbell was the first to use the concept in the important application of a wave-filter, some
30 years before Schelkunoff (Campbell, 1903). These two men were 40 years apart, and both worked
for the telephone company (after 1929, called AT&T Bell Labs) (Fagen, 1975).

There are alternative definitions of the QS approximation, depending on the geometrical cell struc-
ture. The alternatives are outlined in Table 3.1.

Summary

A transducer converts between modalities. We propose the general definition of the nine system
postulates, that include all transduction modalities, such as electrical, mechanical, and acoustical. It
is necessary to generalize the concept of the QS approximation (P9) to allow for guided waves.

Given the combination of the important QS approximation, along with these space-time, linearity,
and reciprocity properties, a rigorous definition and characterization a system can thus be established.
It is based on a taxonomy of such materials, formulated in terms of material and physical properties
and in terms of extended network postulates.

3.5.2 Lec 22 Exam II (Evening)
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Ordinary Differential Equations:
Stream 3a

WEEK 8 23.9.0

Week 8 Friday Stream &

L 23 The amazing Bernoulli family; Fluid mechanics; airplane wings; natural logarithms
The transition from geometry — algebra — algebreic geometry — real analytic — complex
analytic
From Bernoulii to Euler to Cauchy and Riemann

4.1 Week 8

4.1.1 Lec 23 Newton and early calculus & the Bernoulli Family

Newton and Calculus
Bernoulli family
Euler standard periodic (circular) function package
The period of analytic discovery:
Coming out of the dark ages, from algebra, to analytic geometry, to calculus.
Starting with real analytic functions by FKuler, we move to complex analytic functions with Cauchy.
Integration in the complex plane is finally conquered.

Lect DE 25.9 Stream 3: oo and Sets 25.9.1

The development of real representations proceeded at a deadly-slow pace:

e Real numbers R: Pythagoras knew of irrational numbers (1/2)

o Complex numbers C: “Bombelli is regarded as the inventor of complex numbers ... ” http://www-history.
mcs.st-andrews.ac.uk/Biographies/Bombelli.html http://en.wikipedia.org/wiki/Rafael_Bombelli
& p. 258

Power Series: Gregory-Newton interpolation formula

Point at infinity and the Riemann sphere

Analytic functions p. 267 ; Impedance Z(s)

109
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Stream 3 Infinity

e Infinity co was not “understood” until
e 00 is best defined in terms of a limit
e Limits are critical when defining calculus
e Set theory is the key to understanding Limits
e e Open vs close sets determine when a limit exists (or not)
e Thus, to fully understand limits, one needs to understand set theory
e Related is the convergence of a series
e Every convergent series has a Region of Convergence (ROC)

e When the ROC is Complex:

— Example of ﬁ VS. i The ROC is 1 for both cases
— Why?

— The case of the Heaviside step function u(t) & the Fourier Transform

Irrational numbers and limits (Ch. 4)

e How are irrational numbers interleaved with the integers?

Between n and 2n there is always an irrational number:

Chebyshev said, and I say it again. There is always a prime between n and 2n. -p. 5852
2475

e Prime number theorem: The number of of primes is approximately( the density of primes is
pr(n) o< 1/1n(n).

The number of primes less than n is n times the density, or

N(n) =n/In(n).

— The formula for entropy is H = —>_,, pn logpy.
Could there be some hidden relationship lurking here?

Stream 3: oo and Sets 25.9.2

2476 e Understanding co has been a primary goals since Euclid
e The Riemann sphere solves this fundamental problem

e The point at oo simply “another point” on the Riemann sphere
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277 Open vs. closed sets
Influence of open vs. closed set 7.3.6
2478

e Important example: LT vs. FT step function: Dirac step vs Fourier step:

o u(t) < % vs. U(t) <> mo(w) + ]lw

2479 WEEK 9 23.9.0

2480

2481 Week 9 Monday

us2 L 24 Power series and integration of functions (ROC)
2483 Fundamental Theorem of calculus (Leibniz theorm of integration)
2484 /(1 —2)=>2,2" with z € R

285 L 25 Integration in the complex plane: Three theorems
2486 Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + 1.

2487

2gs L 26 Cauchy-Riemann conditions
2489 Real and imaginary parts of analytic functions obey Laplace’s equation.
2490 Infinite power Series and analytic function theory; ROC

2491

ue 4.2 Week 9

ui 4.2.1 Lec 24 Power series and complex analytic functions

29 L 24: Power series and complex analytic function

us  4.2.2 Lec 25 Integration in the complex plane

206 L 25: Integration in the complex plane; Infinite power Series and analytic function theory; ROC
207 Real and imaginary parts of analytic functions obey Laplace’s equation.
2008 Colorized plots of analytic functions. How to read the plots and what they tell us?

a9 4.2.3 Lec 26 Cauchy Riemann conditions: Complex-analytic functions

200 L 26: Cauchy Riemann conditions: Complex-analytic functions

2501 WEEK 10 26.10.0

2502

203 L 27 Differentiation in the complex plane: Fundamental Thm of complex calculus (FTCC);

2504 Complex Analytic functions; ROC in the complex plane
2505 Z(s) = R(s) + 37X (s): real and imag parts obey Laplace]s Equation
2506 Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation

2507 Motivation: Dispersion relation for the wave equation - k = s2/c2
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L 28 Three Fundamental theorems of complex integral calculus
Jo = F({)d¢ = F(z) — F(0): dZ(s)/ds independent of direction
Integration in the complex plane; Integrals independent of limits
Cauchy-Riemann conditions

L 29 Inverse Laplace transform
Inverse Laplace transform: Poles and Residue expansions;
Application of the Fundamental Thm of Complex Calculus
The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality
ROC as a function of the sign of time in e (How does causality come into play?)
Examples.

