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Abstract

An understanding of physics requires knowledge of mathematics. The contrary is not true. By defi-
nition, pure mathematics contains no physics. Yet historically, mathematics has a rich history filled
with physical applications. Mathematics was developed by people with intent of making things work.
In my view, as an engineer, I see these creators of early mathematics, as budding engineers. This book
is an attempt to tell this story, of the development of mathematical physics, as viewed by an engineer.

The book is broken down into three topics, called streams, presented as five chapters: 1) Intro-
duction, 2) Number systems, 3) Algebra Equations, 4) Scalar Calculus, and 5) Vector Calculus. The
material is delivered as 40 “Lectures” spread out over a semester of 15 weeks, three lectures per week,
with a 3 lecture time-out for administrative duties. Problems are provided for each week’s assign-
ment. These problems are written out in LATEX, with built in solutions, that may be expressed by
un-commenting one line. Once the home-works are turned in, each student is given the solution. With
regard to learning the material, the students rated these Assignments as the most important part of the
course. There is a built in interplay between these assignments and the lectures. On many occasions
I solved the homework in class, as motivation for coming to class. Four exams were given, one at the
end of each of the three sections, and a final. Some of the exams were in class and some were evening
exams, that ran over two hours. The final was two hours. Each of the exams, like the assignments, is
provided as a LATEX file, with solutions encoded with a one line software switch. The Exams are largely
based on the Assignments. It is my philosophy that, in principle, the students could see the exam in
advance of taking it.

Author’s Personal Statement

An expert is someone who has made all the mistakes in a small field. I don’t know if I would be
called and expert, but I certainly have made my share of mistakes. I openly state that “I love making
mistakes, because I learn so much from them.” One might call that the “expert’s corollary.”

This book has been written out of both my love for the topic of mathematical physics, and a
frustration for wanting to share many key concepts, and even new ideas on these basic concepts. Over
the years I have developed a certain physical sense of math, along with a related mathematical sense
of physics. While doing my research,1 I have come across what I feel are certain conceptual holes that
need filling, and sense many deep relationships between math and physics, that remain unidentified.
While what we presently teach is not wrong, it is missing these relationships. What is lacking is an
intuition for how math “works.” We need to start listening to the language of mathematics. We need
to let mathematics guide us toward our engineering goals.

It is my strong suspicion that over the centuries many others have had similar insights, and like me,
have been unable to convey this slight misdirection. I hope these views can be useful to open young
minds.

This marriage of math and physics will help us make progress in understanding the physical world.
Venn diagram

I turn to mathematics and physics when trying to understand the universe. I have arrived in my views
following a lifelong attempt to understand human communication. This research arose from my 32
years at Bell Labs in the Acoustics Research Department. There such lifelong pursuits were not only
possible, they were openly encouraged. The idea was that if you were successful at something, take it

1http://auditorymodels.org/index.php/Main/Publications
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as far as you can. But on the other side, don’t do something well that’s not worth doing. People got
fired for the latter. I should have left for University after a mere 20 years,2 but the job was just too
cushy.

In this text it is my goal to clarify some of the conceptual errors when telling the story about
physics and mathematics. My views have been often inspired by classic works, as documented in the
bibliography. This book was inspired by my careful reading of Stillwell (2002), through Chapter 21
(Fig. 2). Somewhere in Chapter 22 I stopped reading and switched to the third edition (Stillwell,
2010), where I saw there was much more to master. At that point I saw that teaching this material to
sophomores would allow me to absorb the more advanced material at a reasonable pace, which led to
to this book.

Back Cover Summary

This is foremost a math book, but not the typical math book. First, this book is for the engineering
minded, for those who need to understand math to do engineering, to learn how things work. In that
sense it is more about physics and engineering. Math skill are critical to making progress in building
things, be it pyramids or computers, as clearly shown by the many great civilizations of the Chinese,
Egyptians, Arabs (people of Mesopotamia), Greeks and Romans.

Second, this is a book about the math that developed to explain physics, to allow people to engineer
complex things. To sail around the world one needs to know how to navigate. This requires a model
of the planets and stars. You can only know where you are on earth if you understand where earth
is, relative to the heavens. The answer to such a deep questions will depend on who you ask. The
utility and accuracy of that answer depends critically on the depth of understanding of how the worlds
and heavens work. Who is qualified to answer such question? It is best answered by those who study
mathematics applied to the physical world.

Halley (1656–1742), the English astronomer, asked Newton (1643–1727) for the equation that de-
scribes the orbit of the planets. Halley was obviously interested in comets. Newton immediately
answered “an ellipse.” It is said that Halley was stunned by the response (Stillwell, 2010, p. 176), as
this was what had been experimentally observed by Kepler (c1619), and thus he knew Newton must
have some deeper insight (Stillwell, 2010, p. 176).

When Halley asked Newton to explain how he knew this correct answer, Newton said he calculated
it. But when challenged to show the calculation, Newton was unable to reproduce it. This open
challenge eventually led to Newton’s grand treatise, Philosophiae Naturalis Principia Mathematica
(July 5, 1687). It had a humble beginning, more as a letter to Halley, explaining how to calculate the
orbits of the planets. To do this Newton needed mathematics, a tool he had mastered. It is widely
accepted that Isaac Newton and Gottfried Leibniz invented calculus. But the early record shows that
perhaps Bhāskara II (1114–1185 AD) had mastered this art well before Newton.3

Third, the main goal of this book is to teach engineering mathematics, in a way that it can be
understood, remembered, and mastered, by anyone motivated to learn this topic. How can this near
impossible goal be achieved? The answered is to fill in the gaps with “who did what, and when.” There
is an historical story that may be told and mastered, by anyone serious about the science of making
things.

One cannot be an expert in a field if they do not know the history of that field. This includes
who the people were, what they did, and the credibility of their story. Do you believe the Pope or
Galileo, on the topic of the relative position of the sun and the earth? The observables provided
by science are clearly on Galileo’s side. Who were those first engineers? They are names we all
know: Archimedes, Pythagoras, Leonardo da Vinci, Galileo, Newton, . . . . All of these individuals
had mastered mathematics. This book teaches the tools taught to every engineer. Do not memorize

2I should have left when AT&T Labs was formed, c1997. I started around December 1970, fresh out of Graduate
school, and retired in December 2002.

3http://www-history.mcs.st-and.ac.uk/Projects/Pearce/Chapters/Ch8_5.html
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complex formulas, rather make the equations “obvious” by teaching the simplicity of the underlying
concept.

Credits

Besides thanking my parents, I would like to credit John Stillwell for his constructive, historical sum-
mary of mathematics. My close friend and colleague Steve Levinson somehow drew me into this project,
without my even knowing it. My brilliant graduate student Sarah Robinson was constantly at my side,
grading home-works and exams, and tutoring the students. Without her, I would not have survived the
first semester the material was taught. Her proof-reading skills are amazing. Thank you Sarah for your
infinite help. Finally I would like to thank John D’Angelo for putting up with my many silly questions.
When it comes to the heavy hitting, John was always there to provide a brilliant explanation that I
could easily translate into Engineer’ese (Matheering?) (i.e., Engineer language).

To write this book I had to master the language of mathematics (John’s language). I had already
mastered the language of engineering, and a good part of physics.4 But we are all talking about the
same thing. Via the physics and engineering, I already had a decent understanding of the mathematics,
but I did not know that language. Hopefully, now I can get by.

Finally I would like to thank my wife (Sheau Feng Jeng aka Patricia Allen) for her unbelievable
support and love. She delivered constant piece of mind, without which this project could never have
been started, much less finish.

There are many others who played important roles, but they must remain anonymous, out of my
fear of offending someone I forgot to mention.

–Jont Allen, Mahomet IL, Dec. 24, 2015

4Each genre (i.e, group ) speaks their own dialect. One of my secondary goals is to bring down this scientific Tower of
Babble.



Preface

It is widely acknowledged that interdisciplinary science is the backbone of modern scientific investiga-
tion. This is embodied in the STEM (Science, Technology, Engineering, and Mathematics) programs.
Contemporary research is about connecting different areas of knowledge, thus it requires an under-
standing of cross-disciplines. However, while STEM is being taught, interdisciplinary science is not,
due to its inherent complexity and breadth. Furthermore there are few people to teach it. Mathematics,
Engineering and Physics (MEP) are at the core of such studies.5

STEM vs. MEP

Mathematics is based on the application rigor. Mathematicians specifically attend to the definitions
of increasingly general concepts. Thus mathematics advances slowly, as these complex definitions
must be collectively agreed upon. Mathematics shuns controversy, and embraces rigor, the opposite
of uncertainty. Physics explores the fringes of uncertainty. Physicists love controversy. Engineering
addresses the advancement the technology. Engineers, much like mathematicians, are uncomfortable
with uncertainty, but are trained to deal with it.

To create such an interdisciplinary STEM program, a unified MEP curriculum is needed. In my
view this unification could (should) take place based on a core mathematical training, from a historical
perspective, starting with Euclid or before (i.e., Chinese mathematics), up to modern information
theory and logic. As a bare minimum, the fundamental theorems of mathematics (arithmetic, algebra,
calculus, vector calculus, etc.) need to be appreciated by every MEP student. The core of this
curriculum is outlined in Table 1.1 (p. 21).

If, in the sophomore semester, students are taught a common MEP methodology and vocabulary,
presented in terms of the history of mathematics, they will be equipped to

1. Exercise interdisciplinary science (STEM)

2. Communicate with other MEP trained (STEM) students and professors.

The goal is a comprehensive understanding of the fundamental concepts of mathematics, defined as
those required for engineering. We assume that students with this deep understanding will end up
being in the top 0.1% of Engineering. Time will tell if this assumption is correct.

The key tool is methodology. The traditional approach is a five to six course sequence: Calc I,
II, III, DiffEq IV, Linear Algebra V and Complex Variables VI, over a time frame of three years
(six semesters). This was the way I learned math. Following such a formal training regime, I felt I
had not fully mastered the material, so I started over. I now consider myself to be self-taught. We
need a more effective teaching method. I am not suggesting we replace the standard 6 semester math
curriculum, rather I am suggesting replacing Calc I, II with this mathematical physics course, based
on the historical thread, for those students who have demonstrated advanced ability. One needs more
than a high school education to succeed in college engineering courses.

By teaching mathematics in the context of history, the student can fully appreciate the underlying
principles. Including the mathematical history provides a uniform terminology for understanding the

5I prefer MEP over STEM, as being better focused on the people that do the work, organized around their scientific
point of view.
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ENGINEERING MATHEMATICS

PHYSICS

Figure 1: There is a natural symbiotic relationship between Physics, Mathematics and Engineering, as depicted by this
Venn diagram. Physics explores the boundaries. Mathematics provides the method and rigor. engineering transforms the
method into technology. While these three disciplines work well together, there is poor communication due to a different
vocabulary.

fundamentals of mathematics. The present teaching method, using abstract proofs, with no (or few)
figures or physical principles, by design removes intuition and the motivation that was available to
the creators of these early theories. This present six semester approach does not function for many
students, leaving them with a poor intuition.
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Mathematics and its History (Stillwell, 2002)

Figure 2: Table of contents of Stillwell (2002)
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Chapter 11

Introduction2

Much of early mathematics centered around the love of art and music, due to our sensations of light3

and sound. Exploring our physiological senses required a scientific understanding of vision and hearing,4

as first explored by Newton (1687) and Helmholtz (1863a) (Stillwell, 2010, p. 261).1 Our sense of color5

and musical pitch are determined by the frequencies of light and sound. The Chinese and Pythagoreans6

are well known for their early contributions to music theory. Pythagoras strongly believed that “all is7

integer,” meaning that every number, and every mathematical and physical concept, could be explained8

by integral relationships. It is likely that this belief was based on Chinese mathematics from thousands9

of years earlier. It is also known that his ideas about the importance of integers were based on what10

was known about music theory in those days. For example it was known that the relationships between11

the musical notes (pitches) obey natural integral relationships.12

Other important modern applications of number theory are present with13

• Public-private key encryption: which requires the computationally intensive factoring of large14

integers15

• IEEE Floating point2
16

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today17

With the digital computer, digital audio, and digital video coding everything, at least18

approximately into sequences of whole numbers, we are closer than ever to a world in which19

“all is number.”20

Mersenne (1588-1647) contributed to our understanding of the relationship between the wavelength21

and the length of musical instruments. These results were extended by Galileo’s father, and then by22

Galileo himself (1564-1642). Many of these musical contributions resulted in new mathematics, such as23

the discovery of the wave equation by Newton (c1687), followed by its one-dimensional general solution24

by d’Alembert (c1747).25

By that time there was a basic understanding that sound and light traveled at very different speeds26

(thus why not the velocities of different falling weights?).27

Ole Rõmer first demonstrated in 1676 that light travels at a finite speed (as opposed to28

instantaneously) by studying the apparent motion of Jupiter’s moon Io. In 1865, James29

Clerk Maxwell proposed that light was an electromagnetic wave, and therefore traveled at30

the speed c appearing in his theory of electromagnetism.331

Galileo famously conceptualized an experiment in 1589 where he suggested dropping two different32

weights from the Leaning Tower of Pisa, and showed that they must take the same time to hit the33

1https://en.wikipedia.org/wiki/Acoustics
2https://en.wikipedia.org/wiki/IEEE_floating_point\#Formats
3https://en.wikipedia.org/wiki/Speed_of_light

13
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ground. Conceptually this is an important experiment, driven by a mathematical argument in which34

he considered the two weights to be connected by an elastic cord. This resulted in the concept of35

conservation of energy, one of the cornerstones of modern physical theory.36

Mass

Mass

Spring

Mass

Mass

t = 0

t = 1

Figure 1.1: Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses
(weight) must fall with identical velocity. By joining them with an elastic cord they become one. Thus if the velocity
were proportional to the mass, the joined masses would fall even faster. This results in a logical fallacy. This may have
been the first time that the principle of conservation of energy was clearly stated.

While Newton may be best known for his studies on light, he was the first to predict the speed of37

sound. However his theory was in error by4
√
cp/cv =

√
1.4 = 1.183. This famous error would not be38

resolved for over two hundred years, awaiting the formulation of thermodynamics by Laplace, Maxwell39

and Boltzmann, and others. What was needed was the concept of constant-heat, or adiabatic process.40

For audio frequencies (0.02-20 [kHz]), the small temperature gradients cannot diffuse the distance of a41

wavelength in one cycle (Pierce, 1981; Boyer and Merzbach, 2011), “trapping” the heat energy in the42

wave. There were several other physical enigmas, such as the observation that sound disappears in a43

vacuum and that a vacuum cannot draw water up a column by more than 34 feet.44

There are other outstanding examples where physiology impacted mathematics. Leonardo da Vinci45

is well known for his studies of the human body. Helmholtz’s theories of music and the percep-46

tion of sound are excellent examples of under-appreciated fundamental mathematical contributions47

(Helmholtz, 1863a). Lord Kelvin (aka William Thompson),5 was one of the first true engineer-scientists,48

equally acknowledged as a mathematical physicist and well known for his interdisciplinary research,49

knighted by Queen Victoria in 1866. Lord Kelvin coined the term thermodynamics, a science more50

fully developed by Maxwell (the same Maxwell of electrodynamics). Thus the interdisciplinary nature51

of science has played many key roles in the development of thermodynamics.6 Lord Rayleigh’s book on52

the theory of sound (Rayleigh, 1896) is a classic text, read even today by anyone who studies acoustics.53

54

It seems that we have detracted from this venerable interdisciplinary view of science by splitting the55

disciplines into into smaller parts whenever we perceived a natural educational boundary. Reforging56

these natural connections at some point in the curriculum is essential for the proper training of students,57

both scientists and engineers.758

WEEK 159

60

4The square root of the ratio of the specific heat capacity at constant pressure to that at constant volume
5Lord Kelvin was one of half a dozen interdisciplinary mathematical physicists, all working about the same time, that

made a fundamental change in our scientific understanding. Others include Helmholtz, Stokes, Green, Heaviside, Rayleigh
and Maxwell.

6Thermodynamics is another example of a course that needs reworking along historical lines.
7Perhaps its time to put the MEP Humpty Dumpty back together.
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1.1 Early Science and Mathematics61

The first 5,000 years is not well document, but the basic record is clear, as outlined in Fig. 1.2. Thanks62

to Euclid and later Diophantus (c250 CE), we have some limited understanding of what they studied.63

For example, Euclid’s formula (Fig. 2.5, Eq. 2.5) provides a method for computing all Pythagorean64

triplets (Stillwell, 2010, pp. 4-9).65

Chinese Bells and stringed musical instruments were exquisitely developed in their tonal quality, as66

documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was67

so rich that one must question why the Chinese failed to initiate the industrial revolution. Specifically,68

why did Europe eventually dominate with its innovation when it was the Chinese who did the extensive69

early invention?70

According to Lin (1995) this is known as the Needham question:71

“Why did modern science, the mathematization of hypotheses about Nature, with all its72

implications for advanced technology, take its meteoric rise only in the West at the time of73

Galileo[, but] had not developed in Chinese civilization or Indian civilization?”74

Needham cites the many developments in China:875

“Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon consid-76

ered as the three most important inventions facilitating the West’s transformation from the77

Dark Ages to the modern world, were invented in China.” (Lin, 1995)78

“Needham’s works attribute significant weight to the impact of Confucianism and Taoism on79

the pace of Chinese scientific discovery, and emphasizes what it describes as the ‘diffusionist’80

approach of Chinese science as opposed to a perceived independent inventiveness in the81

western world. Needham held that the notion that the Chinese script had inhibited scientific82

thought was ‘grossly overrated’ ” (Grosswiler, 2004).83

Lin was focused on military applications, missing the importance of non-military applications. A84

large fraction of mathematics was developed to better understand the solar system, acoustics, musical85

instruments and the theory of sound and light. Eventually the universe became a popular topic, and86

still is today.87

1.1.1 Lec 1 The Pythagorean theorem88

While early Asian mathematics is not fully documented, it clearly defined the course for at least several
thousand years. The first recorded mathematics was that of the Chinese (5000-1200 BCE) and the
Egyptians (3,300 BEC). Some of the best early record were left by the people of Mesopotamia (Iraq,
1800 BEC). Thanks to Euclid’s Elements (c323 BEC) we have an historical record, tracing the progress
in geometry, as defined by the Pythagorean theorem for any right triangle

c2 = a2 + b2, (1.1)

having sides of lengths (a, b, c) that are positive real numbers with c > [a, b] and a + b > c. Solutions89

were likely found by trial and error rather than by an algorithm.90

If a, b, c are lengths, then a2, b2, c2 are areas. Equation 1.1 says that the area a2 of a square plus
figure

the area b2 of a square equals the area c2 of square. Today a simple way to prove this is to compute
the magnitude of the complex number c = a+ b, which forces the right angle

|c|2 = (a+ b)(a− b) = a2 + b2.

8https://en.wikipedia.org/wiki/Joseph_Needham\#cite_note-11
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However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers91

and algebra had yet to be invented.92

Almost 700 years after Euclid’s Elements, the Library of Alexandria was destroyed (391 EC) by93

fire, taking with it much of the accumulated Greek knowledge. Thus one of the best technical records94

may be Euclid’s Elements, along with some sparse mathematics due to Archimedes (c300 BEC) on95

geometrical series, computing the volume of a sphere, and the area of the parabola, and elementary96

hydrostatics. Additionally, a copy of a book by Diophantus Arithmetic was discovered by Bombelli97

(c1572) in the Vatican library (Stillwell, 2010, p. 51).98

Chronological history pre 16th century 1.1.2a

200th BCE Chinese (Primes; quadratic equation; Euclidean algorithm (GCD))

180th BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)

6th BCE Pythagoras (Thales) and the Pythagorean “tribe”

4th BCE Archimedes 300BCE; Euclid (quadratic equation)

3th CE Diophantus c250CE;

4th CE Alexandria Library destroyed 391CE;

7th CE Brahmagupta (negative numbers; quadratic equation)

9th CE al-Khwārizmī (algebra) 830CE

15th Leonardo & Copernicus 1473-1543

16th Tartaglia (cubic eqs); Bombelli 1526-1572; Galileo Galilei 1564-1642

Time Line

1500BCE |0CE |500 |1000 |1400 |1650

Christ

Chinese
Babylonia

Pythagoreans
Euclid

LeonardoBrahmagupta
Diophantus Bhaskara

Archimedes
Bombelli

al−Khawarizmi Copernicus

Figure 1.2: Mathematical time-line between 1500 BCE and 1650 CE.

1.1.2 Pythagorean Triplets99

Well before Pythagoras, the Babylonians had tables of Pythagorean triplets (PTs), integers [a, b, c]100

that obey Eq. 1.1. An example is [3, 4, 5]. A stone tablet (Plimpton-322) dating back to 1800 [BCE]101

(Fig. 1.7) was found with integers for [a, c]. Given such sets of two numbers, which determined a third102

positive integer b such that b =
√
c2 − a2, this table is more than convincing that the Babylonians were103

well aware of PTs, but less convincing that they had access to Euclid’s formula (Eq. 1.4).104

It seems likely that Euclid’s Elements was largely the source of the fruitful 6th century era due to105

the Greek Mathematician Diophantus (Fig. 1.2), who developed the concept of discrete mathematics,106

now known as Diophantine analysis.107

The work of Diophantus was followed by a rich mathematical era, with the discovery of 1) early cal-108

culus (Brahmagupta, 7th CE), 2) algebra (al-Khwārizmī, 9th CE), and 3) complex arithmetic (Bombelli,109

15th CE). This period overlapped with the European middle (i.e., dark) ages. Presumably European in-110

tellectuals did not stop thinking during these many centuries, but what happened in Europe is presently111

unclear given the available records.9112

9It might be interesting to search the archives of the monasteries, where the records were kept, to figure out what
happened during this strange time.
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1.1.3 What is mathematics?113

Mathematics is a language, not so different from other languages. Today’s mathematics is a written114

language with an emphasis on symbols and glyphs, biased toward Greek letters. The etymology of these115

symbols would be interesting to study. Each symbol is dynamically assigned a meaning, appropriate116

for the problem being described. These symbols are then assembled to make sentences. It is similar117

to Chinese in that the spoken and written version are different across dialects. In fact, like Chinese,118

the sentences may be read out loud in the language (dialect) of your choice, while the mathematical119

sentence (like Chinese) is universal.120

Math is a language: It seems strange when people complain that they “can’t learn math,”10 but121

they claim to be good at languages. Math is a language, with the symbols taken from various languages,122

with a bias toward Greek, due to the popularity of Euclid’s Elements. Learning a new language is fun123

because it opens doors to other cultures.124

Math is different due to the rigor of the rules of the language, along with the way it is taught (e.g.,125

not as a language). A third difference between math and the romance languages is that math evolved126

from physics, with important technical applications. This was the concept behind the Pythagorean127

school, a band of followers called the Pythagoreans. Learning languages is an advanced social skill.128

Thus the social outcomes are very different between learning a romance language and math. A further129

problem is that pre-high-school, students confuse arithmetic with math. The two topics are very130

different, and students need to understand this. One does not need to be good at arithmetic to be131

good at math (but it doesn’t hurt).132

There are many rules that must be mastered. These rules are defined by algebra. For example the133

sentence a = b means that the number a has the same value as the number b. The sentence is spoken134

as “a equals b.” The numbers are nouns and the equal sign says they are equivalent, playing the role of135

a verb, or action symbol. Following the rules of algebra, this sentence may be rewritten as a− b = 0.136

Here the symbols for minus and equal indicate two types of actions.137

Sentences can become arbitrarily complex, such as the definition of the integral of a function, or a138

differential equation. But in each case, the mathematical sentence is written down, may be read out139

loud, has a well defined meaning, and may be manipulated into equivalent forms following the rules140

of algebra and calculus. This language of mathematics is powerful, with deep consequences, known as141

proofs.142

The writer of an equation should always translate (explicitly summarize the meaning of the expres-143

sion), so the reader will not miss the main point. This is simply a matter of clear writing.144

Language may be thought of as mathematics (turning this idea on its head). To properly write145

correct English it is necessary to understand the construction of the sentence. It is important to146

identify the subject, verb, object, and various types of modifying phrases. If you wish to read about147

this, look up the distinction between the words that and which, which make a nice example of this148

concept. Most of us work directly with what we think “sounds right,” but if you’re learning English as149

a second language, it is very helpful to understand these mathematical rules, which are arguably easier150

to master than the foreign phones (i.e., speech sounds).151

1.1.4 Early Physics as Mathematics152

Mathematics has many functions, but basically it summarizes an algorithm (a set of rules). It was153

clear to Pythagoras (and many others before him), that there was an important relationship between154

mathematics and the physical world. Pythagoras may have been one of the first to capitalize on this155

relationship, using science and mathematics to design and make things.11 This was the beginnings156

of technology as we know it, coming from the relationship between physics and math, impacting157

10“It looks like Greek to me.”
11It is likely that the Chinese and Egyptians also did this, but this is more difficult to document.
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Figure 1.3: Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli; Below: Leonhard Euler (1707) and Jean le
Rond d’Alembert (1717-1783). The figure numbers are from Stillwell (2010).
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map making, tools, implements of war (the wheel, gunpowder), art (music), sound, water transport,158

sanitation, secure communication, food, . . . , etc.159

Why is Eq. 1.1 called a theorem, and what exactly needs to be proved? We do not need to prove160

that (a, b, c) obey this relationship, since this is a condition that is observed. We do not need to prove161

that a2 is the area of a square, as this is the definition of the area of a square. What needs to be proved162

is that this relation only holds if the angle between the two shorter sides is 90◦.163

To appreciate the significance of this development it is helpful to trace the record back to before164

the time of the Greeks. The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras.165

Rather Euclid and Pythagoras appreciated the importance of these ideas and documented them.166

In the end the Pythagoreans were destroyed by fear. This may be the danger of mixing technology167

and politics:168

“Whether the complete rule of number (integers) is wise remains to be seen. It is said that169

when the Pythagoreans tried to extend their influence into politics they met with popular170

resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 BCE.”171

–Stillwell (2010, p. 16)172

1.1.5 The birth of modern mathematics173

Modern mathematics (what we know today) was born in the 15-16th century, in the hands of Leonardo174

da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Stillwell, 2010). Many of these early175

master were, like the Pythagoreans, secretive to the extreme about how they solved problems. They176

had no interest in sharing their ideas. This soon changed by Mersenne, Descartes and Newton, causing177

mathematics to blossom.178

The amazing Bernoulli family The first individual that seems to have openly recognized the179

importance of mathematics, to actually teach it, was Jacob Bernoulli (Fig. 1.3). Jacob worked on what180

is now view as the standard package of analytic “circular” (i.e., periodic) functions: sin(x), cos(x),181

exp(x), log(x).12 Eventually the full details were developed (for real variables) by Euler (Section 1.3.8182

and 3.4.1).183

From Fig. 1.4 we see that he was contemporary to Galileo, Mersenne, Descartes, Fermat, Huygens,184

Newton, and Euler. Thus it seems likely that he was strongly influenced by Newton, who in turn was185

influenced by Descartes,13 Vìte and Wallis (Stillwell, 2010, p. 175). With the closure of Cambridge186

University due to the plague of 1665, Newton returned home, Woolsthorpe-by-Colsterworth (95 [mi]187

north of London), to worked by himself, for over a year.188

Discuss Newton and Euler along with log(x), exp(x), sin(x), cos(x) and ζ(x), with x ∈ R, and the189

eventual transition to complex arguments x→ x+ y.190

Jacob Bernoulli, like all successful mathematicians of the day, was largely self taught. Yet Jacob191

was in a new category of mathematicians, because he was an effective teacher. Jacob taught his sibling192

Johann, who then taught his sibling Daniel. But most importantly, Johann taught Leonhard Euler193

(Figs. 1.4, 1.3), the most prolific (thus influential) of all mathematicians. This resulted in an explosion194

of new ideas and understanding. It is most significant that all four mathematicians published their195

methods and findings. Much later, Jacob studied with students of Descartes14 (Stillwell, 2010, p. 268-9).196

Euler went far beyond all the Bernoulli family, Jacob, Johann and Daniel, (Stillwell, 2010, p. 315).197

A special strength of Euler was the degree to which he published. First he would master a topic, and198

then he would publish. His papers continued to appear long after his death (Calinger, 2015).199

Another individual of that time of special note, who also published extensively, was d’Alembert200

(Figs. 1.4, 1.3). Some of the most important tools were first proposed by d’Alembert. Unfortunately,201

and perhaps somewhat unfairly, his rigor was criticized by Euler, and later by Gauss (Stillwell, 2010).202

12The log and tan functions are related by tan−1(z) = − 1

2
ln( 1−z

1+z
).

13https://en.wikipedia.org/wiki/Early_life_of_Isaac_Newton
14It seems clear that Descartes was also a teacher.
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Once the tools were being openly published, mathematics grew exponentially. It was one of the203

most creative times in mathematics. Figure 1.4 shows the list of the many famous names, and their204

relative time-line. To aid in understand the time line, note that Leonhard Euler was a contemporary205

of Benjamin Franklin, James Clerk Maxwell of Abraham Lincoln.15
206

Chronological history post 16th century 1.1.2b

17th Galileo 1564-1642, Kepler 1571-1630, Newton 1642-1727 Principia 1687; Mersenne;
Huygen; Pascal; Fermat, Descartes (analytic geometry); Bernoullis Jakob, Johann &
son Daniel

18th Euler 1748 Student of Johann Bernoulli; d’Alembert 1717-1783; Kirchhoff; Lagrange;
Laplace; Gauss 1777-1855

19th Möbius, Riemann 1826-1866, Galois, Hamilton, Cauchy 1789-1857, Maxwell, Heavi-
side, Cayley, von Helmholtz, Rayleigh

20th Hilbert; Einstein; . . .

Time Line

|1525 |1600 |1700 |1800 |1875 |1925

Mersenne

Fermat

Hilbert

US Civil War

Descartes

Ben Franklin

Johann Bernoulli

Jacob Bernoulli
Daniel Bernoulli

Einstein
Huygens

Euler

Newton

d′Alembert

Gauss

Galileo Cauchy
von Helmholtz

Maxwell

Riemann

Bombelli

Rayleigh

Figure 1.4: Time-line of the four centuries from the 16th and 20th CE

1.1.6 Three Streams from the Pythagorean theorem207

From the outset of his presentation, Stillwell (2010, p. 1) defines “three great streams of mathematical208

thought: Numbers, Geometry and Infinity,” that flow from the Pythagorean theorem, as summarized209

in Table 1.1. Namely the Pythagorean theorem is the spring from which flow the three streams of210

all mathematics. This is a useful concept, based on reasoning not as obvious as one might think.211

Many factors are in play here. One of these was the strongly held opinion of Pythagoras that all212

mathematics should be based on integers. The rest are tied up in the long, necessarily complex history213

of mathematics, as best summarized by the Fundamental theorems, which are each discussed in detail214

in the appropriate chapter.215

Stillwell’s concept of three streams following from the Pythagorean theorem is the organizing prin-216

ciple behind the this book, organized by chapter:217

1. Introduction (Chapter 1) A detailed overview of the fundamentals and the three streams are218

presented in Sections 1.2–1.5.219

2. Number Systems (Chapter 2: Stream 1) Fundamentals of number systems, starting with prime220

numbers, through complex numbers, vectors and matrices.221

3. Algebraic Equations (Chapter 3: Stream 2) Algebra and its development, as we know it today.222

The theory of real and complex equations and functions of real and complex variables. Complex223

impedance Z(s) of complex frequency s = σ+ω is covered with some care, given its importance224

for engineering mathematics.225

15Lincoln traveled through Mahomet IL (where I live) on his way to the Urbana Court house.
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4. Scalar Calculus (Chapter 4: Stream 3a) Ordinary differential equations. Integral theorems.226

Acoustics.227

5. Vector Calculus: (Chapter 5: Stream 3b) Vector Partial differential equations. Gradient, diver-228

gence and curl differential operators. Stokes, and Green’s theorems. Maxwell’s equations.229

Table 1.1: Three streams followed from Pythagorean theorem: Number Systems
(Stream 1), Geometry (Stream 2) and Infinity (Stream 3). 1.1.3

• The Pythagorean Theorem is the mathematical spring which bore the three streams.

• ≈Several centuries per stream:

1) Numbers:

6thBC N counting numbers, Q (Rationals), P Primes

5thBC Z Common Integers, I Irrationals

7thCE zero ∈ Z

2) Geometry: (e.g., lines, circles, spheres, toroids, . . . )

17thCE Composition of polynomials (Descartes, Fermat)
Euclid’s Geometry + algebra ⇒ Analytic Geometry

18thCE Fundamental Theorem of Algebra

3) Infinity: (∞ → Sets)

17-18thCE F Taylor series, Functions, Calculus (Newton)

19thCE R Real, C Complex 1851

20thCE Set theory

1.2 Stream 1: Number Systems230

This era produced a new stream of fundamental theorems. A few of the individuals who played a231

notable role in this development, in chronological (birth) order, include Galileo, Mersenne, Newton,232

d’Alembert, Fermat, Huygens, Descartes and Helmholtz. These individuals were some of the first233

to develop the basic ideas, in various forms, that were then later reworked into the proofs, that today234

we acknowledge as The fundamental theorems of mathematics.235

Number theory (discrete, i.e., integer mathematics) was a starting point for many key ideas. For236

example, in Euclid’s geometrical constructions the Pythagorean theorem for {a, b, c} ∈ R was accepted237

as true, but the emphasis in the early analysis was on integer constructions, such as Euclid’s formula238

for Pythagorean triplets (Eq. 1.4, Fig. 2.5) k As we shall see, the Pythagorean theorem is a rich source239

of mathematical constructions, such as composition of polynomials, and solutions of Pell’s equation by240

eigenvector and recursive analysis methods. Recursive difference equation solutions predate calculus, at241

least going back to the Chinese (c2000 BCE). These are early (pre-limit) forms of differential equations,242

best analyzed using an eigenfunction expansion (Appendix D), a powerful geometrical concept from243

linear algebra, of an expansion in terms of an orthogonal set of normalized (unit-length) vectors.244

The first use of zero and ∞: It is hard to imagine that one would not appreciate the concept of245

zero and negative numbers when using an abacus. If five beads are moved up, and one is moved down,246

then four are left. Then if four more are move down, that leaves zero. Taking away is the opposite247

of addition, and taking away from four to get zero beads, is no different than taking four away from248

zero, to get negative four beads. Subtraction, the inverse of addition, seems like an obvious idea, on249

an abacus.250
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However, understanding the concept of zero and negative numbers is not the same as having a251

symbolic notation. The Roman number system had no such symbols. The first recorded use of a252

symbol for zero is said to be by Brahmagupta in 628 CE.16 Thus it does not take much imagination253

to go from counting numbers N to the set of all integers Z, including zero, but apparently it takes 600254

years to develop a terminology that represents these ideas. Defining the rules of subtraction required255

the creation of algebra c830 CE (Fig. 1.2). The concept that caused far more difficulty was ∞. Until256

Riemann’s thesis in 1851 it was not clear if ∞ was a number, many numbers, or even definable.257

1.2.1 Lec 2: The Taxonomy of Numbers: P,N,Z,Q, I,R,C258

Once symbols for zero and negative numbers were defined (and accepted), progress was made. In259

a similar manner, to fully understand numbers, a transparent notation is required. First one must260

differentiate between the different classes (genus) of numbers, providing a notation that defines each of261

these classes, along with their relationships. It is logical to start with the most basic counting numbers,262

which we indicate with the double-bold symbol N. All the double-bold symbols and their genus are263

summarized in Appendix A.264

Counting numbers N: These are known as the “natural numbers” {1, 2, 3, · · · } ∈ N, denoted by265

the double-bold symbol N. For increased clarity we shall refer to the natural numbers as counting266

numbers, to clarify that natural means integer. The mathematical sentence 2 ∈ N is read as 2 is a267

member of the set of counting numbers. The word set means the sharing of a specific property.268

Primes P: A prime number P ⊂ N (set P is a subset of N) is an integer that may not be factored,269

other than by 1 and itself. Since 1 = 1 · 1, 1 6∈ P, as it is seen to violate this basic definition of a prime.270

Prime numbers P are a subset of the counting numbers (P ⊂ N). We shall use the convenient notation271

πn for the prime numbers, indexed by n ∈ N. The first 12 primes (n = 1, . . . , 12) are πn = 2, 3, 5, 7, 11,272

13, 17, 19, 23, 29, 31, 37. Since, 4 = 22 and 6 = 2 · 3 may be factored, {4, 6} 6∈ P (read as: 4 and 6 are273

not in the set of primes). Given this definition, multiples of a prime, i.e., nπk ≡ [2, 3, 4, 5, . . . timesπk274

of any prime πk, cannot be prime. It follows that all primes except 2 must be odd and every integer275

N is unique in its factorization.276

Coprimes are number whose factors are distinct (they have no common factors). Thus 4 and 6 are277

not coprime, since they have a common factor of 2, whereas 21 = 3 · 7 and 10 = 2 · 5 are coprime. By278

definition all distinct primes are coprime. The notation m ⊥ n indicates that m,n are coprime.279

The Fundamental Theorem of Arithmetic states that all integers may be uniquely expressed as a280

product of primes. The Prime Number Theorem estimates the mean density of primes over N.281

Integers Z: These include positive and negative counting numbers and zero. Notionally we might282

indicate this using set notation as Z : {−N, 0,N}. Read this as The integers are in the set composed of283

the negative of the natural numbers (−N), zero, and counting numbers N. Note that N ⊂ Z.284

Rational numbers Q: These are defined as numbers formed from the ratio of two integers. Since285

the integers Z include 1, it follows that integers are a subset of rational numbers (Z ⊂ Q). For example286

the rational number 3/1∈ Z). The main utility of rational numbers is that that they can efficiently287

approximate any number on the real line, to any precision. For example π ≈ 22/7 with a relative error288

of ≈0.04%. Of course, if the number is rational the error is zero.289

Fractional number F : The utility of rational numbers is their power to approximate irrational290

numbers (R 6⊂ Z). It follows that a subset of the rationals, that excludes the integers, has great value.291

We call these numbers Fractional numbers and assign them the symbol F. They are defined as the292

subset of rationals that are not integers. From this definition F ⊥ Z, F ⊂ Q = Z ∪ F. Because of their293

16The fall of the Roman Empire was Sept. 4, 476.
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approximating property, the fractional set F represent the most important (and the largest) portion294

of the rational numbers, dwarfing the size of the integers, another good reason for defining the two295

distinct subsets.296

Once factored and common factors canceled, the subset F ⊂ Q of rational numbers is always the297

ratio of coprimes. For example π ≈ 22/7 = 11 · 2/7 = 3 + 1/7 with 22 ⊥ 7, and 9/6 = 3/2 = 1 + 1/2298

with 3 ⊥ 2.17
299

Irrational numbers I: Every real number that is not rational (✓✓Q) is irrational (Q ⊥ I). Irrational300

numbers include π, e and the square roots of most integers (i.e.,
√

2). These are decimal numbers that301

never repeat, thus requiring infinite precision in their representation.302

Irrational numbers (I) were famously problematic for the Pythagoreans, who incorrectly theorized303

that all numbers were rational. Like ∞, irrational numbers require a new and difficult concept before304

they may even be defined: They were not in the set of fractional numbers (I 6⊂ F). It was easily305

shown, from a simple geometrical construction, that most, but not all of the square roots of integers306

are irrational. It was essential to understand the factorization of counting numbers before the concept307

of irrationals could be sorted out.308

Real numbers R: Reals are the union of rational and irrational numbers, namely R : {I,Q}309

(R = Z ∪ F ∪ I). Reals are the lengths in Euclidean geometry. Many people assume that IEEE 754310

floating point numbers (c1985) are real (i.e., ∈ R). In fact they are rational (Q : {F∪Z}) approximations311

to real numbers, designed to have a very large dynamic range. There can be no machine realization312

of irrational numbers, since such a number would require infinite precision (∞ bits). The hallmark of313

fractional numbers (F) is their power in making highly accurate approximations of any real number.314

Using Euclid’s compass and ruler methods, one can make line length proportionally shorter or315

longer, or (approximately) the same. A line may be made be twice as long, an angle bisected. However,316

the concept of an integer length in Euclid’s geometry was not defined.18 Nor can one construct an317

imaginary or complex line as all lines are assumed to be real.318

Real numbers were first fully accepted only after set theory was developed by Cantor (1874) (Still-319

well, 2010, pp. 461, 525. . . ). It seems amazing, given how widely accepted real numbers are today. But320

in some sense they were accepted by the Greeks, as lengths of real lines.321

Complex numbers C: Complex numbers are best defined as ordered pairs of real numbers.19 They322

are quite special in engineering mathematics, since roots of polynomials having either real or complex323

coefficients may be complex. The best known example is the quadratic formula for the roots of a 2d
324

degree polynomial, with either real or complex coefficients.325

The common way to write a complex number is using the common notation z = a+ b ∈ C, where326

a, b ∈ R. Here 1 =
√
−1. We also define 1ı = −1 to account for the two possible signs of the square327

root. Accordingly 12 = 1ı2 = −1.328

Multiplication of complex numbers follows the rules of real algebra, similar to multiplying two
polynomials. Multiplication of two first degree polynomials gives

(a+ bx)(c+ dx) = ac+ (ad+ bc)x+ bdx2

If we substitute 1 for x, and use the definition 12 = −1, we obtain the product of the two complex
numbers

(a+ b)(c+ d) = ac− bd+ (ad+ bc).

