2.3 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere.
Deliverables: Answers to problems

Two-port network analysis

Problem \# 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.9 (page 104). This can be a mechanical system if the capacitors are taken to be springs and inductors taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car muffler. While the physical representations will be different, the equations and the analysis are exactly the same.
The definition of the ABCD transmission matrix (\mathcal{T}) is

$$
\left[\begin{array}{l}
V_{1} \tag{AE-3.1}\\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & \mathcal{D}
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] .
$$

The impedance matrix, where the determinant $\Delta_{T}=A D-B C$, is given by

$$
\left[\begin{array}{l}
V_{1} \tag{AE-3.2}\\
V_{2}
\end{array}\right]=\frac{1}{C}\left[\begin{array}{cc}
\mathcal{A} & \Delta_{\tau} \\
1 & \mathcal{D}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] .
$$

- 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission matrix definition (Eq. AE-3.1). Show your work.

Ans:

Problem \# 2: Consider a single circuit element with impedance $Z(s)$.

- 2.1: What is the $A B C D$ matrix for this element if it is in series?

Ans:

- 2.2: What is the $A B C D$ matrix for this element if it is in shunt?

Ans:

Problem \# 3: Find the ABCD matrix for each of the circuits of Fig. 3.9.
For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency $s \in \mathbb{C}$, then (ii) substitute $s=1 \jmath$ and calculate the total transmission matrix at this single frequency.

$$
\text { - 3.1: Left circuit (let } R_{1}=R_{2}=10 \text { kilo-ohms and } C=10 \text { nano-farads) }
$$

Ans:

- 3.2: Right circuit (use L and C values given in the figure), where the pressure P is analogous to the voltage V, and the velocity U is analogous to the current I.

Ans:

- 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2. Do this for the specific frequency $s=1$ 〕 as in the previous part (feel free to use Matlab/Octave for your computation).
Ans:
- 3.4: Right circuit: Repeat the analysis as in question 3.3.

Ans:

Algebra

Problem \# 4: Fundamental theorem of algebra (FTA).

- 4.1: State the fundamental theorem of algebra (FTA).

Ans:

Algebra with complex variables

Problem \# 5: Order and complex numbers:
One can always say that $3<4$-namely, that real numbers have order. One way to view this is to take the difference and compare it to zero, as in $4-3>0$. Here we will explore how complex variables may be ordered. Define the complex variable $z=x+y_{\jmath} \in \mathbb{C}$.

- 5.1: Explain the meaning of $\left|z_{1}\right|>\left|z_{2}\right|$.

Ans:

- 5.2: If $x_{1}, x_{2} \in \mathbb{R}$ (are real numbers), define the meaning of $x_{1}>x_{2}$. Hint: Take the difference.
Ans:
- 5.3: Explain the meaning of $z_{1}>z_{2}$.

Ans:

- 5.4: If time were complex, how might the world be different?

Ans:

Problem \# 6: It is sometimes necessary to consider a function $w(z)=u+v \jmath$ in terms of the real functions $u(x, y)$ and $v(x, y)$ (e.g. separate the real and imaginary parts). Similarly, we can consider the inverse $z(w)=x+y \jmath$, where $x(u, v)$ and $y(u, v)$ are real functions.

- 6.1: Find $u(x, y)$ and $v(x, y)$ for $w(z)=1 / z$.

Ans:

Problem \# 7: Find $u(x, y)$ and $v(x, y)$ for $w(z)=c^{z}$ with complex constant $c \in \mathbb{C}$ for questions 7.1, 7.2, and 7.3:

$$
-7.1: c=e
$$

Ans:

-7.2: $c=1$ (recall that $1=e^{\jmath k 2 \pi k}$ for $k=0,1,2, \ldots$)

Ans:

$$
-7.3: c=\jmath . \text { Hint: } \jmath=e^{\jmath \pi / 2+\jmath 2 \pi m}, \quad m \in \mathbb{Z}
$$

Ans:

$$
\text { - 7.4: Find } u(x, y) \text { for } w(z)=\sqrt{z}
$$

Ans:

Problem \# 8: Convolution of an impedance $z(t)$ and its inverse $y(t)$:
In the frequency domain a Brune impedance is defined as the ratio of a numerator polynomial $N(s)$ to a denominator polynomial $D(s)$.