4.3 Integration and differentiation in the complex plane

4.3.1 Lec 27 Differentiation in the complex plane

L 27: Differentiation in the complex plane: CR conditions?

Motivation: Inverse Laplace transform

ROC in the complex plane

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation
Motivation: Dispersion relation for the wave equation & -k = s2/c2

4.3.2 Lec 28 Three complex Integral Theorems

L 28: Integration in the complex plane: Basic definitions of Three theorems
Integration of 1/s on the unit circle, and on a unit circle centered about s =1 + i.

Moved from Lec 3 (page 31)

Set Theory: Set theory is a topic that can be inadequately addressed in the undergraduate Engi-
neering and Physics curriculum, and is relatively young to mathematics. The set that a number is
drawn from is crucially important when taking limits.

4.3.3 Lec 29 Inverse Laplace Transform

L 29: Inverse Laplace transform: Poles and Residue expansions;
Application of the Fundamental Thm of Complex Calculus
Examples.

Stream 3: Infinity and irrational numbers ch 4 2.1.6

e Limit points, open vs. closed sets are fundamental to modern mathematics
e These ideas first appeared with the discovery of \/2, and \/n https: //en. wikipedia. org/

wiki/Spiral_of_ Theodorus
and related constructions (factoring the square, Pell’s Eq. p. 44)

Infinity and irrational Q numbers
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The fundamental theorem of calculus 2.1.7
Let A(:v) be the area under f(x). Then

dx d/

 lim $+5) A(z)
50 )
and /or

AG) - Aa) = [ Fa)in

e Integration and differentiation (Calculus) depend on limits

e Stream 3 is about limits

e Limits are built on open vs. closed sets

WEEK 11 30.11.0

L 30 Inverse Laplace transform & Cauchy Residue Theorem

L 31 Case for causality Closing the contour as s — oo; Role of Rst
DE-3

L 32 Properties of the LT:
1) Modulation, 2) Translation, 3) convolution, 4) periodic functions
Tables of common LTs

4.4 Integration in the complex plane

4.4.1 Lec 30 Inverse Laplace Transform & Cauchy residue theorem

L30: The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality
ROC as a function of the sign of time in e (How does causality come into play?)

4.4.2 Lec 31 The case for causality

L31: Closing the contour as s — oo; Role of Rst

4.4.3 Lec 32 Laplace transform properties: Modulation, time translation, etc.

L32: Detailed examples of the Inverse LT:
1) Modulation, 2) Translation, 3) convolution, 4) periodic functions
Tables of common LTs

WEEK 12 33.12.0
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L 33 Multi-valued functions in the complex plane; Branch cuts
The extended complex plane (regularization at co) (Stillwell, 2010, p. 280)
Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)

L 34 Euler’s vs. Riemann’s Zeta function ((s): Poles at the primes
colorized plot of ((s)
77Sterling’s formula??

L 35 Exam III

4.5 Complex plane concepts

4.5.1 Lec 33 Multi-valued complex functions, Branch Cuts, Extended plane

LL33: Multi-valued functions in the complex plane; Branch cuts
The extended complex plane (regularization at oo) (Stillwell, 2010, p. 280)
Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)

4.5.2 Lec 34 The Riemann Zeta function ((s)

L34: Euler’s vs. Riemann’s Zeta function ((s): Poles at the primes
domain coloring of ((s)
?77Sterling’s formula??

Table 4.1: Physical meaning of each factor of ((s) 4.2.7

e Series expansion
1

17x:1+w+w2+m3+~~~ ROC: |z| < 1

e [ftime T is a positive delay, then from the Laplace transform
oo
St —T) < / S(t —T)e'dt = e T
0

e FEach factor of ((s) is an oo sum of delays
e For example for m = 2, (T' = In(2), thus 272 = ¢~*'72)

1 —sT —s2T
Z(S(t*'ﬂT)Hm:l‘i’e +e + -

Table 4.1: Each prime number defines a delay Ty = In(my), which in turn defines a pole in the
complex s plane. The series expansion of this pole is a train of delta functions that are one-sided
periodic in the delta T'. Thus each factor in the ((s) function defines a pole, having an incommensurate
delay, since each pole is defined by a unique prime. Following this simple logic, we may interpret ¢(s)
as being the Laplace transform of Zeta(t), the cascade of quasi-periodic impulse responses, each with a
recursive delay, determined by a prime. Note that 48100 = 10-(2-5-13-37) is the sampling frequency

[Hz] of modern CD players. This corresponds to the 20" harmonic of the US line frequency (60 [Hz]).}

“since ged(48100,60) = 20 and ged(48100, 50) = 50.
bsince ged(48100,60) = 20 and ged(48100, 50) = 50.

Riemann Zeta Function ((s)

This very important analytic function is the credible argument for true deeper understanding of the
power to the analytic function. Just like the Pythagorean theorem is important to all mathematics,
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the zeta function is important to analysis, with many streams of analysis emanating from this form.
For example the analytic Gamma function I'(s) is a generalization of the factorial by the relationship

n!l=T(s—1).

Another important relationship is

oo

Zk‘:nun = Up, * Up,

k=n
where the * represents convolution. If this is treated in the frequency domain the we obtain z-transforms
of a very simple second-order pole?

NUy & ————
z

This follows from the geometric series

with z = €®, and the definition of convolution.
The Laplace transform does not require that the series converge, rather that the series have a region
of convergence that is properly specified. Thus the non-convergent series nu,, is perfectly well defined,

just like
1!
tu(t) = u(t) xu(t) < —
s
is well defined, in the Laplace transform sense. More generally

n!
From this easily understood relationship we can begin to understand I'(s), as the analytic extension
of the factorial. Its definition is simply related to the inverse Laplace transform, which is an integral.
But to go there we must be able to think in the complex frequency domain. In fact we have the very
simple definition for I'(p) with p € C
I'(p)

p—1
P u(t) < >

which totally explains I'(p). Thinking in the time domain is crucial for my understanding.