17HW problem: How to define F given two integers (n, m) ⊂ Z? Sol: Not sure how to approach this, but it seems like
a fun problem. Here two simple methods that do not work: (1) One cannot define F as the ratio x = n/m, since given
m = 1, x ∈ Z. (2) One cannot define F as the ratio of two coprimes, since then x = 1/m 6∈ F (since 1 6 P).

18As best I know.

19A polynomial a + bx and a 2-vector [a, b]T =

[
a
b

]
are also examples of ordered pairs.
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Thus multiplication of complex numbers obeys the accepted rules of algebra.329

Polar representation: A alternative for complex multiplication is to work with polar coordinates.
The polar form of complex number z = a + b is written in terms of its magnitude ρ =

√
a2 + b2 and

angle θ = ∠z = tan−1(z) = arctan z, as z = ρeθ. From the definition of the complex natural log
function

ln ρeθ = ln ρ+ θ,

which is useful in engineering calculations.20
330

Matrix representation: A second alternative and useful way to represent complex numbers is in
terms of 2x2 matrices. This relationship is defined by the mapping from a complex number to a 2x2
matrix

a+ jb↔
[
a −b
b a

]
.

You might verify that

a+ b

c+ d
=
ab+ bd+ (bc− ad)

c2 + d2
←→

[
a −b
b a

] [
c −d
d c

]−1

=

[
a −b
b a

] [
c d
−d c

]
1

c2 + d2
.

By taking the inverse of the 2x2 matrix one can define the ratio of one complex number by another,331

Until you try out this representation, it may not seem obvious, or even that it could work.332

This representation proves that 1 is not necessary to define a complex number. What 1 can333

do is simplify the algebra, both conceptually and for numerical results. It is worth your time to334

become familiar with the matrix representation, to clarify any possible confusions you might have335

about multiplication and division of complex numbers. This matrix representation can save you time,336

heartache and messy algebra. Once you have learned how to multiply two matrices, it’s a lot simpler337

than doing the complex algebra. In many cases we will leave the results of our analysis in matrix form,338

to avoid the algebra altogether.21 More on this topic may be found in Chapter 2.339

Real versus complex numbers: All numbers may be viewed as complex. Namely every real number
is complex if we take the imaginary part to be zero (Boas, 1987). For example, 2 ∈ P ⊂ C. Likewise
every purely imaginary number (e.g., 0 + 1) is complex with zero real part. It follows that 2 ∈ P.
Integers are a subset of reals, which are a subset of complex numbers22 Gaussian integers are complex
integers (Z ⊂ R ⊂ C).23 From the above discussion it should be clear that each of these different
classes of number are nested in a hierarchy, in the following embeddings

πk ∈ P ⊂ N ⊂ Z ⊂ Z ∪ F = Q ⊂ Q ∪ I = R ⊂ C.

The integers Z and fractionals F split the rationals (Q : Z ∪ F, Z ⊥ F), each of which is a subset of340

the rationals (Z ∈ Q, F ⊂ Q). The rationals Q and irrationals I split the reals (R : Q ∪ I, Q ⊥ I), each341

of which is a subset of the reals (Q ∈ R, I ∈ R).342

The roots of polynomials xk are complex (xk ∈ C), independent of the genus of the coefficients (e.g.,343

real integer coefficients give rise to complex roots). Each genus plays an important role in algebra, with344

prime numbers at the bottom (root of the tree) and complex numbers at the top. We shall explore this345

further in Chaps. 2 and 3.346

20Chapter 2 discusses the definition of the phase, i.e., how is it computed (i.e., arctan(eθ), arctan2(x,y)), and the
importance of the unwrapped phase, as in the example δ(t − τ) ↔ e−τ.

21Sometimes we let the computer do the final algebra, numerically, as 2x2 matrix multiplications.
22The plural complexs (a double /s/) seems an unacceptable word in English.
23It follows that integers are a subset of Gaussian integers (the imaginary or real part of the Gaussian integer may be

zero).
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Finally, note that complex numbers C do not have “order,” meaning one cannot be larger, smaller347

or equal to another. It makes no sense to say that  > 1 or  = 1 (Boas, 1987). The real and imaginary348

parts and the magnitude and phase have order.349

History of complex numbers: It is notable how long it took for complex numbers to be accepted350

(1851), relative to when they were first introduced by Bombelli (16th century CE). In fact, complex351

integers (aka, Gaussian integers) were accepted before non-integral complex numbers. Apparently real352

numbers (R) were not accepted (i.e., proved to exist, thus mathematically defined) until even later. It353

took the development of set theory in the late 19th century to sort out a proper definition of the real354

number, due to the existence of irrational numbers.355

Computer Representations of I,R,C: When doing numerical work, one must consider how we may356

compute within the family of reals (i.e., irrationals). There can be no irrational number representation357

on a computers. IEEE floating point numbers, which are the international standard of computation,358

are actually rational approximations. The mantissa and the exponent are each integers, having sign359

and magnitude. The size of each integer depends on the precision of the number being represented.360

An IEEE floating-point number is rational because it has a mantissa integer multiplied by a base to361

the power of an exponent integer.362

Floating point numbers contain irrational numbers, which must be approximate by rational num-
bers. This leads to the concept of fractional representation, which requires the definition of the man-
tissa, exponent and base. Numerical results must not depend on the base. For example, when using

Make a table

base ten24

π · 105 ≈ 314 159.27 . . . = 3 · 105 + 1 · 104 + 4 · 103 + · · ·+ 9 · 100 + 2 · 10−1 · · · .

According to Matlab’s dec2bin() routine, the binary representation is
ck 4 errors

π · 217 ≈ 13107210 · 22/7 = 110, 0100, 1001, 0010, 01012,

where 1 and 0 are multipliers of powers of 2, which are then added together as follows

218 + 217 + 214 + 211 + 28 + 25 + 22 + 20.

In base 16 (i.e, hexadecimal) 217 · 22/7 = 218 · 816/716.363

One may keep track of the decimal point using the exponent, which in this case is a factor of 217
364

= 13107210. The concept of a number having a decimal point is replaced by an integer, having the365

desired precision, and a scale factor of any base (radix). This scale factor may be thought of as moving366

the decimal point to the right (larger number) or left (smaller number). The mantissa “fine-tunes” the367

value about a scale factor (the exponent).368

Here is x = 217 × 22/7 at IEEE 754 full double precision, as computed by an IEEE-754 floating369

point converter25 x = 411940.562510 = 254 × 1198372 = 010010, 001, 10010, 010010, 010010, 0100102 =370

0x48c9249216. The commas in the binary string of ones and zeros, are to help visualize the quasi-371

periodic nature of the bit-stream. The mantissa is 479349010 and the exponent is 218. The numbers372

are stored in a 32 bit format, with 1 bit for sign, 8 bits for the exponent and 23 bits for the mantissa.373

Perhaps a more instructive number is x = 4793490.0 = 01, 001, 010, 100, 100, 100, 100, 100, 100, 100, 1002374

= 0x4a, 924, 92416 which has a repeating binary bit pattern of ((100))3, only broken by the scale factor375

0x4a. Another with even higher symmetry is x = 6.344, 131, 191, 146, 9 × 10−17 = 0x24, 924, 92416 =376

00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1002. In this example the repeating pattern is clear in the377

Hex representation as a repeating ((942))3. As before, the commas are to help with readability, and378

have no other meaning.379

24Base 10 is the natural world-wide standard simply because we have 10 fingers.
25http://www.h-schmidt.net/FloatConverter/IEEE754.html
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There are other important types of representations. As pairs of reals, complex numbers have similar380

approximate representations. An important representations of complex numbers is ez = cosh(z) +381

j sinh(z), which includes the famous formula of Euler eθ = cos θ + j sin θ. Some of these concepts can382

be generalized to include vectors, matrices and polynomials.383

Integers and the Pythagoreans The integer is the corner stone of the Pythagorean doctrine, so384

much so that it caused a fracture within the Pythagoreans when it was discovered that not all numbers385

are rational. The famous example is the isosceles triangle 1, 1,
√

2, which lead to the next triangle386

[1, 2,
√

3], etc. This is known as the Spiral of Theodorus: the short side is 1 and the hypotenuse is387

extended by one, using a simple compass-ruler construction.388

There are right-triangles with integral lengths, the best known being [3, 4, 5]. Such triplets of389

integers [a, b, c] that satisfy the Pythagorean formula (Eq. 1.1) are denoted Pythagorean triplets, which390

may be verified using Euclid’s formula (Eq. 1.4).391

To form triangles with perfect 90◦ angles, the lengths need to satisfy Eq. 1.1. Such triangles are392

also useful in constructing buildings or roads made from of bricks having a uniform size.393

Public-private key Security: An important application of prime numbers is public-private key394

(RSA) encryption, essential for internet security applications (e.g., online banking). To send secure395

messages the security (i.e., utility) of the internet is dependent on key encryption.26 Most people396

assume this is done by a personal login and passwords. Passwords are simply not secure, for many397

reasons. The proper method depends on factoring integers formed from products of primes having398

thousands of bits.27 The security is based on the relative ease in multiplying large primes, but the399

virtual impossibility of factoring them.400

When a computation is easy in one direction, but its inverse is impossible, it is called a trap-door401

function. We shall explore the reasons for this in Chapter 2. If everyone switched from passwords to402

public key encryption, the internet would be much more secure.403

Puzzles: A third application of integers are imaginative problems that use integers. An example is404

the classic Chinese Four stone problem: “Find the weight of four stones that can be used with a scale405

to weigh any object (e.g., salt, gold) between 0, 1, 2, . . . , 40 [gm].” As with the other problems, the406

answer is not as interesting as the method, since the problem may be easily recast into a related one.407

This type of problem can be found in airline magazines as entertain on a long flight. The solution to408

this problem is best cast as a linear algebra problem, with integer solutions. Again, once you know the409

trick, it is “easy.”28
410

1.2.2 Lec 3: The role of physics in mathematics411

Bells, chimes and Eigenmodes Integers naturally arose in art, music and science. An example412

are the relations between musical notes, the natural eigenmodes (tones) of strings and other musical413

instruments. These relations were so common and well studied, it appeared that to understand the414

physical world (aka, the Universe), one needed to understand integers. This was a seductive view, but415

not actually correct. As will be discussed in Sections 1.3.1 and 3.1.1, it is best to view the relationship416

between acoustics, music and mathematics as historical, since these topics played such an important417

role in the development of mathematics. Also interesting is the role that integers seem to play in418

quantum mechanics, for much the same reasons.419

26One might say this is either: i) a key application of primes, or ii) it is primary application of keys. Its a joke.
27It would seem that public key encryption could work by having two numbers with a common prime, and then by

using Euclidean algorithm, that GCD could be worked out. One of the integers could be the public key and the second
could be the private key. Given the difficulty of factoring the numbers into their primes, and ease of finding the GCD
using Euclidean algorithm, a practical scheme may be possible. Ck this out.

28When ever someone tells you something is “easy,” you should immediately appreciate that it is very hard, but there
is a concept, that once you learn, the difficulty evaporates.
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Engineers are so accustomed to working with real (or complex) numbers, the distinction between420

real (i.e., irrational) and fractional numbers are rarely acknowledged. Integers on the other hand421

arise in many contexts. One cannot master programming computers without understanding integer,422

hexadecimal, octal, and binary representations, since all numbers in a computer are represented in423

numerical computations in terms of rationals (Q = Z ∪ F).424

As discussed in Section 1.2.1, the primary reason integers are so important is their absolute precision.425

Every integer n ∈ Z is unique,29 and has the indexing property, which is essential for making lists that426

are ordered, so that one can quickly look things up. The alphabet also has this property (e.g., a book’s427

index). Other than for hexadecimal numbers, which for notional reasons use the alphabet, letters are428

equivalent to integers.429

Because of the integer’s absolute precision, the digital computer overtook the analog computer,430

once it was practical to make logic circuits that were fast. The first digital computer was thought431

to be the Eniac at the University of Pennsylvania, but it turned out that the code-breaking effort in432

Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer (The433

Colossus) to break the WWII German “Enigma” code. Due to the high secrecy of this war effort, the434

credit was only acknowledged in the 1970s when the project was declassified.435

There is zero possibility of analog computing displacing digital computing, due to the importance436

of precision (and speed). But even with binary representation, there is a non-zero probability of error,437

for example on a hard drive, due to physical noise. To deal with this, error correcting codes have been438

developed, to reduce the error by several orders of magnitude. Today this is a science, and billions of439

dollars are invested to increase the density of bits per area, to increasingly larger factors. A few years440

ago the terabyte drive was unheard of; today it is the standard. In a few years petabyte drives will441

certainly become available. It is hard to comprehend how these will be used by individuals, but they442

are essential for on-line (cloud) computing.443

Fundamental theorems444

Modern mathematics is build on a hierarchical construct of fundamental theorems, as summarized in445

Table 1.2. The importance of such theorems cannot be overemphasized. Every engineering student446

needs to fully appreciate the significance of these key theorems. If necessary, memorize them. But447

that will not do over the long run, as each and every theorem must be fully understood. Fortunately448

most students already know several of these theorems, but perhaps not by name. In such cases, it is a449

matter of mastering the vocabulary.450

The theorems are naturally organized, starting with two theorems on prime numbers (Table 1.2).451

These may also be thought of in terms of Stillwell’s three streams. For Stream 1 there is the Fundamen-452

tal Theorem of Arithmetic and the Prime Number Theorem. For Stream 2 there is the Fundamental453

Theorem of Algebra and Bèzout’s theorem, while for Stream 3 there are a host of theorems on calcu-454

lus, ordered by their dimensionality. Some of these theorems verge on trivial (e.g., the Fundamental455

Theorem of Arithmetic). Others are more challenging, such as the Fundamental Theorem of Vector456

Calculus and Green’s theorem.457

Complexity should not be confused with importance. Each of these theorems is, as stated, funda-458

mental. Taken as a whole, they are a powerful way of summarizing mathematics.459

Stream 1: Prime Number theorems:460

There are two fundamental theorems about primes,461

1. The Fundamental Theorem of Arithmetic: This states that every counting number n > 1 ∈ N462

may be uniquely factored into prime numbers. This raises the question of the meaning of factor463

(split into a product).464

29Check out the history of 1729 = 13 + 122 = 93 + 103.
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Table 1.2: The Fundamental theorems of mathematics 1.2.0

1. Fundamental theorems of:

(a) Number Systems:

• Arithmetic

• Prime Number

(b) Geometry:

• Algebra

• Bèzout

(c) Calculus:a

• Leibniz R1

• Complex C ⊂ R2

• vectors R3,Rn,R∞

2. Other key concepts:

• Complex analytic functions (complex roots are finally accepted!)

– Complex Taylor Series of complex functions

– Region of convergence (ROC) of an infinite series

– Laplace transform, and its inverse

– Complex frequency versus causal time

– Cauchy Integral Theorem

– Residue integration (i.e., Green’s Thm in R2)

• Riemann mapping theorem (Gray, 1994; Walsh, 1973)

• Complex Impedance (Ohm’s Law) Kennelly

aFlanders, Harley (June–July 1973). “Differentiation under the integral sign.” American Math-
ematical Monthly 80 (6): 615-627. doi:10.2307/2319163. JSTOR 2319163.

2. The Prime Number Theorem: One would like to know how many primes there are. That is easy:465

|P| = ∞. (The cardinality, or size of the set of primes, is infinite). The proper way of asking466

this questions is What is the average density of primes, in the limit as n → ∞? This question467

was answered, for all practical purposes, by Gauss, who as a pastime computed the first million468

primes by hand. He discovered that, to a good approximation, the primes are equally likely on469

a log scale. This is nicely summarized by the jingle attributed to the mathematician Pafnuty470

Chebyshev471

Chebyshev said, and I say it again: There is always a prime between n and 2n.472

(Stillwell, 2010, p. 585)473

When the ratio (interval) of two frequencies (pitch) is 2, the relationship is called an octave. Thus we474

might say there is at least one prime per octave. This makes on wonder about the maximum number475

of primes per octave. In modern music the octave is further divided into 12 intervals called semitones476

(factors), equal to the 12
√

2. The product of 12 semitones is an octave. Thus we must wonder how477

many primes there is per semitone?478
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Stream 2: Fundamental theorem of Algebra479

This theorem states that every polynomial has at least one root. When that root is removed then the480

degree of the polynomial is reduced by 1. Thus when applied recursively, a polynomial of degree N481

has N roots.482

Besides the Fundamental Theorem of Algebra, a second important theorem is Bèzout’s theorem,483

which is a generalization of the Fundamental Theorem of Algebra. It says30 that the composition of484

two polynomials has degree equal to the product of the degrees of each polynomial. For example, if485

P3(x) = x3 and P5(x) = x5, then P3(P5)(x) = (x5)3 = x15. It further states that when counting the486

N roots of a polynomial of degree N , one must include the imaginary roots, double roots and roots at487

infinity, some of which may difficult to identify.488

Stream 3: Fundamental theorems of calculus489

Picture of von Helmholtz here, with discussion of his paper490

There are at least four theorems related to integral calculus:491

1. Leibnez theorem (R) area under a real curve.492

2. Cauchy’s theorem (C) residue integration and analytic functions.493

Gauss’s Law (R2) conservation of mass and charge crossing a closed surface.494

3. Stoke’s theorem (R2) relates line integrals to the rate of change of the flux crossing an open495

surface.496

4. Green’s theorem, a generalization of the above theorems497

5. Helmholtz’s theorem Every differentiable vector field may be decomposed into a dilatation and a498

rotation.499

In Sections 1.5.3, 1.5.5 and 5.1.3 we will deal with each of the theorems for Stream 3, where we500

consider the several Fundamental theorems of integration, starting with Leibniz’s formula for integra-501

tion on the real line (R), then progressing to complex integration in the complex plane (C) (Cauchy’s502

theorem), which is required for computing the inverse Laplace transform. Then we discuss Gauss’ and503

Stokes’ Laws for R2, with closed and open surfaces. One cannot understand Maxwell’s equations,504

fluid flow, or acoustics without understanding these theorems. Any problem that deals with the wave505

equation in more than one dimension requires an understanding of these concepts. The derivation of506

the Kirchhoff voltage and current laws is based on these theorems.507

Other key concepts508

Besides the widely recognized fundamental theorems for the three streams, there are a number of509

equally important theorems that have not yet been labeled as “fundamental.”31
510

The widely recognized Cauchy Integral Theorem is an excellent example, since it is a stepping stone511

to the Fundamental Theorem of Complex Integral Calculus. In Chapter 4 we clarify the contributions512

of each of these special theorems.513

Once these Fundamental theorems of integration (Stream 3) have been mastered, the student is514

ready for the complex frequency domain, which takes us back to Stream 2 and the complex frequency515

plane (s = σ+ω ∈ C). While the Fourier and Laplace transforms are taught in Mathematics courses,516

typically few physical connections are made, accordingly the concept of complex frequency is rarely517

30Statements of the theorem speak of intersections and constructions of curves, rather than compositions. I find
this somewhat confusing. For example, how does intersection differ from elimination, or construction from composition
(Stillwell, 2010, p. 119)?

31It is not clear what it takes to reach this more official sounding category.
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mentioned. The complex frequency domain and causality are fundamentally related, and critical for518

the analysis of signals and systems.519

Without the concept of time and frequency, one cannot develop an intuition for the Fourier and520

Laplace transform relationships, especially within the context of engineering and mathematical physics.521

WEEK 2522

523

1.2.3 Lec 4: Two theorems on primes524

Theorem 1: Fundamental Theorem of Arithmetic525

Factoring integers: Every integer n ∈ N has a unique factorization (Stillwell, 2010, p. 43)

n =
K
Π

k=1
πβk

k , (1.2)

where k = 1, . . . ,K indexes the integer’s K prime factors πk and their multiplicity βk.526

Examples: 2312 = 23 · 172 = π3
1 π

2
7 (i.e., π1 = 2, β1 = 3;π7 = 17, β7 = 2)527

2313 = 32 · 257 = π2
3 π55 (i.e., π2 = 3, β3 = 2;π55 = 257, β55 = 1)528

Integers 2312 and 2313 are said to be coprime, since they have no common factors. Coprimes may
be identified via the greatest common divisor :

gcd(a, b) = 1

using the Euclidean algorithm (Stillwell, 2010, p. 41).529

Theorem 2: Prime Number Theorem530

Gauss showed empirically that the average total number of primes less than N is

N∑

n=1

δn ∼
N

ln(N)

based on hand calculations “as a pastime” in 1792-3 (Goldstein, 1973). Here δn = 1 if n is a prime and531

zero otherwise.32.532

It follows that the average density of primes is ρπ(N) ∼ 1/ lnn, thus

ρπ(N) ≡ 1

N

N∑

n=1

δ(n) ≈ 1

N
Li(N) ≡ 1

N

∫ N

2

dξ

ln(ξ)
,

where Li(N) is the offset logarithmic integral (Stillwell, 2010, p. 585). The primes are distributed533

as 1/ ln(n) since the average total number of primes is proportional to the logarithmic integral Li(n)534

(Goldstein, 1973; Fine, 2007).535

Here is a Matlab code that tests this formula:536

NP=1e6; % 10ˆ6 primes537

p=primes(NP); %compute primes538

delta=zeros(1,NP); delta(p)=1; %put 1 at each prime539

rho=cumsum(delta)./cumsum(1:NP); %estimate of the density of primes540

figure(1)541

32You may view δn for the first 100 numbers with the one-line Matlab command stem(isprime(1:100))
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semilogy(rho); %plot of density vs number of primes542

figure(2)543

loglog(rho); %shows that 1/N drops mean too fast544

figure(3);loglog(cumsum(delta)./cumsum(1:NP)*0.44); %Power law normalization better545

Based on this script it seems that dividing by 1/N overcompensates for the growth of the Li(N) function546

with N , and N0.44 brings the growth to zero, for the case of a 106 primes. It could be that as the547

number grows to N =∞ the optimal normalization could still be 1/N .548

From the Prime Number Theorem it is clear that the density of primes is large (they are not scarce).549

As best I know there are no methods to find primes other than by the sieve method (Section 2.1.1,550

p. 69). If there is any good news it is that they only need to be computed once, and saved. In practical551

applications this doesn’t help much given their large number. In theory, given primes πn up to n = N ,552

the density ρπ(N) could help one search for a particular prime of known size N , by estimating how553

many primes there are in the neighborhood of N .554

Not surprisingly, playing with primes has been a popular pastime of mathematicians. Perhaps this555

is because those who have made inroads, providing improved understanding, have become famous.556

1.2.4 Lec 5: Greatest common divisor (Euclidean algorithm)557

The Euclidean algorithm is a method to find the greatest common divisor (GCD) k between two integers558

n,m, denoted k = gcd(n,m), where n,m, k ∈ N. For example 15 = gcd(30, 105) since when factored559

(30, 105) = (2 · 3 · 5, 7 · 3 · 5) = 3 · 5 · (2, 7) = 15 · (2, 7). The Euclidean algorithm was known to the560

Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41).561

Why is the GCD important? Computing the GCD is simple, whereas a full factoring is extremely562

expensive. The GCD is important precisely because of the fundamental difficulty of factoring large563

integers into their primes. This utility surfaces when the two numbers are composed of very large564

primes. When two integers have no common factors they are said to be coprime, thus their GCD is 1.565

The ratio of two integers which are coprime is automatically in reduced form (they have no common566

factors).567

For example 4/2 ∈ Q is not reduced since 2=gcd(4,2). Canceling out the common factor 2, gives568

the reduced form 2/1=2 ∈ N. Thus if we wish to form the ratio of two integers, first compute the gcd569

and remove it from the two numbers, then form the ratio. This assures the rational number is in its570

reduced form. If the GCD were 103 digits it is obvious that the common factor must be removed before571

any computation should proceed.572

An example: Take the two integers [873, 582]. In factored form these are [π25 · 32, π25 · 3 · 2]. Given
the factors, we see that the largest common factor is π25 · 3 = 291. When we take the ratio of the two
numbers this common factor cancels

873

582
= ✟✟π25 · ✁3 · 3

✟✟π25 · ✁3 · 2
=

3

2
.

Of course if we divide 582 into 873 this we will numerically obtain the answer 1.5 ∈ R. If the common573

factor is large, a floating point number in F is returned, since all floating point numbers are in F.574

But due to rounding errors, it may not be 3/2. To obtain the exact answer, in F, we need the GCD.575

Removing large common factors, without actually factoring the two numbers, has obvious practical576

utility.577

Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers578

be 6, 9. At each step the smaller number (6) is subtracted from the larger (9) and the difference579

(the remainder) and the smaller numbers are saved. This process continues until the two resulting580

numbers are equal, at which point the GCD equals that final number. If we were to take one more581

step, the final numbers would be the gcd and zero. For our example step 1 gives 9-6=3, leaving 6 and582
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Greatest Common Divisor: k=gcd(m,n)

• Examples (m, n, k ∈ Z):

– gcd(13*5,11*5) = 5 (The common 5 is the gcd)

– gcd(13*10,11*10) = 10 (The gcd(130,110) = 10 = 2*5, is not prime)

– gcd(1234,1024) = 2 (1234=2*617, 1024=210)

– gcd(πkπm, πkπn) = πk

– k=gcd(m,n) is the part that cancels in the fraction m/n ∈ F

– m/gcd(m, n) ∈ Z

• Co-primes (m ⊥ n) are numbers with no common factors: i.e., gcd(m,n)=1

– The gcd of two primes is always 1: gcd(13,11) = 1, gcd(πm, πn)=1

– m = 7 · 13, n = 5 · 19 ⇒ (7 · 13) ⊥ (5 · 19)

– If m ⊥ n then gcd(m, n) = 1

– If gcd(m, n) = 1 then m ⊥ n

• The GCD may be extended to polynomials: e.g., gcd(ax2 + bx + c, αx2 + βx + γ)

– gcd((x − 3)(x − 4), (x − 3)(x − 5))= (x − 3)

– gcd(x2 − 7x + 12, 3(x2 − 8x + 15))= 3(x − 3)

– gcd(x2 − 7x + 12, (3x2 − 24x + 45)= 3(x − 3)

– gcd( (x − 2π)(x − 4), (x − 2π)(x − 5) )= (x − 2π) (Needs long division)

Figure 1.5: The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathematics,
and is highly relevant today. It is both powerful and simple. It was used by the Chinese during the Han dynasty (Stillwell,
2010, p. 70) for reducing fractions. It may be used to find pairs of integers that are coprime (their gcd must be 1), and it
may be used to identify factors of polynomials by long division. It has an important sister algorithm called the continued
fraction algorithm (CFA), that is so similar in concept that Gauss referred to the Euclidean algorithm as the“continued
fraction algorithm” (Stillwell, 2010, p. 48).

3. Step 2 gives 6-3=3 and 3. Since the two numbers are the same, the GCD=3. If we take one more583

difference we obtain (3,0). We can easily verify this result since this example is easily factored (e.g.,584

3 · 3, 3 · 2) = 3(3, 2). It may be numerically verified using the Matlab GCD command gcd(6,9), which585

returns 3.586

In Chapter 2, Section 2.1.2 (p. 72), we shall describe two methods for implementing this procedure587

using matrix notation, and explore the deeper implications.588

Coprimes589

Related to the prime numbers are co-primes, which are integers that when factored, have no common590

primes. For example 20 = 5·2·2 and 21 = 7·3 have no common factors, thus they are coprime. Coprimes591

[m,n] may be indicated with the “perpendicular” notation n ⊥ m, spoken as “n is perpendicular (perp)592

to m.” One may use the GCD to determine if two numbers are coprime. When gcd(m,n) = 1, m and593

n are coprime. For example since gcd(21,20)=1 (i.e., 21 ⊥ 20) the are coprime.594

1.2.5 Lec 6: Continued fraction algorithm (CFA)595

The Continued fraction algorithm was mentioned in Section 1.2.4 at the end of the discussion on596

the GCD. These two algorithms (CFA vs. GCD) are closely related, enough that Gauss referred to597

the Euclidean algorithm as the Continued fraction algorithm (i.e., the name of the CFA algorithm)598

(Stillwell, 2010, P. 48). This question of similarity needs some clarification, as it seems unlikely that599

Gauss would be confused about such a basic algorithm.600

In its simplest form the CFA starts from a real decimal number and recursively expands it as601

a fraction. It is useful for finding rational approximations to any real number. The GCD uses the602

Euclidean algorithm on a pair of integers m > n ∈ N and finds their greatest common divisor k ∈ N.603
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At first glance it is not clear why Gauss would call the CFA the Euclidean algorithm. One must assume604

that Gauss had some deeper insight into the relationship. If so, it would be valuable to understand.605

In the following we refine the description of the CFA and give examples that go beyond the simple606

cases of expanding numbers. The CFA of any number, say x0, is defined as follows:607

1. Start with n = 0 and input target (starting value) x0 ∈ R.608

2. If |xn| ≥ 1/2 define an = round(xn), which rounds to the nearest integer.609

3. rn = xn − an is the remainder. If rn = 0, the recursion terminates.610

4. Define xn+1 ≡ 1/rn and return to step 2 (with n = n+ 1).611

An example: Let x0 ≡ π ≈ 3.14159 . . . . Thus a0 = 3, r0 = 0.14159, x1 = 7.065 ≈ 1/r0, and a1 = 7.
If we were to stop here we would have

π̂1 ≈ 3 +
1

7 + 0.0625 . . .
≈ 3 +

1

7
=

22

7
. (1.3)

This approximation of π ≈ 22/7 has a relative error of 0.04%

22/7− π
π

= 4× 10−4.

For the second approximation we continue by reciprocating the remainder 1/0.0625 ≈ 15.9966 which
rounds to 16, resulting in the second approximation

π̂2 ≈ 3 + 1/(7 + 1/16) = 3 + 16/(7 · 16 + 1) = 3 + 16/113 = 355/113.

Note that if we had truncated 15.9966 to 15, the remainder would have been much larger, resulting612

in a less accurate rational approximation. The recursion may continue to any desired accuracy as613

convergence is guaranteed.614

Rational approximation examples

22

7
= [3; 7] ≈ π +O(1.3× 10−3)

355

113
= [3; 7, 16] ≈ π +O(2.7× 10−7)

104348

33215
= [3; 7, 16,−249] ≈ π +O(3.3× 10−10)

Figure 1.6: The expansion of π to various orders using the CFA, along with the order of the error of
each rational approximation. For example 22/7 has an absolute error (|22/7− π|) of about 0.13%.

Notation: Writing out all the fractions can become tedious. For example, expanding e using the
Matlab command rat(exp(1)) gives the approximation

3 + 1/(−4 + 1/(2 + 1/(5 + 1/(−2 + 1/(−7))))).

A compact notation for this these coefficients of the CFA is [3;−4, 2, 5,−2,−7]. Note that the leading615

integer may be indicated by an optional semicolon to indicate the decimal point. Unfortunately Matlab616

does not support the bracket notation.617
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If the process is carried further, the values of an ∈ N give increasingly more accurate rational618

approximations. If the floor rounding is used π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .] whereas true619

rounding gives π = [3; 7, 16,−294, 3,−4, 5,−15, . . .], thus rounding introduces negative coefficients each620

time a number rounds up.621
HW problem?

When the CFA is applied and the expansion terminates (rn = 0), the target is rational. When622

the expansion does not terminate (which is not always easy to determine), the number is irrational.623

Thus the CFA has important theoretical applications regarding irrational numbers. You may try this624

yourself using Matlab’s rats(pi) command. Also try the Matlab command rat(1+sqrt(2)).625

One of the useful things about the procedure, besides its being so simple, are its generalizations,626

one of which will be discussed in Section 2.1.2 (p. 72).627

A continued fraction expansion can have a high degree of symmetry. For example, the CFA of

1 +
√

5

2
= 1 +

1

1 + 1
1+···

= 1.618033988749895 . . . ,

Here the lead term in the fraction is always 1 (an = [1; 1, 1, · · · ]), thus the sequence will not terminate,628

proving that
√

5 ∈ I. A related example is rat(1+sqrt(2)), which gives [2; 2, 2, 2, . . .].629

When expanding a target irrational number (x0 ∈ I), and the CFA is truncated, the resulting
rational fraction approximates the irrational target. For the example above, if we truncate at three
coefficients ([1; 1, 1]) we obtain

1 +
1

1 + 1
1+0

= 1 + 1/2 = 3/2 = 1.5 =
1 +
√

5

2
+ 0.118 + . . . .

Truncation after six steps gives

[1. 1, 1, 1, 1, 1, 1] = 13/8 ≈ 1.6250 =
1 +
√

5

2
+ .0070 . . . .

Because all the coefficients are 1, this example converges very slowly, When the coefficients are large630

(i.e., remainder small), the convergence will be faster. The expansion of π is an example of faster631

convergence.632

In summary: Every rational number m/n ∈ F, with m > n > 1, may be uniquely expanded as a633

continued fraction, with coefficients ak determined using the CFA. When the target number is irrational634

(x0 ∈ Q), the CFA does not terminate, thus each step produces a more accurate rational approximation,635

converging in the limit as n→∞.636

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational,637

but with an important caveat: one must determine if the expansion terminates. In cases where the638

expansion produces a repeating coefficient sequence, it is clear that the sequence cannot terminate.639

The fraction 1/3 = 0.33333 . . . is an example of such a target where the CFA will terminate.33
640

WEEK 3641

642

1.2.6 Labor day643

1.2.7 Lec 7 Pythagorean triplets (Euclid’s formula)644

Euclid’s formula is a method for finding three integer lengths [a, b, c] ∈ N, that satisfy Eq. 1.1. It is
important to ask “Which set are the lengths [a,b,c] drawn from?” There is a huge difference, both

33Taking the Fourier transform of the target number, represented as a sequence, could identify a periodic component.
The number 1/7 = [[1, 4, 2, 8, 5, 7]]6 has a 50 [dB] notch at 0.8π [rad] due to its 6 digit periodicity, carried to 15 digits
(Matlab precision), Hamming windows, and then zero padded to 1024 samples.
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practical and theoretical, if they are from the real numbers R, or the counting numbers N. Given
p > q ∈ N, the three lengths [a, b, c] ∈ N of Eq. 1.1 are given by

a = p2 − q2, b = 2pq, c = p2 + q2. (1.4)

This result may be directly verified, since

[p2 + q2]2 = [p2 − q2]2 + [2pq]2

or
p4 + q4 +✟✟✟

2p2q2 = p4 + q4 −✟✟✟
2p2q2 +✟✟✟

4p2q2.

