Univ. of Illinois

Due Mon, Oct 2, 2017

Prof. Allen

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions, convolution, analytic geometry, composition, intersection.

Deliverable: Answers to problems

Note: The term 'analytic' is used in two different ways. (1) An <u>analytic function</u> is a function that may be expressed as a locally convergent power series; (2) <u>analytic geometry</u> refers to geometry using a coordinate system.

1 Polynomials and the fundamental theorem of algebra (FTA)

A polynomial of degree N is defined as

$$P_N(x) = a_0 + a_1 x + a_2 x^2 \cdots a_N x^N$$

- 1. How many coefficients a_n does a polynomial of degree N have?
- 2. How many roots does $P_N(x)$ have?
- 3. The fundamental theorem of algebra (FTA)
 - (a) State the FTA.
 - (b) Using the FTA, prove your answer to question (2) above.
- 4. Consider the polynomial function $P_2(x) = 1 + x^2$ of degree N = 2, and the related function $F(x) = 1/P_2(x)$.
 - (a) What are the roots (e.g. 'zeros') x_{\pm} of $P_2(x)$?
 - (b) F(x) may be expressed as $(A, B, x_{\pm} \in \mathbb{C})$

$$F(x) = \frac{A}{x - x_{+}} + \frac{B}{x - x_{-}},\tag{1}$$

where x_{\pm} are the roots (zeros) of $P_2(x)$, which become the *poles* of F(x), and A, B are the residues. The expression for F(x) is sometimes called a 'partial fraction expansion' or 'residue expansion,' and it appears in many engineering applications.

- i. Find $A, B \in \mathbb{C}$ in terms of the roots x_+ of $P_2(x)$.
- ii. Verify your answers for A, B by showing that this expression for F(x) is indeed equal to $1/P_2(x)$.
- (c) The poles of a function G(x) are defined as values x_p where $G(x_p) \to \infty$; the zeros are defined as values x_z where $G(x_z) = 0$.

Hint: Do not forget to consider f(x) as $x \to \pm \infty$

- i. Give the values of the poles and zeros of $P_2(x)$.
- ii. Give the values of the poles and zeros of $F(x) = 1/P_2(x)$.

2 Analytic functions

Analytic functions are defined by infinite (power) series. The function f(x) is analytic at any value of $x = x_0$ where there exists a convergent power series $P(x) = \sum_{n=0}^{\infty} a_n x^n$ such that $P(x_0) = f(x_0)$. The local power series for f(x) near $x = x_0$ is often obtained by finding the Taylor series:

$$f(x) \approx f(x_0) + \frac{df}{dx}\Big|_{x=x_0} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x=x_0} (x - x_0)^2 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n}{dx^n} f(x)\Big|_{x=x_0} (x - x_0)^n$$

The point $x = x_0$ is called the series expansion point.

When the expansion point is at $x_0 = 0$, the series is denoted a *MacLaurin series*. Two classic examples are the *geometric series*¹

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
 (1)

and the exponential function

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
 (2)

These expressions may both be derived as the Taylor (MacLaurin) series about x=0.

1. The geometric series

- (a) What is the region of convergence (ROC) for the power series of 1/(1-x) given above (e.g. where does the power series P(x) converge to the function value f(x))? State your answer as a condition on x. Hint: What happens to the power series when x > 1?
- (b) How does the ROC relate to the location of the pole of 1/(1-x)?
- (c) Assuming x is in the ROC, prove that the geometric series correctly represents 1/(1-x) by multiplying both sides of Eq. 1 by (1-x).
- (d) Use the geometric series to study the degree N polynomial (It is very important to note that all the coefficients of this polynomial are 1)

$$P_N(x) = 1 + x + x^2 + \ldots + x^N = \sum_{n=0}^N x^n.$$
 (3)

i. Prove that

$$P_N(x) = \frac{1 - x^{N+1}}{1 - x} \tag{4}$$

- ii. How many poles does $P_N(x)$ have? Where are they?
- iii. How many zeros does $P_N(x)$ have? Where are they?
- iv. Explain why Eq. 3 and 4 have different numbers of poles and zeros.
- (e) Is the function 1/(1-x) analytic outside of the ROC stated in part (a)? Hint: Can it be represented by a different power series outside this ROC?

¹The geometric series is *not* defined as the function 1/(1-x), it is defined as the series $1+r+r^2+r^3+\ldots$, such that the ratio of consecutive terms is r.

2. The exponential series

- (a) What is the region of convergence (ROC) for the exponential series given above (e.g. where does the power series P(x) converge to the function value f(x))?
- (b) Let x = j in Eq. 2, and write out the series expansion of e^x in terms of its real and imaginary parts.
- (c) Let $x = j\theta$ in Eq. 2, and write out the series expansion of e^x in terms of its real and imaginary parts. How does your result relate to Euler's identity $(e^{j\theta} = \cos(\theta) + j\sin(\theta))$?

3 Inverse analytic functions and composition

It may be surprising, but every analytic function has an inverse function. Starting from the function $(x, y \in \mathbb{C})$

$$y(x) = \frac{1}{1-x}$$

the inverse is

$$x = \frac{y - 1}{y} = 1 - \frac{1}{y}.$$

- 1. Considering the inverse function described above
 - (a) Where are the poles and zeros of x(y)?
 - (b) Where (for what condition on y) is x(y) analytic?
- 2. Considering the exponential function $z(x) = e^x$ $(x, z \in \mathbb{C})$
 - (a) Find the inverse x(z).
 - (b) Where are the poles and zeros of x(z)?
- 3. Compose these two functions $(y \circ z)(x)$
 - (a) Give the expression for $(y \circ z)(x) = y(z(x))$.
 - (b) Where are the poles and zeros of $(y \circ z)(x)$?
 - (c) Where (for what condition on x) is $(y \circ z)(x)$ analytic?

4 Convolution

Multiplying two polynomials, when they are short or simple, is not demanding. However if they have many terms, it can become tedious. For example, multiplying two 10^{th} degree polynomials is not something one would want to do every day.

An alternative is a method called convolution, as described in Lecture 13.

1. Convolution of sequences

Practice convolution (by hand!!) using a few simple examples. Show you work!!! You may check your solution using Matlab.

- (a) Convolve the sequence [0 1 1 1 1] with itself.
- (b) Convolve [1 1] with itself, then convolve the result with [1 1] again (e.g., calculate [1,1] \star [1,1] \star [1,1]).

2. Multiplication of polynomials

In class, it was shown that multiplying two polynomials is the same as convolving their coefficients. Consider

$$f(x) = x^3 + 3x^2 + 3x + 1$$

$$g(x) = x^3 + 2x^2 + x + 2$$

In Matlab, compute $h(x) = f(x) \cdot g(x)$ two ways using (a) the commands roots and poly, and (b) the convolution command conv. Confirm that both methods give the same result. That is, compute the convolution $[1, 3, 3, 1] \star [1, 2, 1, 2]$.

What is h(x)?

5 Intersection and analytic geometry

To find the Euclid's formula, it was necessary to study the intersection of a circle and a secant line. Consider the unit circle of radius 1, centered at (x, y) = (0, 0)

$$x^2 + y^2 = 1$$

and the line through (-1,0)

$$y = t(x+1).$$

If 0 < t < 1, the line intersects the circle at a second point (+x, +y) in the positive x, y quadrant.

- 1. Draw the circle and the line, given a positive slope 0 < t < 1.
- 2. Substitute y = t(x + 1) (the line equation) into the equation for the circle, and solve for x(t). Hint: Because the line intersects the circle at two points, you will get two solutions for x. One of these solutions is the trivial solution x = -1.
- 3. Substitute the x(t) you found back into the line equation, and solve for y(t).
- 4. Let t = q/p be a rational number, where p and q are integers. Find x(p,q) and y(p,q).
- 5. Substitute x(p,q) and y(p,q) into the equation for the circle, and show how Euclid's formula for the Pythagorean triples is generated.

6 Newton's root-finding method (Extra credit)

Newton used the iteration²

$$x_{n+1} = x_n - \frac{P_N(x_n)}{P'_N(x_n)}$$

to find roots of the polynomial $P_N(x_n)$. Here $P'_N(x) = dP_N(x)/dx$. This relation may be explored as a graph, which puts Newton's method in the realm of analytic geometry. The function $P'_N(x)$ is the slope of the polynomial $P_N(x)$ at x_n . The value of x_n is the estimate of the root after n iterations. x_0 is the initial guess.

Example: When the polynomial is $P_2 = 1 - x^2$, so $P'_2(x) = -2x$ Newton's iteration becomes

$$x_{n+1} = x_n + \frac{1 - x_n^2}{2x_n}.$$

²https://en.wikipedia.org/wiki/Newton's_method

To start the iteration (n = 0) we need an initial guess for x_0 , which is a "best guess" of where the root will be. If we let $x_0 = 1/2$, then

$$x_1 = x_0 - \frac{1 - x_0^2}{2x_0} = x_0 + \frac{1}{2}(x_0 - 1/x_0).$$

- 1. Let $P_2(x) = 1 x^2$, and $x_0 = 1/2$. Draw a graph describing the first step of the iteration.
- 2. Calculate x_1 and x_2 . What number is the algorithm approaching? Is it a root of P_2 ?
- 3. Write a Matlab script to check your answer for part (a).
 - (a) For n = 4, what is the absolute difference between the root and the estimate, $|x_r x_4|$?
 - (b) What happens if $x_0 = -1/2$?
- 4. Does Newton's method work for $P_2(x) = 1 + x^2$? Why?³ Hint: What are the roots in this case?
- 5. What if you let $x_0 = (1 + j)/2$ for the case of $P_2(x) = 1 + x^2$?

³https://en.wikipedia.org/wiki/Newton's_method#Complex_functions