2.3 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere. Deliverables: Answers to problems

Two-port network analysis

Problem # 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.9 (page 104). This can be a mechanical system if the capacitors are taken to be springs and inductors taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car muffler. While the physical representations will be different, the equations and the analysis are exactly the same.

The definition of the ABCD transmission matrix (T) is

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}.$$
 (AE-3.1)

The *impedance matrix*, where the determinant $\Delta_T = AD - BC$, is given by

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \frac{1}{C} \begin{bmatrix} \mathcal{A} & \Delta_T \\ 1 & \mathcal{D} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}.$$
 (AE-3.2)

– 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission matrix definition (Eq. AE-3.1). Show your work. **Ans:**

Problem # 2: Consider a single circuit element with impedance Z(s).

-2.1: What is the ABCD matrix for this element if it is in series? **Ans:**

-2.2: What is the ABCD matrix for this element if it is in shunt? **Ans:**

Problem # 3: Find the ABCD matrix for each of the circuits of Fig. 3.9.

For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency $s \in \mathbb{C}$, then (ii) substitute s = 1j and calculate the total transmission matrix at this single frequency.

-3.1: Left circuit (let $R_1 = R_2 = 10$ kilo-ohms and C = 10 nano-farads)

Ans:

-3.2: Right circuit (use L and C values given in the figure), where the pressure P is analogous to the voltage V, and the velocity U is analogous to the current I. **Ans:**

-3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2. Do this for the specific frequency s = 1j as in the previous part (feel free to use Matlab/Octave for your computation). Ans:

– 3.4: Right circuit: Repeat the analysis as in question 3.3. **Ans:**

Algebra

Problem # 4: Fundamental theorem of algebra (FTA).

– 4.1: State the fundamental theorem of algebra (FTA). Ans:

Algebra with complex variables

Problem # 5: Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the difference and compare it to zero, as in 4 - 3 > 0. Here we will explore how complex variables may be ordered. Define the complex variable $z = x + yj \in \mathbb{C}$.

- 5.1: Explain the meaning of $|z_1| > |z_2|$. Ans:

- 5.2: If $x_1, x_2 \in \mathbb{R}$ (are real numbers), define the meaning of $x_1 > x_2$. Hint: Take the difference. Ans:

- 5.3: Explain the meaning of $z_1 > z_2$. Ans:

-5.4: If time were complex, how might the world be different? **Ans:**

Problem # 6: It is sometimes necessary to consider a function w(z) = u + vj in terms of the real functions u(x, y) and v(x, y) (e.g. separate the real and imaginary parts). Similarly, we can consider the inverse z(w) = x + yj, where x(u, v) and y(u, v) are real functions.

-6.1: Find u(x, y) and v(x, y) for w(z) = 1/z.

Ans:

Problem # 7: Find u(x,y) and v(x,y) for $w(z) = c^z$ with complex constant $c \in \mathbb{C}$ for questions 7.1, 7.2, and 7.3:

-7.1: c = e<u>Ans:</u>

-7.2: c = 1 (recall that $1 = e^{jk2\pi k}$ for k = 0, 1, 2, ...) Ans:

-7.3: c = j. Hint: $j = e^{j\pi/2 + j2\pi m}$, $m \in \mathbb{Z}$. Ans:

- 7.4: Find u(x, y) for $w(z) = \sqrt{z}$. Ans:

Problem # 8: Convolution of an impedance z(t) and its inverse y(t):

In the frequency domain a Brune impedance is defined as the ratio of a numerator polynomial N(s) to a denominator polynomial D(s).

-8.1: Consider a Brune impedance defined by the ratio of numerator and denominator polynomials, Z(s) = N(s)/D(s). Since the admittance Y(s) is defined as the reciprocal of the impedance, the product must be 1. If $z(t) \leftrightarrow Z(s)$ and $y(t) \leftrightarrow Y(s)$, it follows that $z(t) \star y(t) = \delta(t)$. What property must $n(t) \leftrightarrow N(s)$ and $d(t) \leftrightarrow D(s)$ obey for this to be true? **Ans:**

Figure 2.4: This figure shows how to derive the Schwarz inequality, by finding the value of $\alpha = \alpha^*$ corresponding to $\min_{\alpha} [E(\alpha)]$. It is identical to Fig. 3.5 on page 88.

- 8.2: The definition of a minimum phase function is that it must have a causal inverse. Show that every impedance is minimum phase. Ans:

Schwarz inequality

Problem # 9: The above figure shows three vectors for an arbitrary value of $\alpha \in \mathbb{R}$ and a specific value of $\alpha = \alpha^*$.

-9.1: Find the value of $\alpha \in \mathbb{R}$ such that the length (norm) of \vec{E} (i.e., $||\vec{E}|| \ge 0$) is minimum. Show your derivation, not the answer ($\alpha = \alpha^*$).

Ans:

t

-9.2: Find the formula for $||E(\alpha^*)||^2 \ge 0$. Hint: Substitute α^* into Eq. 3.5.9 (p. 89) and show that this results in the Schwarz inequality

$$|\vec{U} \cdot \vec{V}| \le ||\vec{U}|| ||\vec{V}||.$$

Ans:

Problem # 10: Geometry and scaler products

– 10.1: What is the geometrical meaning of the dot product of two vectors? **Ans:**]

- 10.2: Give the formula for the dot product of two vectors. Explain the meaning based on Fig. 3.4 (page 84).

Ans:

-10.3: Write the formula for the dot product of two vectors $\vec{U} \cdot \vec{V}$ in \mathbb{R}^n in polar form (e.g., assume the angle between the vectors is θ).

Ans:

- 10.4: How is the Schwarz inequality related to the Pythagorean theorem?

Ans:

- 10.5: Starting from ||U + V||, derive the triangle inequality

 $||\vec{U} + \vec{V}|| \le ||\vec{U}|| + ||\vec{V}||.$

Ans:

-10.6: The triangle inequality $||\vec{U} + \vec{V}|| \le ||\vec{U}|| + ||\vec{V}||$ is true for two and three dimensions: Does it hold for five-dimensional vectors?

Ans:

– 10.7: Show that the wedge product $\vec{U} \wedge \vec{V} \perp \vec{U} \cdot \vec{V}$.

Ans:

Probability

Problem # 11: Basic terminology of experiments

– 11.1: What is the mean *of a trial, and what is the average over all trials?* **Ans:**

-11.2: What is the expected value of a random variable X? Ans:

– 11.3: What is the standard deviation *about the mean?* **Ans:**

– 11.4: What is the definition of information *of a random variable?* **Ans:**

- 11.5: How do you combine events? Hint: If the event is the flip of a biased coin, the events are H = p, T = 1 - p, so the event is $\{p, 1 - p\}$. To solve the problem, you must find the probabilities of two independent events. Ans:

– 11.6: What does the term independent *mean in the context of question 11.5? Give an example.* Ans:

– 11.7: Define odds. **Ans:**