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Univ. of Illinois Due Monday, Sept 18, 2017 Prof. Allen

Topic of this homework: Pythagorean triples, Pell’s equation, Fibonacci sequence
Deliverable: Answers to problems

1 Pythagorean triples

Euclid’s formula for the Pythagorean triples a, b, c is: a = p2 − q2, b = 2pq, and c = p2 + q2.

1. What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

2. Solve for p and q in terms of a, b and c.

3. The ancient Babylonians (c2000BEC) cryptically recorded (a,c) pairs of numbers on a clay tablet,
archeologically denoted Plimpton-322.

To Do: Find p and q for the first five pairs of a and c from the tablet entries:

Table 1: First five (a,c) pairs of Plimpton-322.

a c

119 169
3367 4825
4601 6649
12709 18541
65 97

4. Based on Euclid’s formula, show that c > (a, b).

5. What happens when c = a?

6. Is b+ c a perfect square? Discuss.

2 Pell’s equation

Pell’s equation is one of the most historic (i.e., important) equations of Greek number theory, because
it was used to show that

√
2 ∈ I. We seek integer solutions

x2 −Ny2 = 1.

As shown in Lec 8 of the lecture notes, the solutions xn, yn for the case of N = 2 are given by the
2x2 matrix recursion

[

xn+1

yn+1

]

= 1

[

1 2
1 1

] [

xn
yn

]

with [x0, y0]
T = [1, 0]T and 1 =

√
−1 = ejπ/2. It follows that the general solution to Pell’s equation for

N = 2 is
[

xn
yn

]

= (eπ/2)n
[

1 2
1 1

]n [
x0
y0

]
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To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

An = eπn/2
[

1 2
1 1

]n

= eπn/2
[

1 2
1 1

] [

1 2
1 1

] [

1 2
1 1

]

· · ·
[

1 2
1 1

]

which becomes tedious for n > 2, since it requires n× 2× 2 matrix multiplications.

Diagonalization of a matrix (“eigenvalue/eigenvector decomposition”): As derived in Ap-
pendix C of the lecture notes, the most efficient way to compute An is to diagonalize the matrix A, by
finding its eigenvalues and eigenvectors.

The eigenvalues λk and eigenvectors ~ek of a square matrix A are related by

A~ek = λk~ek, (1)

such that multiplying an eigenvector ~ek of A by the matrix A is the same as multiplying by a scalar,
λk ∈ C (the corresponding eigenvalue). The complete eigenvalue problem may be written as

AE = EΛ.

If A is a 2× 2 matrix,1 the matrices E and Λ (of eigenvectors and eigenvalues, respectively) are

E =
[

~e1 ~e2
]

Λ =

[

λ1 0
0 λ2

]

Thus, the matrix equation AE =
[

A~e1 A~e2
]

=
[

λ1~e1 λ2~e2
]

= EΛ contains Eq. 1 for each eigenvalue-
eigenvector pair.

The diagonalization of the matrix A refers to the fact that the matrix of eigenvalues, Λ, has non-zero
elements only on the diagonal. The key result is found by post-multiplication of the eigen value matrix
by E−1, giving

AEE−1 = A = EΛE−1. (2)

If we now take powers of A, the nth power of A is

An = (EΛE−1)n

= EΛE−1EΛE−1 · · ·EΛE−1

= EΛnE−1. (3)

This is a very powerful result, because the nth power of a diagonal matrix is extremely easy to calculate:

Λn =

[

λn
1 0
0 λn

2

]

Thus, from Eq. 3 we can calculate An using only two matrix multiplications

An = EΛnE−1.

1These concepts may be easily extended to higher dimensions.
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Finding the eigenvalues: The eigenvalues λk are determined by Eq. 1, by factoring out ~ek

A~ek = λk~e

(A− λkI)~ek = ~0.

Matrix I = [1, 0; 0, 1]T is the identity matrix, having the dimensions of A, with elements δij (i.e., diagonal
elements δ11,22 = 1 and off-diagonal elements δ12,21 = 0).

The vector ~ek is not zero, yet when operated on by A− λkI, the result must be zero. The only way
this can happen is if the operator is degenerate (has no solution), that is

det(A− λI) = det

[

(a11 − λ) a12
a21 (a22 − λ)

]

= 0. (4)

This means that the two equations have the same slope (the equation is degenerate).
This determinant equation results in a second degree polynomial in λ

(a11 − λ)(a22 − λ)− a12a21 = 0,

the roots of which are the eigenvalues of the matrix A.

Finding the eigenvectors: An eigenvector ~ek can be found for each eigenvalue λk from Eq. 1,

(A− λkI)~ek = ~0.

The left side of the above equation becomes a column vector, where each element is an equation in
the elements of ~ek, set equal to 0 on the right side. These equations are always degenerate, since the
determinant is zero. Thus the two equatons have the same slope.

Solving for the eigenvectors is often confusing, because they have arbitrary magnitudes, ||~ek|| =√
~ek · ~ek =

√

e2k,1 + e2k,2 = d. From Eq. 1, you can only determine the relative magnitudes and signs of

the elements of ~ek, so you will have to choose a magnitude d. It is common practice to normalize each
eigenvector to have unit magnitude (d = 1).

To do:
Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your results!

1. Solutions to Pell’s equation were used by the Pythagoreans to explore the value of
√
2. Explain

why Pell’s equation is relevant to
√
2.

2. Find the first 3 values of [xn, yn]
T by hand and show that they satisfy Pell’s equation for N=2.

3. By hand, find the eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =

[

1 2
1 1

]

4. By hand, show that the matrix of eigenvectors, E, is

E =
[

~e+ ~e−
]

=
1√
3

[

−
√
2

√
2

1 1

]

5. Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[

λ+ 0
0 λ−

]

6. Now that you have diagonalized A (Equation 3), use your results for E and Λ to solve for the
n = 10 solution [x10, y10]

T to Pell’s equation with N = 2.
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3 The Fibonacci sequence

The Fibonacci sequence is famous in mathematics, and has been observed to play a role in the mathe-
matics of genetics. Let xn represent the Fibonacci sequence,

xn = xn−1 + xn−2, (5)

where the current output sample, xn, is equal to the sum of the previous two inputs. This is a ‘discrete
time’ recurrence relation. To solve for xn, we require some initial conditions. In this exercise, let us define
x0 = 1 and xn<0 = 0. This leads to the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .} for n = 0, 1, 2, 3, . . ..

Here we seek the general formula for xn. Like the Pell’s equation, Eq. 5 has a recursive, eigen
decomposition solution. To find it we must recast xn as a 2x2 matrix relation, and then proceed as we
did for the Pell case.

1. Show that Eq. 5 is equivalent to the 2× 2 matrix equation

[

xn
yn

]

= A

[

xn−1

yn−1

]

. A =

[

1 1
1 0

]

(6)

and that the Fibonacci sequence xn as described above may be generated by

[

xn
yn

]

= An

[

x0
y0

] [

x0
y0

]

=

[

1
0

]

What is the relationship between yn and xn?

2. Write a Matlab program to compute xn using the matrix equation above (you don’t need to turn
in your code). Test your code using the first few values of the sequence. Using your program,
what is x40?
Note: to make your program run faster, consider using the eigen decomposition of A, described by
Eq. 3 from the Pell’s equation problem.

3. Using the eigen decomposition of the matrix A (and a lot of algebra), it is possible to obtain the
general formula for the Fibonacci sequence,

xn =
1√
5

[(1 +
√
5

2

)n+1

−
(1−

√
5

2

)n+1]

. (7)

What are the eigenvalues λ± of the matrix A? How is the formula for xn related to these eigen-
values?

4. Consider Eq. 7 in the limit as n → ∞...

(a) What happens to each of the two terms [(1±
√
5)/2]n+1?

(b) What happens to the ratio xn+1/xn?

5. Prove that2
N
∑

1

f2
n = fNfN+1.

2I found this problem on a workseet for Math 213 midterm (213practice.pdf).
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6. Replace the Fibonacci sequence with

xn =
xn−1 + xn−2

2
,

such that the value xn is the average of the previous two values in the sequence.

(a) What matrix A is used to calculate this sequence?

(b) Modify your computer program to calculate the new sequence xn. What happens as n → ∞?

(c) What are the eigenvalues of your new A? How do they relate to the behavior of xn as n → ∞?
Hint: you can expect the closed-form expression for xn to be similar to Eq. 7.

7. Now consider

xn =
xn−1 + 1.01xn−2

2
.

(a) What matrix A is used to calculate this sequence?

(b) Modify your computer program to calculate the new sequence xn. What happens as n → ∞?

(c) What are the eigenvalues of your new A? How do they relate to the behavior of xn as n → ∞?
Hint: you can expect the closed-form expression for xn to be similar to Eq. 7.
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