- 8.1: Consider a Brune impedance defined by the ratio of numerator and denominator polynomials, $Z(s)=N(s) / D(s)$. Since the admittance $Y(s)$ is defined as the reciprocal of the impedance, the product must be 1. If $z(t) \leftrightarrow Z(s)$ and $y(t) \leftrightarrow Y(s)$, it follows that $z(t) \star y(t)=\delta(t)$. What property must $n(t) \leftrightarrow N(s)$ and $d(t) \leftrightarrow D(s)$ obey for this to be true?
Ans:

Figure 2.4: This figure shows how to derive the Schwarz inequality, by finding the value of $\alpha=\alpha^{*}$ corresponding to $\min _{\alpha}[\boldsymbol{E}(\alpha)]$. It is identical to Fig. 3.5 on page 88.

- 8.2: The definition of a minimum phase function is that it must have a causal inverse. Show that every impedance is minimum phase.

Ans:

t

Schwarz inequality

Problem \# 9: The above figure shows three vectors for an arbitrary value of $\alpha \in \mathbb{R}$ and a specific value of $\alpha=\alpha^{*}$.
-9.1: Find the value of $\alpha \in \mathbb{R}$ such that the length (norm) of \vec{E} (i.e., $\|\vec{E}\| \geq 0$) is minimum. Show your derivation, not the answer ($\alpha=\alpha^{*}$).

Ans:

- 9.2: Find the formula for $\left\|\boldsymbol{E}\left(\alpha^{*}\right)\right\|^{2} \geq 0$. Hint: Substitute α^{*} into Eq. 3.5.9 (p. 89) and show that this results in the Schwarz inequality

$$
|\vec{U} \cdot \vec{V}| \leq\|\vec{U}|\|| | \vec{V}\| .
$$

Ans:

Problem \# 10: Geometry and scaler products

- 10.1: What is the geometrical meaning of the dot product of two vectors?

Ans:]

- 10.2: Give the formula for the dot product of two vectors. Explain the meaning based on Fig. 3.4 (page 84).

Ans:

- 10.3: Write the formula for the dot product of two vectors $\vec{U} \cdot \vec{V}$ in \mathbb{R}^{n} in polar form (e.g., assume the angle between the vectors is θ).

Ans:

- 10.4: How is the Schwarz inequality related to the Pythagorean theorem?

Ans:

- 10.5: Starting from $\|\boldsymbol{U}+\boldsymbol{V}\|$, derive the triangle inequality

$$
\|\vec{U}+\vec{V}\| \leq\|\vec{U}\|+\|\vec{V}\| .
$$

Ans:

- 10.6: The triangle inequality $\|\vec{U}+\vec{V}\| \leq\|\vec{U}\|+\|\vec{V}\|$ is true for two and three dimensions: Does it hold for five-dimensional vectors?

Ans:

- 10.7: Show that the wedge product $\vec{U} \wedge \vec{V} \perp \vec{U} \cdot \vec{V}$.

Ans:

Probability

Problem \# 11: Basic terminology of experiments

- 11.1: What is the mean of a trial, and what is the average over all trials?

Ans:

- 11.2: What is the expected value of a random variable X ?

Ans:

- 11.3: What is the standard deviation about the mean?

Ans:

- 11.4: What is the definition of information of a random variable?

Ans:

- 11.5: How do you combine events? Hint: If the event is the flip of a biased coin, the events are $H=p, T=1-p$, so the event is $\{p, 1-p\}$. To solve the problem, you must find the probabilities of two independent events.
Ans:
- 11.6: What does the term independent mean in the context of question 11.5? Give an example.

Ans:

- 11.7: Define odds.

Ans:

