
ECE 298JA DE #3 – Version 2.02 November 3, 2017 Fall 2017

Univ. of Illinois Due Mon, Nov 10, 2017 Prof. Allen

Topic of this homework: Laplace Transforms

1 Laplace transforms

Given a Laplace transform (L) pair f(t) ↔ F (s), the frequency domain will always be upper-case [e.g.
F (s)] and the time domain lower case [f(t)] and causal (i.e., f(t < 0) = 0). The definition of the forward
transform (f(t) → F (s)) is

F (s) =

∫

∞

0−
f(t)e−stdt,

where s = σ + jω is the complex Laplace frequency in [radians] and t is time in [seconds].
The inverse Laplace transform (L−1), F (s) → f(t) is defined as

f(t) =
1

2πj

∫ σ0+j∞

σ0−j∞

F (s)estds =
1

2πj

∮

C

F (s)estds

with σ0 > 0 ∈ R is a positive constant.
As discussed in the lecture notes (Section 1.4.7, p. 72) we may use the Cauchy Residue Theorem

(CRT), to evaluate the L−1, by requiring closure of the contour C at ω → ±j∞
∮

C

=

∫ σ0+j∞

σ0−j∞

+

∫

⊂∞

,

where the path represented by ‘⊂∞’ is a semicircle of infinite radius. For a causal, ‘stable’ (e.g. doesn’t
“blow up” in time) signal, all of the poles of F (s) must be inside of the Laplace contour, in the full
(closed) left-half s-plane (σ ≤ 0).

����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
�������������������������������
���������������
���������������
���������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Displacement $x(t)$
Mass $M$

Force $f(t)$

Dash−Pot (resistance) $R$

Spring compliance $C$
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Figure 1: This three element mechanical resonant circuit consisting of a spring, mass and dash-pot (e.g., viscous fluid).

Hooke’s Law for a spring states that the force f(t) is proportional to the displacement x(t), i.e.,
f(t) = Kx(t). The formula for a dash-pot is f(t) = Rv(t), and Newton’s famous formula for mass is
f(t) = d[Mv(t)]/dt, which for constant M is f(t) = Mdv/dt.

The equation of motion for the mechanical oscillator in Fig. 1 is given by Newton’s second law; the
sum of the forces must balance to zero

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t). (1)
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These three constants, the massM , resistance R and stiffnessK are all real and positive.. The dynamical
variables are the driving force f(t) ↔ F (s), the position of the mass x(t) ↔ X(s) and its velocity
v(t) ↔ V (s), with v(t) = dx(t)/dt ↔ V (s) = sX(s).

Newton’s second law (c1650) is the mechanical equivalent of Kirchhoff’s (c1850) voltage law (KCL),
which states that the sum of the voltages around a loop must be zero. The gradient of the voltage
results in a force on a charge (i.e., F = qE).

Equation 1 may be re-expressed in terms of impedances, the ratio of the force to velocity, once it is
transformed into the Laplace frequency domain.

The key idea that every impedance must be complex analytic and ≥ 0 for σ > 0 was first proposed
by Otto Brune in his PhD at MIT, supervised by a student of Arnold Sommerfeld, Ernst Guilliman,
an MIT ECE professor, who played a major role in the development of circuit theory. Brune’s primary
(non-MIT) advisor was Cauer, who was also well trained in 19th century German mathematics.1

1.1 Brune Impedance

A Brune impedance is defined as the ratio of the force F (s) over the flow V (s), and may be expressed
in residue form as

Z(s) = c0 +
K
∑

k=1

ck
s− sk

=
N(s)

D(s)
. (2)

It trivially follows that2

D(s) =
K
∏

k=1

(s− sk) and ck = lim
s→sk

(s− sk)D(s) =
K−1
∏

n′=1

(s− sn),

where the prime on index n′ means that n = k is not included in the product.
There are several important theorems here, best summarized as Brune’s Theorem on positive-real

functions. But it goes beyond this since the impedance matrix and the transmission matrix are a
rearrangement of the same matrix equation(see the Lecture notes for the details; for example, 2-port
transfer functions, and their input impedance, have the same poles).

1. Find the Laplace transform (L) of the three force relations in terms of the force F (s) and the
velocity V(s), along with the electrical equivalent impedance:

(a) Hooke’s Law f(t) = Kx(t).

(b) Dash-pot resistance f(t) = Rv(t).

(c) Newton’s Law for Mass f(t) = Mdv(t)/dt.

2. Take the Laplace transform (L) of Eq. 1, and find the total impedance Z(s) of the mechanical
circuit.

3. What are N(s) and D(s) (e.g. Eq. 2)?

4. Assume that M = R = K = 1, find the residue form of the admittance Y (s) = 1/Z(s) (e.g. Eq. 2)
in terms of the roots s±. You may check your answer with the Matlab’s residue command.

5. By applying the CRT, find the inverse Laplace transform (L−1). Use the residue form of the
expression that you derived in the previous exercise.

1It must be noted that Prof. ‘Mac’ Van Valkenburg from the University of IL., was arguably more influential in circuit
theory, during the same period. Mac’s book are certainly more accessible, but perhaps less widely cited.

2Is the ABCD C(s) the same as the impedance denominator D(s) here? I think it is.
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Figure 2: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of stiffness K or
compliance C = 1/K. Below it is the electrical equivalent circuit, for comparison. The mass is modeled as an inductor
and the springs as capacitors to ground. The velocity is analogous to a current and the force fn(t) to the voltage vn(t).

1.2 Transfer functions

In this problem, we will look at the transfer function of a two-port network, shown in Fig. 2. We wish
to model the dynamics of a freight-train having N such cars. The model of the train consists of masses
connected by springs.

The velocity transfer function for this system is defined as the ratio of the output to the input
velocity. Consider the engine on the left pulling the train at velocity V1 and each car responding with
a velocity of Vn. Then

H(s) =
VN (s)

V1(s)

is the frequency domain ratio of the last car having velocity VN to V1, the velocity of the engine, at the
left most spring (i.e., coupler).

To do: Use the ABCD method to find the matrix representation of Fig. 2. Consistent with the figure,
break the model into cells each consisting of three elements: a series inductor representing half the
mass (L = M/2), a shunt capacitor representing the spring (C = 1/K), and another series inductor
representing half the mass (L = M/2). Each cell is symmetric, making the model a cascade of identical
cells.

At each node define the force fn(t) ↔ Fn(ω) and the velocity vn(t) ↔ Vn(ω) at junction n.

1. Write the ABCD matrix T for a single cell, composed of series mass M/2, shunt compliance C
and series mass M/2, that relates the input node 1 to node 2 where

[

F1

V1

]

= T

[

F2(ω)
−V2(ω)

]

Note that here the mechanical force F is analogous to electrical voltage, and the mechanical
velocity V is analogous to electrical current.

2. Assuming that N = 2 and that F2 = 0 (two mass problem), find the transfer function H(s) ≡
V2/V1. From the results of the T matrix you determined above, find

H21(s) =
V2

V1

∣

∣

∣

∣

F2=0

3. Find h21(t), the inverse Laplace transform of H21(s).

4. What is the input impedance Z2 = F2/V2 if F3 = −r0V3?

5. Simplify the expression for Z2 with N → ∞ by assuming that:
1) F3 = −r0V3 (i.e., V3 cancels), 2) s2MC << 1: 3) r0 =

√

M/C
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6. State the ABCD matrix relationship between the first and Nth node, in terms of of the cell matrix.

7. Given a T (ABCD) transmission matrix, the eigenvalues are and vectors are given in Appendix
C of the Notes (p. 143), repeated here.

Eigenvalues:
[

λ+

λ−

]

=
1

2

[

(A+D)−
√

(A−D)2 + 4BC

(A+D) +
√

(A−D)2 + 4BC

]

Due to symmetry, A = D, this simplifies to λ± = A∓
√
BC so that the eigen matrix is

Λ =

[

A−
√
BC 0

0 A+
√
BC

]

Eigenvectors: The eigenvectors simplifying even more

[

E±

]

=

[

1

2C

[

(A−D)∓
√

(A−D)2 + 4BC
]

1

]

=

[

∓
√

B
C

1

]

Eigen matrix:

E =

[

−
√

B
C

+
√

B
C

1 1

]

, E
−1 =

1

2





−
√

C
B

1

+
√

C
B

1





To do: What is the velocity transfer function HN1 =
VN

V1
? Hint: Use an eigen matrix diagonal-

ization, as we did for the Pell equation (Appendix C).
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