
ECE 298JA VC #2 – Version 3.0 December 5, 2017 Fall 2017

Univ. of Illinois Due Wed, Dec 13, 2017 Prof. Allen

Topic of this homework: Maxwell’s equations (ME) and variables (E,D;B,H); Com-
pressible and rotational properties of vector fields; Fundamental Theorem of Vector Calculus
(Helmholtz’ Theorem); Riemann zeta function; Wave equation.

Notation: The following notation is used in this assignment:

1. s � σ � jω is the Laplace frequency, as used in the Laplace transform.

2. A Laplace transform pair are indicated by the symbol Ø: e.g., fptq Ø F psq.

3. πk is the kth prime (i.e., πk P P, e.g., πk � r2, 3, 5, 7, 11, 13 � � � s for k � 1..6).

1 Partial differential equations (PDEs): Wave equation

1. Show that d’Alembert’s solution, ̺px, tq � fpt � x{cq � gpt � x{cq, is a solution to the
acoustic pressure wave equation, in 1-dimension:
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where fpξq and gpξq are arbitrary functions.

2. Solution to the wave equation in spherical coordinates (i.e, 3-dimensions):

(a) Write out the wave equation in spherical coordinates ̺pρ, θ, φ, tq. Only consider the
radial term ρ (i.e., dependence on angles θ, φ is assumed to be zero). Hint: The
form of the Laplacian as a function of the number of dimensions is given in the last
appendix on Transmission lines and Acoustic Horns. Alternatively, look it up on the
internet or in a calculus book.

(b) Show that the following is true:
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Hint: Expand both sides of the equation.

(c) Use the results from Eq. 1 to show that the solution to the spherical wave equation is

∇2

ρ ̺pρ, tq �
1

c2
B

2

Bt2
̺pρ, tq (2)

̺pρ, tq �
fpt� ρ{cq

ρ
�

gpt� ρ{cq

ρ
(3)

(d) With fpξq � sinpξq and gpξq � eξupξq [upξq is the step function] (Eq. 3) write down
the solutions to the spherical wave equation.
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(e) Sketch this last case for several times (e.g., 0, 1 2 seconds), and describe the behavior
of the pressure ̺pρ, tq as a function of time t and radius ρ.

(f) What happens when the inbound wave reaches the center at ρ � 0?

2 Helmholtz formula

Every differentiable vector field may be written as the sum of a scalar potential φ and vector
potential w. This relationship is best known as The Fundamental theorem of vector calculus
(Helmholtz’ formula).

v � �∇φ�∇�w (4)

where φ is the scalar potential and w is the vector potential. This formula seems a natural
extension of the algebraic A�B K A�B, since A�B 9‖A‖‖B‖ cospθq and A�B9‖A‖‖B‖ sinpθq
as developed in the notes (Fig. A.1). Thus these orthogonal components have magnitude 1 when
we take the norm, due to Euler’s identity (cos2pθq � sin2

pθq � 1).

Field type Definition Generator Test
(most common) (form of potential) (on v)

Irrotational ∇� v � 0 v � �∇φ ∇ � v � 0
Rotational ∇� v � 0 v � �∇φ�∇�w ∇ � v � 0
Incompressible ∇ � v � 0 v � ∇�w ∇ � v � 0
Compressible ∇ � v � 0 v � �∇φ�∇�w ∇ � v � 0
Conservative v � �∇φ v � �∇φ ∇ � v � 0
Solenoidal ∇ � v � 0 v � ∇�w ∇ � v � 0

Table 1: Definitions of irrotational, rotational, incompressible and compressible. A solenoidal
field is an alternative name for an incompressible field, and a conservative field is irrotational.

Helmholtz’ formula separates a vector field (i.e., vpxq) into compressible and rotational parts:

1. The rotational (e.g. angular) part is defined by the vector potential w, requiring ∇�∇�

w � 0. A field is irrotational (conservative) when ∇� v � 0, meaning that the field v can
be generated using only 1 a scalar potential, v � ∇φ (note this is how a conservative field
is usually defined, by saying there exists some φ such that v � ∇φ).

2. The compressible (e.g. radial) part of a field is defined by the scalar potential φ, requiring
∇ � ∇φ � ∇2φ � 0. A field is incompressible (solenoidal) when ∇ � v � 0, meaning that
the field v can be generated using only a vector potential, v � ∇ �w.