An example is a digital filter, which is linear. Such a system is shown in Fig. 4.3, where the two
functions are second order digital filters. The input signal z[n] enters from the left, is filtered by the
first filter, producing output y[n]. This is then filtered again by the filter in the second box to produce
signal z[n]. For this simple case of two linear filters the operation commute.

4.5.3 Lec 35 Exam III

L 35: Exam III
Thanksgiving Holiday 11/19-11/27 2016

!Need to verify the exact form of these relationships, not work from memory
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Riemann Zeta Function ((s) 4.2.5

e Integers appear as the “roots” (aka eigenmodes) of ((s)

e Basic properties (s = o + iw)

C(s) = — o=R(s)>0

ns

— What is the region of convergence (ROC)?

The amazing Euler-Riemann Product formula (Stillwell, 2010, Sect. 10.7:)

c<s>=1;[1ik_s=ﬂ <1l>s:H1_1z

kL= k ™

1 1 1 1 1
1—275 1-35 1-5=° 1-7= 1-m,°

e Fuler ¢1750 assumed s C R. Riemann c¢1850 extended s C C

Figure 4.1: The zeta function arguably the most important of the special functions of analysis
because it connects the primes to analytic function theory in a fundamental way.

Plot of Z((s) 4.2.6

Angle of Riemann Zeta function Z((z) as a function of complex z
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Figure 4.3: Example of a signal flow diagram for the composition of signals z = go f (x) withy = f(z) and z = g(y).



2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

Chapter 5

Vector Calculus: Stream 3b

WEEK 13

L 36 Scaler wave equations and the Webster Horn equation; WKB method
A real-world example of large delay, where the branch-cut placement is critical

L 37 Partial differential equations of Physics
Scaler wave equation and its solution in 1 and 3 Dimensions
VC-1

L 38 Vector dot and cross products A - B, A x B
Gradient, divergence and curl

— Thanksgiving Holiday 11/19-11/27 2016

5.1 Stream 3b

5.1.1 Lec 36 Scalar Wave equation
5.1.2 Lec 37 Partial differential equations of physics

Scalar wave equations and the Webster Horn equation; WKB method

Example of a large delay, where a branch-cut placement is critical (i.e., phase unwrapping)

L 37: Partial differential equations of Physics
Scalar wave equation and its solution in 1 and 3 Dimensions

5.1.3 Lec 38 Gradient, divergence and curl vector operators

L. 38: Vector dot and cross products A- B, A x B
Gradient, divergence and curl vector operators

WEEK 14

117

36.13.0

37.14.0
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L 39 Gradient, divergence and curl: Gauss’s (divergence) and Stokes’s (curl) theorems

L 40 J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light
Basic definitions of £, H, B, D
O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation
How a loud-speaker works

L 41 The Fundamental Thm of vector calculus
Incompressable and Irrotational fluids and the two defining vector identities

5.2 Thanksgiving Holiday 11/19-11/27 2016

Thanksgiving Vacation: 1 week of rest

5.3 Vector Calculus

5.3.1 Lec 39 Geometry of Gradient, divergence and curl vector operators

Geometry of Gradient, divergence and curl vector operators
Lec 39: Review of vector field calculus 39.14.2

Review of last few lectures: Basic definitions

— Field: i.e., Scalar & vector fields are functions of more than one variable
— “Del:” V = [0y, 0,,0.]"
— Gradient: Vo(x,y,2) = [0:0, 0yd, 0.¢]"

e Helmholtz Theorem:
Every vector field V(z,y, 2z) may be uniquely decomposed into compressible & rotational
parts
V(z,y,z) = =Vo(z,y,2) + VX A(z,y, 2)

e Scalar part V¢ is compressible (V¢ = 0 is incompressible)
e Vector part Vx A is rotational (Vx A = 0 is irrotational)
e Key vector identities: VxV¢ =0; V- VxA =0
e Definitions of Divergence, Curl & Maxwell’s Eqs;

e Closure: Fundamental Theorems of Integral Calculus

Name Input  Output Operator
Gradient Scalar  Vector  —V/()
Divergence | Vector  Scalar V()
Curl Vector Vector V x ()

Table 5.1:  The three vector operators manipulate scalar and vector fields, as indicated here. The
gradient converts scalar fields into vector fields. The divergence eats vector fields and outputs scalar
fields. Finally the curl takes vector fields into vector fields.
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5.3. WEEK 14

Gradient
Gradient: FE =V¢(z,y,2)

e Definition: R! »§> R3

dp O aqsr

E(wvyaz) = [81‘7 8y7 aZ]T(b(x?sz) = |:8x7 87y7 &

x?sz

E L plane tangent at ¢(z,y, z) = ¢(xo, Yo, 20)

Unit vector in direction of E is i = ﬁ along isocline

| I

Basic definition

Vo(e.y.2) = m {

JIJ é(z,y,2) dA}
S|

N is a unit vector in the direction of the gradient
S is the surface area centered at (x,y, 2)
Divergence

Divergence: V-D =p

e Definition: R3 »€> R!

oD, 9D, 0D,
+—=2+

V-D = [0, 0y, 0:] - D = | = o+ as = p(z,y,2)

e Examples:

— Voltage about a point charge @ [SI Units of Coulombs]

¢ _a
eovVrl+y?+22 el

¢ [Volts]; @ = [C]; Free space €y permittivity (uo permeability)

¢($, Y, Z) =

— FElectric Displacement (flux density) around a point charge (D = ¢ F)

= -vo(r) = -Qv{} = -Qam)
Divergence: The integral definition

e Surface integral definition of incompressible vector field

[fsD-hdA

‘DE 1. _— fry
v |5H30{ v } p(z,y, 2)

S must be a closed surface
N is the unit vector in the direction of the gradient

— 1n-D 1 surface differential dA

119

39.14.3

39.14.4a

39.14.4b
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Divergence: Gauss’ Law 39.14.4c

General case of a Compressible vector field

Volume integral over charge density p(x,y, z) is total charge enclosed Qenc

[ ]
2629 /// V-DdV:// D -ndA = Qenc
1% S

e Examples

— When the vector field is incompressible

* p(z,y,2) = 0 [C/m3] over enclosed volume
« Surface integral is zero (Qene = 0)

— Unit point charge: D = §(R) [C/m?]

263 Curl

Curl: VxH =1 [amps/m?] 39.14.5a

e Definition: R? — R3
V x

VxH=|0, 0, 0.|=1
2631 H$ Hy Hz

e Examples:

— Maxwell’s equations: VXE = -B, VxH =0¢E + D,
— H = —yz + x then VxH = 22 constant irrotational
— H =02 + 0§ + 222 then VxH = 0 is irrotational

%32 Stokes’ Law

Curl: Stokes Law 39.14.5b

e Surface integral definition of VXH =1 (I L rotation plane of H)

L2 LA VxH= lim {ffSnX} (5.1)
S Area (open) |S|—0 |S’
Toe = //(VXH) A dA = ]{ Hdl (52)
2633 dl B Boundary B

e Eq. (1): S must be an open surface
with closed boundary B
n is the unit vector L to dA
H xn € Tangent plane of A (i.e., L n)

e Eq. (2): Stokes Law: Line integral of H along B is total current Zg,,



2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

5.4. WEEK 15 121

5.3.2 Lec: 40 Introduction to Maxwell’s Equation

L 40: J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light
Basic definitions of E, H, B, D

O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation
How a loud-speaker works.

5.3.3 Lec: 41 The Fundamental theorem of Vector Calculus

L 41: The Fundamental Thm of vector calculus
Incompressible and Irrotational fluids and the two defining vector identities

WEEK 15 40.15.0

L 42 Quasi-static approximation and applications:
The Kirchoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations The
telegraph wave equation starting from Maxwell’s equations
Quantum Mechanics

L 43 Last day of class: Review of Fund Thms of Mathematics:
Closure on Numbers, Algebra, Differential Equations and Vector Calculus,
The Fundamental Thms of Mathematics & their applications:
Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9); Normal modes vs. eigen-
states, delay and quasi-statics;

— Reading Day
VC-1 Due

5.4 Kirchhoff’s Laws

5.4.1 Lec 42: The Quasi-static approximation and applications

L 42: The Kirchhoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations
Quantum Mechanics

5.4.2 Lec 43: Last day of class: Review of Fund Thms of Mathematics

L 43: Closure on Numbers, Algebra, Differential Equations and Vector Calculus,
The Fundamental Thms of Mathematics & their applications:

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9)

Normal modes vs. eigen-states, delay and quasi-statics;

Reading Day
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2665 Properties

Closure: Properties of fields of Maxwell’s Equations 39.14.6

The variables have the following names and defining equations:

Symbol Equation Name Units
2666 E V x E = —B Electric Field strength [Volts/m]
D V-D=p Electric Displacement (flux density)  [Col/m?]
H VxH=D Magnetic Field strength [Amps,/m)|

B V-B=0 Magnetic Induction (flux density) [Weber /m?|

In vacuo B = ugH, D = E, c = — [m/s], ry = \/i‘jg = 377 [Q)].

Ho€o

67 Vector field properties

Closure: Summary of vector field properties 39.14.7

e Notation: v(z,y,2) = —Vo(z,y,2) + Vxw(z,y, 2)

e Vector identities: VxVé =0 V-Vxw=0

ot Field type Generator: Test (on v):
Irrotational v=Vp Vxv=0
Rotational v=Vxw Vxv=J

Incompressible v =V xw V- -v=0
Compressible v=Vo V-v=p

e Source density terms: Current: J(z,y, z), Charge: p(x,y, 2)
— Examples: VxH = D(z,y,2), V-D = p(x,y, 2)
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Fundamental Theorem of integral Calculus

Closure: Fundamental Theorems of integral calculus 39.14.8

. f(z) € R (Leibniz Integral Rule): F(x) = F(a) + [} f(z)dx
. f(s) € C (Cauchy’s formula): F(s) = F(a)+ [} f(¢)dC

—When integral is independent of path, F(s) € C obeys CR conditions

—Contour integration inverts causal Laplace transforms

. F e Rg (Helmholtz Formula): F(z,y,z) = =Vé(x,y,2) + VxA(z,y, z)

—Decompose F'(z,y, z) as compressible and rotational

. Gauss’ Law (Divergence Theorem): Qepe = [[[V-DdV = [[; D-ndA

—Surface integral describes enclosed compressible sources

. Stokes” Law (Curl Theorem): Z.,. = [[(VxH)-ndA = ¢g H-dl

—Boundary vector line integral describes enclosed rotational sources

. Green’s Theorem ... Two-port boundary conditions

—Reciprocity property (Theory of Sound, Rayleigh, J.W.S., 1896)

Closure: Quasi-static (QS) approximation 39.14.9

e Definition: ka < 1 where a is the size of object, A = ¢/ f wavelength
e This is equivalent to a < A\ or

e w < ¢/a which is a low-frequency approximation

e The QS approximation is widely used, but infrequently identified.

o All lumped parameter models (inductors, capacitors) are based on QS
approximation as the lead term in a Taylor series approximation.
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Appendix A

Notation

A.1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed.! Where
the definition is sketchy, Page numbers are provided where these concepts are fully explained, along
with many other important and useful definitions. For example N may be found on page 22.

A.1.1 Greek letters

The Greek letters used in this text include (at least) «,f3,7,0d,€, K, p, &, w,0,¢,1,(, and upper-case
2,0, ¥, A Q. Many of these imply a physical meaning. For example, w is the radian frequency, p
is typically a density. ®,¢, ¥, ¢ are commonly used to indicate angles of a triangle. For those of you
who know this, its obvious. But at some time in your life, you had to learn these conventions. They
were not implanted at birth.

Likely you do not know all of these Greek letters. But they are so commonly used in mathematics,
you need to recognize them. Some of them are pronounced in a way that you may not know. The
symbol £ is pronounced “c,” ( is “zeta” and x is “kye.” I must assume you know how to pronounce
the others, which are more phonetic in English. One advantage of learning IXTEX is that all of these
math sympols are built in, and thus easily learned, by using this powerful open-source math-oriented
word-processing system.

A.1.2 Double-Bold notation

Table A.1 indicates the symbol followed by a page number and the name of the number type. For
example N stands for the infinite set of counting numbers {1, 2, 3, --- }. From any counting number
you may get the next one by adding 1.

Summary of various number types: Counting number (N) are also know as the Cardinal numbers.
The prime numbers (P) cannot be further factored. The counter example of —5 = —1-5 is questionable,
as it could be included as a prime by a slight change in the definition. One may say that a real (R) is
a complex number (C) with a zero imaginary part, thus real numbers are complex (R C C).

Notethat R: TUQ, I L Q, Q:ZUF.

We say that a number is in the set with the notation 3 € N € R, which is read as “3 is in the set
of counting numbers, which in turn in the set of real numbers,” or in vernacular language “3 is a real
counting number.”

The cardinality of a set is denoted by taking the absolute value (e.g., |NJ).

1h1:tps ://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols

125
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Table A.1: Double-bold notation for the types of numbers. (#) is a page number.

Symbol (p. #) | Genus Examples Counter Examples
N (22) Counting | 1,2,17,3, 10%Y 0, -10, 5j
P (22) Prime 2,17,3, 10% 0,1, 4,32 12, =5
7 (22) Integer -1, 0, 17, 5§, -10% | 1/2,7, /5
Q (22) Rational | 2/1,3/2, 1.5, 1.14 | v/2, 373, «
F (22) Fractional | 1/2, 7/22 2/1,1//2
I (23) Irrational | v/2, 3713, & Vectors
R (23) Reals V2,378 ¢ o
C (115) Complex | 1,v/2j, 379/3, @3 | Vectors

A.2 Periodic functions

Any periodic function may be indicated using double-parentheses notation. This is sometimes known
as modular arithmetic. For example function

F(®)r = f(t) = f(t£KT),

is periodic on t,T" € R with a period of T" and k € Z. This notation is useful when dealing with Fourier
series of periodic functions.
When a discrete valued (e.g., time) sequence is periodic we use square brackets

fllnlln = fn] = fln + kN,

with n, k, N € Z and period N. This notation will be used with discrete-time signals that are periodic,
such as the case of the DFT.

A.3 Vectors

Vectors are ordered sets of scalars. When we write then out, we use row notation, with the transpose
symbol

a
la,b,c]T = |b
c

Vectors are always columns. Row vectors are weights not vectors. A vector dot product is normally
defined between weights and vectors, resulting in a real scalar. This is said to be a 3 dimensional
vector. for example

1
[1 1 1} 2| =1+2+3=6.
3

When the elements are complex, the transpose also takes the complex conjugate.

A.4 Matrices

Unfortunately when working with matrices, the role of the weights and vectors can change, depending
on the context. A useful way to view a matrix is as a set of column vectors, weighted by the elements
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of the column-vector of weights multiplied from the right. For example

a1 a2 a1z - a1 wy ai a2 aiMm
a a a
asi  ase  asy -+ asy Wy 21 22 2M
=wi [a21 | Fw2 |a32 | ... Wy | A3M |

a a a N a wM

N1 QN2 Gans3 NM any an? an M
] T

where the weights are {wl, Wo, ..., WH-

Another way to view the matrix is a set of row vectors of weights, each of which re applied to the
vector [wy,ws, -, Wy]T.

The determinant of a matrix is denoted either as det A or |A[, as in the absolute value. The inverse
of a square matrix is A~! or invA. If |A| = 0, the inverse does not exist. AA~! = A~1A.

Matlab’s notional convention for a row-vector is [a, b, ¢] and a column-vector is [a; b; ¢]. A prime on
a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the
prime. The : argument converts the array into a column vector, without conjugation. A tacit notation
in Matlab is that wvectors are columns and the index to a vector is a row vector. Matlab defines the
notation 1:4 as the “row-vector” [1,2,3, 4], which is unfortunate as it leads users to assume that the
default vector is a row. This can lead to serious confusion later, as Matlab’s default vector is a column.
I have not found the above convention explicitly stated, and it took me years to figure this out for
myself.

Units are SI; Angles in degrees [deg] unless otherwise noted. The units for 7 are always in radians
[rad]. Ex: sin(r), e e/™/2,

when writing a complex number we shall try to use 13 to indicate v/—1. Matlab prefers this as well,
as its explicit.

A.5 Differential equations vs. Polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a cubic
has degree 3. We shall indicate a polynomial by the notation

Pn(z) = N tany_12N 7.

Always normalize the polynomial so that ay = 1. This will not change the roots, defined by Eq. 1.10
(p. 42). The coefficient on zV~! is always the sum of the roots z, (ay_1 = ZnN zn), and ag is always
their product (ap = [T 2n).
Differential equations have order (polynomials have degree). If a second order differential equation
is Laplace transformed (Lec. ??, p. 7?), one is left with a degree 2 polynomial. For example:
d? b d B d A
V() + b0 + cy®) = a (Galt) + Batt)) (A1)

(2 +bs+ )Y (s) = a(s + B) X (s). (A.2)

Y(s) s+8
X(s) ~ 574 bs o 1) hlD): (A.3)

Using the same argument as for polynomials, the lead coefficent must always be 1. The coefficent o € R
is called the gain. The complex variable s is the Laplace frequency.

The ratio of the output Y(s) over the input X (s) is called the system transfer function H(s).
When H(s) is the ratio of two polynomials in s, the transfer function is said to be bilinear, since it
is linear in both the input and output. The roots of the numerator are called the zeros and those of
the denominator, the poles. The inverse Laplace transform of the transfer function is called the system
impulse response, which describes the system’s output signal y(t) for any given input signal x(t), via
convolution (i.e., y(t) = h(t) x z(t)).
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A.6 Residue expansions and the ROC

With the new tool of analytic functions came the concept of the region of convergence (ROC) that
defines the regions in the complex plane where the infinite series is valid. In other words, the function
Z(s) and its analytic power series > o° ¢, s", are equivalent over a region of s that lies within the ROC.
When the series fails to converge, it no longer represents Z(s). A helpful example is the series

: 1 : =32t 20
_ - T
1+22 (1—az)(l+azy) 1—95] 1+xj 2= 2

which is valid for |x| < 1. At face value this function seems fine at x = 1, where it is equal to 1/2. In
fact the series fails to converge at precisely this value (the ROC is 1 for this example). Until one views
x as complex, this behavior is not obvious.

A trivial analysis shows that A = 1/2 and B = A since

1=A(1+4+x))+ Bl —zy)=(A+ Ax))+ (B —-Bxy)) = A+ B+ (A—-B)xy



Appendix B

Linear algebra on 2x2 matrices

B.1 GGaussian elimination

Definitions:
1. Scalar: A number, e.g. {a,b,c,c,3,---} € {Z,Q,,R,C}

2. Vector: A quantity having direction as well as magnitude, often denoted by a bold-face letter
with an arrow, X. In matrix notation, this is typically represented as a single row [x1, 2, x3, .. ]
or single column [x1, 22, x3...]7 (where T indicates the transpose). In this class we will typically
use column vectors. The vector may also be written out using unit vector notation to indicate
direction. For example: X351 = 212% + 227 + 232 = [x1, 22, xg]T, where I, ¢, 2 are unit vectors in
the z,y, z cartesian directions (here the vector’s subscript 3 x 1 indicates its dimensions). The
type of notation used may depend on the engineering problem you are solving.

3. Matriz: A = {é’l, a,,as, - ,é’M} = {an,m}NxMm, can be a non-square matrix if the number

NxM
of elements in each of the vectors (V) is not equal to the number of vectors (M). When M = N,
the matrix is square. It may be inverted if its determinant |A| = [[Ax # 0 (where Ay are the

eigenvalues).

We shall only work with 2 x 2 and 3 x 3 square matrices throughout this course.

4. Linear system of equations: AX = b where X and b are vectors and matrix A is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse
X=A"'b

(b) Equivalence: If two systems of equations AgX = by and A;% = by have the same solution
(ie., ¥ = Ay'byg = A7 'by), they are said to be equivalent.

(¢) Augmented matriz: The first type of augmented matrix is defined by combining the matrix
with the right-hand-side. For example, given the linear system of equations AX =y

£ ol

_la by
A’y - [C d y2‘|
A second type of augmented matrix may be used for finding the inverse of a matrix (rather

than solving a specific instance of linear equations Az = b). In this case the augmented
matrix is

then the augmented matrix is

a b|1 0O
Au_lc d|o 1]

129
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Performing Gaussian elimination on this matrix, until the left side becomes the identity
matrix, yields A~!. This is because multiplying both sides by A~! gives A~1A|A7] =
1AL,

5. Permutation matriz (P): A matrix that is equivalent to the identity matrix, but with scrambled
rows (or columns). Such a matrix has the properties det(P) = 41 and P? = I. For the 2x2 case,
there is only one permutation matrix:

SIRESEI TR Y

A permutation matrix P swaps rows or columns of the matrix it operates on. For example, in
the 2x2 case, pre-multiplication swaps the rows

pa= o] B - Lo 9

whereas post-multiplication swaps the columns

el dff o=l

For the 3x3 case there are 3-2 = 6 such matrices, including the original 3x3 identity matrix (swap
a row with the other 2, then swap the remaining two rows).

6. Gaussian elimination (GE) matrices Gy: There are 3 types of elementary row operations, which
may be performed without fundamentally altering a system of equations (e.g. the resulting system
of equations is equivalent). These operations are (1) swap rows (e.g. using a permutation matrix),
(2) scale rows, or (3) perform addition/subraction of two scaled rows. All such operations can be
performed using matrices.

For lack of a better term, we’ll describe these as ‘gaussian elimination’ or ‘GE’ matrices.! We will
categorize any matrix that performs only elementary row operations (but any number of them)
as a ‘GE’ matrix. Therefore, cascade of GE matrices is also a GE matrix.

Consider the GE matrix

(a) Pre-multiplication scales and adds the rows

O |

The result is a Gaussian elimination operation.