Thus, this result is easily proven, given the solution. Construction the solution is more difficult.645

A well known example is the right triangle defined by the integers [3, 4, 5] ∈ N , having angles646

[0.54, 0.65, π/2] [rad], which satisfies Eq. 1.1. As quantified by Euclid’s formula Eq. 1.4 (Section 2.2.1),647

there are an infinite number of Pythagorean triplets (PTs). Furthermore the seemingly simple triangle,648

having angles of [30, 60, 90] ∈ N [deg] (i.e., [π/6, π/3, π/2] ∈ I [rad]), has one irrational (I) length649

([1,
√

3, 2]).650

Figure 1.7: “Plimpton-322” is a stone tablet from 1800 BCE, displaying a and c values of the Pythagorean
triplets [a, b, c]. Numbers (a, c ∈ N), with the property b =

√
c2 − a2 ∈ N, known as Pythagorean triplets, were

found carved on a stone tablet from the 19th century [BCE]. Several of the c values are primes, but not the a
values. The stone is item 322 (item 3 from 1922) from the collection of George A. Plimpton. –Stillwell (2010,
Exercise 1.2)

The technique for proving Euclid’s formula for PTs [a, b, c] ∈ Q, derived in Fig. 2.5 of Section 2.1.3,651

is much more interesting than the PTs themselves.652
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The set from which the lengths [a, b, c] are drawn was not missed by the Indians, Chinese, Egyptians,653

Mesopotamians, Greeks, etc. Any equation whose solution is based on integers is called a Diophantine654

equation, named after the Greek mathematician Diophantus of Alexandria (c250 CE).655

A stone tablet having the numbers engraved on it, as shown in Table 1.7 was discovered in656

Mesopotamia and from the 19th century [BCE] and cataloged in 1922 by George Plimpton.34, 35 These657

numbers are a and c pairs from PTs [a,b,c]. Given this discovery, it is clear that the Pythagoreans were658

walking in the footsteps of those well before them. Recently a second similar stone, dating between659

350 and 50 [BCE] has been reported, that indicates early calculus on the orbit of Jupiter’s.36
660

1.2.8 Lec 8: Pell’s Equation661

Pell’s equation

x2 −Ny2 = 1, (1.5)

with non-square N ∈ N specified and a, b ∈ N unknown, is related to the Euclidean algorithm (Stillwell,662

2010, 48). For example, with N = 2, one solution is a = 17, b = 12 (172 − 2 · 122 = 1). This equation663

has a long history (Stillwell, 2010).664

A 2x2 matrix recursion algorithmic, used by the Pythagoreans to investigate the
√

2,

[
xn

yn

]
=

[
1 2
1 1

] [
xn−1

yn−1

]
(1.6)

also results in solutions of Pell’s equations (Stillwell, 2010, p. 44). Their approach was likely motivated665

by the Euclidean algorithm (GCD, p. 31), since yn/xn →
√

2 (Stillwell, 2010, p. 37,55). Note that this666

is a composition method, of 2x2 matrices, since the output of one matrix multiply is the input to the667

next.668

Asian solutions: The first intended solutions of Pell’s was presented by Brahmagupta (c628), who669

independently discovered the equation (Stillwell, 2010, p. 46). Bramagupta’s novel solution introduced670

a different composition method (Stillwell, 2010, p. 69), and like the Greek result, these solutions were671

incomplete.672

Then in 1150CE, Bhâskara II obtained solutions using Eq. 1.6 (Stillwell, 2010, p.69). This is the673

solution method we shall explore here, as summarized in Fig. 1.8.674

The best way to see how this recursion results in solutions to Pell’s equation, is by example.
Initializing the recursion with the trivial solution x0 = [1, 0]T , gives

[
x1

y1

]
=

[
1
1

]
=

[
1 2
1 1

] [
1
0

]
12 − 2 · 12 = −1

[
x2

y2

]
=

[
3
2

]
=

[
1 2
1 1

] [
1
1

]
32 − 2 · 22 = 1

[
x3

y3

]
=

[
7
5

]
=

[
1 2
1 1

] [
3
2

]
(7)2 − 2 · (5)2 = −1

[
x4

y4

]
=

[
17
12

]
=

[
1 2
1 1

] [
7
5

]
172 − 2 · 122 = 1

[
x5

y5

]
=

[
41
29

]
=

[
1 2
1 1

] [
17
12

]
(41)2 − 2 · (29)2 = −1

34http://www.nytimes.com/2010/11/27/arts/design/27tablets.html
35https://en.wikipedia.org/wiki/Plimpton_322
36http://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy-jupiter.html
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Thus the recursion results in a modified version of Pell’s equation

x2
n − 2y2

n = (−1)n,

thus only even values of n are solutions. This sign change had no effect on the Pythagoreans, who only675

cared about yn/xn →
√

2.676

Solution to Pell’s equation: By multiplying the matrix by 1, all the solutions to Pell’s equation677

are determined. This solution is shown in Fig. 1.8 for the case of N = 2, and again in Appendix D,678

Eq. D.1, for N = 3. The math is straightforward and is easily verified using Matlab. From Fig. 1.8679

we can see that every output this slightly modified matrix recursion gives solutions to Pell’s equation680

(Eq. 1.5).681

For n = 0 (the initial solution) [x0, y0] is [1,0], [x1, y1] = j[1, 1], and [x2, y2] = −[3, 2]. These are682

easily computed by this recursion, and easily checked on a hand calculator (or using Matlab). Without683

the  factor the sign would alternate; the 1 factor corrects the alternation in sign, so every iteration684

yields a solution.685

• Case of N = 2 & [x0, y0]T = [1, 0]T

Note: x2
n − 2y2

n = 1, xn/yn −→∞
√

2

[
x1

y1

]
= 

[
1
1

]
= 

[
1 2
1 1

] [
1
0

]
2 − 2 · 2 = 1

[
x2

y2

]
= 2

[
3
2

]
= 

[
1 2
1 1

]


[
1
1

]
32 − 2 · 22 = 1

[
x3

y3

]
= 3

[
7
5

]
= 

[
1 2
1 1

]
2
[
3
2

]
(7)2 − 2 · (5)2 = 1

[
x4

y4

]
=

[
17
12

]
= 

[
1 2
1 1

]
3
[
7
5

]
172 − 2 · 122 = 1

[
x5

y5

]
= 

[
41
29

]
= 

[
1 2
1 1

] [
17
12

]
(41)2 − 2 · (29)2 = 1

Figure 1.8: This summarizes the solution of Pell’s equation for N = 2 using a slightly modified matrix recursion.
Note that xn/yn →

√
2 as n→∞, which was what the Pythagoreans were pursuing.

At each itteration, the ratio xn/yn approaches
√

2 with increasing accuracy, coupling it to the686

Euclidean algorithm (GCD). The value of 41/29 ≈
√

2, with a relative error of <0.03%. The solution687

for N = 3 is discussed at the end of Appendix D.688

Relations to digital signal processing: Today we recognize Eq. 1.6 as a difference equation, which689

is a pre-limit (pre Stream 3) form of differential equation. The Greek 2x2 form is an early precursor to690

17th and 18th century developments in linear algebra. Thus the Greek’s recursive solution for the
√

2691

and Bhâskara’s (1030 CE) solution of Pell’s equation, is an early precurser to discrete-time processing,692

as well as to calculus. Newton was fully aware of these developments as he reconstructed Diophanus’s693

chord/tangent method (Stillwell, 2010, p. 7, 49, 218).694

Given the development of linear algebra c19th century, as discussed in Section 2.2.2 (page 79), this695

may be evaluated by eigenvector diagonalization.37
696

There are similarities between Pell’s Equation and the Pythagorean theorem. As we shall see in697

Chapter 2, Pell’s equation is related to the geometry of a hyperbola, just as the Pythagorean equation698

37https://en.wikipedia.org/wiki/Transformation_matrix#Rotation
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is related to the geometry of a circle. One might wonder if there is a Euclidean formula for the solutions699

of Pell’s Equations. After all, these are all conic sections with closely related geometry, in the complex700

plane.701

Pell’s Equation and irrational numbers: Since the eigenvalues of Eq. 1.6 (λ± = 1 ∓
√
N 6∈ N),702

solutions to Pell’s equation raised the possibility that all numbers are not rational. This discovery703

of irrational numbers forced the jarring realization that the Pythagorean dogma “all is integer” was704

wrong. The significance of irrational numbers was far from understood.705

WEEK 4706

707

1.2.9 Lec 9: Fibonacci sequence708

Another classic problem, formulated by the Chinese, was the Fibonacci sequence, generated by the
relation

fn+1 = fn + fn−1. (1.7)

Here the next number fn+1 is the sum of the previous two. If we start from [0, 1], this difference
equation leads to the Fibonacci sequence fn = [0, 1, 1, 2, 3, 5, 8, 13, · · · ]. The solution may be generated
by the recursion of a 2x2 matrix equation, or by the z-transform method. Alternatively, if we define
yn+1 = xn,

[
xn+1

yn+1

]
=

[
1 1
1 0

] [
xn

yn

]
(1.8)

is equivalent to Eq. 1.7. The correspondence is easily verified. Starting with [xn, yn]T = [0, 1]T we
obtain for the first few steps

[
1
0

]
=

[
1 1
1 0

] [
0
1

]
,

[
1
1

]
=

[
1 1
1 0

] [
1
0

]
,

[
2
1

]
=

[
1 1
1 0

] [
1
1

]
,

[
3
2

]
=

[
1 1
1 0

] [
2
1

]
, . . .

From the above xn = [0, 1, 1, 2, 3, 5, . . .] is the Fibonacci sequence since the next number is the sum of709

the last two.710

Note that this 2x2 equation is similar to Pell’s equation, suggesting that an eigenfunction expansion711

of Eq. 1.8 may be used to analyze the sequence, as shown in Section 2.3.1 (p. 79) (Stillwell, 2010, 192).712
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1.2.10 Lec 10: Exam I (In class)713

WEEK 4-AE 12.5.0714

715

L 11 Stream 2: Algebra and geometry as physics (Physics drives early mathematics)716

The first ”algebra” (al-jabr) al-Khwarizmi (9thCE)717

Polynomial equations in one and two variables (Stillwell, 2010, Ch. 6, p. 87)718

Solution of the Quadratic Equation; Taylor series719

Composition and intersection of polynomials720

AE-1 (HW4) for 9/16/16; Add convolution problem. Verify due date.721

1.3 Algebraic Equations: Stream 2722

1.3.1 Lec 11 Algebra and geometry as physics723

Following Stillwell’s history of mathematics, Stream 2 is geometry, which led to the merging of Euclid’s724

geometrical methods and the 9th century development of algebra by al-Khwarizmi (830 CE). This725

integration of ideas lead Descartes and Fermat to develop of analytic geometry. While not entirely a726

unique and novel idea, it was late in coming, given what was known at that time.727

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served728

students of mathematics for more than two thousand years. Algebra and geometry were, at first, inde-729

pendent lines of thought. When merged, the focus returned to the Pythagorean theorem, generalized as730

analytic conic sections rather than as geometry in Euclid’s Elements. With the introduction of Algebra,731

numbers, rather than lines, could be used to represent a geometrical length. Thus the appreciation for732

geometry grew given the addition of the rigorous analysis using numbers. And as before,integers (i.e.,733

numbers) are the precise representation.734

Physics inspires algebraic mathematics: The Chinese used music, art, navigation to drive math-735

ematics. With the invention of algebra this paradigm did not shift. A desire to understand motions of736

objects and planets participated many new discoveries. Galileo investigated gravity and invented the737

telescope. Kepler investigated the motion of the planets. While Kepler was the first to appreciate that738

the planets were described by ellipses, it seems he under-appreciate the significance of this finding, and739

continued with his epicycle models of the planets. Using algebra and calculus, Newton formalized the740

equation of gravity, forces and motion (Newton’s three laws) and showed that Kepler’s discovery of741

planetary elliptical motion naturally follows from these laws. With the discovery of Uranus “Kepler’s742

theory was ruined . . . in 1781.” (Stillwell, 2010, p. 23).743

It is somewhat amazing that to this day, we have failed to understand gravity significantly better744

than Newton. Perhaps this is too harsh, given the work of Einstein. Gravity waves were experimentally745

measured for the first time while I was formulating Chapter 3.746
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Once Newton proposed the basic laws of gravity, he proceed to calculate, for the first time, the
speed of sound. This required some form of the wave equation, a key equation in mathematical physics

∂2

∂x2
p(x, t) =

1

c2

∂2

∂t2
p(x, t). (1.9)

Here p(t, x) is the pressure as a function of time t and position x and c = 343 [m/s] is the speed of747

sound, which is a function of the density ρ = 1.12 [kg/m3] and the dynamic stiffness ηP0 of air.38
748

While Newton’s value for c was incorrect by the
√
η, a problem that would take more than two749

hundred years to solved, his success was important since it quantified the physics behind the speed of750

sound and demonstrated that momentum mv not mass m was transported by the wave. His concept751

was correct, and his formulation using algebra and calculus represented a milestone in science.752

Newton’s Principia was finally published in 1687, and the general solution to Newton’s wave equa-
tion [i.e., p(x, t) = G(t±x/c)], where G is any function, was first published 60 years later by d’Alembert
(c1747). Eventually showed, that for sounds of a single frequency, the wavelength λ and frequency f
were related by

fλ = c.

Today d’Alembert’s analytic wave solution is frequently written as

p(x, t) = e2π(ft±kx),

where k = c/λ is the wave number. This formulation led to the frequency domain concept of Fourier753

analysis, based on the linearity (i.e., superposition) property of the wave equation.754

An analogous discovery of the formula for the speed of light was made 114 years later by Maxwell755

(c1861). This also required great ingenuity, as it was necessary to hypothesize an experimentally756

unmeasured term in his equations, to get the mathematics to correctly predict the speed of light.757

The first Algebra: Prior to the invention of algebra, people worked out problems as sentences using
an obtuse description of the problem. Algebra solved this problem. It may be thought of as a compact
language, where numbers are represented as abstract symbols (e.g., x and α). The problems they
wished to solve could be formulated in terms of sums of powers of smaller terms, the most common
being powers of some independent variable (i.e., time or frequency). Today we call such an expression
a polynomial of degree n

Pn(x) ≡ anx
n + an−1x

n−1 + · · ·+ a0x
0 =

n∑

k=0

akx
k =

n∏

k=0

(x− xk). (1.10)

The key question was “What values of the x = xk result in Pn(xk) = 0.” In other words, what are the758

roots xk of the polynomial? The quest for the answer to this question consumed thousands of years,759

with intense efforts by many aspiring mathematicians. In the earliest attempts, it was a competition to760

evaluate mathematical acumen. Most of the results were held as a secret to the death bed. It would be761

fair to view this effort as an obsession. Today the roots of any polynomial may be found by numerical762

methods, to very high accuracy. There are also a number of important theorems.763

Of particular interest was composing a circle with a line, for example when the line does not touch764

the circle, and finding the roots. There was no solution to this problem using geometry. We shall765

address this question in the assignments.766

Polynomials are single valued functions: for each x there is a single value of Pn(x). The set of x767

values of a function are called the domain and the set of y(x) values are called the codomain. The768

roles of the domain and codomain may be swapped, to obtain the inverse function, which is typically769

quite different in its properties compared to the function. For example y(x) = x2 + 1 has the inverse770

x = ±√y − 1, which is double valued. Periodic functions such as y(x) = sin(x) are more exotic, since771

38η = cp/cv = 1.4 is the ratio of two thermodynamic constants, and P0 = 105 [Pa] is the barometric pressure of air.
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x(y) = arcsin(x) has an ∞ number of x(y) values for each y. When the argument is allowed to be772

complex, and the functions are complex analytic, one must resort to the extended complex plane,773

Riemann sheets and branch cuts. This is a theme that runs through the history of analytic functions,774

and even higher mathematics, since at least the 16th century, and probably much before. This topic775

will be discussed in length in Sections 1.3.7-1.3.10 and 3.3.3-3.4.3.776

There seems to be some disagreement as to the status of multivalued functions: Are they functions,777

or is a function strictly single valued. If so, then we are missing out on a host of possibilities, namely all778

the inverses of virtually every complex analytic function. Riemann’s solution, the branch cut concept,779

are discussed in Sections 1.3.8, 3.4.1.780

Finding roots of polynomials The problem of factoring polynomials has a history more than a781

millennium in the making. While degree N = 2 (quadratic) was solved by the time of the Babylonians782

(i.e., the earliest recorded history of mathematics), the cubic solution was finally published by Cardano783

in 1545. The same year, Cardano’s student solved the quartic. In 1826 it was proved that the quintic784

could not be factored by analytic methods.785

As a concrete example we begin with trivial case of the quadratic (2d degree) polynomial.

P2(x) = ax2 + bx+ c. (1.11)

The roots are those values of x such that P2(xk) = 0. One of the first results (recorded by the
Babylonians, c2000 BCE) was the factoring of this equation by completing the square (Stillwell, 2010,
p. 93). One may rewrite Eq. 1.11 as

1

a
P2(x) = (x+ b/2a)2 − (b/2a)2 + c/a, (1.12)

which is easily verified by expanding the squared term and canceling (b/2a)2

1

a
P2(x) = [x2 + (b/a)x+✘✘✘✘(b/2a)2]−✘✘✘✘(b/2a)2 + c/a.

Setting Eq. 1.12 to zero and solving for the two roots x±, gives the quadratic formula39

x± =
−b±

√
b2 − 4ac

2a
. (1.13)

If ac < 0, then the two roots are real (x± ∈ R). Otherwise, they are complex.786

No insight is gained by memorizing the quadratic formula (Eq. 1.13). On the other hand, an787

important concept is gained by learning Eq. 1.12, which can be very helpful when doing analysis.788

I suggest that instead of memorizing Eq. 1.13, memorize Eq. 1.12. Arguably, the factored form is789

easier to remember (or learn). Perhaps more importantly, the term b/2a has significance [P2(−b/2a) =790

c/a− (b/2a)2], the sign of which determines if the roots are real or complex.791

In third grade I learned the trick40
HW problem

9 · n = (n− 1) · 10 + (10− n). (1.14)

With this simple rule I did not need to depend on my memory for the 9 times tables. How one thinks792

about a problem can have great impact.793

39By direct substitution demonstrate that Eq. 1.13 is the solution of Eq. 1.11.
40E.G.: 9 · 7 = (7 − 1) · 10 + (10 − 7) = 60 + 3 and 9 · 3 = 2 · 10 + 7 = 27. As a check note that the two digits of the

answer must add to 9.
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Analytic Series: When the degree of the polynomial is infinite (i.e., n=∞), P∞(x), x ∈ R the series
is called a power series. For values of x where the power series converges, it is said to be analytic. The
set of values for which the series is analytic is called the region of convergence, or simply the ROC.
Knowing how to determine the ROC for a given analytic function is quite important, and may not

always be obvious. When the coefficients are determined by derivatives of P (x) evaluated at x = 0, then
it is called a Taylor series. These various series play a special role in mathematics, as the coefficients
of the series uniquely determine a function (e.g., via the derivatives). Two well known examples are
the single valued geometric series

1

1− x = 1 + x+ x2 + x2 + . . . =
∞∑

n=0

xn

and exponential

ex = 1 + x+
1

2
x2 +

1

3 · 2x
3 +

1

4 · 3 · 2x
4 + . . . =

∞∑

n=0

1

n!
xn.

For the geometric series, the ROC is |x| < 1. The function 1/(x2 + 1) has the same ROC as the
geometric series, since it may be written as (Section ?, p. 123)

1

x2 + 1
=

1

(x+ 1)(x− 1)
=

1

2

(
1

x− 1
− 1

x+ 1

)
.

Each term has an ROC of |x| < |1| = 1. In other words, it is the sum of two geometric series, each794

having a pole at ±1.795

The exponential series converges for every finite value of x (the ROC is the entire open plane, thus
the exponential is called an entire function). When the argument of the exponential becomes complex,
it is periodic since

eσ+ω = eσeω = eσ (cos(ω) +  sin(ω)) .

Analytic functions: Any function that has an analytic series representation is called an analytic796

function. Polynomials, 1/(1− x) and ex are analytic functions.797

Because analytic functions are easily manipulated, they may be sued to find solutions of differential
equations. The derivatives are easily computed, since they may be uniquely determined, term by term.
Every analytic function has a corresponding differential equation, that is determined by the coefficients
of the analytic power series. An example is the exponential, which has the property that it is the
eigenfunction of the derivative operation

d

dx
eax = aeax.

This relationship is a common definition of the exponential function, which is a very special function.798

Analytic functions may also be easily integrated, term by term. Newton took full advantage of799

these properties of analytic functions. To fully understand the theory of differential equations (DE),800

one needs to master single valued analytic functions and their analytic power series. Newton used the801

analytic series (Taylor series) to solve many problems, especially for working out integrals, allowing802

him to solve DEs.803

During the 16th and 17th century, it had becoming clear that DEs can characterize a law of nature
at a single point in space and time. For example the law of gravity (first formulated by Galileo to
explain the dropping to two objects of different masses) must obey conservation of energy. Newton
(c1687) went on to show that there must be a gravitational potential between to masses (m1,m2) of
the form

φ(r) =
m1m2

r
, (1.15)

where r = |x1 − x2| is the Euclidean distance between the two point masses at locations x1 and x2.804

Note that this a power series, but with exponent of −1.805
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Complex analytic functions: When the argument of and analytic function is complex, that is,806

x ∈ R is replaced by z = x+ y ∈ C, the function is said to be a complex analytic. We shall return to807

this topic in Section 3.1.1.808

Impact on Physics: The application of complex analytic functions to physics was dramatic, as may809

be seen in the six volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of810

his many (36) students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg41 and Seebach,811

to name a few), notable coworkers (i.e., Leon Brillouin) and others (i.e., John Bardeen), upon whom812

he had a strong influence. Sommerfeld is known for having many students who were awarded the813

Nobel Prize in Physics, yet he was not (the prize is not awarded in Mathematics). Sommerfeld brought814

mathematical physics (the merging of physical and experimental principles with mathematics) to a new815

level with the use of complex integration of analytic functions to solve otherwise difficult problems, thus816

following the lead of Newton who used real integration of Taylor series to solve differential equations,817

and later Cauchy. While much of this work is outside the scope of the present discussion, it is helpful818

to know who did what and when, and how people and concepts are connected.819

WEEK 5 12.5.0820

821

L 12 Examples of algebraic expressions in physics822

Fundamental Thm of Algebra (d’Alembert, ≈1760)823

Analytic Geometry: Algebra + Geometry (Euclid to Descartes)824

Newton and power series; Taylor series & ROC Composition of polynomial equations in two825

variables.826

827

L 13 Root classification for polynomials of Degree * = 1–4 (p.102);828

Convolution of monomials gives polynomial construction; Work out convolution for cubic829

Show that an−1 is sum of roots and a0 is product of roots. Quintic (* = 5) cannot be solved830

L 14 First Analytic Geometry (Fermat 1629; Descartes 1637) (p. 118) Descartes’ insight: Composition831

of two polynomials of degrees (m,n → one of degree m · n)832

Examples: x4 ◦ x2 = x8. Discuss Composition vs. intersection of functions.833

1.3.2 Lec 12 Physical equations quadratic in several variables834

When lines and planes are defined, the equations are said to be linear in the independent variables. In
keeping with this definition of linear, we say that the equations are non-linear when the equations have
degree greater than 1 in the independent variables. The term bilinear has a special meaning, in that
both the domain and codomain are linearly related by lines (or planes). As an example, an impedance
is defined in frequency as the ratio of the voltage over the current

Z(s) =
V (ω)

I(ω)
=
N(s)

D(s)
,

where Z(s) is the impedance and V and I are the voltage and current at radian frequency ω. The835

impedance is typically specified as the ratio of two polynomials, N(s) and D(s), as functions of complex836

Laplace frequency s = σ+ω. An example will be given in Section 1.3.6, Fig. 1.9. The bilinear function837

may be written as D(s)Y = N(s)I. Since D(s) and N(s) are both polynomials in s, this is called838

bilinear.839

41https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-1
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As an example consider the well known problem in geometry: the intersection of a plane with a840

cone, which leads to the conic sections: the circle, hyperbola, ellipse and parabola, along with some841

degenerate cases, such as the intersection of two straight lines42. If we stick to such 3-dimensional842

objects, we can write equations in the three variables [x, y, z], and be sure that they each represent843

some physical geometry. For example x2 + y2 + z2 = r2
0 is a sphere of radius r0.844

The geometry and the algebra do not always seem to agree. Which is correct? In general the845

geometry only looks at the real part of the solution, unless you know how to tease out the complex846

solutions. However the roots of any polynomial are from C, so we may not ignore the imaginary roots,847

as Newton did. There is an important related fundamental theorems, known as Bézout’s theorem, that848

address this case, as described next.849

1.3.3 Lec 13: Polynomial root classification by convolution850

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was851

being formulated by d’Alembert. The idea behind this theorem is that every polynomial of degree N852

(Eq. 1.10) has at least one root. This may be written as the product of the root and a second polynomial853

of degree of N− 1. By the recursive application of this concept, it is clear that every polynomial of854

degree N has N roots. Today this result is known as the Fundamental Theorem of Algebra:855

Every polynomial equation p(z) = 0 has a solution in the complex numbers. As Descartes
observed, a solution z = a implies that p(z) has a factor z − a. The quotient

q(z) =
p(z)

z − a

is then a polynomial of one lower degree. . . . We can go on to factorize p(z) into n linear856

factors.43
857

—Stillwell (2010, p. 285).858

The ultimate expression of this theorem is given by Eq. 1.10 (p. 40), which indirectly states that an859

nth degree polynomial has n roots.860

Today this theorem is so widely accepted we fail to appreciate it. Certainly about the time you861

learned the quadratic formula, you were prepared to understand the concept. The simple quadratic862

case may be extended a higher degree polynomial. The Matlab command roots([a3, a2, a1, a0]) will863

provide the roots of the cubic equation, defined by the four coefficients a3, . . . , a0. I don’t know the864

largest degree that can be accurately factored by Matlab, but I’m sure its well over N = 103. Today,865

finding the roots numerically is a solved problem.866

Factorization versus convolution: The best way to gain insight into the polynomial factorization867

problem is through the inverse operation, multiplication of monomials. Given the roots xk, there is868

a simple algorithm for computing the coefficients ak of Pn(x) for any n, no matter how large. This869

method is called convolution. Convolution is said to be a trap-door since it is easy, while the inverse,870

factoring (deconvolution), is hard, and analytically intractable for degree N ≥ 5 (Stillwell, 2010, p. 102).871

Convolution of monomials872

As outlined by Eq. 1.10, a polynomial has two descriptions, first as a series with coefficients an and873

second in terms of its roots xr. The question is “What is the relationship between the coefficients and874

the roots?” The simple answer is that they are related by convolution.875

42Such problems were first studied algebraically and Descartes (Stillwell, 2010, p. 118) and Fermat (c1637).
43Look into expressing this in terms of complex 2x2 matrices, as on p. 26.
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Let us start with the quadratic

(x+ a)(x+ b) = x2 + (a+ b)x+ ab,

where in vector notation [−a,−b] are the roots and [1, a+ b, ab] are the coefficients.876

To see how the result generalizes, we may work out the coefficients for the cubic (N = 3). Multi-
plying the following three factors gives

(x− 1)(x− 2)(x− 3) = (x2 − 3x+ 2)(x− 3) = x(x2 − 3x+ 2)− 3(x2 − 3x+ 2) = x3 − 6x2 + 11x− 6.

When the roots are [1, 2, 3] the coefficients of the polynomial are [1,−6, 11,−6]. To verify, substitute877

the roots into the polynomial, and show that they give zero. For example r1 = 1 is a root since878

P3(1) = 1− 6 + 11− 6 = 0.879

As the degree increases, the algebra becomes more difficult; even a cubic becomes tedious. Imagine880

trying to work out the coefficients for N = 100. What is needed is an simple way of finding the881

coefficients from the roots. Fortunately, convolution keeps track of the book-keeping, by formalizing882

the procedure.883

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vectors
[1, a] and [1, b]. To find the coefficients we must convolve the root vectors, indicated by [1, a] ⋆ [1, b],
where ⋆ denotes convolution. Convolution is a recursive operation. The convolution of [1, a] ⋆ [1, b] is
done as follows: reverse one of the two monomials and padding unused elements with zeros. Next slide
one monomial against the other, forming the local dot product (element-wise multiply and add):

a 1 0 0
0 0 1 b
= 0

a 1 0
0 1 b
= 1

a 1 0
1 b 0
= a+ b

0 a 1
1 b 0
= ab

0 0 a 1
1 b 0 0
= 0

,

resulting in coefficients [· · · , 0, 0, 1, a+ b, ab, 0, 0, · · · ].884

As seen by the above example, the position of the first monomial coefficients are reversed, and then
slid across the second set of coefficients, the dot-product is computed, and the result placed in the
output vector. Outside the range shown all elements are zero. In summary,

[1,−1] ⋆ [1,−2] = [1,−1− 2, 2] = [1,−3, 2].

In general

[a, b] ⋆ [c, d] = [ac, bc+ ad, bd],

Convolving a third term [1,−3] with [1,−3, 2] gives

[1,−3] ⋆ [1,−3, 2] = [1,−3− 3, 9 + 2,−6] = [1,−6, 11,−6],

which is identical to the cubic example, found by the algebraic method.885

By convolving one monomial factor at a time, the overlap is always two elements, thus it is never886

necessary to compute more than two multiplies and an add for each output coefficient. This greatly887

simplifies the operations (i.e., they are easily done in your head). Thus the final result is more likely888

to be correct. Comparing this to the algebraic method, convolution has the clear advantage.889

Each time we convolve a new monomial, the degree of the polynomial increases by 1. Thus two890

monomials gives degree 2, three monomials degree 3, etc. In general the degree l of the product of891

two polynomials of degree n,m is the sum of the degrees. For our example, the degrees are each 1892

(n = m = 5), then the output degree is l = 10. Simply put, the product of two polynomials of degree893

m,n having m and n roots each gives a polynomial of degree m + n having m + n roots. Note that894

the degree is one less than the length of the vector of coefficients.895
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Roots as a function of degree: The roots are easily found numerically for any reasonable poly-896

nomial of any desired degree. While there is a way to factor the polynomial analytically from the897

coefficients for N ≤ 4, factoring is not possible for N ≥ 5, as famously proved by Galois during his898

development of group theory (Stillwell, 2010, p. 87). These relationships will be explored in greater899

depth in Section 3.2.2 of Chapter 3.900

1.3.4 Lec 14: Introduction to Analytic Geometry901

Analytic geometry was the natural consequence of Euclid’s Geometry, merged with the new tool,902

algebra. What algebra added to geometry was the ability to compute with numbers. For example, the903

length of a line was measured in Geometry with a ruler, with numbers playing no role. Once algebra904

was available, the line’s Euclidean length could be computed from the coordinates of the two ends.905

Many concepts in geometry could be made more precise, such as the concept of a vector. The dot906

product between two vectors took a new meaning, as did the triple product, which defined the volume907

of a parallelepiped.908

The most obvious addition was to turn the conic section into algebra, rather than using drawings909

made with a compass and ruler. A useful example is the composition of the line and circle, a con-910

struction what was used many times over the history of mathematics. Once algebra was invented the911

composition could be done, with formulas.912

The first two mathematicians to do this were Fermat and Descartes (Stillwell, 2010, p. 111-115);913

Newton also contributed to this effort (Stillwell, 2010, p. 115-117). Given the new methods some914

problems emerged. The complex solutions continued to appear, without any obvious physical meaning.915

This seem to have been viewed as more of an inconvenience that a problem. Newton’s solution to this916

dilemma was to simply ignore the imaginary cases (Stillwell, 2010, p. 119). The resolution of this was917

eventually to be found in Bézout’s theorem, which states the number of roots of composition of two918

functions is determined by the product of their degrees. This problem is described as the construct of919

equations (Stillwell, 2010, p. 118). It was finally proved much later by Bézout (1779).920

WEEK 6 18.7.0921

922

L 15 Gaussian Elimination (upper-diagional matrix); Permutation matrix method923

Solution to x3 −Ny3 = 1 using chord and tangent methods924

AE-2: Linear (& nonlinear) systems of equations925

L 16 Composition and the Bilinear transformation (ABCD Transmission matrix method)926

L 17 Riemann sphere and the extended plane (3d chord and tangent method)927

Möbius Transformation (youtube video)928

Closing the complex plane929

1.3.5 Lec 15 Gaussian Elimination930

The method for finding the intersection of equations is based on the recursive elimination of all the931

variables but one. This method, known as Gaussian elimination, works across a broad range of cases,932

but may be defined in a systematic procedure when the equations are linear in the variables.44 Rarely933

do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian934

eliminations can still work in such cases (Stillwell, 2010, p. 90).935

44https://en.wikipedia.org/wiki/System_of_linear_equations
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In Appendix B the inverse of a 2x2 linear system of equations is derived. Even for a 2x2 case,
the general solution requires a great deal of algebra. Working out a numeric example of Gaussian
elimination is more instructive. For example, suppose we wish to find the intersection of the equations

x− y = 3

2x+ y = 2.

This 2x2 system of equations is so simple that you may immediately see the solution: Adding the936

two equations, and the y term is eliminated, giving 3x = 5. But doing it this way takes advantage of937

the specific example, and we need a method for larger systems of equations. We need a generalized938

(algorithmic) approach. This general approach is Gaussian elimination.939

Start by writing the equations in a standardized matrix format

[
1 −1
2 1

] [
x
y

]
=

[
3
2

]
. (1.16)

Next, eliminate the lower left term (2x) using a scaled version of the upper left term (x). Specifically,
multiply the first equation by -2, add it to the second equation, replacing the second equation with the
result. This gives [

1 −1
0 3

] [
x
y

]
=

[
3

2− 3 · 2

]
=

[
3
−4

]
. (1.17)

Note that the top equation did not change. Once the matrix is “upper triangular” (zero below the940

diagonal) you have the solution. Starting from the bottom equation, y = −4/3. Then the upper941

equation then gives x− (−4/3) = 3, or x = 3− 4/3 = 5/3.942

In principle Gaussian elimination is easy, but if you make a calculation mistake along the way, it943

is very difficult to find the error. The method requires a lot of mental labor, with a high probability944

of making a mistake. You do not want to apply this method every time. For example suppose the945

elements are complex numbers, or polynomials in some other variable such as frequency. Once the946

coefficients become more complicated, the seeming trivial problem becomes highly error prone. There947

is a much better way, that is easily verified, which puts all the numerics at the end in a single step.948

The above operations may be automated by finding a carefully chosen upper-diagonalization matrix
U that does the same operation. For example let

U =

[
1 0
−2 1

]
. (1.18)

Multiplying Eq. 1.16 by U we find

[
1 0
−2 1

] [
1 −1
2 1

] [
x
y

]
=

[
1 0
−2 1

] [
3
2

]
, (1.19)

we obtain Eq. 1.17. With a little practice one can quickly and easily find a U that does the job of949

removing elements below the diagonal.950

In Appendix B the inverse of a general 2x2 matrix is summarized in terms of three steps: 1) swap
the diagonal elements, 2) reverse the signs of the off diagonal elements and 3) divide by the determinant
∆ = ab− cd. Specifically [

a b
c d

]−1

=
1

∆

[
d −b
−c a

]
. (1.20)

There are very few things that you must memorize, but the inverse of a 2x2 is one of them. It needs951

to be in your tool-bag of tricks, as you did for the quadratic formula.952
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While it is difficult to compute the inverse matrix from scratch (Appendix B), it takes only a few
seconds to verify it (steps 1 and 2)

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc −ab+ ab
cd− cd −bc+ ad

]
=

[
∆ 0
0 ∆

]
. (1.21)

Finally, dividing by the determinant gives the 2x2 identity matrix. A good strategy, when you don’t953

trust your memory, is to write down the inverse as best you can, and then verify.954

Using 2x2 matrix inverse on our example, we find

[
x
y

]
=

1

1 + 2

[
1 1
−2 1

] [
3
2

]
=

1

3

[
5

−6 + 2

]
=

[
5/3
−4/3

]
. (1.22)

If you use this method, you will rarely (never) make a mistake, and the solution is easily verified.955

Either you can check the numbers in the inverse, as was done in Eq. 1.21, or you can substitute the956

solution back into the original equation.957

1.3.6 Lec 16: Transmission (ABCD) matrix composition method958

In this section we shall derive the method of composition of linear systems, known by several names959

as the ABCD Transmission matrix method, or in the mathematical literature as the Möbius (bilin-960

ear) transformation. By the application of the method of composition, a linear system of equations,961

expressed in terms of 2x2 matrices, can represent a large family of differential equation networks.962

By the application of Ohm’s law to the circuit shown in Fig. 1.9, we can model a cascade of such963

cells. Since the CFA can also treat such circuits, as shown in Fig. 2.3 and Eq. 2.2, the two methods964

may be related to each other via the 2x2 matrix expressions.965

L

C

V2V1 +

−

+

−

I2I1

Figure 1.9: This is a single LC segment of the transmission line show in Fig. 2.3. It may be modeled by the ABCD
model as the product of two matrices, as show below.

Example of the use of the ABCD matrix composition: In Fig. 1.9 we see the network is
composed of a series inductor (mass) with an impedance Zl = sL and a shunt capacitor (compliance)
with an impedance of Zc = 1/sC. By Ohm’s Law, each impedance is describe by a linear relation
between the current and the voltage. Regarding the inductive impedance, applying Ohm’s law we find

V1 − V2 = ZlI1.

Regarding the capacitive impedance, applying Ohm’s law we find

V2 = (I1 + I2)Zc.

These two equations may be written in matrix form. The series inductor equation is

[
V1

I1

]
=

[
1 Zl

0 1

] [
V2

I1

]
, (1.23)
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while the shunt capacitor equation is

[
V2

I1

]
=

[
1 0
Yc 1

] [
V2

−I2

]
, (1.24)

where Yc = 1/Zc.966

When the second matrix equation for the capacitor is substituted into the inductor equation, we
find the composite ABCD matrix for the cell, as the product of two matrices

[
V1

I1

]
=

[
1 sL
0 1

] [
1 0
sC 1

] [
V2

−I2

]
. (1.25)

For each matrix the input voltage and current are on the left (e.g., [V1, I1]T ), while the output voltage967

and current is on the right (e.g., [V2,−I2]T ).968

This is a composition because the output of the second matrix is the input of the first. The final969

equation (Eq. 1.25) completely characterizes the relations between the input and output of the cell of970

Fig. 1.9 (p. 48).971

1.3.7 Lec 17: Riemann Sphere: 3d extension of chord and tangent method972

Once algebra was formulated c830 CE, mathematics was able to expand beyond the limits placed on it973

by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell, 2010,974

p. 93). The geometry of Euclid’s Elements had paved the way, but after 2000 years, the addition of the975

language of algebra would change everything. The analytic function was a key development that had
SR says trite. Facts!

976

served both Newton and Euler. Also the investigations of Cauchy made important headway with his977

work on complex variables. Of special note was integration and differentiation in the complex plane of978

complex analytic functions, which is the topic of stream 3.979

It was Riemann, working with Gauss, who made the breakthrough, with the concept of the extended980

complex plane. The idea was based on the composition of a line with the sphere, similar to the derivation981

of Euclid’s formula for Pythagorean triplets. But the impact was unforeseen, and it changed analytic982

mathematics forever, and the physics that was supported by it, by simplifying integrals to the extreme.983

This idea is captured in the Fundamental Theorem of Complex Calculus (Sections 1.2.2 and 4.3.1).984

Figure 1.10: The left panel shows how the real line may be composed with the circle. Each real x value maps to a
corresponding point x′ on on the unit circle. The point x → ∞ then naturally maps to the north pole N . This simple
idea may be extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the
sphere. As with the circle, the point on the complex plane z → ∞ maps onto the north pole N . This construction is
important because while the plane is open (does not include z → ∞), the sphere is analytic at the north pole. Thus the
sphere defines the closed extended plane. Figure from Stillwell (2010, pp. 299-300).

The idea is outlined in Fig. 1.10. On the left is a circle and a line, the difference here is that the line985

starts at the north pole and ends on the real x ∈ R axis, at point x. At point x′ the line cuts through986

the circle. Thus the mapping from x to x′ takes every point on the real line to a point on the circle.987

For example, the point x = 0 maps to the south pole (not indicated). To express x′ in terms of x one988
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must composition of the line and the circle, similar to the composition used in Fig. 2.5. The points on989

the circle, indicated here by x′, require a traditional polar coordinate system having a unit radius and990

an angle defined between the radius a vertical line going through the north pole. When x → ∞ the991

point x′ → N , the north pole. The point at the north pole (on the circle) is called the point at infinity.992

But this idea must to go further, as shown on the right half of Fig. 1.10.993

Here the real tangent line is replaced by the a tangent complex z ∈ C plane, and the puncture point994

x′ with a complex puncture point z′, in this case on the complex sphere, called the extended complex995

plane. This is a natural extension of the chord/tangent method on the left, but with significant996

consequences. The main difference between the complex plane z and the extended complex plane,997

other than the coordinate system, is what happens at the north pole. On the plane the point at998

|z| =∞ is not defined, whereas on the sphere the point at the north pole is simply another point, like999

every other point on the sphere.1000

Mathematically the plane is said to be an open set since the limit z → ∞ is not defined, whereas1001

on the sphere the z′ is a closed set since the north pole is defined. The distinction between an open1002

and closed set is important because the closed set allows the function to be analytic at the north pole,1003

which it cannot be on the plane (since the point at infinity is not defined).1004

The z plane may be replaced with another plane, say the w = f(z) ∈ C plane, where w is some1005

function f of z ∈ C. We shall limit ourselves to complex analytic functions of z, namely w = u(x, y) +1006

v(x, y) = f(z) =
∑∞

n=0 z
n. In summary, given a point z = x+ y on the open complex plane, we map1007

this using the function w = f(z) ∈ C to the complex w = u + v plane, and from there to the closed1008

extended complex plane w′(z). The point of doing this is that it allows us to allow the function w′(z)1009

to be analytic at the north pole, meaning it can have a convergent Taylor series at z →∞.1010

Möbius bilinear transformation1011

In mathematics the Möbious transformation has special importance because it is linear in its action.1012

In the engineering literature this transformation is known as the bilinear transformation. Since we are1013

engineers we shall stick with the engineering terminology. But if you wish to read about this on the1014

internet, be sure to also search for the mathematical term, which may be better supported.1015

When a point on the complex plane z = x+y is composed with the bilinear transform (a, b, c, d ∈ C),
the result is w(z) = u(x, y) + v(x, y)

w =
az + b

cz + d
(1.26)

the transformation is a cascade of four independent compositions1016

1. translation (w = z + b)1017

2. scaling (w = |a|z)1018

3. rotation (w = a
|a|z) and1019

4. inversion (w = 1
z )1020

Each of these transformations are a special case of Eq. 1.26, with the inversion the most complicated. A1021

wonderful video showing the effect of the bilinear (Möbius) transformation on the plane is available that1022

I highly recommended you watch it: Low resolution: https://www.youtube.com/watch?v=0z1fIsUNhO41023

High resolution: https://www.ima.umn.edu/˜arnold/moebius/moebius-movie.mov1024

When the extended plane (Riemann sphere) is analytic at z = ∞, one may take the derivatives1025

there, and one may meaningfully integrate through ∞. When the bilinear transformation rotates the1026

Riemann sphere, the point at infinity is translated to a finite point on the complex plane, revealing1027

normal characteristics. A second way to access the point at infinity is by inversion, which takes the1028

north pole to the south pole, swapping poles with zeros. Thus a zero at infinity is the same as a pole1029

at the origin, and vice-versa.1030
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This construction of the Riemann sphere and the Mb̈ious (bilinear) transformation allow us to fully1031

understand the point at infinity, and treat it like any other point. If you felt that you never understood1032

the meaning of the point at ∞ (likely), then this should help.1033

WEEK 7 18.7.01034

1035

L 18 Colorized plots of complex analytic functions (Matlab zviz.m)1036

L 19 Signals and Systems: Fourier vs. Laplace Transforms AE-31037

L 20 Role of Causality and the Laplace Transform:1038

u(t)↔ 1/s (LT)1039

2ũ(t) ≡ 1 + sgn(t)↔ 2πδ(ω) + 2/ω (FT)1040

1.3.8 Lec 18: Complex analytic mappings (colorized plots)1041

w = s

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

w = s−1

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 1.11: On the left is a color map showing the definition
of the complex s plane, with hue (darkness) indicating magnitude
and color indicating angle. On the left w(s) = s, u = σ and v = v.
On the right w(s) = s − 1, a simple shift of one unit in σ is shown.
Specifically u = σ − 1 and v = ω. The color gives the phase of w
and hue (color saturation) the magnitude |w|, as discussed in the
text.

One of the most difficult aspects of com-1042

plex functions of a complex variable is un-1043

derstanding what’s going on. For exam-1044

ple, w = sin(s) is trivial when s = σ + ω1045

is real, because sin(σ) is then real. But1046

w(s) = sin(s) ∈ C not so easily visual-1047

ized when s ∈ C, because such functions1048

are mapping the s = σ + ω plane to the1049

w(σ, ω) = u(σ, ω) + v(σ, ω) plane.1050

Every complex point from the s plane is1051

operated on by the function F (s) to produce1052

a new complex point w(s) = F (s). This1053

is typically difficult to understand the first1054

time you see it, thus requires a visualizing1055

method. Fortunately with computer soft-1056

ware today, this problem can be solved by adding color to the graph. A Matlab script zviz.m was1057

used to make these make the charts shown here.45 By studying the function’s color map, one can1058

comprehend the complex mapping.1059

We could look at u(σ, ω) and v(σ, ω) separately in black and white, but domain coloring allows us1060

to display everything on one plot. Note that for this visualization we see the polar form of w(s) rather1061

than a rectangular (u, v).1062

Before we can give an example we must explain the color code being used for the magnitude and1063

phase of the complex plane. In Fig. 1.11 we show this code, as a 2x2 dimensional graph called “domain-1064

coloring.” The color allows us to visualize the magnitude and phase of the function. The color is used1065

to represent the phase and hue (dark to light) to represent the magnitude. On the left is the reference1066

condition given by the identity mapping (w = s). Red is 0◦, violet is 90◦, blue is 135◦, blue-green is1067

180◦ and sea-green is −90◦ (or 270◦). The hue (darkness) represents the magnitude. Since the function1068

w = s has a zero at s = 0 it is dark there, and becomes brighter as we move away from the origin. The1069

figure on the right is w = F (z−1), which moves the zero point to the right by 1. As one would predict,1070

the zero has moved to the right by 1 unit, and the color has followed in line with the new location1071

of the zero. Colorized plots can give you a clear picture of the complex analytic function mappings1072

w(x, y) = u(x, y) + v(x, y) = F (x+ y).1073

45URL for zviz.m: http://jontalle.web.engr.illinois.edu/uploads/298/zviz.m
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w = exp(s)
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s = log(u+jv)

u
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Figure 1.12: On the left is the function w(s) = es and on the right is s = log(w).

Two examples are given in Fig. 1.12 to help you interpret the two complex mappings w = es (left)1074

and its inverse s = ln(w). The exponential is very easy to understand because w = eσeω. The red1075

region is where ω ≈ 0 in which case w ≈ eσ. As σ becomes large and negative, w → 0 so the entire1076

field at the left becomes dark. The field is becoming light on the right where w = eσ → ∞. If we let1077

σ = 0 and look along the ω axis, we see that the function is changing phase, green -90◦ at the top and1078

violet (90◦) at the bottom.1079

A really important point is the zero in ln(w) at w = 1. A little algebra explains problem. If we solve1080

for the root of the log function, log(sr) = 0. Since log(1) = 0, we have that sr = 1. More generally,1081

express w = |w|eφ. Taking the log we find s = log(|w|) + φ. Thus s can only be zero when the angle1082

of w is zero (φ = 0).1083

1.3.9 Lec 19: Signals: Fourier transforms1084

Two heavily used transformations in engineering mathematics are the Fourier and the Laplace trans-1085

forms, that are used for time–frequency domain analysis. They are not the same, but can be easily1086

confused as being related. Here we will clarify the differences and similarities.1087

The Fourier and Laplace transforms take a (typically real) time domain signal f(t) ∈ R and trans-1088

form it to the frequency domain F (ω) ∈ C, where it is typically complex. For the Fourier transform,1089

both the time −∞ < t <∞ and frequency ∞ < ω <∞ are strictly real.1090

The Laplace transform takes signals that are strictly zero for negative time (f(t) = 0 for t < 0),1091

and transforms them into complex functions of complex frequency s = σ + ω. When a signal is zero1092

for negative time f(t < 0) = 0 is is said to be causal. Any restriction on a function (e.g., real, causal,1093

positive real part, etc.) is called a symmetry property. There are many forms of symmetry.1094

There is a very convenient notation for each of these two basic transformations, using a double-1095

arrow: f(t) ↔ F (ω) and f(t) ↔ F (s), where the first is the Fourier transform t ∈ R, ω ∈ R with a1096

strictly real frequency, and the second is t ≥ 0 ∈ R, s = σ + ω ∈ C, with complex Laplace frequency.1097

Besides these two basic types of time to frequency transforms, there are several variants that1098

depend on the nature of the time and frequency representations. For example, when the time signal is1099

sampled (discrete in time), the frequency response becomes periodic. And the time response become1100

periodic, the frequency response is sampled (discrete in frequency). These two variants may be simply1101

characterized as periodic in time ⇒ discrete in frequency, and periodic in frequency ⇒ discrete in time.1102

In Section 3.4.2 we shall explain these concepts in greater detail, with examples.1103
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Definition of the Fourier transform: The definitions of the two transforms are similar, except1104

the time response for the Laplace transform is restricted to be causal and the frequency response of1105

the Fourier transform is restricted to be real.1106

F (ω) =

∫ ∞

−∞
f(t)e− ωtdt f̂(t) =

1

2π

∫ ∞

−∞
F (ω)e ωtdω (1.27)

F (ω)↔ f(t) f̂(t)↔ F (ω) (1.28)

Notes:1107

1. Both time t and frequency ω are real.1108

2. When taking the forward transform (from time to frequency) the sign of the exponential is1109

negative.1110

3. The limits on the integrals in both the forward and reverse FTs are [−∞,∞].1111

4. When taking the inverse FT (IFT), the normalization factor of 1/2π is required to cancel the 2π1112

in the differential of the integral dω/2π = df , where f is frequency in [Hz], and ω is the radian1113

frequency.1114

5. The Fourier step function may be defined by the use of superposition of 1 and sgn(t) = t/|t| as

ũ(t) ≡ 1 + sgn(t)

2
=





1 if t > 0

1/2 t = 0

0 if t < 0

.

The following is the derivation of this function assuming a delay of 1 [s]

Ũ(ω) ≡
∫ ∞

−∞
ũ(t− 1)e−jωtdt↔ û(t− 1) =

{
1− sgn(t− 1)

2

}
= πδ̃(ω) +

e−jω

jω

6=
∫ ∞

1
e−jωtdt =

e−jωt

−jω

∣∣∣∣∣

∞

1

=
e−jω − e−jω∞

jω
=
e−jω

jω
− e−jω∞

jω

6. The convolution ũ(t) ⋆ ũ(t) has no meaning because 1 ⋆ 1 and δ̃2(ω) have no meaning.1115

7. The inverse FT will have convergence problems whenever there is a discontinuity in the time1116

response. This we indicate with a hat over the reconstructed time response. The error between1117

the target time function and the reconstructed is zero in the root-mean sense, but not point-wise.1118

Specifically, û(t) 6= u(t) but
∫
|û(t) − u(t)|2dt = 0 near t = 0, the discontinuity point for the1119

Fourier step function. At the point of the discontinuity the reconstructed function has Gibbs1120

ringing (it does not converge at jumps). There are convergence issues with the IFT at jumps.1121

More on this in Section 3.4.2.1122

8. The FT is not complex analytic, as in the example of the step function. A function is not complex1123

analytic if it does not have a Taylor series (in s). The step function cannot be expanded in a1124

Taylor series about ω = 0 because of the δ̃(ω) term, which is not analytic.1125

9. The delta function is denoted δ̃(t) to differentiate it from the Laplace delta function δ(t). They
differ because the step functions differ, due to the convergence problem described above. It follows
that

ũ(t) =

∫ t

−∞
δ̃(t)dt.

One may also be consistent and define the somewhat questionable notation

δ̃(t) =:
d

dt
ũ(t).
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1.3.10 Lec 20: Laplace transforms1126

Lec 20: Signals (FT) versus Systems (LT): Fourier transforms for signals versus Laplace transforms for1127

systems; Causality1128

When dealing with engineering problems it is convenient to separate the signals we use from the1129

systems that process them. We do this by treating signals, such as a music signal, differently from a1130

system, such as a filter. In general signals may start and end at any time. The concept of causality1131

has no physical meaning in signal space. Physical systems on the other hand obey very rigid rules (to1132

assure that they remain physical). These Physical restrictions are described in terms of nine Network1133

Postulates, which are discussed in some length in Lecture 1.3.11, and in greater detail in Section 3.5.1.1134

1135

Definition of the Laplace transform: The forward and inverse Laplace transforms are

F (s) =

∫ ∞

0−

f(t)e−stdt f(t) =
1

2π

∫ σ0+∞

σ0−∞
F (s)estds (1.29)

F (s)↔ f(t) f(t)↔ F (s) (1.30)

Notes:1136

1. Time t ∈ R. The complex Laplace frequency is defined as s = σ + ω.1137

2. When taking the Forward transform (from time t to frequency s), the sign of the exponential is1138

negative. This is necessary to assure that the integral converges when the integrand f(t) → ∞1139

as t→∞ (is diverging). For example, when f(t) = etu(t) without the negative σ exponent, the1140

integral would not converge.1141

3. The target time function must be zero for negative time (causal).1142

The time limits are 0− < t < ∞. Thus the integral must start from slightly below t = 0 to1143

integrate over any delta functions at t = 0. For example if f(t) = δ(t), the integral must include1144

both sides of the impulse. If you wish to include non-causal functions such as δ(t + 1) it is1145

necessary to extend the lower limit to pick them up. In such cases simply let the lower limit be1146

−∞ and let the integrand determine the limits.1147

4. The limits on the integrals of the forward are t : (0−,∞) and reverse FTs are [σ0−∞, σ0 +∞].1148

These limits will be justified in Section 1.4.9.1149

5. When taking the inverse FT (IFT), the normalization factor of 1/2π is required to cancel the1150

2π in the differential ds of the integral.1151

6. The frequency for the LT must be is complex, and in general F (s) is complex analytic for σ > σ0.1152

For example The real and imaginary parts of F (s) are related, and given one, it may be possible1153

to find the other. More on this in Section 3.4.2.1154

7. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane.1155

This will be discussed in Section 4.3.1.1156

8. The Laplace step function is defined as

u(t) =





1 if t > 0

NaN t = 0

0 if t < 0

and not defined at t = 0.1157
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9. It is easily shown that u(t)↔ 1/s since

F (s) =

∫ ∞

0
u(t) e−stdt = −e

−st

s

∣∣∣∣∣

∞

0

=
1

s
.

With the LT there is no Gibbs effect, as the step function, with a true discontinuity, is exactly1158

represented by the inverse LT.1159

f(t)↔ F (s)

δ(t)↔ 1

δ(t− T0)↔ e−sT0

u(t)↔ 1/s

u(t) ⋆ u(t) = tu(t)↔ 1/s2

10. Frequently the Laplace transform takes the form of a ratio of two polynomials. In such case1160

the roots of the numerator polynomial are call the zeros while the roots of the denominator1161

polynomial are called the poles. For example the LT of u(t)↔ 1/s has a pole at s = 0.1162

11. The LT is quite different from the FT in terms of its analytic properties, in the frequency domain.1163

For example, the step function u(t)↔ 1/s is not analytic everywhere except at the pole frequency1164

s = 0. In order to understand how this works we must define complex integration in the complex1165

plane, and thus justify the definition of the inverse LT (Eq. 1.29).1166

Disc relations between Fourier and Laplace delta and step functions1167

WEEK 8 20.8.01168

1169

L 21 The 6 postulates of System (aka, Network) Theory; The important role of the Laplace transform1170

re impedance1171

L 22 Exam II (Evening exam)1172

1.3.11 Lec 21: The 9 postulates of systems1173

Systems of differential equations, such as the wave equation, need a mathematical statement of under-1174

lying properties, which we present here in terms of nine network postulates:1175

(P1) causality (non-causal/acausal)1176

(P2) linearity (nonlinear)1177

(P3) real (complex) time response1178

(P4) passive (active)1179

(P5) time-invariant (time varying)1180

(P6) reciprocal (non-reciprocal)1181
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(P7) reversibility (non-reversible)1182

(P8) space-invariant (space-variant)1183

(P9) quasistatic (multi-modal).1184

Each postulate has two (in one case three) categories. For example for (P2) a system is either linear1185

or non-linear and for (P1) is either causal, non-causal or acausal. P6 and P9 only apply to 2-port1186

networks (those having an input and an output. The others can apply to both a 2- or 1-port networks1187

(e.g., an impedance is a 1-port).1188

Related forms of these postulates had been circulating in the literature for many years, widely1189

accepted in the network theory literature (Van Valkenburg, 1964a,b; Ramo et al., 1965). But the first1190

six of these were formally introduced Carlin and Giordano (1964), while (P7-P9) were added by Kim1191

et al. (2016).1192

1.3.12 Lec 22: Exam II (Evening Exam)1193

WEEK 8 23.9.01194

1195

Week 8 Friday Stream 31196

L 23 The amazing Bernoulli family; Fluid mechanics; airplane wings; natural logarithms1197

The transition from geometry → algebra → algebreic geometry → real analytic → complex1198

analytic1199

From Bernoulii to Euler to Cauchy and Riemann1200

1.4 Stream 3: Scalar (Ordinary) Differential Equations1201

Stream 3 is ∞, a concept which inspires “very large,” which takes us to calculus, where ∞ actually1202

means “very small,” since taking a limit requires small numbers. Taking the limit means you never1203

reaching the target. This is a concept that the Greeks called Zeno’s paradox (Stillwell, 2010, p. 76).1204

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is1205

preferable, since the term “ordinary” is vague.1206

There are a special subset of Fundamental theorems for scalar calculus, the first being Leibniz’s1207

theorem. These will be discussed in Sections 1.4.3, 4.2.2 and 4.3.2.1208

1.4.1 Lec 23: Bernoulli to Euler and standard circular function package1209

The period of analytic discovery:1210

Coming out of the dark ages, from algebra, to analytic geometry, to calculus.1211

Starting with real analytic functions by Euler, we move to complex analytic functions with Cauchy.1212

1213

Integration in the complex plane is finally conquered.1214

Beginning of real analytic functions. When do they converge? How are they used.1215

WEEK 9 23.9.01216

1217

Week 9 Monday1218
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L 24 Power series and integration of functions (ROC)1219

Fundamental Theorem of calculus (Leibniz theorm of integration)1220

1/(1− x) =
∑∞

k=0 x
k with x ∈ R1221

L 25 Integration in the complex plane: Three theorems1222

Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + i.1223

1224

L 26 Cauchy-Riemann conditions1225

Real and imaginary parts of analytic functions obey Laplace’s equation.1226

Infinite power Series and analytic function theory; ROC1227

1228

1.4.2 Lec 24: Complex Analytic functions and the ROC1229

Needs work
To solve a differential equation, or integrate a function, Newton used the Taylor series to integrate one
term at a time. However he only use real functions of a real variable due to the fundamental lack of
understanding as to the meaning of a complex analytic series. This same method is the cornerstone of
finding solutions to differential equations today, but in a “plug-and-chug” approach, that makes it less
obvious how it works. Rather than working directly with the Taylor series, today we use the complex
exponential. The reasoning is that the complex exponential is the eigenfunction of the derivative,
namely

d

dt
est = sest.

Thus a linear differential equation in time may be simply transformed into a polynomial in complex1230

Laplace frequency s, by looking for solutions of the form A(s)est. This substitution transforms the1231

differential equation into a polynomial A(s) in complex frequency. The roots of A(s) are the eigenvalues1232

of the original differential equation. Thus the keys to understanding the solutions of differential equa-1233

tions, both scalar and vector, is to work in the Laplace frequency domain.46 The Taylor series has been1234

replaced by est, transforming Newton’s real Taylor series into the complex exponential eigenfunction.1235

In some sense, these are the same method.1236

This is heavily trodden soil, that every student now learns in the first course in scalar (ordinary)
differential equations. However what the modern approach frequently ignores is the fundamental role
of the complex power series, that is, the concept of the single-valued complex analytic function (Section
4.3.1. If a function F (s) is complex analytic, then it has a power series

F (s) =
∞∑

0

cks
k.

If we take the term by term derivative we find

d

ds
F (s) =

∞∑

0

kcks
k−1,

which is also complex analytic. Thus if the series for F (s) is valid (i.e., it converges), then its derivative1237

is also valid, where it converges. This is a very powerful concept, fully exploited by Newton for real1238

functions of a real variable, and later by Cauchy and Riemann for complex functions of a complex1239

variable. The key here is “When does the series fail to converge?” in which case, the entire representa-1240

tion fails. This is the main message behind the Fundamental Theorem of Complex Calculus. The full1241

power of this concept was first exploited by Bernard Riemann (1826-1866) in his PhD Thesis of 18511242

46Make explicit the connection between the roots of the polynomial A(s) and the eigenvalues of the matrix of the vector
form of the same equation.
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at University of Göttingen, under the tutelage of Carl Friedrich Gauss (1777-1855), drawing heavily1243

on the work of Cauchy.1244

The key definition of a complex analytic function is that it has a Taylor series representation over1245

a region of the complex frequency plane s = σ+ jω, that converges in a region of convergence (ROC),1246

about each pole of that function. A surprising feature of an analytic function is that within the ROC,1247

the inverse of that function also has an analytic expansion with its ROC. Thus given w(s), one may1248

also determine s(w) to any desired accuracy, critically depending on the ROC.1249

This concept of analytic inverses becomes rich when the inverse function is multi-valued. For1250

example, if F (s) = s2 then s(F ) = ±
√
F . Riemann dealt with such extensions with the concept of1251

a branch-cut with multiple planes, labeled by a branch number. Each branch describes an analytic1252

function (Taylor series) that converges within some ROC, with a radius out to the nearest pole of that1253

function. This explicitly dealt with the defining a unique inverse to multi-valued functions.1254

Complex impedance functions1255

One of the most obvious applications of complex functions of a complex variable an impedance. The1256

impedance function Z(s) = R(σ, ω) + X(σ, ω) has resistance R and reactance X, as a function of1257

complex frequency s = σ + ω. The function z(t) ↔ Z(s) are defined by a Laplace transform pair.1258

From the causality postulate (P1) of Section 3.5.1, z(t < 0) = 0.1259

As an example, a resistor R0 in series with an capacitor C0 has an impedance

Z(s) = R0 + 1/sC0. (1.31)

In mechanics a dash-pot (damper) and a spring have the same mechanical impedance. A resonant
system has an inductor, resistor and a capacitor, with an impedance given by

Z(s) = R0 + 1/sC0 + sM0 (1.32)

which is a second degree polynomial in the complex frequency s. Thus it has two roots (eigenvalues).1260

When R0 > 0 these roots are in the left half s plane.1261

Systems (networks) containing many elements, and transmission lines, can be much more compli-1262

cated, yet still have a simple frequency domain representation. This is the key to understanding how1263

these physical systems work, as will be described below.1264

1.4.3 Lec 25: Integration in the complex plane1265

Leibniz’s formula gives the area under a curve as the difference in the integral between the two limits
such that the area only depends on the end points

F (x) = F (0) +

∫ x

0
f(ξ)dξ. (1.33)

This is based on a one-dimensional integration of real function f(x) along the real x axis. As is well
known,

d

dx
F (x) = f(x)

because the total area only depends on the end points for real areas F (x).1266

For the complex case of an impedance, we define

F (s, t) = Z(s)est, (1.34)

and the integrate in the complex plane, we may write a relation similar to the one-dimensional case

f(s) = f(0) +

∫ s

0
Z(s)eztdz. (1.35)
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Compare this to the real integral of the area over the real line x Eq. 1.33, Other than the limits, this
formulas are the same as the Inverse Laplace transform. The integral can only dependent on the end
points if

df

ds
= F (s, t). (1.36)

But what does it man to take the derivative of a function with respect to s?1267

In the 1 dimensional case (Leibniz formula) the area only depends on the end points. It is interesting1268

to determine if, or when, this condition holds for complex integration. In the complex case the end1269

points are in the complex plane, which for example is z from s = 0 to s. Thus the condition is that if1270

the integral of F (z, t) only depends on the end points ([0, s]) then it must be independent of the path1271

taken in the complex z plane.1272

Many of these fundamental theorems of integration are closely related, in which case a teaching1273

moment is near. The best example is the relationship between the Fundamental Theorem of Calculus1274

(aka Leibniz formula) and the Fundamental Theorem of Complex Calculus (aka, the Cauchy Integral1275

Theorem). The Leibniz formula Eq. 1.33 states that the area under a curve f(x) ∈ R only depends on1276

the end points. Equation 1.36 follows.1277

Thus when the integral of f(x) only depends on the limits, the function must be analytic. The1278

same holds true for the complex analytic case. When f(x) is not analytic (has no Taylor series) the1279

derivative may not exist.1280

1.4.4 Lec 26: Cauchy-Riemann conditions1281

For path independence the value of the integral (f(s, t)) must be the same for a path holding either
σ or ω constant. This leads to a pair of equations called the Cauchy-Riemann conditions in terms of
the real and imaginary parts F (s) = R(σ, ω) + X(σ, ω) and s = σ + ω:

∂R(σ, ω)

∂σ
= 

∂X(σ, ω)

∂ω

∂R(σ, ω)

∂ω
= 

∂X(σ, ω)

∂σ
(1.37)

These are the necessary conditions that the integral of the function F (s) is independent of the path,
expressed in terms of the real and imaginary parts of the function and path. This assumption about
the function is a very strong condition on F (s) which requires that it may be written as a Taylor series
in the complex argument s:

F (s) = F0 + F1s+
1

2
F2s

2 + · · · . (1.38)

Any function that may be expressed as a Taylor series about a point is said to be complex analytic at1282

that point. The series is said to converge within a radius of convergence (ROC). This highly restrictive1283

conditions has significant physical consequences. For example, every impedance function Z(s) obeys1284

the CR conditions over large regions of the s plane, including the entire right half plane (RHP), defined1285

by σ > 0. When this conditions is generalize to volume integrals, it is called Green’s theorem, which1286

is a special case of both Gauss’s and Stokes’s Laws, used heavily in the solution of boundary value1287

problems in Engineering-Physics (e.g., solving EM problems that start from Maxwell’s equations). The1288

last third of this course shall depend heavily on this concept and various generalizations.1289
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WEEK 10 26.10.01290

1291

L 27 Differentiation in the complex plane: Fundamental Thm of complex calculus (FTCC);1292

Complex Analytic functions; ROC in the complex plane1293

Z(s) = R(s) + X(s): real and imag parts obey Laplace]s Equation1294

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation1295

Motivation: Dispersion relation for the wave equation κ · κ = s2/c2
01296

L 28 Three Fundamental theorems of complex integral calculus1297 ∫ z
0 = F (ζ)dζ = F (z)− F (0): dZ(s)/ds independent of direction1298

Integration in the complex plane; Integrals independent of limits1299

Cauchy-Riemann conditions1300

L 29 Inverse Laplace transform1301

Inverse Laplace transform: Poles and Residue expansions;1302

Application of the Fundamental Thm of Complex Calculus1303

The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality1304

ROC as a function of the sign of time in est (How does causality come into play?)1305

Examples.1306

1.4.5 Lec 27: Differentiation in the Complex plane1307

1.4.6 Lec 28: Three complex integration theorems1308

1.4.7 Lec 29: Inverse Laplace transform (Cauchy residue theorem)1309

Use of the Residue theorem to evaluate the inverse Laplace transform. Discuss causal and anti-causal1310

cases. How does this relate to Green’s theorem (in 2 dimensions).1311

WEEK 11 30.11.01312

1313

L 30 Inverse Laplace transform & Cauchy Residue Theorem1314

L 31 Case for causality Closing the contour as s→∞; Role of ℜst1315

DE-31316

L 32 Properties of the LT:1317

1) Modulation, 2) Translation, 3) convolution, 4) periodic functions1318

Tables of common LTs1319

1.4.8 Lec 30: Inverse Laplace transform and the Cauchy Residue Thm1320

1.4.9 Lec 31: Case for causality: closing the contour1321

1.4.10 Lec 32: Properties of the LT (e.g., modulation, translation, etc.)1322

WEEK 12 33.12.01323

1324
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L 33 Multi-valued functions in the complex plane; Branch cuts1325

The extended complex plane (regularization at ∞) (Stillwell, 2010, p. 280)1326

Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)1327

L 34 Euler’s vs. Riemann’s Zeta function ζ(s): Poles at the primes1328

colorized plot of ζ(s)1329

??Sterling’s formula??1330

L 35 Exam III1331

1.4.11 Lec 33: Multi-valued functions Branch cuts1332

1.4.12 Lec 34: The Riemann zeta function1333

The LT of the complex Riemann zeta function ζ(x) (Fig. 4.1), as introduced by Euler for real arguments.1334

x ∈ R as his way of proving that the number of primes is infinite (Goldstein, 1973). In the end, this1335

formulation provided detailed information about the structure of the primes. The zeta function depends1336

explicitly on the primes, which is why it is interesting (Section 4.5.2).1337

One might wonder why Euler’s zeta function is known as the Riemann zeta function. It is because1338

Riemann showed its properties when the argument is complex, namely he extended ζ(s) into the1339

complex plane (s ∈ C) (Section 4.5.2). Given that ζ(s) is a function of complex (Laplace) frequency,1340

one might naturally ask if ζ(s) has an inverse Laplace transform. There seems to be very little written1341

on this topic,47 but we shall explore this interesting question further (Table 4.1). Perhaps even more1342

important is the taxonomy of ζ(s) is in question here, namely where are its poles and zeros? About1343

this there are volumes written.1344

The Riemann Zeta function is analytic with poles at log-primes1345

Why does the zeta function have zeros? Perhaps this is some extension of the Euler function that has1346

zeros, rather than zeta itself. Ask Andrew Odlyzko about this problem. Go to the Math dept first and1347

find someone qualified to discuss this with.1348

1.4.13 Lec 35: Exam III (Evening Exam)1349

WEEK 13 36.13.01350

1351

L 36 Scaler wave equations and the Webster Horn equation; WKB method1352

A real-world example of large delay, where the branch-cut placement is critical1353

1354

L 37 Partial differential equations of Physics1355

Scaler wave equation and its solution in 1 and 3 Dimensions1356

VC-11357

L 38 Vector dot and cross products A ·B,A×B1358

Gradient, divergence and curl1359

– Thanksgiving Holiday 11/19–11/27 20161360

47Cite book chapter on inverse LT of ζ(s).
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1.5 Vector Calculus (Stream 3b)1361

1.5.1 Lec 36: Scalar Wave Equation (Acoustics)1362

Acoustic waves; The scalar wave equation: scalar differential equation in the frequency1363

domain1364

The Webster Horn equation1365

The effect of a spatial area functions for waves in horns (the horn equation).1366

Derivation of the Horn equation, starting from the basic equations of acoustics.1367

Development of the basic equations of acoustics: Conservation of mass and momentum.1368

Sound in a uniform tube.1369

Sound propagation away from a point source (Helmholtz’s Equation)

∇2ψ + k2ψ = δ(r).

1.5.2 Lec 37: Partial Diff Eqs of Physics1370

1.5.3 Lec 38: Vector dot and cross products1371

1.5.4 Thanksgiving Holiday 11/19–11/27 20161372

WEEK 14 37.14.01373

1374

L 39 Gradient, divergence and curl: Gauss’s (divergence) and Stokes’s (curl) theorems1375

L 40 J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light1376

Basic definitions of E,H,B,D1377

O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation1378

How a loud-speaker works1379

L 41 The Fundamental Thm of vector calculus1380

Incompressable and Irrotational fluids and the two defining vector identities1381

1382

1.5.5 Lec 39 ∇,∇·,∇× & Vector operators1383

There are three key vector differential operators that we need to understand Maxwell’s equations. The1384

gradient transforms a potential, such as a voltage V (x, y, z) into a vector, such as the electric field1385

vector E. The divergence ∇ · E(x, y, z) transforms a vector field into a scalar field. Finally the curl1386

∇×A(x, y, z) transforms a vector into a vector.1387

To define these three operations we first need to define scalar and vector fields. These are concepts1388

that you already understand. It is the terminology that needs to be mastered, not a new concept.1389

Think of a voltage field in space, say between two finite sized capacitor plates. In such a case, the1390

voltage is given by a scalar field V (x, y, z). A scalar field is also called a potential. Somewhat confusing1391

is that one may also define vector potentials which is three scalar potentials turned into a vector. So1392

this term is more than one use. It is therefore important to recognize the intended use of the filed.1393

This can be gleaned from the units. Volts is a scalar field.1394
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The simplest example of a scalar potential is the voltage between two very large (think ∞) con-
ducting parallel planes, or plates (large so that we can ignore the edge effects). In this case the voltage
varies linearly between the two plates. For example

V (x, y, z) = V0(1− x)

is a scalar potential, thus it is scalar field (i.e., potential). At x = 0 the voltage is V0 and at x = 1 the1395

voltage is zero. Between 0 and 1 the voltage varies linearly. Thus V (x, y, z) defines a scalar field.1396

If the same setup were used but the two plates were 1x1 [cm2], with a 1 [mm] air gap, there will1397

be a small “fringe” effect at the edges that would slightly modify the ideal fields. The hope is that1398

this effect can be made small so that it does not ruin the capacitor composed of the two plates. If we1399

are given a set of three scalar fields, we define a vector field. If the three elements of the vector are1400

potentials, then we have a vector potential.1401

Gradient operator ∇1402

The gradient operator takes a scalar fields and outputs a vector field. This is exactly what the gradient
does. Given any scalar field V (x, y, z) it outputs a vector field48

E(x, y, z) = [Ex(x, y, z), Ey(x, y, z), Ez(x, y, z)]T = −∇V (x, y, z).

To understand these three operations we therefore need to define the domain and range of their1403

operation, as specified in Table 5.1.1404

1.5.6 Lec 40: Definitions of E, H, B, D and Maxwell’s equations1405

Maxwell’s Equations1406

Once you have mastered the three basic vector operations, the gradient, divergence and curl, you are1407

able to understand Maxwell’s equations. Like the vector operations, these equations may be written1408

in integral or vector form. The notation is basically the same since the concept is the same. The only1409

difference is that with Maxwell’s equations we are dealing with well defined physical quantities. The1410

scalar and vector fields take on meaning, and units. Thus to understand these important equations,1411

one must master the units, and equally important, the names of the four fields that are manipulated1412

by these equations.1413

We may now restate everything defined above in terms of two types of vector fields that decompose1414

every vector field. Thus another name for the Fundamental Theorem of Vector Calculus is the Helmholtz1415

decomposition. An irrotational field is define as one that is “curl free,” namely the vector potential is a1416

constant. An incompressible field is one that is “diverge free,” namely the scalar potential is a constant.1417

Just to confuse matters, the incompressible field is also called a solenoidal field. I recommend that you1418

know this term (as it is widely used), but never use it. Rather use incompressible as a more meaningful1419

and physical term. Once you learn the concept of a solenoid, you may wish to change your mind about1420

this usage, but I predict you will not.1421

1.5.7 Lec 41 Fundamental Theorem of Vector calculus (Helmholtz theorem)1422

The Fundamental Theorem of Vector Calculus1423

Here we define the basic vector operations based on the ∇ “operator,” the gradient, divergence and1424

the curl. These operations may be defined in terms of integral operations on a surface in 1, 2 or 31425

dimensions, and then taking the limit as that surface goes to zero. These operators are required to1426

understand Maxwell’s Equations, the crown jewel of mathematical physics.1427

48As before vectors are columns, which take up space on the page, thus we write them as rows and take the transpose
to properly format them.



64 CHAPTER 1. INTRODUCTION

Incompressible and Irrotational vector fields1428

One of the most important fundamental theorems is that of vector calculus. This is also known as1429

Helmholtz theorem. This theorem is very easily stated but less easily to appreciate. But a physical1430

description of what is going on will help.1431

A vector field may be split into two parts, that are independent. Think of linear and angular1432

momentum. They are also independent in that they represent different ways to store energy. An1433

object with mass can be moving along a path and rotating at the same time. The two modes of motion1434

define two different types of kinetic energy, transnational and rotational. In some real sense, Helmholtz1435

theorem quantifies this independence.1436

The Fundamental Theorem of Vector Calculus: This theorem is also known as Helmholtz’
theorem. It states that every differentiable vector field may be written as the sum of two terms, a
scalar part and a vector part expressed in terms of a scalar potential φ(x, y, z) (think voltage) and a
vector potential (think magnetic vector potential). Specifically

E = −∇φ+∇×A. (1.39)

To show that this relationship splits the vector field E into two parts we need to add to the mix two
key vector identities, that are always true (assuming they exist, i.e, that the fields are differentiable):

∇×∇φ(x, y, z) = 0, (1.40)

or in words, the curl of the divergence =0, and

∇ · ∇ ×A = 0 (1.41)

or the divergence of the gradient =0. These identities are easily verified by working out a few examples1437

based on the definitions of the three operators, for example in terms of their integral definitions. They1438

also have an important physical meaning, as indicated above, that every vector field may be split into1439

its transnational and rotational parts, as with our example of momentum.1440

Figure 1.13: von Helmholtz portrait taken
from the English translation of his 1858 paper
“On integrals of the hydrodynamic equations
that correspond to Vortex motions” (in German)
(von Helmholtz, 1978).

If we apply these two identities to Helmholtz’s theorem1441

(Eq. 1.39), we can appreciate the significance of the theo-1442

rem. It is a form of proof actually, once you have satisfied1443

yourself that the vector identities are true. In fact one can1444

work backward using a physical argument, that rotational1445

momentum and thus energy is independent from transna-1446

tional momentum, thus energy. Again this all goes back to1447

the definitions of rotation and transnational forces, hidden1448

in the vector operations. Once these forces are made clear,1449

the meaning of the vector operations all take on a very well1450

defined meaning, and the mathematical constructions, cen-1451

tered around Helmholtz’s theorem, begins to provide some1452

common-sense meaning.1453

Specifically if we take the divergence of Eq. 1.39, and
use the divergence vector identity

∇ ·E = ∇ · {−∇φ+∇×A} = −∇ · ∇φ = −∇2φ.

since the divergence vector identity removes the vector po-1454

tential A(x, y, z).1455

Likewise if we take the curl of Eq. 1.39, and use the curl
vector identity

∇×E = ∇× {−∇φ+∇×A} = ∇×∇×A,
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since using the curl vector identity, removes the scalar field φ(x, y, z).1456

There is a third vector identity that needs to be mentioned for later use

∇× (∇×A) = ∇(∇ ·A)−∇2A.

The best way to think of this relationship is that it defines the vector Laplacian ∇2A. In other words,
think of this identity the definition of the left hand side of

∇2A ≡ ∇(∇ ·A)−∇× (∇×A).

WEEK 15 40.15.01457

1458

L 42 Quasi-static approximation and applications:1459

The Kirchoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations The1460

telegraph wave equation starting from Maxwell’s equations1461

Quantum Mechanics1462

L 43 Last day of class: Review of Fund Thms of Mathematics:1463

Closure on Numbers, Algebra, Differential Equations and Vector Calculus,1464

The Fundamental Thms of Mathematics & their applications:1465

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9); Normal modes vs. eigen-1466

states, delay and quasi-statics;1467

– Reading Day1468

VC-1 Due1469

1.5.8 Lec 42: Kirchhoff’s Laws and the quasistatic approximation1470

- The term quasistatics indicates a type of approximation that is widely used when reducing a problem1471

based on partial differential equations to one of a scalar differential equation. It is important to1472

understand the nature of this approximation so that it is not miss-applied. Quasistatics is a way of1473

reducing a three dimensional problem to a 1 dimensional problem. This approximation is at the heart1474

of transmission line theory. Lets begin with an example: The acoustic wave equation describes how1475

the scalar pressure p(x, y, z, t) propagates in three dimensions. If the wave propagation is restricted1476

to a pipe, such as an organ pipe, or to a string, as in a guitar string, we do not need to worry about1477

the transverse directions. What needs to be modeled by the equations is the wave propagation along1478

the pipe or string. Thus we replace the three-dimensional wave with a one-dimensional wave, without1479

further thought.1480

However if we wish to be more precise about this reduction in geometry, we need to consider1481

the quasistatic approximation, as it makes some assumptions about what is happening in the other1482

directions, and quantifies their effects. Taking the case of wave propagation in a tube, say the ear1483

canal, there is the main wave direction, down the tube. But there is also wave propagation in the1484

transverse direction, perpendicular to the direction of propagation. As shown in Table 3.1 (p. 103),1485

the key statement of the quasistatic approximation is that the wavelength in the transverse direction1486

is much larger that the radius of the pipe. This is equivalent to saying that the radial wave reaches the1487

walls and is reflected back, in a time that is small compared to the distance propagated down the pipe.1488

Clearly the speed of sound down the pipe and in the transverse direction is the same if the medium is1489

homogeneous (i.e., air or water). Thus the sound reaches the walls and is returned to the center line1490

in a time that the axial wave traveled about 1 diameter along the pipe. So if the distance traveled is1491
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several diameters, the radial parts of the wave have time to come to equilibrium. So the question one1492

must ask is, what are the conditions of such an equilibrium. The most satisfying answer to this is to1493

look at the internal forces on the air, due to the gradients in the pressure.1494

The pressure p(x, y, z, t is a potential, thus its gradient is a force density f(x, y, z, t) = −∇p(x, y, z, t).1495

What this equation tells us is that as the pressure wave approaches that of a plane wave, the radial1496

(transverse) forces go to zero. If the tube has a curvature, or a change in area, then there will be local1497

forces that create radial flow. But after traveling a few diameters, these forces will come to equilibrium1498

and the wave will return to a plane wave. The internal stress caused by a change is area must settle1499

out very quickly. There is a very important caveat however: it is only at low frequencies that the1500

plane wave can dominate. At frequencies such that the wavelength is very small compared to the1501

diameter, the distance traveled between reflections is much greater than a few diameters. Fortunately1502

the frequencies where this happens are so high that they play no role in frequencies that we care about.1503

This effect is referred to as cross-modes which imply some sort of radial standing waves. In fact such1504

modes exist in the ear canal, but on the eardrum where the speed of sound is much slower that that1505

of air. Because of the slower speed, the ear drum has cross-modes, and these may be seen in the ear1506

canal pressure. Yet they seem to have a negligible effect on our ability to hear sound with good fidelity.1507

The point here is that the cross modes are present, but we call upon the quasistatic approximation as1508

a justification for ignoring them, to get closer to the first-order physics.1509

Breakdown of the quasistatic approximation at high frequencies: If we wonder, for the sake
of wonderment, what happens at high frequencies where the quasistatic approximation begins to break
down, we need to consider other significant physics of the system. In acoustics there are two basic
effects that have been ignored by assuming that wave propagation is dictated by the wave equation,
viscosity and thermal effects. In fact, it turns out that these two loss mechanisms are related, but
to understand why is quite difficult. However Helmholtz, with some help from Krichhoff, figured
this out and published it between 1863 (Helmholtz, 1863b) and 1868 (Kirchhoff, 1868). Their theory
was summarized by Lord Rayliegh (Rayleigh, 1896) and then experimentally verified to be correct by
Warren P. Mason (Mason, 1928). The nature of the correction is that the wave number is extended to
be of form

κ(s) =
s+ β0

√
s

c0
,

where the forwarded P− and backward P+ pressure waves propagate as

P±(s, x) = e−κ(s)x, e−κ(s)x

and κ(s) is the complex conjugate of κ(s).1510

The frequency where the loss-less part equals the lossy part is an important parameter of the1511

system. This frequency is s0 + β0
√
s0 = 0, or

√
s0 = β0 or f0 = β2/2π. Assuming air at 23.5◦ [C],1512

c0 =
√
η0P0/ρ0 ≈ 344 [m/s] is the speed of sound, η0 = cp/cv = 1.4 is the ratio of specific heats,1513

µ = 18.5× 10−6 [Pa-s] is the viscosity, ρ0 ≈ 1.2 [kgm/m2] is the density, P0 = 105 [Pa] (1 atm).1514

The constant β0 = Pη′/2S
√
ρ0

η′ =
√
µ

[
1 +

√
5/2

(
η1/2 − η−1/2

)]

is a thermodynamic constant, P is the perimeter of the tube and S the area (Mason, 1928).1515

For a cylindrical tube having radius R = 2S/P , β0 = η′
0/R
√
ρ. To get a feeling for the magnitude of1516

β0 consider a 7.5 [mm] tube (i.e., the average diameter of the adult ear canal). Then η′ = 6.6180×10−3
1517

and β0 = 1.6110. Using these conditions the wave-number cutoff frequency is 1.6112/2π = 0.4131 [Hz].1518

At 1 kHz the ratio of the loss over the propagation is β0/
√
|s| = 1.6011/

√
2π103 ≈ 2%. At 100 [Hz]1519

this is a 6.4% effect.49
1520

49/home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/m/MasonKappa.m
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Mason shows that the wave speed drops from 344 [m/s] at 2.6 [kHz] to 339 [m/s] at 0.4 [kHz], which1521

is a 1.5% reduction in the wave speed. In terms of the losses, this is much larger effect. The loss term1522

as β0/
√
ω. At 1 [kHz] the loss is 1 [dB/m], which is ∞ compared to the loss-less case of 0 [dB/m].1523

Note that the loss and the speed of sound vary inversely with the radius. As the radius approaches the1524

boundary layer thickness (the radial distance such that the loss is e−1), the effect of loss dominates.1525

In Section 5.4.1 we shall look at some simple problems where we use the quasistatic effect and1526

derive the Kirchhoff voltage and current equations, starting from Maxwell’s equations.1527

1.5.9 Lec 43: Final Review for Final Exam1528

Summary1529

Physics and Mathematics evolved as tools to help us navigate our environment, not just physically1530

around the globe, but how to solve daily problems such as food, water and waste management, under-1531

stand the solar system and the stars, defend ourselves, use tools of war, etc. At first we used intuition1532

by observing, but then we understood that mathematics allows us to generalize these tools.1533

Mathematics began as a simple way of keeping track of how many things there were.1534

Based on the historical record of the abacus, a memory tool used to assist in mental arithmetic, that went far1535

beyond what one could do in their head, one can infer that people precisely understood the concept of counting,1536

addition, subtraction and perhaps multiplication, which is recursive additions. However this knowledge did not1537

seem to show up in the written number systems. The Roman numerals were not useful for doing calculations,1538

which were done on the abacus. The final answer would then be expressed in terms of the Roman number system.1539

All it was good for, it seems, is expressing the final answer N is converted to Roman numerals.1540

According to the known written record, the number zero (null) had no written symbol until the time of1541

Brahmagupta (628 CE). One should not assume the concept of zero was not understood simply because there1542

was no symbol for it in the Roman Numeral system. Negative numbers and zero would be obvious when using1543

the abacus. Numbers between the integers would be represented as rational numbers Q. Any number may be1544

approximated with arbitrary accuracy using rations numbers.1545

There is some evidence that the abacus, commonly believe to be a Chinese invention, was introduced to the1546

Chinese by the Romans, as it was needed in trade.1547

The abacus is a simple counting tool, formalizing the addition of very large numbers. Subtraction1548

is a trivial generalization of addition, the opposite of “bringing together.” Multiplication is also a1549

generalization of addition when addition is repetitive. For example 10 + 10 + 10 = 3 · 10. Division, the1550

inverse of multiplication (i.e., repetitive addition) is repetitive subtraction. For example (10 + 10 +1551

10)/10 = 3 is the same as 30− 10− 10− 10 = 30− 3 ∗ 10 = 0. Working with integers in this way, these1552

ancient tools are simply common sense methods.1553

We are so used to multiplication and division, we can loose sight of what it really means. Lets try1554

to above method on 31. Taking 10 away from 31 gives 31− 10− 10− 10 = 31− 3 ∗ 10 = 1. So in this1555

case we have a remainder of 1. It follows that 31/10 = (30 + 1)/10 = 3 + 1/10. It is easy to forget1556

the basic principle, that division is based on repeated subtraction, having learned, to well, the rules of1557

division.1558

Mathematics is the science of formalizing a repetitive method into a set of rules, and then general-1559

izing it as much as possible. Generalizing the multiplication and division algorithm, to different types1560

of numbers, becomes increasingly more complex as we move from integers to rational numbers, irra-1561

tional numbers, real and complex numbers and ultimately, vectors and matrices. How do you multiply1562

two vectors, or multiply and divide one matrix by another? Is it subtraction as in the case of two1563

numbers? Multiplying and dividing polynomials (by long division) generalizes these operations even1564

further. Linear algebra is further important generalization, fallout from the Fundamental Theorem of1565

Algebra, and essential for solving the generalizations of the number systems.1566

The concept of a number evolved very slowly at first. Starting with the cardinal numbers N, or1567

counting numbers, rational numbers Q, the ratio of integers, allowed a refined way of measuring with1568

greater precision. For example: {3, 31/10, 157/50, 22/7, 1571/500, 355/113} are increasingly better1569

approximations to π.). The representation 22/7 = (21+1)/7 = 3+1/7 jumps out due to its precision,1570
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having a relative error of 0.4% (≈ 0.4 × 10−3). The next rational approximation is given by 355/1131571

= 3 + 1/(7 + 1/16), with a relative error of ≈ 0.85 × 10−7. These approximations were worked out1572

by Chinese scholar Zu Chongzhi (429–500 AD). Note that 113 is prime but 355 = 5 · 71, thus they1573

have no common factors. The next such approximation is 104348/33215, with a relative error of 10−10.1574

These two integers are also not primes, but again have no common prime factors, which means they1575

are coprime. This may have made early mathematicians wonder if this was the beginning of a pattern.1576

An interesting question is “How might one test this hypothesis?”1577

Many of the concepts about numbers naturally evolved from music, where the length of a string1578

(along with its tension) determined the pitch (Stillwell, 2010, pp. 11, 16, 153, 261). Cutting the string’s1579

length by half increased the frequency by a factor of 2. One forth of the length increases the frequency1580

by a factor of 4. One octave is a factor of 2 and two octaves a factor of 4 while a half octave is
√

2. The1581

musical scale was soon factored into rational parts. This scale almost worked, but did not generalize1582

(sometimes known as Pythagoreas’ comma50), resulting in today’s well tempered scale, which is basedMove up.1583

on 12 equal geometric steps along one octave, or 1/12 octave ( 12
√

2 ≈ 1.05946 ≈ 18/17 = 1 + 1/17).1584

But the concept of a factor was clear. Every number may be written as either a sum, or a product1585

(i.e., a repetitive sum). This led the early mathematicians to the concept of a prime number, which is1586

based on a unique factoring of every integer. At this same time (c5000 BCE), the solution of a second1587

degree polynomial was understood, which lead to a generalization of factoring, since the polynomial, a1588

sum of terms, may be written in factored form. If you think about this a bit, it is sort of an amazing1589

idea, that needed to be discovered (Stillwell, 2010, p. ). This concept lead to an important string of1590

theorems on factoring polynomials, and how to numerically describe physical quantities. Newton was1591

one of the first to master these tools with his proof that the orbits of the planets are ellipses, not circles.1592

This lead him to expanding functions in terms of their derivatives and power series. Could these sums1593

be factored? The solution to this problem led to calculus.1594

So mathematics, a product of the human mind, is a highly successful attempt to explain the physical1595

world. All aspects of our lives were impacted by these tools. Mathematical knowledge is power. It1596

allows one to think about complex problems in increasingly sophisticated ways. An equation is a1597

mathematical sentence, expressing deep knowledge. Witnessed E = mc2 and ∇2ψ = ψ̈.1598

Reading List: The above concepts come straight from mathematical physics, as developed in the1599

17th–19th centuries. Much of this was first developed in acoustics by Helmholtz, Stokes and Rayleigh,1600

following in Green’s footsteps, as described by Lord Rayleigh (1896). When it comes to fully appre-1601

ciating Green’s theorem and reciprocity, I have found Rayleigh (1896) to be a key reference. If you1602

wish to repeat my reading experience, start with Brillouin (1953), followed by Sommerfeld (1952);1603

Pipes (1958). Second tier reading contains many items: Morse (1948); Sommerfeld (1949); Morse1604

and Feshbach (1953); Ramo et al. (1965); Feynman (1970); Boas (1987). A third tier might include1605

Helmholtz (1863a); Fry (1928); Lamb (1932); Bode (1945); Montgomery et al. (1948); Beranek (1954);1606

Fagen (1975); Lighthill (1978); Hunt (1952). You must enter at a level that allows you to understand.1607

Successful reading of these books critically depends on what you already know. A rudimentary (high1608

school) level of math comprehension must be mastered first. Read in the order that helps you best1609

understand the material.1610

Without a proper math vocabulary, mastery is hopeless. I suspect that one semester of college1611

math can bring you up to speed. This book is my attempt to present this level of understanding.1612

50https://en.wikipedia.org/wiki/Pythagorean_comma



Chapter 21613

Number Systems: Stream 11614

This chapter is devoted to Number Systems (Stream 1), starting with the counting numbers N. In this1615

chapter we delve more deeply into the details of the topics of Lectures 4-9.1616

WEEK 21617

1618

2.1 Week 21619

In Section 1.2.3 we explore in more detail the two fundamental theorems of prime numbers, working1620

out a sieve example, and explore the logarithmic integral Li(N) which approximates the density of1621

primes ρk(N) up to prime N .1622

The topics of Section 1.2.4 consider the practical details of computing the greatest common divisor1623

(GCD) of two integers m,n (Matlab’s routine l=gcd(m,n)), with detailed examples and comparing1624

the algebraic and matrix methods. Homework assignments will deal with these two methods. Finally1625

we discuss the relationship between coprimes and the GCD. In Section 1.2.5 we defined the Continued1626

Fraction algorithm (CFA), a method for finding rational approximations to irrational numbers. The1627

CFA and GCD are closely related, but the relation needs to be properly explained. In Section 1.2.7 we1628

derive Euclid’s formula, the solution for the Pythagorean triplets (PT), based on Diophantus’s chord/-1629

tangent method. This method is used many times throughout the course notes, first for computing1630

Euclid’s formula for the PTs, then for finding a related formula in Section 1.2.8 for the solutions to1631

Pell’s equation, and finally for finding the mapping from the complex plane to the extended complex1632

plane (the Riemann sphere).1633

Finally in Section 1.2.9 the general properties of the Fibonacci sequence is discussed. This equation1634

is a special case of the second order digital resonator (well known in digital signal processing), so it1635

has both historical and practical application for engineering. The general solution of the Fibonacci is1636

found by taking the Z-transform and finding the roots, resulting in an eigenvalue expansion (Appendix1637

D).1638

2.1.1 Lec 4 Prime numbers1639

If someone came up to you and asked for a theory of counting numbers, I suspect you would look them1640

in the eye with a blank stare, and start counting. It sounds like either a bad joke or a stupid question.1641

Yet integers are rich topic, so the question is not even slightly dumb. It is somewhat amazing that1642

even birds and bees can count. While I doubt birds and bees can recognize primes, cicadas and other1643

insects only crawl out of the ground in multiples of prime years, (e.g., 13 or 17 year cycles). If you have1644

ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally, there is1645

an analytic function, first introduced by Euler, based on his analysis of the Sieve, now known as the1646

69
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Riemann zeta function ζ(s), which is complex analytic, with its poles at the logs of the prime numbers.1647

The exact relationship between the primes and the poles will be discussed in Sections 1.4.12 and 4.5.2.1648

The properties of this function are truly amazing, even fun. It follows that primes are fundamental1649

properties of the counting numbers, that the theory of numbers (and primes) is an important topic of1650

study. Many of the questions, and some of the answers, go back to at least the time of the Chinese1651

(Stillwell, 2010).1652

The most relevant question at this point is “Why are integers so important?” We addressed this1653

question in Section 1.2.9. First we count with them, so we can keep track of “how much.” But there1654

is much more to numbers than counting: We use integers for any application where absolute accuracy1655

is essential, such as banking transactions (making change), and precise computing of dates (Stillwell,1656

2010, p. 70) or location (I’ll meet you at location L∈ N at time T∈ N), building roads or buildings1657

out of bricks (objects of a uniform size). If you go to 34th street and Madison and they are at 33th1658

and Madison, that’s a problem. To navigate we need to know how to predict the tides, the location of1659

the moon and sun, etc. Integers are important because they are precise: Once a month there is a full1660

moon, easily recognizable. The next day its slightly less than full.1661

Finding the primes by the Sieve of Eratosthenesa 4.2.3

• Write N − 1 counting number from 2 to N (List)

• Define a multiplier n ∈ N denoted n := {2, · · · , N}.

• k = 1 is the loop index for the next prime πk

• Identify in red each prime πk ∈ P

• Remove (Cross out) all multiples n · πn of πk

1. The first element on List is a prime (e.g., for k = 1, π1 = 2).

2. Cross out n · πn: (e.g., for k = 1, cross out n · π1 = 4, 8, 16, 32, · · · ).

3. Increment the loop index k := k + 1 and return to step 1

After the first step with k = 1 and π1 = 2, we cross out nπk (all the even numbers):

2 3 ✚4 5 ✚6 7 ✚8 9 ✚✚10
11 ✚✚12 13 ✚✚14 15 ✚✚16 17 ✚✚18 19 ✚✚20
21 ✚✚22 23 ✚✚24 25 ✚✚26 27 ✚✚28 29 ✚✚30
31 ✚✚32 33 ✚✚34 35 ✚✚36 37 ✚✚38 39 ✚✚40
41 ✚✚42 43 ✚✚44 45 ✚✚46 47 ✚✚48 49 ✚✚50

Following the second loop k = 2, π2 = 3, and we have removed nπk (6, 9, 12, 15, . . .):

2 3 ✚4 5 ✚6 7 ✚8 ✚9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 49 ✚✚50

Loops 3 and 4 result in primes π3 = 5 (remove 25, 35) and π4 = 7 (remove 49):

2 3 ✚4 5 ✚6 7 ✚8 ✚9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 ✚✚25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 ✚✚35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 ✚✚49 ✚✚50

Thus Π(50) = 15 (i.e., 15 primes are N ≤ 50): πk = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

Figure 2.1: Sieve of Eratosthenes for the case of N = 49.

ahttps://en.wikipedia.org/wiki/Sieve_of_Eratosthenes\#Euler.27s_Sieve
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Sieves1662

A recursive sieve method for finding primes was first devised by the Greek Eratosthenes (Fig. 2.1).1663

One first writes down all the numbers from 2, · · · , N . Starting from the first prime π1 = 2, one1664

successively strikes out all the multiples of that prime. For example, starting from π1 = 2 one strikes1665

out 2·2, 2·3, 2·4, 2·5, · · · , 2·(N/2). By definition the multiples are products of the target prime (2 in our1666

example) and every another integer (n ≥ 2). All the even numbers are removed in the first iteration.1667

One then considers the next integer not struck out (3 in our example), which is identified as the next1668

(second) prime π2. Then all the (N − 2)/2 non-prime multiples of π2 are struck out. The next number1669

which has not been struck out is 5, thus is prime π3. All remaining multiples of 5 are struck out (✚✚10,1670

✚✚15, ✚✚25, · · · ). This process is repeated until all the numbers on the starting list have been processed.1671

As the word sieve implies, this sifting process takes a heavy toll on the integers, rapidly pruning the1672

non-primes. In four loops of the sieve algorithm, all the primes below N = 50 are identified in red.1673

The final set of primes is displayed at the bottom of Fig. 2.1.1674

Once a prime greater than N/2 has been identified, we may stop, since twice that prime is greater1675

than N , the maximum number under consideration. Once you have reached
√
N all the primes have1676

been struck out (this follows from the fact that the next prime πn is multiplied by an integer n =1677

1, . . . N). Once this number nπn > N the list has been exhausted, which must be n <
√
N .1678

There are various schemes for making the sieve more efficient. For example the recursion nπk =1679

(n− 1)πk + πk. could speed up the process, by replacing the multiply by an add by a known quantity.1680

When using a computer, memory efficiency and speed are the main considerations.1681

The importance of prime numbers1682

Likely the first insight into the counting numbers starts with the sieve, shown in Fig. 2.1. A sieve1683

answers the question “What is the definition of a prime number?” which is likely the first question to1684

be asked. The answer comes from looking for irregular patterns in the counting numbers, by playing1685

the counting numbers against themselves.1686

A prime is that subset of positive integers P ∈ N that cannot be factored. The number 1 is not a1687

prime, for some non-obvious reasons, but there is no pattern in it since it is always a (useless) factor1688

of every counting number.1689

To identify the primes we start from the first candidate on the list, which is 2 (since 1 is not a1690

prime), and strike out all multiples by the counting numbers greater than 1 [(n + 1) · 2 = 4, 6, 8, · · · ].1691

While not obvious, this is our first result, that 2 is a prime, since it has no other factors but 1 and1692

itself. This leaves only the odd numbers. We need a notation to indicate this result so we shall set1693

π1 = 2, as the first prime.11694

Two Fundamental Theorems of Primes: Early theories of numbers revealed two fundamental1695

theorems (there are many more than two), as discussed in Section 1.2.2. The first of these is the1696

Fundamental Theorem of Arithmetic, which says that every integer greater than 1 may be uniquely1697

factored into a product of primes (Eq. 1.2). Our demonstration of this is empirical, using Matlab’s1698

factor(N) routine, which delivers the prime numbers that compose N .2 Typically the prime factors1699

appear more than once, for example 4 = 22. To make the notation compact we define the multiplicity1700

βk of each prime factor πk (Eq. 1.2).1701

Each counting number is uniquely represented by a product of primes. There cannot be two integers1702

with the same factorization. Once you multiply the factors out, the result is a unique N . Note that it’s1703

easy to multiply integers (e.g., primes), but nearly impossible to factor them. Factoring is not the same1704

1There is a potentially conflicting notation since π(N) is commonly defined as the number of primes less than index N .
Be warned that here we define πn as the nth prime, and Π(N) as the number of primes ≤ N , since having a convenient
notation for the nth prime is more important that for the number of primes less than N .

2If you wish to be a Mathematician, you need to learn how to prove theorems. If you’re an Engineer, you are happy
that someone else has already proved them, so that you can use the result.
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as dividing, as one needs to know what to divide by. Factoring means dividing by some integer and1705

obtaining another integer with a zero remainder. This is what makes it so difficult (nearly impossible).1706

So the question remains: “What is the utility of the FTA?” which brings us to the topic of internet1707

security. Unfortunately at this time I can not give you a proper summary of how it works. The full1708

answer requires a proper course in number theory, beyond what is presented here.1709

The basic concept is that it is easy to construct the product of two primes, even very long primes1710

having hundreds, or even thousands, of digits. It is very costly (but not impossible) to factor them.1711

Why not use Matlab’s factor(N) routine to find the factors? This is where cost comes in. The1712

numbers used in RSA are too large for Matlab’s routine to deliver an answer. In fact, even the largest1713

computer in the world (such as the University of Illinois’ super computer (NCSA Water) cannot do1714

this computation. The reason has to do with the number of primes. If we were simply looking up a few1715

numbers from a short list of primes, it would be easy, but the density of primes among the integers, is1716

huge (see Section 1.2.3). This take us to the Prime Number Theorem (PNT). The security problem is1717

the reason why these two theorems are so important: 1) Every integer has a unique representation as a1718

product of primes, and 2) the number of primes is very dense (their are a very large number of them).1719

Security reduces to the needle in the haystack problem, the cost of a search. A more formal way to1720

measure the density is called the entropy, which is couched in terms of the probability of events, which1721

in this case is “How often do you find a prime is a list of counting numbers?”
problem!

1722

Rational numbers Q1723

The most important genus of numbers are the rational numbers since they maintain the utility of1724

absolute precision, and they can approximate any irrational number (e.g., π ≈ 22/7) to any desired1725

degree of precision. However, the subset of rationals we really are interested in are the fractionals F.1726

Recall that Q : F ∪ Z and F ⊥ Z. The fractionals are the numbers with the approximation utility,1727

with arbitrary accuracy. Integers are equally important, but for a very different reason. All numerical1728

computing today is done with Q. Indexing uses integers Z, while the rest of computing (flow dynamics,1729

differential equations, etc.) is done with the fractionals F. Computer scientists are trained on these1730

topics, and engineers need to be at least conversant with them.1731

Irrational numbers: The cardinality of numbers may be ordered: |I|≫ |Q| ≫ |N| = |P|1732

The real line may be split into the irrationals and rationals. The rationals may be further split into1733

the integers and the fractionals. Thus, all is not integer. If a triangle has two integer sides, then the1734

hypotenuse must be irrational (
√

2 =
√

12 + 12). This leads us to a fundamental question: “Are there1735

integer solutions to Eq. 1.1?” We need not look further than the simple example {3, 4, 5}. In fact this1736

example does generalize, and the formula for computing an infinite number of integer solutions is called1737

Euclid’s Formula, which we will discuss in Section 2.1.3.1738

However, the more important point is that the cardinality of the irrationals is much larger than1739

any set other than the reals (i.e., complex numbers). Thus when we use computers to model physical1740

systems, we are constantly needing to compute with irrational numbers. But this is impossible since1741

every irrational numbers would require an infinite number of bits to represent it. Thus we must compute1742

with rational approximations to the irrationals. This means we need to use the fractionals. In the end,1743

we must work with the IEEE 754 floating point numbers,3 which are fractionals, more fully discussed1744

in Section 1.2.3.1745

2.1.2 Lec 5 Greatest common divisor (GCD)1746

Multiplying two numbers together, or dividing one by the other, is very inexpensive on today’s computer1747

hardware. However, factoring a large integer (i.e., 103 digits) into its primes, is very expensive. When1748

the integers are large, it is so costly that it cannot be done in a lifetime, even with the fastest computers.1749

3IEEE 754: http://www.h-schmidt.net/FloatConverter/IEEE754.html.
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The obvious question is: “Can we find the largest common factor k = gcd(m,n) without factoring1750

(m,n)?” The answer is “yes,” with the Euclidean algorithm (EA). While the EA falls short of factoring,1751

it is fast and easily implemented.1752

If the two integer are in factored form, the answer is trivial. For example 5 = gcd(5 · 13, 5 · 17), and1753

17 = gcd(17 · 53, 17 · 3 · 31). But what about gcd(901, 1581)? So the problem that computing the GCD1754

solves is when the factors are not known. Since 901 = 53∗17 and 1581 = 3∗17∗31, gcd(901, 1581) = 17,1755

which is not obvious.1756

In Matlab the GCD may be computed using k=gcd(m,n), which only allows integers as arguments1757

(and removes the sign).1758

Matrix method: The GCD may be written a matrix recursion, based on Eq. 2.1.2. The two starting
numbers are given by the vector (m0, n0). The recursion is then

[
mk+1

nk+1

]
=

[
1 −1
0 1

] [
mk

nk

]

This recursion continues until mk+1 < nk+1, at which point m and n must be swapped. Because the1759

output depends on the input, this is a nonlinear recursion (Postulate P1 (Linear/nonlinear) of Section1760

3.5.1, p. 98).1761

The direct method is inefficient because in recursively subtract n many times until the resulting1762

m is less than n, as shown in Fig. 2.2. It also must test for m < n at each iteration, and then swap1763

m and n once that condition is met. This recursion is repeated until mk+1 = 0. At that stage the1764

GCD is nk+1. Figure 2.2, along with the above matrix relation, give the best insight into the Euclidean1765

Algorithm, but at the cost of low efficiency.1766

Below is a Matlab code to find the gcd based on the strict definition of the EA:1767

n = gcd(m,n)1768

while m ˜=01769

A=m; B=n;1770

m=max(A,B); n=min(A,B); %m>n1771

m=m-n;1772

end1773

This program keeps looping until m = 0. It first finds the min and max of the inputs, sets m as the1774

max and n as the minimum. The next line m = m − n removes the smaller number from the larger1775

one. It then loops back and repeats the cycle. Thus the EA is a two step recursive method.1776

Division with rounding method: This method implements Eq. 2.1. It is not necessary to test
that mk+1 < nk+1. After computing the new value of n, using the floor function, the old value of m is
saved as the new value of n (thus mk+1 > nk+1

[
mk+1

nk+1

]
=

[
0 1
1 −

⌊
m
n

⌋
] [
mk

nk

]
. (2.1)

where ⌊x⌋ finds the integer part of x (⌊x⌋ rounds toward −∞). The method terminates when mk+1 = 0.1777

The previous values mk, nk are the solutions to Bézout’s identity (gcd(n,m)=1, namely mkm0 +nkn0 =1778

1), since the terminal state and the GCD of a, b is m− n⌊m/n⌋ = 0, for which n = gcd(a, b).1779

Below is 1-line vectorized code that is much more efficient than the direct matrix method:1780

k = gcd(m,n) %entry point: input m,n; output k=gcd(m,n)1781

M=[abs(m),abs(n)]; %init M1782

while M(2) ˜=0 % < n*eps to ‘‘almost work’’ with irrational inputs1783

M = [M(2) - M(1)*floor(M(2)/M(1)); M(1)]; %M = [M(1); M(2)] with M(1)<M(2)1784

end1785
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With a minor extension in the test for “end,” this code can be made to work with irrational inputs:1786

e.g.: (nπ,mπ).1787

This method calculates the number of times n < m must subtract from m using the floor function.1788

Note that the new value of m (M(1)) is always less than n (M(2)), and must remain greater or equal1789

to zero. This one-line vector operation is then repeated until the remainder (M(1)) is 0. The gcd is1790

then n (M(2)). When using irrational numbers, this still works except the error is never exactly zero,1791

due to IEEE 754 rounding. Thus the criterion must be that the error is within some small factor times1792

the smallest number (which in Matlab is the number eps = 2.220446049250313 ×10−16.1793

Thus without factoring the two numbers, the Euclidean algorithm recursively finds the gcd simply1794

by ordering the two numbers and then updating them. Perhaps this is best seen with some examples.1795

The GCD is an important and venerable method, useful in engineering and mathematics, but, as1796

best I know, is not typically taught in the traditional engineering curriculum.1797

Graphical meaning of the GCD: The Euclidean algorithm is actually very simple when viewed1798

graphically. In Fig. 2.2 we show what is happening as one approaches the threshold. After reaching1799

the threshold, the two number must be swapped, which is addressed by upper row of Eq. 2.1.1800

m

m-n

m-2n

m-3n

m-6n

m-7n

m
-k

n

k
n n

Figure 2.2: The Euclidean Algorithm recursively subtracts n from m until the remainder m − kn is either less than
n or zero. For the case depicted here the value of k that renders the remainder less than n is k = 6. If one more step
were taken (k = 7) the remainder becomes negative. By linear interpolation we can find that m − an = 0 when a = m/n,
which for this example is close to a=6.5. In this example 6 = floor(m/n) < n.

Multiplication is simply recursive addition, and finding the gcd takes advantage of this fact. Lets
take a trivial example, (9,6). Taking the difference of the larger from the smaller, and writing mul-
tiplication as sums, helps one see what is going on. Since 6=3*2, this difference may be written two
different ways

9− 6 = (3 + 3 + 3)− (3 + 3) = 0 + 0 + 3 = 3,

or

9− 6 = (3 + 3 + 3)− (2 + 2 + 2) = 1 + 1 + 1 = 3.

Written out the first way, it is 3, because subtracting (3+3) from (3+3+3) leaves 3. Written out1801

in the second way, each 3 is matched with a -2, leaving 3 ones, which add to 3. Of course the two1802

decompositions must yield the same result because 2 · 3 = 3 · 2. Thus finding the remainder of the1803

larger number minus the smaller yields the gcd of the two numbers.1804

Coprimes: When the gcd of two integers is 1, the only common factor is 1. This is of key importance1805

when trying to find common factors between the two integers. When 1=gcd(m,n) they are said to be1806

coprime, which can be written as m ⊥ n. By definition, the largest common factor of coprimes is 1.1807

But since 1 is not a prime (π1 = 2), they have no common primes.1808
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Generalizations of GCD: The GCD may be generalized in several significant ways. For example1809

what is the GCD of two polynomials? To answer this question one must factor the two polynomials to1810

identify common roots. This will be discussed in more detail in Section 3.2.2.1811

2.1.3 Lec 6 Continued Fraction Expansion (CFA)1812

Mo
Continued Fractions and circuit theory: One of the most powerful generalizations of the CFA1813

seems to be the expansion of a function of a complex variable, such as the expansion of an impedance1814

Z(s), as a function of complex frequency s. This idea is described in Fig. 2.3 and Eq. 2.2. This1815

is especially interesting in that it leads to a physical interpretation of the impedance in terms of a1816

transmission line (horn), a structure well know in acoustics having a variable area A(x) as function of1817

the range variable x.1818

The CFA expansion is of great importance in circuit theory, where it is equivalent to an infinitely1819

long segment of transmission line, composed of series and shunt impedance elements. Thus such a1820

cascade network composed of 1 ohm resistors, has an input impedance of (1 +
√

5)/2 ≈ 1.6180 [ohms].1821

+ +

x = X0

1
2
Z2(x, s)∆1

2
Z2(x, s)∆1

2
Z1(x, s)∆1

2
Z1(x, s)∆

x = X0 + ∆

P3(x, ω)

U3(x, ω)U1(x, ω)

+P1(x, ω) +

U2(x, ω)

U2(x, ω)− U3(x, ω)U1(x, ω)− U2(x, ω)

Y1(x, s)∆ Y2(x, s)∆

−

+

− −

P2(x, ω)

∆ ∆

Figure 2.3: This transmission line is known as a low-pass filter wave-filter (Campbell, 1922). For long wavelengths it
acts as a delay line, but as the wavelength approaches ∆, the size of a section, the response becomes low-pass. fig:LCTline

The CFA may be extended to monomials in s. For example consider the input impedance of a
cascade L-C transmission line as shown in Fig. 2.3. The input impedance of this transmission line is
given by a continued fraction expansion of the form

Zin = sL+
1

sC +
1

sL+
1

sC +
1

· · ·

=: [sL, sC, sL, sC, · · · ].eq : CFA (2.2)

where we have again used the bracket notation to describe the CFA coefficients, but without the1822

semicolon after the first term.1823

In some ways, Eq. 2.2 is reminiscent of the Taylor series expansion about s = 0, yet very different.
In the limit, as the frequency goes to zero (s→ 0), the impedance of the inductors go to zero, and that
of the capacitors go to ∞. In physical terms, the inductors become short circuits, while the capacitors
become open circuits. The precise relation may be quantified by the use of composition, described in
Fig. 1.9 of Section 2.1.3 (p. 48). Specifically

[
P1

U1

]
=

[
1 sL
0 1

] [
1 0
sC 1

]
· · ·
[
1 sL
0 1

] [
1 0
sC 1

] [
1 sL
0 1

] [
1 0
sC 1

] [
P2

−U2

]
. (2.3)

It seems possible that this is the CFA generalization of the Taylor series expansion, built on composition.1824

If we were to do the algebra we would find that A(s), B(s), C(s), D(s) (i.e., Sections 1.3.6, 3.3.2)1825

are ratios of polynomials having rational expansions as Taylor series. This seems like an important1826

observation, that should have support beyond that of the engineering literature (Campbell, 1903;1827

Brillouin, 1953; Ramo et al., 1965). Its interesting that (Brillouin, 1953) credits (Campbell, 1903).1828
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In terms of the transmission line, it becomes a long piece of wire, with a delay determined by the
phase velocity. There are two basic parameters that characterize a transmission line, the characteristic
resistance r0 =

√
L/C and the wave number κ = s/

√
LC = s/c, which gives c =

√
LC. Each of these

is a constant as ∆→ 0, and in that limit the waves travel as

f(t± x/c) = e±κxe−st,

with a wave resistance (r0 =
√
L/C. The total delay T = L/c where L is the line length and c is the1829

phase velocity of the line.1830

Since the CFA has a physical representation as a transmission line, as shown in Fig. 2.3, it can be1831

of high utility for the engineer.4 The theory behind this will be discussed in greater detail in Chapter1832

5. If you’re ready to jump ahead, read the interesting book by Brillouin (1953) and the collected works1833

of Campbell (1937).1834

WEEK 31835

1836

2.2 Week 31837

2.2.1 Lec 7 Pythagorean triplets (PTs) and Euclid’s formula ,1838

Pythagorean triplets (PTs) have many applications in architecture and scheduling, which explains why1839

they are important and heavily studied. For example, if one wished to construct a triangle with a1840

perfect 90◦ angle, then the materials need to be squared off as shown in Fig. 2.4. The lengths of the1841

sides need to satisfy PTs.1842

Figure 2.4: Beads on a string form perfect right triangles when number of beads on each side satisfy Eq. 1.1.

Derivation of Euclid’s formula: The problem is to find integer solutions to the Pythagorean1843

theorem (Eq. 1.1, p. 15). The solution method, said to be due to Diophantus, is call a chord/tangent1844

method (Stillwell, 2010, p. 48). The method composes (Section 3.2.3) a line and a circle, where the1845

line defines a chord within the circle (its not clear where the tangent line might go). The slope of the1846

line is then taken to be rational, allowing one to determine integer solutions of the intersections points.1847

This solution for Pythagorean triplets [a, b, c] is known as Euclid’s formula (Eq. 1.4, p. 1.4 (Stillwell,1848

2010, p. 4–9, 222).1849

The derivation methods of Diophantus have been lost, but Fermat and Newton figured out what1850

Diophantus must have done (Stillwell, 2010, p. 49). Since Diophantus worked before algebra was1851

invented, he described all the equations in prose (Stillwell, 2010, p. 93).1852

4Continued fraction expansions of functions are know in the circuit theory literature as a Cauer synthesis (Van Valken-
burg, 1964b).
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Derivation of Euclid’s formula: The derivation is outlined in Fig. 2.5. Starting from two integers1853

[p > q > 0] ∈ N, composing a line having a rational slope t = p/q, with a circle (Stillwell, 2010, p. 6),1854

reveals the formula for the Pythagorean triplets.1855

Euclid’s formula for Pythagorean triplets [a, b, c] 5.2.4

1) 2φ + η = π

2) η + Θ = π
3) ∴ φ = Θ/2

Euclidean Proof:

1) t = p/q ∈ Q

2) a = p2 − q2

3) b = 2pq

4) c = p2 + q2

2) b(a) = t(a + c)

1) c2 = a2+ b2

4) ζ = |c|eiθ = |c|1+it
1−it = |c|(cos(θ) + i sin(θ))

3) ζ(t) ≡ a+b = 1−t2+2t
1+t2

Diophantus’s Proof:

(a, b)b

a
φ

η

φ

b(a) = t (a + c)

O
c2 = a2 + b2

c =
p
2 +

q
2

b
=

2p
q

Θ a = p2 − q2

Y

X

Pythagorean triplets:

Figure 2.5: Derivation of Euclid’s formula for the Pythagorean triplets [a, b, c], based on a composition of a
line, having a rational slope t = p/q ∈ Q, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This analysis is attributed to
Diophantus (250 CE), and today such equations are called Di·o·phan′·tine equations. PTs have applications in
architecture and scheduling, and many other practical problems.

The construction starts with a circle and a line, which is terminated at the point (−1, 0). The slope1856

of the line is the free parameter t. By composing the circle and the line (i.e., solving for the intersection1857

of the circle and line), the formula for the intersection point (a, b) may be determined in terms of t,1858

which will then be taken as the rational slope t = p/q ∈ Q.1859

In Fig. 2.5 there are three panels, two labeled “Proofs.” The Euclidean Proof shows the angle1860

relationships of two triangles, the first an isosceles triangle formed by the chord, having slope t and1861

two equal sides formed from the radius of the circle, and a second right triangle having its hypotenuse1862

as the radius of the circle and its right angle vertex at (a, 0). As shown, it is this smaller right triangle1863

that must satisfy Eq. 1.1. The inner right triangle has its hypotenuse c between the origin of the circle1864

(O) to the point (a, b). Side a forms the x axis and side b forms the y ordinate. Thus by construction1865

Eq. 1.1 must be obeyed.1866

The Diophantus Proof is the heart of Diophantus’ (250 CE) derivation, obtained by composing a1867

line and a circle, as shown in Fig. 2.5. Diophantus’s approach was to fix the line at x = −c having a1868

rational slope t = p/q ∈ Q. He then solved for the intersection of the line and the circle, at (a, b).1869

The formula for the line is b(a) = t(a + c), which goes through the points (−c, 0) and (a, b). The
circle is given by a2 + b2 = c2. Composing the line with the circle gives

a2 + (t(a+ c))2 = c2

a2 + t2(a2 + 2ac+ c2) = c2

(1 + t2)a2 + 2ct2a+ c2(t2 − 1) = 0

This last equation is a quadratic equation in a. In some sense it is not really a quadratic equation,1870

since we know that a = −c is a root.1871

Solving for a(t) is best done by completing the square. Dividing by 1 + t2

a2 +
2ct2

1 + t2
a+

c2(t2 − 1)

1 + t2
= 0,
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makes it easy to complete the square, and thus find the roots:

(
a+

ct2

1 + t2

)2

−
(

ct2

1 + t2

)2

+
c2(t2 − 1)

1 + t2
= 0

(
a+

ct2

1 + t2

)2

− c2t4

(1 + t2)2
+
c2(t2 − 1)(t2 + 1)

(1 + t2)2
= 0

(
a+

ct2

1 + t2

)2

−✟✟✟c2t4 + c2(✓✓t4 − 1)

(1 + t2)2
= 0

(
a+

ct2

1 + t2

)2

=

(
c

1 + t2

)2

The second to last equation simplifies (magic happens) because the known root a = −c is embedded1872

in the result.1873

Taking the square root gives the two roots

a± +
ct2

1 + t2
= ± c

1 + t2

(1 + t2)a± = −ct2 ± c = −c(t2 ∓ 1)

a± = −ct
2 ∓ 1

1 + t2
.

The known root is a+ = −c, because when the sign is +, the numerator and denominator terms cancel.1874

The root we have been looking for is a−

a− = c
1− t2
1 + t2

,

which allows us to solve for b−

b− = ±
√
c2 − a2

−

= ±c
√

1−
(

1− t2
1 + t2

)2

= ±c
√

(1 + t2)2 − (1− t2)2

(t2 + 1)2

= ± 2ct

t2 + 1
.

Therefore the coordinates (a, b), the intersection point of the line and circle, are

(a(t), b(t)) = c
[1− t2, 2t]

1 + t2
.

To obtain the Pythagorean triplets, as given in Fig. 2.5 and Eq. 1.4 of Section 1.2.7 (p. 34), set1875

t = p/q, assuming p > q ∈ Z, and simplify.1876

Complex roots: Defining the root as a complex number ζ(Θ) ≡ a+ b forces a ⊥ b (i.e., forces the
right triangle) and gives us polar coordinates, as defined by the figure as the Euclidean Proof

ζ(Θ) = |c|eΘ = |c| (cos(Θ) +  sin(Θ)) .
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This naturally follows since

ζ = |c|eΘ(t) = |c|1− t
2 + 2t

1 + t2
= |c|✘✘✘✘(1 + t)(1 + t)

✘✘✘✘(1 + t)(1− t) = (q + p)

√
q + jp

q − p .

Examples of PTs include a = 22 − 12 = 3, b = 2 · 2 · 1 = 4, and c = 22 + 12 = 5, 32 + 43 = 52.1877

Defining p = q +N (N ∈ N) gives slightly better parametric representation of the answers, as the1878

pair (q,N) are a more systematic representation than (p, q), because the condition p > q is accounted1879

for, so the general properties of the solutions are expressed more naturally. Note that b+c must always1880

be a perfect square since b+ c = (p+ q)2 = (2q +N)2, as first summarized by Fermat Stillwell (2010,1881

p. 212).1882

s1883

2.2.2 Lec 8 Pell’s Equation1884

Eigenvalue solution to Pell’s equation: To provide a full understanding of what was known to1885

the Pythagoreans, it is helpful to provide the full solution to this recursive matrix equation, based on1886

what we know today.1887

As shown in Fig. 1.8, (xn, yn) may be written as a power series of the 2x2 matrix A. To find the1888

powers of a matrix, the well know modern approach is to diagonalize the matrix. For the 2x2 matrix1889

case, this is relatively simple. The final result written out in detail for the general solution (xn, yn), as1890

detailed in Appendix D (p. 131):1891

[
xn

yn

]
= n

[
1 2
1 1

]n [
1
0

]
= E

[
λn

+ 0
0 λn

−

]
E

−1

[
1
0

]
. (2.4)

The eigen-values are λ± = (1±
√

2) while the eigen-matrix and its inverse are

E =
1√
3

[√
2 −

√
2

1 1

]
=

[
0.8165 0.8165
0.5774 −0.5774

]
, E−1 =

√
3

2
√

2

[
1
√

2

1 −
√

2

]
=

[
0.6124 0.866
0.6124 −0.866

]

The relative “weights” on the two eigen-solutions are equal, as determined by

E−1

[
1
0

]
=

√
3

2
√

2

[
1
√

2

1 −
√

2

] [
1
0

]
=

√
3

2
√

2

[
1
1

]
.

We still need to prove that
xn

yn
→∞
√
N,

which follows intuitively from Pell’s equation, since as (xn, yn) → ∞, the difference between x2 and1892

2y2, the (±1) becomes negligible.1893

WEEK 41894

1895

2.3 Week 41896

2.3.1 Lec 9 Fibonacci Numbers1897

The Fibonacci sequence is famous in number theory. It is said that the sequence commonly appears in1898

physical systems. Fibonacci numbers are related to the “golden ratio” (1 +
√

5)/2, which could explain1899

why these numbers appear in nature.1900
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But from a mathematical point of view, the Fibonacci sequence does not seem special. It is generated
by a linear recursion relationship, where the next number is the sum of the previous two (Eq. 1.7, p.
38)

xn+1 = xn + xn−1. (2.5)

The term linear means that the principle of superposition holds (P1 (linear/nonlinear) of Section1901

3.5.1). To understand the meaning of this we need to explore the z-transform, the discrete-time version1902

of the Laplace transform. We will return to this in Chapter 4.1903

A related linear recurrence relation is that the next output be the average of the previous two

xn+1 =
xn + xn−1

2
.

In some ways this relationship is more useful than the Fibonacci recursion, since it perfectly removes1904

oscillations of the form −1n (it is a 2-sample moving average, a trivial form of low-pass filter). And it1905

is stable, unlike the Fibonacci sequence, with stable real eigenvalues (digital-poles) at λ± = (1,−0.5).1906

Perhaps biology prefers unstable poles (to propagate growth?).1907

The most general 2d order recurrence relationships (i.e., digital filter) is

xn+1 = −bxn − cxn−1,

with filter constants b, c ∈ R and poles at (completing the square), λ± = −b/2±
√
c− b/2.1908

Equation 2.5 may be written as a 2x2 matrix relationship. If we define yn+1 = xn then Eq. 2.5 is
equivalent to (Eq. 1.8, p. 38) [

xn+1

yn+1

]
=

[
1 1
1 0

] [
xn

yn

]
. (2.6)

The first equation is xn+1 = xn + yn while the second is yn+1 = xn, which is the same as yn = xn−1.1909

Note that the Pell 2x2 recursion is similar in form to the Fibonacci recursion. This removes mystique1910

from both equations.1911

General properties of the Fibonacci numbersa

xn = xn−1 + xn−2

• This is a 2-sample moving average difference equation with an unstable pole

• xn = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · ], assuming x0 = 0, x1 = 1:

• Analytic solution (Stillwell, 2010, p. 194):
√

5 xn ≡
(

1+
√

5

2

)n

−
(

1−
√

5

2

)n

→
(

1+
√

5

2

)∞

– limn→∞
xn+1

xn
= 1+

√
5

2

– Example: 34/21 = 1.6190 ≈ 1+
√

5

2
= 1.6180 0.10% error

• Matlab’s rat(1 +
√

5) = 3 + 1/(4 + 1/(4 + 1/(4 + 1/(4)))) =: [3; 4, 4, 4, · · · ]
ahttps://en.wikipedia.org/wiki/Fibonacci_number

Figure 2.6: Properties of the Fibonacci numbers (Stillwell, 2010, p. 28).

In the matrix diagonalization of the Pell equation we found that the eigenvalues were λ± = 1∓
√
N ,1912

and the two solutions turned out to be powers of the eigenvalues. The solution to the Fibonacci recursion1913

may similarly be expressed in terms of a matrix. These two cases may thus be reduced by the same1914

2x2 eigenvalue solution method.1915

The eigenvalues of the Fibonacci matrix are

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1 = (λ− 1/2)2 − (1/2)2 − 1 = (λ− 1/2)2 − 5/4 = 0

thus λ± = 1±
√

5
2 = [1.618,−0.618].1916
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2.3.2 Lec 10 Exam I1917
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Chapter 31918

Algebraic Equations: Stream 21919

Topics to add: ABCD matrix method based on composition of Möbius transformations Taylor series1920

of 1/(1-s) along with discussion of the ROC Work out some examples of polynomial composition and1921

Bezout’s Thm1922

Add intro to chapter that reviews what is here.1923

WEEK 4-AE 12.5.01924

1925

L 11 Stream 2: Algebra and geometry as physics (Physics drives early mathematics)1926

The first ”algebra” (al-jabr) al-Khwarizmi (9thCE)1927

Polynomial equations in one and two variables (Stillwell, 2010, Ch. 6, p. 87)1928

Solution of the Quadratic Equation; Taylor series1929

Composition and intersection of polynomials1930

AE-1 (HW4) for 9/16/16; Add convolution problem. Verify due date.1931

3.1 Week 41932

3.1.1 Lec 11 Algebra and geometry as physics1933

Before Newton could work out his basic theories, algebra needed to be merged with Euler’s early
quantification of geometry. The key to putting geometry and algebra together is the Pythagorean
theorem (Eq. 1.1), which is both geometry and algebra. To make the identification with geometry the
sides of the triangle needed to be viewed as a length. This is done by recognizing that the area of a
square is the square of a length. Thus a geometric proof requires one to show that the area of the
square A = a2 plus the area of square B = b2 must equal the area of square C = c2. There are many
such constructions that show A+B = C for the right triangle. It follows that in terms of coordinates
of each vertex, the length of c is given by

c =
√

(x2 − x1)2 + (y2 − y1)2, (3.1)

with a = x2−x1 and b = y2− y1. Thus Eq. 1.1 is both an algebraic and a geometrical statement. This1934

is not obvious.1935

Analytic geometry is based on coordinates of points, with the length given by Eq. 3.1. Geometry1936

treats lines as lengths without specifying the coordinates. Algebra gave a totally new view to the1937

quantification of geometrical lengths. We now explore the relationships between points represented1938

as coordinates and the geometry behind them. We shall do this with simple examples from analytic1939

geometry.1940

83
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For example, in terms of the geometry, the intersection of two circles can occur at two points, and1941

the intersection of two spheres gives a circle. These ideas may be verified using algebra.1942

For each of these problems, the lines and circles may intersect, or not, depending on how they are1943

drawn. Yet we now know that even when they do not intersect on the sheet of paper, they still have1944

an intersection, but the solution is ∈ C. Finding such solutions require the use of algebra rather than1945

geometry.1946

Complex analytic functions: A very delicate point, that seems to have been ignored for centuries,1947

is that the roots of Pn(x) are, in general, complex, namely xk ∈ C. It seems a mystery that complex1948

numbers were not accepted once the quadratic equation was discovered, but they were not. Newton1949

called complex roots imaginary, presumably in a pejorative sense. The algebra of complex numbers was1950

first documented by Bombelli in 1575, more than 100 years before Newton. It is interesting however1951

that Newton was using power series with fractional degree, thus requiring multi-valued solutions, much1952

later to be known as branch cuts (c1851). These topics will be explored in Section 3.1.1.1953

When the argument is complex, the analytic function takes on an entirely new character. For
example Euler’s identity (1748) with z = x+ y ∈ C results in ez ∈ C (Stillwell, 2010, p. 315)

ez = ex(cos(y) +  sin(y)).

It should be clear that the complex analytic functions results in a new category of algebra, with no1954

further assumptions beyond allowing the argument to be complex.1955

Prior to 1851 most of the analysis assumed that the roots xk ∈ R even though there was massive1956

evidence that rn ∈ C. Prior to 1851, everyone seemed to be looking for real roots. This is clearly1957

evident in Newton’s work (c1687): When he found a non-real root, he ignore it out. Euler (c1748)1958

first derived the Zeta function as a function of real arguments ζ(x) with ζ, x ∈ R. Cauchy (c1814)1959

broke this staid thinking with his analysis of complex analytic functions, but it was Riemann thesis1960

(c1851), when working with Gauss (1777-1855), which had a several landmark breakthroughs. In this1961

work Riemann introduced the extended complex plane, which explained the point at infinity. He also1962

introduced Riemann sheets and Branch cuts, which finally allowed mathematics to better describe the1963

physical world (Section 1.4.2).1964

Once the argument of an analytic function is complex, for example an impedance Z(s), or the Rie-1965

mann Zeta function ζ(s), The development of complex analytic functions led to many new fundamental1966

theorems. Complex analytic functions have poles and zeros, branch cuts, Riemann sheets and can be1967

analytic at the point at infinity. Many of these properties were first worked out by Augustin-Louis1968

Cauchy (1789-1857), who drew heavily on the much earlier work of Euler, expanding Euler’s ideas into1969

the complex plane (Chapter 4).1970

Systems of equations1971

We don’t need to restrict ourselves to polynomials in one variable. We can work with the equation for
a circle having radius r

y2 + x2 = r2,

which is quadratic in two variables. Solving for roots y(xr) = 0 (y2(xr) = r2 − x2
r = 0) gives (r −1972

xr)(r + xr), which simply says that when the circle crosses the y = 0 line at xr = ±r.1973

This equation may also be factored as

(y − x)(y + x) = r2,

as is easily demonstrated by multiplying out the two monomials. This does not mean that a circle has
Point being?

1974

complex roots. A root is defined by either y(xr) = 0, or x(yr) = 0.1975

Writing the circle in standard polynomial form we find

y2(x) = ax2 + bx+ c.
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Completing the square (Eq. 1.12) (verify)

1

a
y2(x)−

(
x+

b

2a

)2

=
c

a
−
(
b

2a

)2

.

This we see this is a hyperbola. For it to be a circle a = −1, b = 0 and c = r2.1976

WEEK 5 12.5.01977

1978

L 12 Examples of algebraic expressions in physics1979

Fundamental Thm of Algebra (d’Alembert, ≈1760)1980

Analytic Geometry: Algebra + Geometry (Euclid to Descartes)1981

Newton and power series; Taylor series & ROC Composition of polynomial equations in two1982

variables.1983

1984

L 13 Root classification for polynomials of Degree * = 1–4 (p.102);1985

Convolution of monomials gives polynomial construction; Work out convolution for cubic1986

Show that an−1 is sum of roots and a0 is product of roots. Quintic (* = 5) cannot be solved1987

L 14 First Analytic Geometry (Fermat 1629; Descartes 1637) (p. 118) Descartes’ insight: Composition1988

of two polynomials of degrees (m,n → one of degree m · n)1989

Examples: x4 ◦ x2 = x8. Discuss Composition vs. intersection of functions.1990

3.2 Week 51991

3.2.1 Lec 12 Physics an complex analytic expressions: linear vs. nonlinear1992

A relevant physical example comes from the solution of the wave equation (Eq. 1.9) in three dimensions.
Such cases arise in wave-guide problems, semiconductors, plasma waves, or for acoustic wave propaga-
tion in crystals (Brillouin, 1960) and the earth’s mantel (e.g., seismic waves, earthquakes, etc.). The
solutions to these problems are based on the eigenfunction for the vector wave equation (see Chapter
5),

P (s,x) = este−κ·x, (3.2)

where x = [xx̂+ yŷ + zẑ] is a vector pointing in the direction of the wave, [x̂, ŷ, ẑ] are unit vectors in1993

the three dimensions and s = σ + ω [rad] is the Laplace frequency. The function κ(s) is the complex1994

vector wave number, which describes the propagation of a plane wave of radian frequency ω, in the x1995

direction. The equation is linear in x.1996

Just as the frequency s = σ + ω must be complex, it is important to allow the wave number
function1 κ(s) to be complex, because in general it will have a real part, to account for losses as the
wave propagates. While it is common to assume there are no losses, in reality this assumption cannot
be correct. In many cases it is an excellent approximation (e.g., even the losses of light in-vacuo are
not zero) that gives realistic answers. But it is important to start with a notation that accounts for
the most general situation, so that when losses must be accounted for, the notation need not change.
With this in mind, we take the vector wave number to be complex

κ = kr + k,

1This function has many names in the literature, some of which are potentially confusing. It has been called the wave
number and propagation constant, however its not a number nor is it constant.
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where vector expression for the lattice vector is the imaginary part of κ

ℑκ = k =
2π

λx
x̂+

2π

λy
ŷ +

2π

λz
ẑ, (3.3)

is the vector wave number for three dimensional solutions. The units of |κ| are reciprocal length [m−1].
Add figure explain-

of [λx, λy, λz ].

1997

When there are losses κr(s) = ℜκ(s) must be a function of frequency, due to the physics behind1998

these losses. In many important cases, such as loss-less wave propagation in semiconductors, κ(x) is a1999

function of direction and position (Brillouin, 1960). We will not consider these more complex materials2000

here, other than to acknowledge that they exist.2001

When the eigenfunction Eq. 3.2 is applied to the wave equation, a quadratic (degree 2) algebraic
expression results, known as the dispersion relation. The three dimensional dispersion relation

(
s

c

)2

= κ · κ (3.4)

is a complex analytic algebraic relationship in four variables, frequency s and the three complex lattice2002

wave numbers.This represents a three-dimensional generalization of the well know relation between2003

wavelength and frequency fλ = c. For plane waves propagating in free space, assuming no loss,2004

|κ(s)| = ±|s/c|, where the sign accounts for the direction of the plane wave.2005

This scalar relation (fλ = c) was first deduced by Galileo in the 16th century and was then explored2006

further by Mersenne a few years later.2 This relationship would have been important to Newton when2007

formulating the wave equation, which he needed to estimate the speed of sound. We shall return to2008

this in Chapters 4 and 5.2009

Hilbert space: Another important example of algebraic expressions in mathematics is Hilbert’s2010

generalization of Eq. 1.1, known as the Schwartz inequality, shown in Fig. 3.1. What is special about2011

this generalization is that it proves that when the vertex is 90◦, the length of the leg is minimum.2012

It is a somewhat arbitrary requirement that a, b, c ∈ R for the Pythagorean theorem (Eq. 1.1).
This seems natural enough since the sides are lengths. But, what if they are taken from the complex
numbers, as for the lossy vector wave equation, or the lengths of vectors in Cn? Then the equation
generalizes to

c · c = ||c||2 =
n∑

k=1

|ck|2,

where ||c||2 = (c, c) is the inner (dot) product of a vector c with itself where ||c|| =
√
||c||2 is called the2013

norm of vector c, akin to a length, as assumed in Fig. 3.1.2014

Power vs. power series, linear vs. nonlinear2015

Another place where equations of second degree appear in physical applications is in energy and power
calculations. The electrical power is given by the product of the voltage v(t) and current i(t) (or in
mechanics as the force times the velocity). For example if we define P = v(t)i(t) to be the power P
[Watts], then the total energy [Joules] at time t is (Van Valkenburg, 1964a, Chapter 14)

E(t) =

∫ t

0
v(t)i(t)dt.

From this observe that the power is the rate of change of the total energy

P(t) =
d

dt
E(t).

2Get this story straight.
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Geometry: Hilbert space: David Hilbert 1900

• Define:

1. Vectors U, V = [v1, v2, · · · , v∞]) in an ∞ dimensional inner product vector space

2. Inner product U · V =
∑∞

k=1
ukvk

3. Norm ||U || =
√
U · V =

√∑
v2

k (the norm is the length of the vector)

• From these definitions we may define the minimum difference between the two vectors as the perpendicular
from the end of one to the intersection of the second:
U ⊥ V may be found by minimizing the length of the vector difference:

min
α
||V − αU ||2 = ||V ||2 + 2αV · U + α2||U ||2 > 0

0 = ∂α (V − αU) · (V − αU)

= V · U − α∗||U ||2

∴ α∗ = V · U/||U ||2.

• The Schwarz inequality follows:

Imin = ||V − α∗U ||2 = ||V ||2 − |U · V |
2

||U ||2 > 0

0 ≤ |U · V | ≤ ||U || ||V ||
Thus the direction cosine between the two vectors is

cos(θ) =
U · V
||U || ||V || .

• Example:

U(ω) = e−ω0t V (ω) = eωt U · V =

∫

ω

eωte−ω0t dω

2π
= δ(ω − ω0)

Figure 3.1: The Schwartz inequality is related to the shortest distance (length of a line) between the ends of the two

vectors. ||U || =
√

(U · U) as the dot product of that vector with itself. This theory is widely used in quantum mechanics
(Hilbert inner product spaces).

Ohm’s Law and impedance: The ratio of voltage over the current is call the impedance which has
units of [Ohms]. For example given a resistor of R = 10 [ohms],

v(t) = R i(t).

Namely 1 amp flowing through the resistor would give 10 volts across it. Merging the linear relation
due to Ohm’s law with the definition of power, shows that the instantaneous power in a resistor is
quadratic in voltage and current

P = v(t)2/R = i(t)2R.

Note that Ohm’s law is linear in its relation between voltage and current whereas the power and energy2016

are nonlinear.2017

Ohm’s Law generalizes in a very important way, allowing the impedance (e.g., resistance) to be2018

a linear complex analytic function of complex frequency s = σ + ω (Kennelly, 1893; Brune, 1931a).2019

Impedance is a fundamental concept in many fields of engineering. For example:3 Newton’s second law
Force is a vector,
voltage are a poten

2020

F = ma obeys Ohm’s law, with mechanical impedance Z(s) = sm. Hooke’s Law F = kx for a spring2021

3In acoustics the pressure is a potential, like voltage. The force per unit area is given by f = −∇p thus F = −
∫

∇p dS.
Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is v = −∇φ.
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is described by a mechanical impedance Z(s) = k/s. In mechanics a “resistor” is called a dashpot and2022

its impedance is a positive and real constant.42023

Kirchhoff’s Laws KCL, KVL: The laws of electricity and mechanics may be written down using2024

Kirchoff’s Laws current and voltage laws, (KCL, KVL), which lead to linear systems of equations in2025

the currents and voltages (velocities and forces) of the system under study, with complex coefficients2026

having positive real parts.2027

Points of major confusion are a number of terms that are misused, and overused, in the fields of2028

mathematics, physics and engineering. Some of the most obviously abused terms are linear/nonlinear,2029

energy, power, power series. These have multiple meanings, which can, and are, fundamentally in2030

conflict.2031

Transfer functions (Transfer matrix): The only method that seems to work, to sort this out,
is to cite the relevant physical application, in specific contexts. The most common touch point is a
physical system that has an input x(t) and an output y(t). If the system is linear, then it may be
represented by its impulse response h(t). In such cases the system equation is

y(t) = h(t) ⋆ x(t)↔ Y (ω) = H(s)|σ=0X(ω),

namely the convolution of the input with the impulse response gives the output. From Fourier analysis2032

this relation may be written in the real frequency domain as a product of the Laplace transform of the2033

impulse response, evaluated on the ω axis and the Fourier transform of the input X(ω) ↔ x(t) and2034

output Y (ω)↔ y(t).2035

Mention ABCD Transfer matrix2036

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and2037

Laplace transforms have no obvious meaning.2038

The question that must be addressed is why is the power said to be nonlinear whereas a power series2039

of H(s) said to be linear. Both have powers of the underlying variables. This is massively confusing,2040

and must be addressed. The question will be further addressed in Section 3.5.1 in terms of the system2041

postulates of physical systems.2042

Whats going on? The domain variables must be separated from the codomain variables. In our2043

example, the voltage and current are multiplied together, resulting in a nonlinear output, the power.2044

If the frequency is squared, this is describing the degree of a polynomial. This is not nonlinear because2045

it does not impact the signal output, it characterizes the Laplace transform of the system response.2046

3.2.2 Lec 13 Root classification of polynomials2047

Root classification for polynomials of Degree * = 1–4 (p.102);2048

Quintic (* = 5) cannot be solved: Why?2049

Fundamental Thm of Algebra (d’Alembert, ≈1760)2050

2051

Add intro & merge convolution discussions.2052

Convolution2053

As we discussed in Chapter 1, given the roots, the construction of higher degree polynomials, is greatly2054

assisted by the convolution method. This has physical meaning, and gives insight into the problem of2055

factoring higher order polynomials. By this method we can obtain explicit relations for the coefficients2056

of any polynomial in terms of its roots.2057

4https://en.wikipedia.org/wiki/Impedance_analogy
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Extending the example of Section 1.3.3, let’s find the relations for the cubic. For simplicity, assume
that the polynomial has been normalized so that the lead x3 term has coefficient 1. Then the cubic in
terms of its roots [a, b, c] is a convolution of three terms

[1, a] ⋆ [1, b] ⋆ [1, c] = [1, a+ b, ab] ⋆ [1, c] = [1, a+ b+ c, ab+ c(a+ b), abc].

Working out the coefficients for a quartic gives

[1, a+b+c, ab+c(a+b), abc]⋆[1, d] = [1, a+b+c+d, d(a+b+c)+c(a+b)+ab, d(ab+ac+bc)+abc, abcd].

It is clear what is going on here. The coefficient on x4 is 1 (by construction). The coefficient for x3 is2058

the sum over the roots. The x2 term is the sum over all possible products of pairs of roots, The linear2059

term x is the sum over all triple products of the four roots, and finally the last term (a constant) is the2060

product of the four roots.2061

In fact this is a well known, a frequently quoted result from the mathematical literature, and trivial2062

to show given an understand of convolution. If one wants the coefficients for the quintic, it is not even2063

necessary to use convolution, as the pattern (rule) for all the coefficients is now clear.2064

You can experiment with this numerically using Matlab’s convolution routine conv(a,b). Once2065

we start studying Laplace and Fourier transforms, convolution becomes critically important because2066

multiplying an input signal in the frequency domain by a transfer function, also a function of frequency,2067

is the same a convolution of the time domain signal with the inverse Laplace transform of the transfer2068

function. So you didn’t need to learn how to take a Laplace transform, and then learn convolution.2069

We have learned convolution first independent of the Fourier and Laplace transforms.2070

When the coefficients are real, the roots must appear as conjugate pairs. This is an important2071

symmetry.2072

For the case of the quadratic we have the relations between the coefficients and the roots, found by
completing the square. This required isolating x to a single term, and solving for it. We then proceeded
to find the coefficients for the cubic and quartic case, after a few lines of calculation. For the quartic

a4 = 1

a3 = a+ b+ c+ d

a2 = d(a+ b+ c) + c(a+ b) + ba

a1 = d(ab+ ac+ bd) + abc

a0 = abcd

These relationships are algebraically nonlinear in the roots. From the work of Galois, for N ≥ 5, this2073

system of equations is impossible to invert. Namely, given ak, one may not determine the four roots2074

[a, b, c, d] analytically. One must use numeric methods.2075

To gain some insight, let us look at the problem for N = 2, which has a closed form solution:

a2 = 1

a1 = a+ b

a0 = ab

We must solve for [a, b] given twice the mean, 2(a+b)/2, and the square of the geometric mean
(√

ab
)2

.2076

Since we already know the answer (i.e, the quadratic formula). The solution was first worked out by the2077

Babylonians (2000 BCE) Stillwell (2010, p. 92). It is important to recognize that for physical systems,2078

the coefficients ak are real. This requires that the roots come in conjugate pairs (b = a∗), thus ab = |a|22079

and a+ b = 2ℜa, which makes the problem somewhat more difficult, due to the greater symmetry.2080

Once you have solved this problem, feel free to attempt the cubic case. Again, the answer is known,2081

after thousands of years of searching. The solution to the cubic is given in (Stillwell, 2010, pp. 97-9),2082

as discovered by Cardano in 1545. According to Stillwell “The solution of the cubic was the first2083
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clear advance in mathematics since the time of the Greeks.” The ability to solve this problem required2084

algebra, and the solutions were complex numbers. The denial of complex numbers was, in my view, the2085

main stumbling block in the progress of these solutions. For example, how can two parallel lines have2086

a solution? Equally mystifying, how can a circle and a line, that do not intersect, have intersections?2087

From the algebra we know that they do. This was a basic problem that needed to be overcome. This2088

story is still alive,5 because the cubic solution is so difficult.6 One can only begin to imagine how much2089

more difficult the quartic is, solved by Cardano’s student Ferrair, and published by Cardano in 1545.2090

The impossibility of the quintic was finally resolved in 1826 by Able (Stillwell, 2010, p. 102).2091

Finally with these challenges behind them, Analytic Geometry, relating of algebra and geometry,2092

via coordinate systems, was born.2093

3.2.3 Lec 14: Analytic Geometry2094

Lec 14: Early Analytic Geom (Merging Euclid and Descartes): Composition of degrees n,m gives2095

degree m · n2096

Composition and Intersection (Gaussian elimination)2097

The first “algebra” (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory2098

of polynomial equations in one variable, Taylor series, and composition versus intersections of curves.2099

The solution of the quadratic equation had been worked out thousands of year earlier, but with algebra2100

a general solution could be defined. The Chinese had found the way to solve several equations in2101

several unknowns, for example, finding the values of the intersection of two circles. With the invention2102

of algebra by al-Khwarizmi, a powerful tool became available to solve the difficult problems.2103

Composition, Elimination and Intersection In algebra there are two contrasting operations on2104

functions: composition and Elimination, (aka intersection).2105

Composition: Composition is the merging of functions, by feeding one into the other. If the two2106

functions are f, g then their composition is indicated by f ◦ g, meaning the function y = f(x) is2107

substituted into the function z = g(y), giving z = g(f(x)).2108

Examples: Let y = f(x) =: x2 − 2 and z = g(y) =: y + 1. Then

g ◦ f = g(f(x)) = (x2 − 2) + 1 = x2 − 1. (3.5)

In general composition does not commute (i.e., f ◦ g 6= g ◦ f), as is easily demonstrated. Swapping the
order of composition for our example gives

f ◦ g = f(g(y)) = z2 − 2 = (y + 1)2 − 2 = y2 + 2y − 1. (3.6)

Intersection: Complimentary to composition is intersection (i.e., decomposition) (Stillwell, 2010,2109

pp. 119,149). For example, the intersection of two lines is defined as the point where they meet. This
Not sure ref right.

2110

is not to be confused with finding roots. A polynomial of degree N has N roots, but the points where2111

two polynomials intersect has nothing to do with the roots of the polynomials. The intersection is a2112

function (equation) of lower degree, implemented with Gaussian elimination.2113

5M. Kac, How I became a mathematician.” American Scientist (72), 498–499.
6https://www.google.com/search?client=ubuntu&channel=fs&q=Kac+\%22how+I+became+a\%22+1984+pdf&ie=

utf-8&oe=utf-8
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Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear
algebra this may be written as 2 linear equations (left) along with the intersection point [x1, x2]T , given
by the inverse of the 2x2 set of equations (right)

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
, (3.7)

where ∆ = ab− cd is called the determinant. By substituting the right expression into the left, and do2114

some minor matrix algebra, you will obtain an identity. If ∆ = 0 there can be no solution, in which2115

case the two lines are parallel, thus meet at infinity.2116

Algebra can often give a solution when geometry cannot. When the two curves fail to intersect on2117

the real plane, the solution still exists, but is complex valued. Thus geometry, which only considers2118

the real solutions, fails. For example, when the coefficients [a, b, c, d] are complex, the solution exists,2119

but the determinant can be complex. Apparently algebra is more general than geometric, which fails2120

due to the complex intersection.2121

Sarah comment: Illustrate this point with curves with real coefs that have complex intersections,2122

such as y = x2 + 1 and y = x. xr = (1±
√

3)/22123

WEEK 6 18.7.02124

2125

L 15 Gaussian Elimination (upper-diagional matrix); Permutation matrix method2126

Solution to x3 −Ny3 = 1 using chord and tangent methods2127

AE-2: Linear (& nonlinear) systems of equations2128

L 16 Composition and the Bilinear transformation (ABCD Transmission matrix method)2129

L 17 Riemann sphere and the extended plane (3d chord and tangent method)2130

Möbius Transformation (youtube video)2131

Closing the complex plane2132

3.3 Week 62133

3.3.1 Lec 15 Gaussian Elimination (Intersection)2134

Toy problems in Gaussian Elimination: Gaussian Elimination is valid for nonlinear systems of2135

equations. Till now we have emphasized the reduction of linear systems of equations.2136

Problem 1: Two lines in a plane either intersect or are parallel, in which case they are said to meet
at ∞. Does this make sense? The two equations that describe this may be written in matrix form as
Ax = b, which written out as [

a11 a12

a21 a22

] [
x1

x2

]
=

[
b1

b2

]
(3.8)

The intersection point x0, y0 is given by the solution two these two equations

[
x1

x1

]
=

1

∆

[
a22 −a12

−a21 a11

] [
b1

b2

]
, (3.9)

where ∆ = a11a22 − a12a21 is the determinant of matrix A (Matlab’s det(A) function).2137



92 CHAPTER 3. ALGEBRAIC EQUATIONS: STREAM 2

It is useful to give an interpretation of these two equations. Each row of the 2x2 matrix defines a
line in the (x, y) plane. The top row is

a11x+ a12y = b1.

Normally we would write this equation as y(x) = αx + β, where α is the slope and β is the intercept
(i.e., y(0) = β). In terms of the elements of matrix A, the slope of the first equation is α = −a11/a12

while the slope of the second is α = −a21/a22. The two slopes are equal (the lines are parallel) when
−a11/a12 = −a21/a22, or written out

∆ = a11a22 − a12a21 = 0.

Thus when the determinate is zero, the two lines are parallel and there is no solution to the equations.2138

This 2x2 matrix equation is equivalent to a 2d degree polynomial. If we seek an eigenvector solution
[e1, e2]T such that [

a11 a12

a21 a22

] [
e1

e2

]
= λ

[
e1

e2

]
(3.10)

the 2x2 equation becomes singular, and λ is one of the roots of the polynomial. One may proceed by
merging the two terms to give [

a11 − λ a12

a21 a22 − λ

] [
e1

e2

]
=

[
0
0

]
. (3.11)

Clearly this new matrix has no solution, since if it did, [e1, e2]T would be zero, which is nonsense. If it
has no solution, then the determinant of the matrix must be zero. Forming this determinate gives

(a11 − λ)(a22 − λ)− a12a21 = 0

thus we obtain the following quadratic equation for the roots λ± (eigenvalues)

λ2
± − (a11 + a22)λ± + ∆ = 0.

When ∆ = 0, one eigenvalue is zero while the other is a11 + a22, which is known as the trace of the2139

matrix.2140

In summary: Given a “linear” equation for the point of intersection of two lines, we see that there2141

must be two points of intersection, as there are always two roots of the quadratic characteristic poly-2142

nomial. However the two lines only intersect at one point. Whats going on? What is the meaning of2143

this second root?2144Needs work.

It takes some simple examples to see what is happening. The eigenvalues depend on the relative2145

slopes of the lines, which in general can become complex. The intercepts are dependent on b. Thus2146

when the RHS is zero, the eigenvalues are irrelevant. This covers the very simple examples. When one2147

eigenvalue is real and the other is imaginary, more interesting things are happening since the slope of2148

one line is real and the slope of the other is pure imaginary. The lines can intersect in the real plane,2149

and again in the complex plane.2150

Lets try an example of two lines, one with a slope of 1, and the second with a slope of 2. Let

[
1 −1
1 −2

] [
y
x

]
=

[
a
b

]
(3.12)

Here the first equation is y = x+ a and the second is y = 2x+ b.2151

The solution is [
y0

x0

]
= −

[
−2 1
−1 1

] [
a
b

]
=

[
2 −1
1 −1

] [
a
b

]
=

[
2a− b
a− b

]
(3.13)
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since ∆ = −1.2152

This seems to say (I don’t understand) that two real lines having slopes of 1 and 2 and intercepts2153

of a and b, meet (x0, y0) = (a+ b, a− b).2154

While there is a unique solution, there are two eigenvalues, given by the roots of

(1− λ±)(−2− λ±) + 1 = 0.

If we transfer the sign from one monomial to the other

(−1 + λ±)(2 + λ±) + 1 = 0

and reorder for simplicity

(λ± − 1)(λ± + 2) + 1 = 0

we obtain the quadratic for the roots

λ2
± + λ± − 1 = 0.

Completing the square gives

(λ± + 1/2)2 = 3/4.

or

λ± = −1/2±
√

3/2.

The question is, what is the relationship between the eigenvalues and the final solution, if any? Maybe2155

none. The solution (x0, y0) is reasonable, and its not clear that the eigenvalues play any useful role2156

here, other than to predict there is a second solution. I’m confused.2157

Two lines in 3-space: In three dimensions



a11 a12 a13

a21 a22 a23

a31 a32 a33






x
y
z


 =



b1

b2

b3


 (3.14)

Each row of the matrix describes a plane, which is said to be linear in the unknowns (x, y, z). Thus the2158

system of linear equations represents three planes, which must intersect at one point. If two planes are2159

parallel, there is no real solution. In this case the intersection by the third plane generates two parallel2160

lines.2161

As in the 2x2 case, one may convert this linear equation into a cubic polynomial by setting the2162

determinant of the matrix, with −λ subtracted from the diagonal, equal to zero. That is, det(A−λI) =2163

0. Here I is the matrix with 1 on the diagonal and zero off the diagonal.2164

Simple example: As a simple example, let the first plane be z = 0 (independent of x, y), the second
parallel plane be z = 1 (independent of (x, y)) and the third plane be x = 0 (independent of y, z). This
results in the system of equations




0 0 a13

0 0 a23

a31 0 0






x
y
z


 =




0
1
0


 (3.15)

Writing out the three equations we find a13z = 0, a23z = 1, and a31x = 0. Note that det(A) = 0 (we2165

need to learn how to compute the 3x3 determinant). This means the three planes never intersect at2166

one point. Use Matlab to find the eigenvalues.2167
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3.3.2 Lec 16 Matrix composition: Bilinear and ABCD transformations2168

The Transmission matrix2169

A transmission matrix is a 2x2 matrix that characterizes a 2-port circuit, one having an input and
output voltage and current, as shown in Fig. 1.9. The input is the voltage and current V1, I1 and the
output is the voltage and current V2,−I2, with the current always defined to flow into the port. For
any such a linear network, the input-output relations may be written in a totally general way as

[
V1

I1

]
=

[
A(s) B(s)
C(s) D(s)

] [
V2

−I2

]
.

In Section 1.3.6 we showed that a cascade of such matrices is composition. We shall show below that2170

the justification of this relationship is based on the composition of bilinear transformations.2171

Expanding Eq. 3.20 into its individual equations demonstrates the linear form of the relations

V1 = A(s)V2 −B(s)I2 I1 = C(s)V2 −D(s)I2,

quantifying the relationship between the input voltage and current to its output voltage and current.2172

Define H(s) = V2/V1 as the transfer function, as the ratio of the output voltage V2 over the input2173

voltage V1, under the constraint that the output current I2 = 0. From this definition H(s) = 1/A(s).2174

In a similar fashion we may define the meaning of all four functions as

A(s) ≡ V1

V2

∣∣∣∣
I2=0

B(s) ≡ −V1

I2

∣∣∣∣
V2=0

(3.16)

C(s) ≡ I1

V2

∣∣∣∣
I2=0

D(s) ≡ −I1

I2

∣∣∣∣
V2=0

(3.17)

From Eq. 3.20 one may compute any desired quantity, specifically those quantities defined in2175

Eq. 3.17, the open circuit voltage transfer function (1/A(s)), the short-circuit transfer current (1/D(s))2176

and the two transfer impedances B(s) and 1/C(s).2177

In the engineering fields this matrix composition is called the Transmission matrix, also known as2178

the ABCD method. It is a powerful method that is easy to learn and use, that gives important insights2179

into transmission lines, and thus even the 1 dimensional wave equation.2180

Derivation of ABCD matrix for example of Fig. 1.9.2181

The derivation is straight forward by the application of Ohm’s Law, as shown in Section 1.3.6.2182

The convenience of the ABCD matrix method is that the output of one is identically the input of
the next. Cascading (composing) the results for the series inductor with the shunt compliance leads to
the 2x2 matrix form that precisely corresponds to the transmission line CFA shown in Fig. 2.3,

[
Vn(s)
In(s)

]
=

[
1 sLn

1 0

] [
Vn+1(s)
−In+1(s)

]
. (3.18)

This matrix relation characterizes the series mass term sLn. A second equation maybe be used for the
shunt capacitance term sYn(s)

[
Vn(s)
In(s)

]
=

[
1 0
sCn 0

] [
Vn+1(s)
−In+1(s)

]
. (3.19)

The positive constants Ln, Cn ∈ R represent the series mass (inductance) and the shunt compliance2183

(capacitance) of the mechanical (electrical) network. The integer n indexes the series and shunt sections,2184

that are composed one following the next.2185
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Matrix composition and the bilinear transform: Now that we have defined the composition of2186

two functions, we will use it to define the Möbius or bilinear transformation. Once you understand how2187

this works, hopefully you will understand why it is the unifying element in many important engineering2188

problems.2189

The bilinear transformation is given by

w =
a+ bz

c+ dz

This takes one complex number z = x+ iy and transforms it into another complex number w = u+ iv.
This transformation is bilinear in the sense that its linear in both the input and output side of the
equation. This may be seen when written as

(c+ dz)w = a+ bz,

since this relation is linear in the coefficients [a, b, c, d]. An important example is the transformation
between impedance Z(s) and reflectance Γ(s),

Γ(s) =
Z(s)− r0

Z(s) + r0
,

which is widely used in transmission line problems. In this example w = Γ, z = Z(s), a = −r0, b =2190

1, c = r0, d = 1.2191

If we define a second bilinear transformation (this could be the transformation from reflectance
back to impedance)

r =
α+ βw

γ + δw
,

and then compose the two something astray wrt arguments

w ◦ r =
a+ b r

c+ d r
=
a(γ + δw) + b(α+ βw)

c(γ + δw) + d(α+ β)w
=
aγ + bα+ (aδ + bβ)w

cγ + dα+ (cδ + dβ)w
,

something surprising happens. The composition w ◦ r may be written in matrix form, as the product
of two matrices that represents each bilinear transform. This may be seen as true by inspecting the
coefficients of the composition w ◦ r (shown above) and the product of the two matrices

[
a b
c d

] [
α β
γ δ

]
=

[
(aγ + bα) (aδ + bβ)
(cγ + dα) (cδ + dβ)

]
.

The the power of this composition property of the bilinear transform may be put to work solving2192

important engineering problems, using transmission matrices.2193

3.3.3 Lec 17 Introduction to the Riemann Sphere and infinity2194

Riemann sphere and the extended plane (3d chord and tangent method)2195

Möbius Transformation (youtube video)2196

Closing the complex plane2197

2198

WEEK 7 18.7.02199

2200

L 18 Colorized plots of complex analytic functions (Matlab zviz.m)2201
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Mapping the multi-valued square root of w = ±√x + iy

• This provides a deep (essential) insight to complex analytic functions

Figure 3.2: Here we see the function w(z) = ±√z.

L 19 Signals and Systems: Fourier vs. Laplace Transforms AE-32202

L 20 Role of Causality and the Laplace Transform:2203

u(t)↔ 1/s (LT)2204

2ũ(t) ≡ 1 + sgn(t)↔ 2πδ(ω) + 2/ω (FT)2205

3.4 Week 72206

3.4.1 Lec 18 Complex analytic mappings (colorized plots)2207

Colorized plots (Matlab zviz.m)2208

2209

When one uses complex analytic functions it is helpful to understand their properties in the complex2210

plane. In this sections we explore several well-known functions using colorized plots.2211

w = s.2

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

s = sqrt((u+jv))

u

iv

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 3.3: On the left is the function w(s) = s2 and on the right is s =
√

w.
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In the first example (Fig. 3.3) we look at w(s) = s2 and its inverse s(w) =
√
w. On the left we see2212

that the red region, corresponding to 0◦ [degrees] appears at both 0 and 180 in the w plane. This is2213

because in polar coordinates s2 = |s|2e2θ where θ is the angle of s = |s|e2θ. Note also that the black2214

spot is dilated due to the squaring of the radius (expanding it). On the right the
√
w =

√
|w|eφ/2.2215

Because the angle of w is divided by two, it takes twice as much phase (in w) to cover the same angle.2216

Thus the red region (0◦) is expanded. We barely see the violet 90◦ and yellow −90◦ angles. There2217

is a branch cut running from w = 0 to w = ∞. As the branch cut is crossed, the function switches2218

Riemann sheets, going from the top sheet (shown here) to the bottom sheet (not shown). Figure 3.2 in2219

Section 3.3.3 depicts what is going on with these two sheets, and show the branch cut from the origin2220

(point O) to ∞. In this depiction the first sheet (+
√
z) is on the bottom, while the second sheet (

√
z)2221

is on top. For every value of z there are two possible outcomes, ±√z, represented by the two sheets.2222

w = tan((x+jy))

x

jy

−2 −1  0  1  2

 2

 1

 0

−1

−2

s = atan((u+jv))

u

iv

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 3.4: On the left is the function w(s) = tan(z) and on the right is its inverse w(s) = tan−1(πs).

In the second example (Fig. 3.4) we show w = tan(z) and its inverse z = tan−1(w). The tangent2223

function has zeros where sin(z) has zeros (e.g., at z = 0) and poles where cos(z) is zero (e.g., at ±π/2.2224

The inverse function s = atan(w) has a zero at w = 0 and branch cuts eliminating from z = ±π.2225

w = s.2

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

w = sin(pi*s)

σ

jω

−2 −1  0  1  2

 2

 1

 0

−1

−2

Figure 3.5: On the left is the function w(s) = s2 and on the right is w(s) = sin(πs). See the discussion in the text for
an interpretation of these charts.
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Two more examples are given in Fig. 3.5 to interpret the two complex mappings w = s2 (left) and2226

w = sin(πs) (right). On the left there are two red regions because in polar coordinates w(s) = |s|2e2θ,2227

thus the square causes the phase to rotate twice around for once around the s plane. Namely the angle2228

is doubled and the magnitude squared. Due to the faster changing phase in w thus there are two red2229

regions, one when θ = 0 and the second at θ = π (∠w(s) = 2θ). The dark spot is larger because of the2230

square on the magnitude, which expands the unit circle |s| = 1.2231

The right-hand plot of w(s) = sin(πs) is equally interesting. Along the σ axis (real part of s) the2232

function is the periodic sin(σ) function. The dark spots are at σ = kπ, with k ∈ Z. This is the normal2233

sin(πσ) function with zeros at 0,±π, 2± π, . . .. When we stray off the ω = 0 axis, the function either2234

goes to zero (black) or ∞ (white). This behavior carries the same 2π periodicity as it has along the2235

ω = 0 line. These figure are worthy of careful study to develop an intuition for complex functions of2236

complex variables. In Section 1.3.8 we shall explore more complex mappings, and in greater detail.2237

It becomes most interesting to study polynomials of degree 5 and 4, with one zero removed, to2238

demonstrate the Fundamental Theorem of Algebra. Recall that degree 5 is not analytically tractable,2239

and must be investigated numerically.2240

Discuss the branch cut.2241

3.4.2 Lec 19 Signals and Systems: Fourier vs. Laplace Transforms2242

Signals and Systems: Fourier vs. Laplace Transforms AE-32243

3.4.3 Lec 20 Role of Causality and the Laplace Transform2244

Role of Causality and the Laplace Transform:2245

u(t)↔ 1/s (LT)2246

2ũ(t) ≡ 1 + sgn(t)↔ 2πδ(ω) + 2/ω (FT)2247

WEEK 8 20.8.02248

2249

L 21 The 6 postulates of System (aka, Network) Theory; The important role of the Laplace transform2250

re impedance2251

L 22 Exam II (Evening exam)2252

3.5 Week 82253

3.5.1 Lec 21 The 6 postulates of System of algebraic Networks2254

Taxonomy requires a proper statement of the laws of physics, which includes at least the nine basic2255

network postulates described in Section 1.3.11. To describe each of the network postulates one must2256

start from the Transmission matrix representation discussed in Section 3.3.2.2257
as shown in black

(p. 35), as examples of
ostulates.

The 2-port transmission matrix for an acoustic transducer (loudspeaker) shown in Fig. 3.6 is defined
as [

Φi

Ii

]
=

[
A(s) B(s)
C(s) D(s)

] [
Fl

−Ul

]
=

1

T

[
zm(s) ze(s)zm(s) + T 2

1 ze(s)

] [
Fl

−Ul

]
. (3.20)

The input is electrical (voltage and current) [Φi, Ii] and the output (load) are the mechanical (force and2258

velocity) [Fl, Ul]. The first matrix is the general case, expressed in terms of four unspecified functions2259
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Figure 3.6: A schematic representation of a 2-port ABCD electro-mechanic system using Hunt parameters
Ze(s), zm(s), and T (s): electrical impedance, mechanical impedances, and transduction coefficient (Hunt, 1952;
Kim and Allen, 2013). Also V (f), I(f), F (f), and U(f) are the frequency domain voltage, current, force, and
velocity respectively. Notice how the matrix method ‘factors’ the 2-port model into three 2×2 matrices. This
allows one to separate the physical modeling from the algebra. It is a standard impedance convention that the
flows I(f), U(f) are always defined into the port. Thus it is necessary to apply a negative sign on the velocity
−U(f) so that it has an outward flow, to feed the next cell with an inward flow. Replace Φ with V .

A(s), B(s), C(s), D(s), while the second matrix is for the specific example of Fig. 3.6. The four entries2260

are the electrical driving point impedance Ze(s), the mechanical impedance zm(s) and the transduction2261

T = B0l where B0 is the magnetic flux strength and l is the length of the wire crossing the flux. Since2262

the transmission matrix is anti-reciprocal, its determinate ∆T = −1, as is easily verified.2263

Other common transduction examples of cross-modality transduction include current–thermal (ther-2264

moelectric effect) and force–voltage (piezoelectric effect). These systems are all reciprocal, thus the2265

transduction has the same sign.2266

Impedance matrix2267

These nine postulates describe the properties of a system having an input and an output. For the
case of an electromagnetic transducer (Loudspeaker) the system is described by the 2-port, as show in
Fig. 3.6. P6 is inherently a 2-port network property, while P1-P5 also apply to 1-ports networks (e.g.,
a driving point impedance is a 1-port). For example the electrical input impedance of a loudspeaker is
Ze(s), defined by

Ze(s) =
V (ω)

I(ω)

∣∣∣∣
U=0

.

Note that this driving-point impedance must be causal, thus it has a Laplace transform and therefore is2268

a function of the complex frequency s = σ+jω, whereas the Fourier transforms of the voltage V (ω) and2269

current I(ω) are functions of the real radian frequency ω, since the time-domain voltage v(t)↔ V (ω)2270

and the current i(t) ↔ I(ω) are signals that may start and stop at any time (they are not typically2271

causal).2272

The corresponding 2-port impedance matrix for Fig. 3.6 is

[
Φi

Fl

]
=

[
z11(s) z12(s)
z21(s) z22(s)

] [
Ii

Ul

]
=

[
Ze(s) −T (s)
T (s) zm(s)

] [
Ii

Ul

]
. (3.21)

The impedance matrix is an alternative description of the system but with generalized forces [Φi, Fl]2273

on the left and generalized flows [Ii, Ul] on the right. A rearrangement of the equations allows one2274

to go from one set of parameters to the other (Van Valkenburg, 1964b). Since the electromagnetic2275

transducer is anti-reciprocal, z12 = −z21 = T = B0l. Such a description allows one to define Thèvenin2276

parameters, a very useful concept used widely in circuit analysis and other network models from other2277

modalities.2278

Additional or modified postulates2279

The postulates must go beyond postulates P1-P6 defined by Carlin and Giordano (Section 1.3.11,2280

p. 55), when there are interaction of waves and a structured medium, along with other properties not2281

covered by classic network theory. Assuming QS, the wavelength must be large relative to the medium’s2282

lattice constants. Thus the QS property must be extended to three dimensions, and possibly to the2283

cases of an-isotropic and random media.2284
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Causality: P1 As stated above, due to causality the negative properties (e.g., negative refractive2285

index) must be limited in bandwidth, as a result of the Cauchy-Riemann conditions. However even2286

causality needs to be extended to include the delay, as quantified by the d’Alembert solution to the2287

wave equation, which means that the delay is proportional to the distance. Thus we generalize P12288

to include the space dependent delay. When we wish to discuss this property we denote it Einstein2289

causality, which says that the delay must be proportional to the distance x, with impulse response2290

δ(t− x/c).2291

Linearity: P2 The wave properties of may be non-linear (P2). This is not restrictive as most2292

physical systems are naturally nonlinear. For example, a capacitor is inherently nonlinear: as the2293

charge builds up on the plates of the capacitor, a stress is applied to the intermediate dielectric due to2294

the electrostatic force F = qE. In a similar manner, an inductor is nonlinear. Two wires carrying a2295

current are attracted or repelled, due to the force created by the flux. The net force is the product of2296

the two fluxes due to each current.2297

In summary, most physical systems are naturally nonlinear, it’s simply a matter of degree. An2298

important counter example is a amplifier with negative feedback, with very large open-loop gain.2299

There are, therefore, many types of non-linear, instantaneous and those with memory (e.g., hysteresis).2300

Given the nature of P1, even an instantaneous non-linearity may be ruled out. The linear model is so2301

critical for our analysis, providing fundamental understanding that we frequently take this postulate2302

for granted.2303

Real time response: P3 The impulse response of every physical system is real, vs. complex. This2304

requires that the Laplace Transform have conjugate-symmetric symmetry H(s) = H∗(s∗), where the ∗2305

indicates conjugation (e.g., R(σ, ω) +X(σ, ω) = R(σ, ω)−X(σ,−ω)).2306

Passive/Active: P4 We greatly extend P4 by building in the physics behind conservation of energy:2307

Otto Brune’s positive Real (PR aka physically realizable) condition. Following up on the earlier work2308

of his primary PhD thesis advisor Wilhelm Cauer (1900-1945), and working with Norbert Weiner and2309

Vannevar Bush at MIT, Otto Brune mathematically characterized the properties of every PR 1-port2310

driving point impedance.2311

When the input resistance of the impedance is real, the system is said to be passive, which means the
system obeys conservation of energy. The real part of Z(s) is positive if and only if the corresponding
reflectance is less than 1 in magnitude. The definition of the reflectance of Z(s) is defined as a bilinear
transformation of the impedance, normalized by its surge resistance r0 (Campbell, 1903)

Γ(s) =
Z(s)− r0
Z(s) + r0

.

The surge resistance is defined in terms of the inverse Laplace transform of Z(s) ↔ z(t), which must
have the form

z(t) = r0δ(t) + ζ(t),

where ζ(t) = 0 for t < 0. It naturally follows that γ(t) ↔ Γ(s) is zero for negative and zero time,2312

namely γ(0) = 0, t ≤ 0. at2313

Given any linear PR impedance Z(s) = R(σ, ω)+ jX(σ, ω), having real part R(σ, ω) and imaginary
part X(σ, ω), the impedance is defined as being PR (Brune, 1931b) if and only if

R(σ ≥ 0, ω) ≥ 0. (3.22)

That is, the real part of any PR impedance is non-negative everywhere in the right half s plane (σ ≥ 0).2314

This is a very strong condition on the complex analytic function Z(s) of a complex variable s. This2315

condition is equivalent to any of the following statements: 1) There are no poles or zeros in the right2316

half plane (Z(s) may have poles and zeros on the σ = 0 axis). 2) If Z(s) is PR then its reciprocal2317
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Y (s) = 1/Z(s) is PR (the poles and zeros swap). 3) If the impedance may be written as the ratio2318

of two polynomials (a limited case, related to the quasistatics approximation, P9) having degrees N2319

and L, then |N − L| ≤ 1. 4) The angle of the impedance θ ≡ ∠Z lies between [−π ≤ θ ≤ π]. 5)2320

The impedance and its reciprocal are complex analytic in the right half plane, thus they each obey the2321

Cauchy Riemann conditions there.2322

The PR (positive real or Physically realizable) condition assures that every impedance is positive-
definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17).
This means that the total energy absorbed by any PR impedance must remain positive for all time,
namely

E(t) =

∫ t

−∞
v(t)i(t) dt =

∫ t

−∞
i(t)⋆z(t) i(t) dt > 0,

where i(t) is any current, v(t) = z(t) ⋆ i(t) is the corresponding voltage and z(t) is the real causal2323

impulse response of the impedance, e.g., z(t) ↔ Z(s) are a Laplace Transform pair. In summary, if2324

Z(s) is PR, E(t) is PD.2325

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a
rational polynomial fraction expansion (residue expansion), which can be expanded into first-order
poles as

Z(s) = K
ΠL

i=1(s− ni)

ΠN
k=1(s− dk)

=
∑

n

ρn

s− sn
ej(θn−θd), (3.23)

where ρn is a complex scale factor (residue). Every pole in a PR function has only simple poles and2326

zeros, requiring that |L−N | ≤ 1 (Van Valkenburg, 1964b).2327

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear.2328

Specifically what is the physical meaning of the specific constraints on Z(s)? In many ways, the2329

impedance concept is highly artificial, as expressed by P1-P7.2330

When the impedance is not rational, special care must be taken. An example of this is the semi-2331

inductor M
√
s and semi-capacitor K/

√
s due, for example, to the skin effect in EM theory and viscous2332

and thermal losses in acoustics, both of which are frequency dependent boundary-layer diffusion losses.2333

They remain positive-real but have a branch cut, thus are double valued in frequency.2334

By building in the physics behind conservation of energy: Otto Brune’s positive-real (PR) condition.2335

Following up on the earlier work of his primary PhD thesis advisor Wilhelm Cauer (1900-1945), and2336

working with Norbert Weiner and Vannevar Bush at MIT, Otto Brune mathematically characterized2337

the properties of every PR 1-port driving point impedance (Brune, 1931b).2338

Given any linear PR impedance Z(s) = R(σ, ω) + jX(σ, ω), having real part (resistance) R(σ, ω)
and imaginary part (reactance) X(σ, ω), the impedance is defined as being PR (Brune, 1931a) if and
only if

R(σ ≥ 0, ω) ≥ 0. (3.24)

That is, the real part of any PR impedance is non-negative everywhere in the right half s plane (σ ≥ 0).2339

This is a very strong condition on the complex analytic function Z(s) of a complex variable s. This2340

condition is equivalent to any of the following statements: 1) There are no poles or zeros in the right2341

half plane (Z(s) may have poles and zeros on the σ = 0 axis). 2) If Z(s) is PR then its reciprocal2342

Y (s) = 1/Z(s) is PR (the poles and zeros swap). 3) If the impedance may be written as the ratio of two2343

polynomials (a limited case) having degrees N and L, then |N −L| ≤ 1. 4) The angle of the impedance2344

θ ≡ ∠Z lies between [−π ≤ θ ≤ π]. 5) The impedance and its reciprocal are complex analytic in the2345

right half plane, thus they each obey the Cauchy Riemann conditions.2346

The PR (positive real or Physically realizable) condition assures that every impedance is positive-
definite (PD), thus guaranteeing conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17).
This means that the total energy absorbed by any PR impedance must remain positive for all time,
namely

E(t) =

∫ t

−∞
v(t)i(t) dt =

∫ t

−∞
i(t)⋆z(t) i(t) dt > 0,
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where i(t) is any current, v(t) = z(t) ⋆ i(t) is the corresponding voltage and z(t) is the real causal2347

impulse response of the impedance, e.g., z(t) ↔ Z(s) are a Laplace Transform pair. In summary, if2348

Z(s) is PR, E(t) is PD.2349

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a
rational polynomial fraction expansion (residue expansion), which can be expanded into first-order
poles as

Z(s) = K
ΠL

i=1(s− ni)

ΠN
k=1(s− dk)

=
∑

n

ρn

s− sn
ej(θn−θd), (3.25)

where ρn is a complex scale factor (residue). Every pole in a PR function has only simple poles and2350

zeros, requiring that |L−N | ≤ 1 (Van Valkenburg, 1964a).2351

Whereas the PD property clearly follows P3 (conservation of energy), the physics is not so clear.2352

Specifically what is the physical meaning of the specific constraints on Z(s)? In many ways, the2353

impedance concept is highly artificial, as expressed by P1-P7.2354

When the impedance is not rational, special care must be taken. An example of this is the semi-2355

inductor M
√
s and semi-capacitor K/

√
s due, for example, to the skin effect in EM theory and viscous2356

and thermal losses in acoustics, both of which are frequency dependent boundary-layer diffusion losses.2357

They remain positive-real but have a branch cut, thus are double valued in frequency.2358

Time invariant: P5 The meaning of time-invariant requires that the impulse response of a system2359

does not change over time. This requires that the system coefficients of the differential equation2360

describing the system are constant (independent of time).2361

Rayleigh Reciprocity: P6 Reciprocity is defined in terms of the unloaded output voltage that
results from an input current. Specifically

[
z11(s) z12(s)
z21(s) z22(s)

]
=

1

C(s)

[
A(s) ∆T

1 D(s)

]
, (3.26)

where ∆T = A(s)D(s) − B(s)C(s) = ±1 for the reciprocal and anti-reciprocal systems respectively.
This is best understood in term of Eq. 3.21. The off-diagonal coefficients z12(s) and z21(s) are defined
as

z12(s) =
Φi

Ul

∣∣∣∣
Ii=0

z21(s) =
Fl

Ii

∣∣∣∣
Ul=0

The these off-diagonal elements are equal [z12(s) = z21(s)] the system is said to obey Rayleigh reci-2362

procity. If they are opposite in sign [z12(s) = −z21(s)], the system is said to be anti-reciprocal. If2363

a network has neither of the reciprocal or anti-reciprocal characteristics, then we denote it as non-2364

reciprocal (McMillan, 1946). The most comprehensive discussion of reciprocity, even to this day, is that2365

of Rayleigh (1896, Vol. I). The reciprocal case may be modeled as an ideal transformer (Van Valkenburg,2366

1964a) while for the anti-reciprocal case the generalized force and flow are swapped across the 2-port.2367

An electromagnetic transducer (e.g., a moving coil loudspeaker or electrical motor) is anti-reciprocal2368

(Kim and Allen, 2013; Beranek and Mellow, 2012), requiring a gyrator rather than a transformer, as2369

shown in Fig. 3.6.2370

Reversibility: P7 A second 2-port property is the reversible/non-reversible postulate. A reversible2371

system is invariant to the input and output impedances being swapped. This property is defined by2372

the input and output impedances being equal.2373

Referring to Eq. 3.26, when the system is reversible z11(s) = z22(s) or in terms of the transmission2374

matrix variables A(s)
C(s) = D(s)

C(s) or simply A(s) = D(s) assuming C(s) 6= 0.2375

An example of a non-reversible system is a transformer where the turns ratio is not one. Also an2376

ideal operational amplifier (when the power is turned on) is non-reversible due to the large impedance2377
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difference between the input and output. Furthermore it is active (it has a power gain, due to the2378

current gain at constant voltage) (Van Valkenburg, 1964b).2379

Generalizations of this lead to group theory, and Noether’s theorem. These generalizations apply2380

to systems with many modes whereas quasistatics holds when operate below a cutoff frequency (Table2381

3.1), meaning that like the case of the transmission line, there are no propagating transverse modes.2382

While this assumption is never exact, it leads to highly accurate results because the non-propagating2383

evanescent transverse modes are attenuated over a short distance, and thus, in practice, may be ignored2384

(Montgomery et al., 1948; Schwinger and Saxon, 1968, Chap. 9-11).2385

We extend the Carlin and Giordano postulate set to include (P7) Reversibility, which was refined by2386

Van Valkenburg (1964a). To satisfy the reversibility condition, the diagonal components in a system’s2387

impedance matrix must be equal. In other words, the input force and the flow are proportional to the2388

output force and flow, respectively (i.e., Ze = zm).2389

Spatial invariant: P8 The characteristic impedance and wave number κ(s, x) may be strongly2390

frequency and/or spatially dependent, or even be negative over some limited frequency ranges. Due to2391

causality, the concept of a negative group velocity must be restricted to a limited bandwidth (Brillouin,2392

1960). As is made clear by Einstein’s theory of relativity, all materials must be strictly causal (P1),2393

a view that must therefore apply to acoustics, but at a very different time scale. We first discuss2394

generalized postulates, expanding on those of Carlin and Giordano.2395

The QS constraint: P9 When a system is described by the wave equation, delay is introduced2396

between two points in space, which depends on the wave speed. When the wavelength is large compared2397

to the delay, one may successfully apply the quasistatic approximation. This method has wide-spread2398

application, and is frequency used without mention of the assumption. This can lead to confusion,2399

since the limitations of the approximation may not be appreciated. An example is the use of QS in2400

Quantum Mechanics. The QS approximation has wide spread use when the signals may be accurately2401

approximated by a band-limited signal. Examples include KCL, KVL, wave guides, transmission lines,2402

and most importantly, impedance. The QS property is not mentioned in the six postulates of Carlin2403

and Giordano (1964), thus they need to be extended in some fundamental ways.2404

When the dimensions of a cellular structure in the material are much less than the wavelength, can2405

the QS approximation be valid. This effect can be viewed as a mode filter that suppresses unwanted (or2406

conversely enhances the desired) modes (Ramo et al., 1965). QSs may be applied to a 3 dimensional2407

specification, as in a semiconductor lattice. But such applications fall outside the scope of this text2408

(Schwinger and Saxon, 1968).2409

Although I have never seen the point discussed in the literature, the QS approximation is applied2410

when defining Green’s theorem. For example, Gauss’s Law is not true when the volume of the container2411

violates QS, since changes in the distribution of the charge have not reached the boundary, when doing2412

the integral. Thus such integral relationships assume that the system is in quasi steady-state (i.e., that2413

QS holds).2414

Table 3.1: There are several ways of indicating the quasi-static (QS) approximation. For network theory there
is only one lattice constant a, which must be much less than the wavelength (wavelength constraint). These three
constraints are not equivalent when the object may be a larger structured medium, spanning many wavelengths,
but with a cell structure size much less than the wavelength. For example, each cell could be a Helmholtz
resonator, or an electromagnetic transducer (i.e., an earphone).

Measure Domain

ka < 1 Wavenumber constraint

λ > 2πa Wavelength constraint

fc < c/2πa Bandwidth constraint
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Formally, QS is defined as ka < 1 where k = 2π/λ = ω/c and a is the cellular dimension or the size2415

of the object (k and a can be vectors). Schelkunoff may have been the first to formalize this concept2416

(Schelkunoff, 1943) (but not the first to use it, as exemplified by the Helmholtz resonator). George2417

Ashley Campbell was the first to use the concept in the important application of a wave-filter, some2418

30 years before Schelkunoff (Campbell, 1903). These two men were 40 years apart, and both worked2419

for the telephone company (after 1929, called AT&T Bell Labs) (Fagen, 1975).2420

There are alternative definitions of the QS approximation, depending on the geometrical cell struc-2421

ture. The alternatives are outlined in Table 3.1.2422

Summary2423

A transducer converts between modalities. We propose the general definition of the nine system2424

postulates, that include all transduction modalities, such as electrical, mechanical, and acoustical. It2425

is necessary to generalize the concept of the QS approximation (P9) to allow for guided waves.2426

Given the combination of the important QS approximation, along with these space-time, linearity,2427

and reciprocity properties, a rigorous definition and characterization a system can thus be established.2428

It is based on a taxonomy of such materials, formulated in terms of material and physical properties2429

and in terms of extended network postulates.2430

3.5.2 Lec 22 Exam II (Evening)2431



Chapter 42432

Ordinary Differential Equations:2433

Stream 3a2434

WEEK 8 23.9.02435

2436

Week 8 Friday Stream 32437

L 23 The amazing Bernoulli family; Fluid mechanics; airplane wings; natural logarithms2438

The transition from geometry → algebra → algebreic geometry → real analytic → complex2439

analytic2440

From Bernoulii to Euler to Cauchy and Riemann2441

4.1 Week 82442

4.1.1 Lec 23 Newton and early calculus & the Bernoulli Family2443

Newton and Calculus2444

Bernoulli family2445

Euler standard periodic (circular) function package2446

The period of analytic discovery:2447

Coming out of the dark ages, from algebra, to analytic geometry, to calculus.2448

Starting with real analytic functions by Euler, we move to complex analytic functions with Cauchy.2449

Integration in the complex plane is finally conquered.2450

Lect DE 25.9 Stream 3: ∞ and Sets 25.9.1

The development of real representations proceeded at a deadly-slow pace:

• Real numbers R: Pythagoras knew of irrational numbers (
√

2)

• Complex numbers C: 1572 “Bombelli is regarded as the inventor of complex numbers . . . ” http://www-history.

mcs.st-andrews.ac.uk/Biographies/Bombelli.html http://en.wikipedia.org/wiki/Rafael_Bombelli

& p. 258

• Power Series: Gregory-Newton interpolation formula c1670, p. 175

• Point at infinity and the Riemann sphere 1851

• Analytic functions p. 267 c1800; Impedance Z(s) 1893

2451

105
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Stream 3 Infinity

• Infinity ∞ was not “understood” until 19th CE

• ∞ is best defined in terms of a limit

• Limits are critical when defining calculus

• Set theory is the key to understanding Limits

• Open vs close sets determine when a limit exists (or not)

• Thus, to fully understand limits, one needs to understand set theory

• Related is the convergence of a series

• Every convergent series has a Region of Convergence (ROC)

• When the ROC is Complex:

– Example of 1
1−x vs. 1

i−x : The ROC is 1 for both cases

– Why?

– The case of the Heaviside step function u(t) & the Fourier Transform

2452

Irrational numbers and limits (Ch. 4)

• How are irrational numbers interleaved with the integers?

• Between n and 2n there is always an irrational number:

Chebyshev said, and I say it again. There is always a prime between n and 2n. -p. 5852

• Prime number theorem: The number of of primes is approximately( the density of primes is
ρπ(n) ∝ 1/ ln(n).

• The number of primes less than n is n times the density, or

N(n) = n/ ln(n).

– The formula for entropy is H = −∑n pn log pn.
Could there be some hidden relationship lurking here?

2453

Stream 3: ∞ and Sets 25.9.2

• Understanding ∞ has been a primary goals since Euclid

• The Riemann sphere solves this fundamental problem

• The point at ∞ simply “another point” on the Riemann sphere

2454
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Open vs. closed sets2455

Influence of open vs. closed set 7.3.6

• Important example: LT vs. FT step function: Dirac step vs Fourier step:

• u(t)↔ 1
s vs. ũ(t)↔ πδ(ω) + 1

jω

2456

WEEK 9 23.9.02457

2458

Week 9 Monday2459

L 24 Power series and integration of functions (ROC)2460

Fundamental Theorem of calculus (Leibniz theorm of integration)2461

1/(1− x) =
∑∞

k=0 x
k with x ∈ R2462

L 25 Integration in the complex plane: Three theorems2463

Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + i.2464

2465

L 26 Cauchy-Riemann conditions2466

Real and imaginary parts of analytic functions obey Laplace’s equation.2467

Infinite power Series and analytic function theory; ROC2468

2469

4.2 Week 92470

4.2.1 Lec 24 Power series and complex analytic functions2471

L 24: Power series and complex analytic function2472

4.2.2 Lec 25 Integration in the complex plane2473

L 25: Integration in the complex plane; Infinite power Series and analytic function theory; ROC2474

Real and imaginary parts of analytic functions obey Laplace’s equation.2475

Colorized plots of analytic functions. How to read the plots and what they tell us?2476

4.2.3 Lec 26 Cauchy Riemann conditions: Complex-analytic functions2477

L 26: Cauchy Riemann conditions: Complex-analytic functions2478

WEEK 10 26.10.02479

2480

L 27 Differentiation in the complex plane: Fundamental Thm of complex calculus (FTCC);2481

Complex Analytic functions; ROC in the complex plane2482

Z(s) = R(s) + X(s): real and imag parts obey Laplace]s Equation2483

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation2484

Motivation: Dispersion relation for the wave equation κ · κ = s2/c2
02485
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L 28 Three Fundamental theorems of complex integral calculus2486 ∫ z
0 = F (ζ)dζ = F (z)− F (0): dZ(s)/ds independent of direction2487

Integration in the complex plane; Integrals independent of limits2488

Cauchy-Riemann conditions2489

L 29 Inverse Laplace transform2490

Inverse Laplace transform: Poles and Residue expansions;2491

Application of the Fundamental Thm of Complex Calculus2492

The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality2493

ROC as a function of the sign of time in est (How does causality come into play?)2494

Examples.2495

4.3 Integration and differentiation in the complex plane2496

4.3.1 Lec 27 Differentiation in the complex plane2497

L 27: Differentiation in the complex plane: CR conditions?2498

Motivation: Inverse Laplace transform2499

ROC in the complex plane2500

Basic equations of mathematical Physics: Wave equation, Diffusion equation, Laplace’s Equation2501

Motivation: Dispersion relation for the wave equation κ · κ = s2/c2
02502

4.3.2 Lec 28 Three complex Integral Theorems2503

L 28: Integration in the complex plane: Basic definitions of Three theorems2504

Integration of 1/s on the unit circle, and on a unit circle centered about s = 1 + i.2505

2506

Moved from Lec 3 (page 31)2507

Set Theory: Set theory is a topic that can be inadequately addressed in the undergraduate Engi-2508

neering and Physics curriculum, and is relatively young to mathematics. The set that a number is2509

drawn from is crucially important when taking limits.2510

4.3.3 Lec 29 Inverse Laplace Transform2511

L 29: Inverse Laplace transform: Poles and Residue expansions;2512

Application of the Fundamental Thm of Complex Calculus2513

Examples.2514

Stream 3: Infinity and irrational numbers Ch 4 2.1.6

• Limit points, open vs. closed sets are fundamental to modern mathematics

• These ideas first appeared with the discovery of
√

2, and
√

n https://en.wikipedia.org/
wiki/Spiral_of_Theodorus

and related constructions (factoring the square, Pell’s Eq. p. 44)

Infinity and irrational Q numbers2515
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The fundamental theorem of calculus 2.1.7

Let A(x) be the area under f(x). Then

d

dx
A(x) =

d

dx

∫ x

f(η)dη

= lim
δ→0

A(x + δ)− A(x)

δ

and/or

A(b)− A(a) =
∫ b

a
f(η)dη

• Stream 3 is about limits

• Integration and differentiation (Calculus) depend on limits

• Limits are built on open vs. closed sets

WEEK 11 30.11.02516

2517

L 30 Inverse Laplace transform & Cauchy Residue Theorem2518

L 31 Case for causality Closing the contour as s→∞; Role of ℜst2519

DE-32520

L 32 Properties of the LT:2521

1) Modulation, 2) Translation, 3) convolution, 4) periodic functions2522

Tables of common LTs2523

4.4 Integration in the complex plane2524

4.4.1 Lec 30 Inverse Laplace Transform & Cauchy residue theorem2525

L30: The Inverse Laplace Transform (ILT); poles and the Residue expansion: The case for causality2526

ROC as a function of the sign of time in est (How does causality come into play?)2527

4.4.2 Lec 31 The case for causality2528

L31: Closing the contour as s→∞; Role of ℜst2529

2530

4.4.3 Lec 32 Laplace transform properties: Modulation, time translation, etc.2531

L32: Detailed examples of the Inverse LT:2532

1) Modulation, 2) Translation, 3) convolution, 4) periodic functions2533

Tables of common LTs2534

WEEK 12 33.12.02535

2536
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L 33 Multi-valued functions in the complex plane; Branch cuts2537

The extended complex plane (regularization at ∞) (Stillwell, 2010, p. 280)2538

Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)2539

L 34 Euler’s vs. Riemann’s Zeta function ζ(s): Poles at the primes2540

colorized plot of ζ(s)2541

??Sterling’s formula??2542

L 35 Exam III2543

4.5 Complex plane concepts2544

4.5.1 Lec 33 Multi-valued complex functions, Branch Cuts, Extended plane2545

L33: Multi-valued functions in the complex plane; Branch cuts2546

The extended complex plane (regularization at ∞) (Stillwell, 2010, p. 280)2547

Complex analytic functions of Genus 1 (Stillwell, 2010, p. 343)2548

4.5.2 Lec 34 The Riemann Zeta function ζ(s)2549

L34: Euler’s vs. Riemann’s Zeta function ζ(s): Poles at the primes2550

colorized plot of ζ(s)2551

??Sterling’s formula??2552

Table 4.1: Physical meaning of each factor of ζ(s) 4.2.7

• Series expansion
1

1 − x
= 1 + x + x2 + x3 + · · · ROC: |x| < 1

• If time T is a positive delay, then from the Laplace transform

δ(t − T ) ↔
∫

∞

0

δ(t − T )estdt = e−sT

• Each factor of ζ(s) is an ∞ sum of delays

• For example for π1 = 2, (T = ln(2), thus 2−2 = e−s ln 2)

∑

n

δ(t − nT ) ↔ 1

1 − 2−s
= 1 + e−sT + e−s2T + · · ·

Table 4.1: Each prime number defines a delay Tk = ln(πk), which in turn defines a pole in the
complex s plane. The series expansion of this pole is a train of delta functions that are one-sided
periodic in the delta T . Thus each factor in the ζ(s) function defines a pole, having an incommensurate
delay, since each pole is defined by a unique prime. Following this simple logic, we may interpret ζ(s)
as being the Laplace transform of Zeta(t), the cascade of quasi-periodic impulse responses, each with a
recursive delay, determined by a prime. Note that 48100 = 10 · (2 · 5 · 13 · 37) is the sampling frequency

[Hz] of modern CD players. This corresponds to the 20th harmonic of the US line frequency (60 [Hz]).b

asince gcd(48100, 60) = 20 and gcd(48100, 50) = 50.
bsince gcd(48100, 60) = 20 and gcd(48100, 50) = 50.

Riemann Zeta Function ζ(s)2553

This very important analytic function is the credible argument for true deeper understanding of the
power to the analytic function. Just like the Pythagorean theorem is important to all mathematics,
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the zeta function is important to analysis, with many streams of analysis emanating from this form.
For example the analytic Gamma function Γ(s) is a generalization of the factorial by the relationship

n! = Γ(s− 1).

Another important relationship is
∞∑

k=n

k = nun = un ⋆ un

where the ⋆ represents convolution. If this is treated in the frequency domain the we obtain z-transforms
of a very simple second-order pole1

nun ↔
2

(z − 1)2
.

This follows from the geometric series
1

1− z =
∑

n

zn

with z = es, and the definition of convolution.2554

The Laplace transform does not require that the series converge, rather that the series have a region
of convergence that is properly specified. Thus the non-convergent series nun is perfectly well defined,
just like

tu(t) = u(t) ⋆ u(t)↔ 1!

s2

is well defined, in the Laplace transform sense. More generally

tnu(t)↔ n!

sn+1
.

From this easily understood relationship we can begin to understand Γ(s), as the analytic extension
of the factorial. Its definition is simply related to the inverse Laplace transform, which is an integral.
But to go there we must be able to think in the complex frequency domain. In fact we have the very
simple definition for Γ(p) with p ∈ C

tp−1u(t)↔ Γ(p)

sp

which totally explains Γ(p). Thinking in the time domain is crucial for my understanding.2555

An example is a digital filter, which is linear. Such a system is shown in Fig. 4.3, where the two2556

functions are second order digital filters. The input signal x[n] enters from the left, is filtered by the2557

first filter, producing output y[n]. This is then filtered again by the filter in the second box to produce2558

signal z[n]. For this simple case of two linear filters the operation commute.2559

4.5.3 Lec 35 Exam III2560

L 35: Exam III2561

Thanksgiving Holiday 11/19–11/27 20162562

1Need to verify the exact form of these relationships, not work from memory
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Riemann Zeta Function ζ(s) 4.2.5

• Integers appear as the “roots” (aka eigenmodes) of ζ(s)

• Basic properties (s = σ + iω)

ζ(s) ≡
∞∑

1

1

ns
σ = ℜ(s) > 0

– What is the region of convergence (ROC)?

• The amazing Euler-Riemann Product formula (Stillwell, 2010, Sect. 10.7:)

ζ(s) =
∏

k

1

1 − πk
−s

=
∏

k

1

1 −
(

1
πk

)s =
∏

k

1

1 − 1
πs

k

=
1

1 − 2−s
· 1

1 − 3−s
· 1

1 − 5−s
· 1

1 − 7−s
· · · 1

1 − π−s
n

· · ·

• Euler c1750 assumed s ⊂ R. Riemann c1850 extended s ⊂ C

Figure 4.1: The zeta function arguably the most important of the special functions of analysis
because it connects the primes to analytic function theory in a fundamental way.

Plot of ∠ζ(s) 4.2.6

Angle of Riemann Zeta function ∠ζ(z) as a function of complex z

Figure 4.2: ∠ζ(z): Red ⇒ ∠ζ(z) < ±π/2

+ ++ + z[n]p[n]

z−1

x[n] q[n]

z−1

y[n]

p[n− 2]q[n− 2]

z−1
z−1

p[n− 1]

b0

b1

b0

a2 a2

a1a1 q[n− 1]

b1

b2b2

Figure 4.3: Example of a signal flow diagram for the composition of signals z = g ◦ f (x) with y = f(x) and z = g(y).
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Vector Calculus: Stream 3b2564

WEEK 13 36.13.02565

2566

L 36 Scaler wave equations and the Webster Horn equation; WKB method2567

A real-world example of large delay, where the branch-cut placement is critical2568

2569

L 37 Partial differential equations of Physics2570

Scaler wave equation and its solution in 1 and 3 Dimensions2571

VC-12572

L 38 Vector dot and cross products A ·B,A×B2573

Gradient, divergence and curl2574

– Thanksgiving Holiday 11/19–11/27 20162575

5.1 Stream 3b2576

5.1.1 Lec 36 Scalar Wave equation2577

5.1.2 Lec 37 Partial differential equations of physics2578

Scalar wave equations and the Webster Horn equation; WKB method2579

Example of a large delay, where a branch-cut placement is critical (i.e., phase unwrapping)2580

L 37: Partial differential equations of Physics2581

Scalar wave equation and its solution in 1 and 3 Dimensions2582

5.1.3 Lec 38 Gradient, divergence and curl vector operators2583

L 38: Vector dot and cross products A ·B,A×B2584

Gradient, divergence and curl vector operators2585

WEEK 14 37.14.02586

2587
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L 39 Gradient, divergence and curl: Gauss’s (divergence) and Stokes’s (curl) theorems2588

L 40 J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light2589

Basic definitions of E,H,B,D2590

O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation2591

How a loud-speaker works2592

L 41 The Fundamental Thm of vector calculus2593

Incompressable and Irrotational fluids and the two defining vector identities2594

2595

5.2 Thanksgiving Holiday 11/19–11/27 20162596

Thanksgiving Vacation: 1 week of rest2597

5.3 Vector Calculus2598

5.3.1 Lec 39 Geometry of Gradient, divergence and curl vector operators2599

Geometry of Gradient, divergence and curl vector operators2600

Lec 39: Review of vector field calculus 39.14.2

• Review of last few lectures: Basic definitions

– Field: i.e., Scalar & vector fields are functions of more than one variable

– “Del:” ∇ ≡ [∂x, ∂y, ∂z]T

– Gradient: ∇φ(x, y, z) ≡ [∂xφ, ∂yφ, ∂zφ]T

• Helmholtz Theorem:
Every vector field V (x, y, z) may be uniquely decomposed into compressible & rotational
parts

V (x, y, z) = −∇φ(x, y, z) +∇×A(x, y, z)

• Scalar part ∇φ is compressible (∇φ = 0 is incompressible)

• Vector part ∇×A is rotational (∇×A = 0 is irrotational)

• Key vector identities: ∇×∇φ = 0; ∇ · ∇×A = 0

• Definitions of Divergence, Curl & Maxwell’s Eqs;

• Closure: Fundamental Theorems of Integral Calculus

2601

Name Input Output Operator

Gradient Scalar Vector −∇()
Divergence Vector Scalar ∇ · ()
Curl Vector Vector ∇× ()

Table 5.1: The three vector operators manipulate scalar and vector fields, as indicated here. The
gradient converts scalar fields into vector fields. The divergence eats vector fields and outputs scalar
fields. Finally the curl takes vector fields into vector fields.
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Gradient2602

Gradient: E = ∇φ(x, y, z) 39.14.3

• Definition: R1 7→
∇

R3

E(x, y, z) = [∂x, ∂y, ∂z]T φ(x, y, z) =

[
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]T

x,y,z

• E ⊥ plane tangent at φ(x, y, z) = φ(x0, y0, z0)

• Unit vector in direction of E is n̂ = E

||E|| , along isocline

• Basic definition

∇φ(x, y, z) ≡ lim
|S|→0

{∫∫∫
φ(x, y, z) n̂ dA

|S|

}

n̂ is a unit vector in the direction of the gradient
S is the surface area centered at (x, y, z)

2603

Divergence2604

Divergence: ∇·D = ρ 39.14.4a

• Definition: R3 7→
∇·

R1

∇·D ≡ [∂x, ∂y, ∂z] ·D =

[
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z

]
= ρ(x, y, z)

• Examples:

– Voltage about a point charge Q [SI Units of Coulombs]

φ(x, y, z) =
Q

ǫ0
√
x2 + y2 + z2

=
Q

ǫ0R

φ [Volts]; Q = [C]; Free space ǫ0 permittivity (µ0 permeability)

– Electric Displacement (flux density) around a point charge (D = ǫ0E)

D ≡ −∇φ(R) = −Q∇
{

1

R

}
= −Qδ(R)

2605

Divergence: The integral definition 39.14.4b

• Surface integral definition of incompressible vector field

∇·D ≡ lim
|S|→0

{∫∫
S D · n̂ dA

|V|

}
= ρ(x, y, z)

S must be a closed surface
n̂ is the unit vector in the direction of the gradient

– n̂ ·D ⊥ surface differential dA

2606
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Divergence: Gauss’ Law 39.14.4c

• General case of a Compressible vector field

• Volume integral over charge density ρ(x, y, z) is total charge enclosed Qenc

• ∫∫∫

V
∇·D dV =

∫∫

S
D ·n̂ dA = Qenc

• Examples

– When the vector field is incompressible

∗ ρ(x, y, z) = 0 [C/m3] over enclosed volume

∗ Surface integral is zero (Qenc = 0)

– Unit point charge: D = δ(R) [C/m2]

2607

Curl2608

Curl: ∇×H = I [amps/m2] 39.14.5a

• Definition: R3 7→
∇×

R3

∇×H ≡

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂x ∂y ∂z

Hx Hy Hz

∣∣∣∣∣∣∣
= I

• Examples:

– Maxwell’s equations: ∇×E = −Ḃ, ∇×H = σE + Ḋ,

– H = −yx̂+ xŷ then ∇×H = 2ẑ constant irrotational

– H = 0x̂+ 0ŷ + z2ẑ then ∇×H = 0 is irrotational

2609

Stokes’ Law2610

Curl: Stokes Law 39.14.5b

• Surface integral definition of ∇×H = I (I ⊥ rotation plane of H)

n̂ ⊥ dA

S Area (open)

B Boundarydl

∇×H ≡ lim
|S|→0

{∫∫
S n̂×H dA

|S|

}
(5.1)

Ienc =

∫∫
(∇×H) ·n̂ dA =

∮

B
H·dl (5.2)

• Eq. (1): S must be an open surface
with closed boundary B
n̂ is the unit vector ⊥ to dA
H×n̂ ∈ Tangent plane of A (i.e., ⊥ n̂)

• Eq. (2): Stokes Law: Line integral of H along B is total current Ienc

2611
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5.3.2 Lec: 40 Introduction to Maxwell’s Equation2612

L 40: J.C. Maxwell unifies Electricity and Magnetism with the formula for the speed of light2613

Basic definitions of E,H,B,D2614

O. Heaviside’s (1884) vector form of Maxwell’s EM equations and the vector wave equation2615

How a loud-speaker works.2616

5.3.3 Lec: 41 The Fundamental theorem of Vector Calculus2617

L 41: The Fundamental Thm of vector calculus2618

Incompressible and Irrotational fluids and the two defining vector identities2619

WEEK 15 40.15.02620

2621

L 42 Quasi-static approximation and applications:2622

The Kirchoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations The2623

telegraph wave equation starting from Maxwell’s equations2624

Quantum Mechanics2625

L 43 Last day of class: Review of Fund Thms of Mathematics:2626

Closure on Numbers, Algebra, Differential Equations and Vector Calculus,2627

The Fundamental Thms of Mathematics & their applications:2628

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9); Normal modes vs. eigen-2629

states, delay and quasi-statics;2630

– Reading Day2631

VC-1 Due2632

5.4 Kirchhoff’s Laws2633

5.4.1 Lec 42: The Quasi-static approximation and applications2634

L 42: The Kirchhoff’s Laws and the Telegraph wave equation, starting from Maxwell’s equations2635

Quantum Mechanics2636

5.4.2 Lec 43: Last day of class: Review of Fund Thms of Mathematics2637

L 43: Closure on Numbers, Algebra, Differential Equations and Vector Calculus,2638

The Fundamental Thms of Mathematics & their applications:2639

Theorems of Mathematics; Fundamental Thms of Mathematics (Ch. 9)2640

Normal modes vs. eigen-states, delay and quasi-statics;2641

Reading Day2642
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Properties2643

Closure: Properties of fields of Maxwell’s Equations 39.14.6

The variables have the following names and defining equations:

Symbol Equation Name Units

E ∇× E = −Ḃ Electric Field strength [Volts/m]
D ∇ ·D = ρ Electric Displacement (flux density) [Col/m2]
H ∇×H = Ḋ Magnetic Field strength [Amps/m]
B ∇ ·B = 0 Magnetic Induction (flux density) [Weber/m2]

In vacuo B = µ0H , D = ǫ0E, c = 1√
µ0ǫ0

[m/s], r0 =
√

µ0

ǫ0
= 377 [Ω].

2644

Vector field properties2645

Closure: Summary of vector field properties 39.14.7

• Notation:
v(x, y, z) = −∇φ(x, y, z) +∇×w(x, y, z)

• Vector identities: ∇×∇φ = 0; ∇ · ∇×w = 0

Field type Generator: Test (on v):

Irrotational v = ∇φ ∇× v = 0
Rotational v = ∇×w ∇× v = J

Incompressible v = ∇×w ∇ · v = 0
Compressible v = ∇φ ∇ · v = ρ

• Source density terms: Current: J(x, y, z), Charge: ρ(x, y, z)

– Examples: ∇×H = Ḋ(x, y, z), ∇·D = ρ(x, y, z)

2646
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Fundamental Theorem of integral Calculus2647

Closure: Fundamental Theorems of integral calculus 39.14.8

1. f(x) ∈ R (Leibniz Integral Rule): F (x) = F (a) +
∫ x
a f(x)dx

2. f(s) ∈ C (Cauchy’s formula): F (s) = F (a) +
∫ s
a f(ζ)dζ

–When integral is independent of path, F (s) ∈ C obeys CR conditions

–Contour integration inverts causal Laplace transforms

3. F ∈ R3
(Helmholtz Formula): F (x, y, z) = −∇φ(x, y, z) +∇×A(x, y, z)

–Decompose F (x, y, z) as compressible and rotational

4. Gauss’ Law (Divergence Theorem): Qenc =
∫∫∫
∇·D dV =

∫∫
S D ·n̂ dA

–Surface integral describes enclosed compressible sources

5. Stokes’ Law (Curl Theorem): Ienc =
∫∫

(∇×H)·n̂ dA =
∮
BH·dl

–Boundary vector line integral describes enclosed rotational sources

6. Green’s Theorem . . . Two-port boundary conditions

–Reciprocity property (Theory of Sound, Rayleigh, J.W.S., 1896)

2648

Closure: Quasi-static (QS) approximation 39.14.9

• Definition: ka≪ 1 where a is the size of object, λ = c/f wavelength

• This is equivalent to a≪ λ or

• ω ≪ c/a which is a low-frequency approximation

• The QS approximation is widely used, but infrequently identified.

• All lumped parameter models (inductors, capacitors) are based on QS
approximation as the lead term in a Taylor series approximation.

2649
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Appendix A

Notation

A.1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed.1 Where
the definition is sketchy, Page numbers are provided where these concepts are fully explained, along
with many other important and useful definitions. For example N may be found on page 22.

A.1.1 Double-Bold notation

Table A.1 indicates the symbol followed by a page number and the name of the number type. For
example N stands for the infinite set of counting numbers {1, 2, 3, · · · }. From any counting number
you may get the next one by adding 1.

Summary of various number types: Counting number (N) are also know as the Cardinal numbers.
The prime numbers (P) cannot be further factored. The counter example of −5 = −1·5 is questionable,
as it could be included as a prime by a slight change in the definition. One may say that a real (R) is
a complex number (C) with a zero imaginary part, thus real numbers are complex (R ⊂ C).

Table A.1: Double-bold notation for the types of numbers. (#) is a page number.

Symbol (p. #) Genus Examples Counter Examples

N (22) Counting 1,2,17,3, 1020 0, -10, 5j
P (22) Prime 2,17,3, 1020 0, 1, 4, 32, 12, −5

Z (22) Integer -1, 0, 17, 5j, -1020 1/2,π,
√

5

Q (22) Rational 2/1, 3/2, 1.5, 1.14
√

2, 3−1/3, π

F (22) Fractional 1/2, 7/22 2/1, 1/
√

2

I (23) Irrational
√

2, 3−1/3, π Vectors

R (23) Reals
√

2, 3−1/3, π 2πj

C (111) Complex 1,
√

2j, 3−j/3, πj Vectors

Note that R : I ∪Q, I ⊥ Q, Q : Z ∪ F.

We say that a number is in the set with the notation 3 ∈ N ∈ R, which is read as “3 is in the set
of counting numbers, which in turn in the set of real numbers,” or in vernacular language “3 is a real
counting number.”

The cardinality of a set is denoted by taking the absolute value (e.g., |N|).

1https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols
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A.2 Periodic functions

Any periodic function may be indicated using double-parentheses notation. This is sometimes known
as modular arithmetic. For example function

f((t))T = f(t) = f(t± kT ),

is periodic on t, T ∈ R with a period of T and k ∈ Z. This notation is useful when dealing with Fourier
series of periodic functions.

When a discrete valued (e.g., time) sequence is periodic we use square brackets

f [[n]]N = f [n] = f [n± kN ],

with n, k,N ∈ Z and period N . This notation will be used with discrete-time signals that are periodic,
such as the case of the DFT.

A.3 Vectors

Vectors are ordered sets of scalars. When we write then out, we use row notation, with the transpose
symbol

[a, b, c]T =



a
b
c


 .

Vectors are always columns. Row vectors are weights not vectors. A vector dot product is normally
defined between weights and vectors, resulting in a real scalar. This is said to be a 3 dimensional
vector. for example

[
1 1 1

]



1
2
3


 = 1 + 2 + 3 = 6.

When the elements are complex, the transpose also takes the complex conjugate.

A.4 Matrices

Unfortunately when working with matrices, the role of the weights and vectors can change, depending
on the context. A useful way to view a matrix is as a set of column vectors, weighted by the elements
of the column-vector of weights multiplied from the right. For example




a11 a12 a13 · · · a1M

a21 a22 a32 · · · a3M

. . .

aN1 aN2 aN3 · · · aNM







w1

w2

· · ·
wM


 = w1




a11

a21

a21

· · ·
aN1




+ w2




a12

a22

a32

· · ·
aN2



. . . wM




a1M

a2M

a3M

· · ·
aNM



,

where the weights are
[
w1, w2, . . . , wM .

]T

Another way to view the matrix is a set of row vectors of weights, each of which re applied to the
vector [w1, w2, · · · ,WM ]T .

The determinant of a matrix is denoted either as det A or |A|, as in the absolute value. The inverse
of a square matrix is A−1 or invA. If |A| = 0, the inverse does not exist. AA−1 = A−1A.

Matlab’s notional convention for a row-vector is [a, b, c] and a column-vector is [a; b; c]. A prime on
a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the
prime. The : argument converts the array into a column vector, without conjugation. A tacit notation
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in Matlab is that vectors are columns and the index to a vector is a row vector. Matlab defines the
notation 1 : 4 as the “row-vector” [1, 2, 3, 4], which is unfortunate as it leads users to assume that the
default vector is a row. This can lead to serious confusion later, as Matlab’s default vector is a column.
I have not found the above convention explicitly stated, and it took me years to figure this out for
myself.

Units are SI; Angles in degrees [deg] unless otherwise noted. The units for π are always in radians
[rad]. Ex: sin(π), e90◦

eπ/2.
when writing a complex number we shall try to use 1 to indicate

√
−1. Matlab prefers this as well,

as its explicit.

A.5 Differential equations vs. Polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a cubic
has degree 3.

Differential equations have order (polynomials have degree). If a second order differential equation
is Laplace transformed, one is left with a degree 2 polynomial. For example:

a
d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = α

d

dt
x(t)βx(t)↔

(as2 + bs+ c)Y (s) = (αs+ β)X(s).

Y (s)

X(s)
=

αs+ β

as2 + bs+ c
≡ H(s)↔ h(t).

The ratio of the output Y (s) over the input X(s) is called the system transfer function. As the ratio of
two polynomials in the Laplace frequency s, is is bilinear since it is linear in both the input and output.
The roots of the numerator are called the zeros and those of the denominator, the poles. The inverse
Laplace transform of the transfer function is called the system impulse response, which describes the
system via convolution (i.e., y(t) = h(t) ⋆ x(t)).

A.6 Residue expansions and the ROC

With the new tool of analytic functions came the concept of the region of convergence (ROC) that
defines the regions in the complex plane where the infinite series is valid. In other words, the function
Z(s) and its analytic power series

∑∞
0 cns

n, are equivalent over a region of s that lies within the ROC.
When the series fails to converge, it no longer represents Z(s). A helpful example is the series

1

1 + x2
=

1

(1− x)(1 + x)
=

A

1− x +
B

1 + x
=

1

2

∞∑

n=0

(+x)n +
1

2

∞∑

n=0

(−x)n,

which is valid for |x| < 1. At face value this function seems fine at x = 1, where it is equal to 1/2. In
fact the series fails to converge at precisely this value (the ROC is 1 for this example). Until one views
x as complex, this behavior is not obvious.

A trivial analysis shows that A = 1/2 and B = A since

1 = A(1 + x) +B(1− x) = (A+Ax) + (B −Bx) = A+B + (A−B)x.
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Appendix B

Gaussian Elimination

We shall now apply Gaussian elimination to find the solution [x1, x2] for the 2x2 matrix equation
Ax = y (Eq. 3.7, left). We assume to know [a, b, c, d] and [y1, y2]. We wish to show that the intersection
(solution) is given by the equation on the right.

Here we wish to prove that the left equation has an inverse given by the right equation:

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
.

How to take inverse:
1) Swap the diagonal, 2) change the signs of the off-diagonal, and 3) divide by ∆.

Gaussian Elimination on a 2x2 matrix:

1. Step 1: normalize the first column to 1.

2. Step 2: subtract the top equation from the lower.

3. Step 3: express result in terms of the determinate ∆ = ad− bc.

[
1 b

a

1 d
c

] [
x1

x2

]
=

[
1
ay1
1
cy2

] [
1 b

a

0 d
c − b

a

] [
x1

x2

]
=

[
1
a 0
− 1

a
1
c

] [
y1

y2

] [
1 b

a
0 ∆

] [
x1

x2

]
=

[
1
a 0
−c a

] [
y1

y2

]

4. Step 4: These steps give the solution for x2: x2 = − c
∆y1 + a

∆y2.

5. Step 5: Finally the top equation is solved for x1: x1 = 1
ay1 − b

ax2 = x1 = 1
ay1 − b

a [− c
∆y1 + a

∆y2].

In matrix format, in terms of the determinate ∆ = ab− cd becomes:

[
x1

x2

]
=

[
1
a − bc

a∆
b
∆

− c
∆

a
∆

] [
y1

y2

] [
x1

x2

]
=

1

∆

[
∆−bc

a −b
−c a

] [
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
.

In summary: This is a lot of algebra, that is why it is essential you memorize the formula for the
inverse.
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Appendix C

Eigenvector analysis

Here we show how to compute the eigenvalues and eigenvectors for the 2x2 Pell matrix

A =

[
1 N
1 1

]
.

The analysis applies to any matrix, but since we are concentrated on Pell’s equation, we shall use the
Pell matrix, for N = 2. By using a specific matrix we can check all the equations below with Matlab,
which I advise you to do.

The Matlab command [E,D]=eig(A) returns the eigenvector matrix E

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]
=

[
0.8165 −0.8165
0.5774 0.5774.

]

and the eigenvalue matrix Λ (Matlab’s D)

Λ ≡
[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
=

[
2.4142 0

0 −0.4142

]
.

The factor
√

3 on E normalizes each eigenvector to 1 (i.e., The Matlab command norm([
√

2, 1]) gives√
3).

In the following discussion we show how to determine E and D (i.e, Λ), given A.

Calculating the eigenvalue matrix (Λ): The matrix equation for E is

AE = EΛ. (C.1)

Pre-multiplying by E−1 diagonalizes A, given the eigenvalue matrix (D in Matlab)

Λ = E
−1

AE. (C.2)

Post-multiplying by E−1 recovers A

A = EΛE
−1. (C.3)

Matrix power formula: This last relation is the entire point of the eigenvector analysis, since it
shows that any power of A may be computed from powers of the eigen values. Specifically

A
n = EΛn

E
−1. (C.4)

For example, A2 = AA = EΛ (E−1E) ΛE−1 = EΛ2E−1.
Equations C.1, C.2 and C.3 are the key to eigenvector analysis, and you need to memorize them.

You will use them repeatedly throughout this course, and for a long time after it is over.
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Showing that A − λ±I2 is singular: If we restrict Eq. C.1 to a single eigenvector (one of e±),
along with the corresponding eigenvalue λ±, we obtain a matrix equations

Ae± = e±λ± = λ±e±

Note the important swap in the order of e± and λ±. Since λ± is a scalar, this is legal (and critically
important), since this allows us to remove (factored out) e±

(A− λ±I2)e± = 0. (C.5)

This means that the matrix A−λ±I2 must be singular, since when it operates on e±, which is not zero,
it gives zero. It immediately follows that its determinant is zero (i.e., |(A−λ±I2)| = 0). This equation
is used to uniquely determine the eigenvalues λ±. Note the important difference between λ±I2 and Λ
(i.e., |(A− Λ)| 6= 0).

Calculating the eigenvalues λ±: The eigenvalues λ± of A may be determined from |(A−λ±I2)| = 0
∣∣∣∣∣
1− λ± N

1 1− λ±

∣∣∣∣∣ = (1− λ±)2 −N2 = 0.

For our case of N = 2, λ± = (1±
√

2).1

Calculating the eigenvectors e±: Once the eigenvalues have been determined, they are substitute

them into Eq. C.5, which determines the eigenvectors E =
[
e+, e−

]
, by solving

(A− λ±)e± =

[
1− λ± 2

1 1− λ±

]
e± = 0

where 1− λ± = 1− (1±
√

2) = ∓
√

2.
Recall that Eq. C.5 is singular, because we are using an eigenvalue, and each eigenvector is pointing

in a unique direction (This is why it is singular). You might respectively suggest that this equation
has no solution. In some sense you would be correct. When we solve for e±, the two equations defined
by Eq. C.5 co-linear (the two equations describe parallel lines). This follows from the fact that there
is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for e+ = [e+
1 , e

+
2 ]T ,

[
−
√

2 2

1 −
√

2

] [
e+

1

e+
2

]
= 0

This gives two identical equations −
√

2e+
1 + 2e+

2 = 0 and e+
1 −
√

2e+
2 = 0. This is the price of an over-

specified equation (the singular matrix is degenerate). The most we can determine is e+ = c [−
√

2, 1]T ,
where c is a constant. We can determine eigenvector direction, but not its magnitude.

Following exactly the same procedure for λ−, the equation for e− is
[√

2 2

1
√

2

] [
e−

1

e−
2

]
= 0

In this case the relation becomes e−
1 +
√

2e−
2 = 0, thus e− = c [

√
2, 1]T where c is a constant.

Normalization of the eigenvectors: The two constants may be determined by normalizing the
eigenvectors to have unit length. Since we cannot determine the length, we set it to 1. In some sense
the degeneracy is resolved by this normalization. Thus c = 1/

√
3, since

c2
((
±
√

2
)2

+ 12
)

= 3c2 = 1.

1It is a convention to order the eigenvalues from largest to smallest.
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Summary: Thus far we have shown

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]

and

Λ =

[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
.

Verify that Λ = E−1AE: To find the inverse of E, 1) swap the diagonal values, 2) change the sign
of the off diagonals, and 3) divide by the determinant ∆ = 2

√
2/
√

3 (see Appendix B)

E
−1 =

√
3

2
√

2

[
1
√

2

−1
√

2

]
=

[
0.6124 0.866
−0.6124 0.866

]
.

By definition for any matrix E−1E = EE−1 = I2. Taking the product gives

E
−1

E = ✚✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
· 1

✚✚
√

3

[√
2 −

√
2

1 1

]
=

[
1 0
0 1

]
= I2.

We wish to show that Λ = E−1AE

[
1 +
√

2 0

0 1−
√

2

]
. = ✚✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
·
[
1 2
1 1

]
· 1

✚✚
√

3

[√
2 −

√
2

1 1

]
,

which is best verified with Matlab.

Verify that A = EΛE−1: We wish to show that

[
1 2
1 1

]
=

1

✚✚
√

3

[√
2 −

√
2

1 1

]
·
[
1 +
√

2 0

0 1−
√

2

]
.✚

✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
,

which is best verified with Matlab (or Octave).
I suggest that you verify EΛ 6= ΛE and AE = EΛ with Matlab. Here is the Matlab program

which does this:

A = [1 2; 1 1]; %define the matrix

[E,D] = eig(A); %compute the eigenvector and eigenvalue matrices

A*E-E*D %This should be $\approx 0$, within numerical error.

E*D-D*E %This is not zero

All the equations have been verified both with Matlab and Octave.
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Appendix D

Solution to Pell’s Equation (N=2)

Section 2.2.2 (p. 79) showed that the solution [xn, yn]T to Pell’s equation, for N = 2, is given by powers
of Eq. 1.5. To find an explicit formula for [xn, yn]T , one must compute powers of

A = 1

[
1 2
1 1

]
. (D.1)

We wish to find the solution to Pell’s equation (Eq. 1.5), based on the recursive solution, Eq. 1.6
(p. 36). Thus we need is powers of A, that is An, which gives the a closed form expression for [xn, yn]T .
By the diagonalization of A, its powers are simply the powers of its eigenvalues. This diagonalization
is called an eigenvalue analysis, a very general method rooted in linear algebra. This type of analysis
allows us to find the solution to most of the linear the equations we encounter.

From Matlab with N = 2 the eigenvalues of Eq. D.1 are λ± ≈ [2.4142,−0.4142] (i.e., λ± =
1(1 ±

√
2)). The final solution to Eq. D.1 is given in Eq. 2.4 (p. 79). The solution for N = 3 is

provided in Appendix D.1 (p. 131).

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of the
eigenvalues. This results in the general solution given by

[
xn

yn

]
= 1nA

n

[
1
0

]
= 1nEΛn

E
−1

[
1
0

]
.

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab command
[E,D]=eig(A) is helpful to find D and E given any A. As we saw above,

Λ = 1

[
1 +
√

2 0

0 1−
√

2

]
≈
[
2.414 0

0 −0.414

]
.

D.1 Pell equation for N=3

This summarizes the solution of Pell’s equation due to the Pythagoreans using matrix recursion, for the
case of N=3. The integer solutions are shown in on the right. Note that xn/yn →

√
3, in agreement

with the Euclidean algorithm.1 It seem likely that β0 could be absorbed in the starting solution, and
then be removed from the generating function, other than as the known factor βn

0

Case of N = 3: [x0, y0]T = [1, 0]T , β0 = /
√

2; Pell-3: x2
n − 3y2

n = 1; xn/yn −→∞
√

3

Try other trivial solutions such as [−1, 0]T and [±, 0]T . Perhaps this can provide a clue to the
proper value of β0.

1The matlab program for generating this solution is PellSol3.m.
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[
x1

y1

]
= β0

[
1
1

]
= β0

[
1 3
1 1

] [
1
0

]
(1β0)2 − 3(1β0)2 = 1

[
x2

y2

]
= β2

0

[
4
2

]
= β2

0

[
1 3
1 1

] [
1
1

] (
4β2

0

)2
− 3

(
2β2

0

)2
= 1

[
x3

y3

]
= β3

0

[
10
6

]
= β3

0

[
1 3
1 1

] [
4
2

] (
10β3

0

)2
− 3

(
6β3

0

)2
= 1

[
x4

y4

]
= β4

0

[
28
16

]
= β4

0

[
1 3
1 1

] [
10
6

] (
28β4

0

)2
− 3

(
16β4

0

)2
= 1

[
x5

y5

]
= β5

0

[
76
44

]
= β5

0

[
1 3
1 1

] [
28
16

] (
76β5

0

)2
− 3

(
44β5

0

)2
= 1



List of Figures

1 There is a natural symbiotic relationship between Physics, Mathematics and Engineering, as depicted

by this Venn diagram. Physics explores the boundaries. Mathematics provides the method and rigor.

engineering transforms the method into technology. While these three disciplines work well together,

there is poor communication due to a different vocabulary. . . . . . . . . . . . . . . . . . . . . . . 10

2 Table of contents of Stillwell (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses

(weight) must fall with identical velocity. By joining them with an elastic cord they become one. Thus

if the velocity were proportional to the mass, the joined masses would fall even faster. This results in a

logical fallacy. This may have been the first time that the principle of conservation of energy was clearly

stated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Mathematical time-line between 1500 BCE and 1650 CE. . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli; Below: Leonhard Euler (1707) and Jean

le Rond d’Alembert (1717-1783). The figure numbers are from Stillwell (2010). . . . . . . . . . . . . 18

1.4 Time-line of the four centuries from the 16th and 20th CE . . . . . . . . . . . . . . . . . . . . . . 20

1.5 The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathe-

matics, and is highly relevant today. It is both powerful and simple. It was used by the Chinese during

the Han dynasty (Stillwell, 2010, p. 70) for reducing fractions. It may be used to find pairs of integers

that are coprime (their gcd must be 1), and it may be used to identify factors of polynomials by long

division. It has an important sister algorithm called the continued fraction algorithm (CFA), that is so

similar in concept that Gauss referred to the Euclidean algorithm as the“continued fraction algorithm”

(Stillwell, 2010, p. 48). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 The expansion of π to various orders using the CFA, along with the order of the error
of each rational approximation. For example 22/7 has an absolute error (|22/7− π|) of
about 0.13%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 “Plimpton-322” is a stone tablet from 1800 BCE, displaying a and c values of the Pythagorean

triplets [a, b, c]. Numbers (a, c ∈ N), with the property b =
√
c2 − a2 ∈ N, known as Pythagorean

triplets, were found carved on a stone tablet from the 19th century [BCE]. Several of the c values

are primes, but not the a values. The stone is item 322 (item 3 from 1922) from the collection

of George A. Plimpton. –Stillwell (2010, Exercise 1.2) . . . . . . . . . . . . . . . . . . . . . . 35

1.8 This summarizes the solution of Pell’s equation for N = 2 using a slightly modified matrix

recursion. Note that xn/yn →
√

2 as n→∞, which was what the Pythagoreans were pursuing. 37

1.9 This is a single LC segment of the transmission line show in Fig. 2.3. It may be modeled by the ABCD

model as the product of two matrices, as show below. . . . . . . . . . . . . . . . . . . . . . . . . 48

1.10 The left panel shows how the real line may be composed with the circle. Each real x value maps to a

corresponding point x′ on on the unit circle. The point x → ∞ then naturally maps to the north pole

N . This simple idea may be extended with the composition of the complex plane with the unit sphere,

thus mapping the plane onto the sphere. As with the circle, the point on the complex plane z → ∞
maps onto the north pole N . This construction is important because while the plane is open (does not

include z → ∞), the sphere is analytic at the north pole. Thus the sphere defines the closed extended

plane. Figure from Stillwell (2010, pp. 299-300). . . . . . . . . . . . . . . . . . . . . . . . . . . 49

133



134 LIST OF FIGURES

1.11 On the left is a color map showing the definition of the complex s plane, with hue (darkness) indicating

magnitude and color indicating angle. On the left w(s) = s, u = σ and v = v. On the right w(s) = s−1,

a simple shift of one unit in σ is shown. Specifically u = σ − 1 and v = ω. The color gives the phase of

w and hue (color saturation) the magnitude |w|, as discussed in the text. . . . . . . . . . . . . . . 51
1.12 On the left is the function w(s) = es and on the right is s = log(w). . . . . . . . . . . . . . . . . 52
1.13 von Helmholtz portrait taken from the English translation of his 1858 paper “On integrals of the

hydrodynamic equations that correspond to Vortex motions” (in German) (von Helmholtz, 1978). . . . 64

2.1 Sieve of Eratosthenes for the case of N = 49. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2 The Euclidean Algorithm recursively subtracts n from m until the remainder m − kn is either less than

n or zero. For the case depicted here the value of k that renders the remainder less than n is k = 6. If one

more step were taken (k = 7) the remainder becomes negative. By linear interpolation we can find that

m−an = 0 when a = m/n, which for this example is close to a=6.5. In this example 6 = floor(m/n) < n. 74
2.3 This transmission line is known as a low-pass filter wave-filter (Campbell, 1922). For long wavelengths

it acts as a delay line, but as the wavelength approaches ∆, the size of a section, the response becomes

low-pass. fig:LCTline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4 Beads on a string form perfect right triangles when number of beads on each side satisfy Eq. 1.1. 76
2.5 Derivation of Euclid’s formula for the Pythagorean triplets [a, b, c], based on a composition

of a line, having a rational slope t = p/q ∈ Q, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This

analysis is attributed to Diophantus (250 CE), and today such equations are called Di·o·phan′·tine

equations. PTs have applications in architecture and scheduling, and many other practical

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6 Properties of the Fibonacci numbers (Stillwell, 2010, p. 28). . . . . . . . . . . . . . . . . 80

3.1 The Schwartz inequality is related to the shortest distance (length of a line) between the ends of the

two vectors. ||U || =
√

(U · U) as the dot product of that vector with itself. This theory is widely used

in quantum mechanics (Hilbert inner product spaces). . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Here we see the function w(z) = ±√z. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 On the left is the function w(s) = s2 and on the right is s =

√
w. . . . . . . . . . . . . . . . . . . 96

3.4 On the left is the function w(s) = tan(z) and on the right is its inverse w(s) = tan−1(πs). . . . . . . 97
3.5 On the left is the function w(s) = s2 and on the right is w(s) = sin(πs). See the discussion in the text

for an interpretation of these charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.6 A schematic representation of a 2-port ABCD electro-mechanic system using Hunt parameters

Ze(s), zm(s), and T (s): electrical impedance, mechanical impedances, and transduction coeffi-

cient (Hunt, 1952; Kim and Allen, 2013). Also V (f), I(f), F (f), and U(f) are the frequency

domain voltage, current, force, and velocity respectively. Notice how the matrix method ‘factors’

the 2-port model into three 2×2 matrices. This allows one to separate the physical modeling

from the algebra. It is a standard impedance convention that the flows I(f), U(f) are always

defined into the port. Thus it is necessary to apply a negative sign on the velocity −U(f) so

that it has an outward flow, to feed the next cell with an inward flow. Replace Φ with V . . . . 99

4.1 The zeta function arguably the most important of the special functions of analysis because it connects

the primes to analytic function theory in a fundamental way. . . . . . . . . . . . . . . . . . . . . 112
4.2 ∠ζ(z): Red ⇒ ∠ζ(z) < ±π/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Example of a signal flow diagram for the composition of signals z = g ◦ f (x) with y = f(x) and z = g(y). 112



List of Tables

1.1 Three streams followed from Pythagorean theorem: Number Systems (Stream 1), Ge-
ometry (Stream 2) and Infinity (Stream 3). 1.1.3 . . . . . . . . . . 21

1.2 The Fundamental theorems of mathematics 1.2.0 . . . . . . . . . . . . 28

3.1 There are several ways of indicating the quasi-static (QS) approximation. For network theory

there is only one lattice constant a, which must be much less than the wavelength (wavelength

constraint). These three constraints are not equivalent when the object may be a larger struc-

tured medium, spanning many wavelengths, but with a cell structure size much less than the

wavelength. For example, each cell could be a Helmholtz resonator, or an electromagnetic trans-

ducer (i.e., an earphone). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 caption title for list of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 The three vector operators manipulate scalar and vector fields, as indicated here. The
gradient converts scalar fields into vector fields. The divergence eats vector fields and
outputs scalar fields. Finally the curl takes vector fields into vector fields. . . . . . . . . 114

A.1 Double-bold notation for the types of numbers. (#) is a page number. . . . . . . . . . 121

135



136 LIST OF TABLES



Bibliography

Beranek, L. L. (1954). Acoustics. McGraw–Hill Book Company, Inc., 451 pages, New York.

Beranek, L. L. and Mellow, T. J. (2012). Acoustics: Sound Fields and Transducers. Academic Press -
Elsevier Inc., Waltham, MA.

Boas, R. (1987). An invitation to Complex Analysis. Random House, Birkhäuser Mathematics Series.
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