1A note about the relationship between the generating function and the test: You might imagine special cases
where ∇�w � 0 but ∇�∇�w � 0 (or ∇φ � 0 but ∇2φ � 0). In these cases, the vector (or scalar) potential
can be recast as a scalar (or vector) potential.
Example: Consider a field v � ∇φ0 � b where b � x̂i� yĵ� zk̂. Note that b can actually be generated by either
a scalar potential (φ1 �

1

2
rx2

� y2 � z2s, such that ∇φ1 � b) or a vector potential (w0 �
1

2
rz2̂i�x2 ĵ� y2k̂s, such

that ∇�w0 � b). We find that ∇� v � 0, therefore v must be irrotational. Therefore, we say this irrotational
field is generated by ∇φ � ∇pφ0 � φ1q.
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The definitions and generating potential functions of irrotational (conservative) and incom-
pressible (solenoidal) fields naturally follow from two key vector identities:

1. ∇ � p∇�wq � 0

2. ∇� p∇φq � 0

Exercises:

1. Define the following:

(a) A conservative vector field

(b) A irrotational vector field

(c) An incompressible vector field

(d) A solenoidal vector field

2. When is a conservative field irrotational?

3. When is a incompressible field irrotational?

4. For each of the following, (i) compute ∇ � v, (ii) compute ∇ � v, (iii) classify the vector
field (e.g., conservative, irrotational, incompressible, etc.):

(a) vpx, y, zq � �∇r3yx3
� y logpxyqs

(b) vpx, y, zq � xŷi� zĵ � fpzqk̂

(c) vpx, y, zq � ∇ � rx̂i� zĵs

3 Maxwell’s Equations

The variables have the following names and defining equations:

Symbol Equation Name Units

E ∇�E � �

9B Electric Field strength [Volts/m]
D � ǫoE ∇ �D � ρ Electric Displacement (flux density) [Col/m2]

H ∇�H � J �

9D Magnetic Field strength [Amps/m]
B � µoH ∇ �B � 0 Magnetic Induction (flux density) [Webers/m2]

Note that J � σE is the current density (which has units of [Amps/m2]). Furthermore the
speed of light in vacuo is co � 3� 108 � 1{

?

µ0ǫ0 [m/s], and the characteristic resistance of light

r0 � 377 �
a

µ0{ǫ0 [Ω (i.e., ohms)].
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Exercises:

1. The speed of light in-vacuo is co � 1{
?

µoǫo � 3 � 108 [m/s]. The characteristic resistance

in in-vacuo is ro �
a

µ0{ǫo � 377 rΩs. Find a formula for the in-vacuo permittivity ǫo and
permeability in terms of co and ro. Based on your formula, what are the numeric values
values of ǫo and µo?

2. The electric Maxwell equation is ∇ � E � �

9B, where E the Electric field strength and
9B is the time rate of change of the magnetic induction field, or simply the magnetic flux
density. Consider this equation integrated over a two-dimensional surface S, where n̂ is a
unit vector normal to the surface (you may also find it useful to define the closed path C

around the surface):
¼

S

r∇�Es � n̂dS � �

B

Bt

¼

S

B � n̂dS

(a) Apply Stokes’ theorem to the left-hand side of the equation.

(b) Consider the right-hand side of the equation. How is it related to the magnetic flux
Ψ through the surface S?

(c) Assume the right-hand side of the equation is zero. Can you relate your answer to
part (a) to one of Kirchhoff’s laws?

3. The magnetic Maxwell Equation is ∇ �H � C � J �

9D, where H is the magnetic field
strength, J � σE is the conductive (resistive) current density and the displacement current
9D is the time rate of change of the electric flux density D. Here we defined a new variable
C as the total current density.

(a) First consider the equation over a two dimensional surface S,
¼

S

r∇�Hs � n̂dS �

¼

S

rJ� 9Ds � n̂dS �

¼

S

C � n̂dS

Apply Stokes’ theorem to the left-hand side of this equation. In a sentence or two,
explain the meaning of the resulting equation. Hint: What is the right-hand side of
the equation?

(b) Now consider this equation in three dimensions. Take the divergence of both sides,
and integrate over a volume V (closed surface S).

½

V

∇ � r∇�HsdV �

½

V

∇ �CdV

i. What happens to the left-hand side of this equation? Hint: Can you apply a
vector identity?

ii. Apply the divergence theorem (sometimes known as Gauss’s theorem) to the right
hand side of the equation, and interpret your result. Hint: Can you relate your
result to one of Kirchhoff’s laws?

4. When Vpx, y, zq � ∇p1{x� 1{y � 1{zq what is ∇�Vpx, y, zq?

5. When was Maxwell born (and die)? How long did he live (within �10 years)?
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3.1 Capacitor analysis

1. Find the solution to the Laplace equation between two infinite 2 parallel plates, separated
by a distance of d. Assume that the left plate, at x � 0, is at a voltage of V p0q � 0, and
the right plate, at x � d, is at a voltage of Vd � V pdq.

(a) Write down Laplace’s equation in one dimension for V pxq.

(b) Write down the general solution to your differential equation for V pxq.

(c) Apply the boundary conditions V p0q � 0 and V pdq � Vd to solve for the constants in
your equation from the previous part.

(d) Find the charge density per unit area (σ � Q{A, where Q is charge and A is area) on
the surface of each plate. Hint: E � �∇V , and Gauss’s Law states that

´

S
D � n̂dS �

Qenclosed.

(e) Determine the per-unit-area capacitance C of the system.

4 Webster Horn Equation

Horns provide an important generalization of the solution of the 1D wave equation, in regions
where the properties (i.e., area of the tube) vary along the axis of wave propagation. Classic
applications of horns is vocal tract acoustics, loudspeaker design, cochlear mechanics, any case
having wave propagation.

To do: Write out the formula for the Webster Horn equation, and explain the variables.

5 Riemann zeta function (ζpsq)

The zeta function ζpsq is defined by the complex analytic power series

ζpsq �

8

¸

n�1

1

ns
�

1

1s
�

1

2s
�

1

3s
�

1

4s
� � � � . (5)

This series converges, and thus is valid, only in the region of convergence (ROC) given by
ℜs � σ ¡ 1 since there |n�σ

|   1. To determine its formula in other regions of the s plane one
must extend the series via analytic continuation.

5.1 Euler product formula

As was first published by Euler in 1737, one may recursively factor out the leading prime term,
resulting in Euler’s product formula.3 Multiplying ζpsq by the factor 1{2s, and subtracting from

2We study plates that are infinite because this means the electric field lines will be perpendicular to the
plates, running directly from one plate to the other. However, we will solve for per-unit-area characteristics of
the capacitor.

3This is known as Euler’s sieve, as distinguish from the Eratosthenes sieve.

5



ζpsq, removes all the terms 1{p2nqs (e.g., 1{2s � 1{4s � 1{6s � 1{8s � � � � )

�

1�
1

2s




ζpsq � 1�
1

2s
�

1

3s
�

1

4s
�

1

5s
� � � �

�

1

2s
�

1

4s
�

1
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�

1

8s
�

1
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, (6)

which results in
�

1�
1

2s




ζpsq � 1�
1

3s
�

1

5s
�

1

7s
�

1

9s
�

1

11s
�

1

13s
� � � � . (7)

1. Repeat this with a lead factor 1{3s applied to Eq. 7.

2. Repeat this process, with all prime scale factors, (i.e., 1{5s, 1{7s, � � � , 1{πs
k, � � � ), and show

that

ζpsq �
¹

πkPP

1

1� π�s
k

�

¹

πkPP

ζkpsq. (8)

5.1.1 Poles of ζppsq

Given the product formula we may identify the poles of ζppsq (p P Z), which is important for
defining the ROC of each factor. For example, the pth factor of Eq. 8, expressed as an exponential,
is

ζppsq �
1

1� π�s
p

�

1

1� e�sTp
, (9)

where Tp � ln πp (πp represents the pth prime).
Plot ζppsq using zviz for p � 1. Describe what you see.

5.2 Inverse Laplace transform

Take the inverse Laplace transform of ζppsq Ø zpptq (Eq. 9) and describe the result in words.
Hint: Consider the geometric series representation

ζppsq �
1

1� e�sTp
�

8

¸

k�0

e�skTp, (10)

for which you can easily look up (or may have memorized) the inverse Laplace transform of each
term.

5.2.1 Inverse transform of Product of factors

The time domain version of Eq. 8 may be written as the convolution of all the zkptq factors

zptq � z2 Æ z3ptq Æ z5ptq Æ z7ptq � � � Æ zpptq � � � , (11)

where Æ represents time convolution.
Explain what this means in physical terms. Start with two terms (e.g., z1ptq Æ z2).
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