(b) Post-multiplication adds and scales columns.

a b 1 0 a—b b
Here the second column is subtracted from the first, and placed in the first. The second
column is untouched. This operation is not a Gaussian elimination. Therefore, to

'The term ‘elementary matrix’ may also be used to refer to a matrix that performs an elementary row operation.
Typically, each elementary matrix differs from the identity matrix by one single row operation. A cascade of elementary
matrices could be used to perform Gaussian elimination.
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put Gaussian elimination operations in matrix form, we form a cascade of pre-multiply
matrices.

Here det(G) = 1, G? = I, which won’t always be true if we scale by a number greater than

1. For instance, if G = 1o (scale and add), then we have det(G) = 1, G™ = Lo .
m 1 n-m 1

B.1.1 Problems

Find the solution to the following 3x3 matrix equation Ax = b by Gaussian elimination. Show your
intermediate steps. You can check your work at each step using Matlab.

1 1 —1] |21 1
3 1 1 To| = 9
1 -1 4 I3 8

1. Show (i.e., verify) that the first GE matrix G, which zeros out all entries in the first column, is
given by

1

Gy=|-3

-1

O = O
_ o O

Identify the elementary row operations that this matrix performs. See Lab manual for solutions.

2. Find a second GE matrix, Ga, to put G1A in upper triangular form. Identify the elementary row
operations that this matrix performs. See Lab manual for solutions.

3. Find a third GE matrix, G3, which scales each row so that its leading term is 1. Identify the
elementary row operations that this matrix performs. See Lab manual for solutions.

4. Finally, find the last GE matrix, G4, that subtracts a scaled version of row 3 from row 2, and
scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix
(G4G3G2G1A = 1). See Lab manual for solutions.

5. Solve for [z1, 2, 23]" using the augmented matrix format G4G3G2G1[A[b] (where [A|b] is the
augmented matrix). Note that if you’ve performed the preceding steps correctly, z = G4G3G2G1b.
See Lab manual for solutions.

B.2 Gaussian Elimination of a 2x2 matrix

We shall now apply Gaussian elimination to find the solution [z, z9] for the 2x2 matrix equation
Az =y (Eq. 3.7, left). We assume to know [a, b, ¢, d] and [y1, y2]. We wish to show that the intersection
(solution) is given by the equation on the right.

Here we wish to prove that the left equation has an inverse given by the right equation:

a bl |z1| _|»n v 1 d =bl|n
c d| |za|  |y2 ro| A |—c al |y’
How to take inverse:
1) Swap the diagonal, 2) change the signs of the off-diagonal, and 3) divide by A.
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B.2.1 Derivation of the inverse of a 2x2 matrix

1. Step 1: normalize the first column to 1.
2. Step 2: subtract the top equation from the lower.

3. Step 3: express result in terms of the determinate A = ad — bc.

; [l bz

4. Step 4: These steps give the solution for zo: 9 = —Ky1 + R ye.

o= O

T _ 10| |n

i) —C a Y2
5. Step 5: Finally the top equation is solved for z1: z1 = éyl — 2562 =z = %yl — 2[—%1;1 + X2l
In matrix format, in terms of the determinate A = ab — cd becomes:

T _ 1_be by i 1 a=be _pl |y zif 1 fd —=bl|m

To -% ~ | Y2 To Al —c a | |y2 T9 Al—c al |y’

Summary: This is a lot of algebra, that is why it is essential you memorize the formula for the
inverse.

ol o




Appendix C

Eigenvector analysis

Here we show how to compute the eigenvalues and eigenvectors for the 2x2 Pell matrix

A:E ﬂ.

The analysis applies to any matrix, but since we are concentrated on Pell’s equation, we shall use the
Pell matrix, for N = 2. By using a specific matrix we can check all the equations below with Matlab,
which I advise you to do.

The Matlab command [E,D]=eig(A) returns the eigenvector matrix E

1 [V2 —V2 0.8165 —0.8165
E=le;,e |]=— =
V31 1 0.5774  0.5774.

and the eigenvalue matrix A (Matlab’s D)

AE[M O]Zluﬂ 0 ]_[2.4142 0 ]

0 A 0 1—v2| 0 —0.4142

The factor v/3 on E normalizes each eigenvector to 1 (i.e., The Matlab command norm([/2,1]) gives
V3).

In the following discussion we show how to determine E and D (i.e, A), given A.

Calculating the eigenvalue matrix (A): The matrix equation for E is
AE = EA. (C.1)
Pre-multiplying by E~! diagonalizes A, given the eigenvalue matriz (D in Matlab)
A=E'AE. (C.2)

Post-multiplying by E~! recovers A
A=EAE ! (C.3)
Matrix power formula: This last relation is the entire point of the eigenvector analysis, since it
shows that any power of A may be computed from powers of the eigen values. Specifically
A" = EN"E™L. (C.4)

For example, A? = AA = EA (E"'E) AE~! = EA’E~L.
Equations C.1, C.2 and C.3 are the key to eigenvector analysis, and you need to memorize them.
You will use them repeatedly throughout this course, and for a long time after it is over.

133



134 APPENDIX C. EIGENVECTOR ANALYSIS

Showing that A — A\ I, is singular: If we restrict Eq. C.1 to a single eigenvector (one of ey),
along with the corresponding eigenvalue AL, we obtain a matrix equations

Aei = ei)\i = )\iei

Note the important swap in the order of eL and Ay. Since Ay is a scalar, this is legal (and critically
important), since this allows us to remove (factored out) e

(A — )\iIQ)@j: =0. (05)

This means that the matrix A — Ay Is must be singular, since when it operates on e, which is not zero,
it gives zero. It immediately follows that its determinant is zero (i.e., [(A — A+ I2)| = 0). This equation
is used to uniquely determine the eigenvalues A.. Note the important difference between Ayl and A

(ie., |(A—A)| % 0).

Calculating the eigenvalues A.: The eigenvalues Ay of A may be determined from |(A—A+I3)| =0

1—XAp N

1 2 a2
N e N e

For our case of N =2, Ay = (1 £+/2).!

Calculating the eigenvectors er: Once the eigenvalues have been determined, they are substitute
them into Eq. C.5, which determines the eigenvectors E = |:e+, e,}, by solving

1—)Xy 2

(A_Ai)ei:[ 1 1-)

] €L — 0
where 1 — Ay =1 — (14+/2) = FV2.

Recall that Eq. C.5 is singular, because we are using an eigenvalue, and each eigenvector is pointing
in a unique direction (This is why it is singular). You might respectively suggest that this equation
has no solution. In some sense you would be correct. When we solve for e, the two equations defined
by Eq. C.5 co-linear (the two equations describe parallel lines). This follows from the fact that there
is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for e = [ef, e;]T

-2 2 efr
+| =0
This gives two identical equations —v/2e]” +2e5 = 0 and e — v/2e5 = 0. This is the price of an over-
specified equation (the singular matrix is degenerate). The most we can determine is e = ¢ [—/2,1]7,

where c is a constant. We can determine eigenvector direction, but not its magnitude.
Following ezactly the same procedure for A_, the equation for e_ is

2 3l

In this case the relation becomes e] + v/2e; = 0, thus e_ = ¢ [v/2,1]7 where c is a constant.

9

Normalization of the eigenvectors: The two constants may be determined by normalizing the
eigenvectors to have unit length. Since we cannot determine the length, we set it to 1. In some sense
the degeneracy is resolved by this normalization. Thus ¢ = 1/+/3, since

¢ ((i\@)Q + 12) — 32 =1.

Tt is a convention to order the eigenvalues from largest to smallest.
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Summary: Thus far we have shown

E=le e |= \}5 [\{5 _i/ﬂ

A:[M O]:llnLﬂ 0 ]
0 A 0 1—+2

and

Verify that A = E"'AE: To find the inverse of E, 1) swap the diagonal values, 2) change the sign
of the off diagonals, and 3) divide by the determinant A = 2v/2/1/3 (see Appendix B)

E—l_ﬁ 1 V2 _
=505 -1 va| =

By definition for any matrix E~'E = EE~! = I,. Taking the product gives
g M1 Vel 1 [v2 —ve|_ 1o _,
T2 -1 V2 AT 0o 1| ¥
We wish to show that A = E~'AE
1+v2 o | _ 31 V2|
0 1-Vv2| T 231 V2

which is best verified with Matlab.

0.6124 0.866
—0.6124 0.866]

s

Verify that A = EAE~!: We wish to show that

[1 2]_1[\/5 —ﬂ] 1+v2 0 1)/3{[1 \/51
11 11| | 0 1-v2|2/2|-1 V2|’

which is best verified with Matlab (or Octave).

I suggest that you verify EA % AE and AE = EA with Matlab. Here is the Matlab program
which does this:

A=1[12; 11]; %define the matrix

[E,D] = eig(A); %compute the eigenvector and eigenvalue matrices
A*E-E+D %This should be $\approx 0%, within numerical error.
ExD-D*E %This is not zero

All the equations have been verified both with Matlab and Octave.
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Appendix D

Solution to Pell’s Equation (N=2)

Section 2.2.2 (p. 83) showed that the solution [z, y,]? to Pell’s equation, for N = 2, is given by powers
of Eq. 1.4. To find an explicit formula for [x,,y,]”, one must compute powers of

A=1y E ﬂ (D.1)

We wish to find the solution to Pell’s equation (Eq. 1.4), based on the recursive solution, Eq. 1.5
(p. 38). Thus we need is powers of A, that is A", which gives the a closed form expression for [, y]” .
By the diagonalization of A, its powers are simply the powers of its eigenvalues. This diagonalization
is called an eigenvalue analysis, a very general method rooted in linear algebra. This type of analysis
allows us to find the solution to most of the linear the equations we encounter.

From Matlab with N = 2 the eigenvalues of Eq. D.1 are Ay ~ [2.4142), —0.4142)] (i.e.,, Ay =
19(1 & v/2)). The final solution to Eq. D.1 is given in Eq. 2.5 (p. 83). The solution for N = 3 is
provided in Appendix D.1 (p. 137).

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of the
eigenvalues. This results in the general solution given by

In| _ nnl_ n n—ll
o] e i <o [

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab command
[E,D]=eig(A) is helpful to find D and F given any A. As we saw above,

1+v2 0 ]Nl2.414j 0 ]

A=L o s 0 —0.414;

D.1 Pell equation for N=3

This summarizes the solution of Pell’s equation due to the Pythagoreans using matrix recursion, for the
case of N=3. The integer solutions are shown in on the right. Note that x,/y, — /3, in agreement
with the Euclidean algorithm.! It seem likely that By could be absorbed in the starting solution, and
then be removed from the generating function, other than as the known factor 3j

Case of N = 3: [zo, 0] = [1,0]T , Bo = 7/V/2; Pell-3: 22 — 342 = 1; z,,/yn - V3

Try other trivial solutions such as [—1,0]7 and [£3,0]7. Perhaps this can provide a clue to the
proper value of (.

!The matlab program for generating this solution is Pe11S013.m.

137



138 APPENDIX D. SOLUTION TO PELL’S EQUATION (N=2)

Z = Fo ﬂ = o H ﬂ H (180)* = 3(160)* =1
53 =4 ﬂ =5 H ﬂ H (483)" 3 (282)" =1
i;’ — 3 _169' — 33 1 i’ ;l] (1083)" =3 (683)" =1
Zﬁ = fz = 1 ? -160] (2888)" — 3 (1688)" =1
i: = ZZ = 1 ? ?2} (7683)" - 3 (1485)" =1
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