Chapter 3

Differential equations

3.1 Problems DE-1

3.1.1 Topics of this homework:

Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus (real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series

Problem \# 1: In each case derive (e.g., using Taylor's formula) the power series of $w(s)$ about $s=0$ and give the RoC of your series. If the power series doesn't exist, state why! Hint: In some cases, you can derive the series by relating the function to another function for which you already know the power series at $s=0$.

$$
-1.1: 1 /(1-s)
$$

Ans:

$$
-1.2: 1 /\left(1-s^{2}\right)
$$

Ans:

$$
-1.3: 1 /\left(1+s^{2}\right)
$$

Ans:

$$
-1.4: 1 / \mathrm{s}
$$

Ans:

$-1.5: 1 /\left(1-|s|^{2}\right)$

Ans:

Problem \# 2: Consider the function $w(s)=1 / s$
-2.1: Expand this function as a power series about $s=1$. Hint: Let $1 / s=1 /(1-1+s)=$ $1 /(1-(1-s))$.
Ans:

- 2.2: What is the RoC?

Ans:

- 2.3: Expand $w(s)=1 / s$ as a power series in $s^{-1}=1 / s$ about $s^{-1}=1$.

Ans:

- 2.4: What is the RoC?

Ans:

- 2.5: What is the residue of the pole?

Ans:

Problem \# 3: Consider the function $w(s)=1 /(2-s)$

- 3.1: Expand $w(s)$ as a power series in $s^{-1}=1 / s$. State the RoC as a condition on $\left|s^{-1}\right|$. Hint: Multiply top and bottom by s^{-1}.

Ans:

- 3.2: Find the inverse function $s(w)$. Where are the poles and zeros of $s(w)$, and where is it analytic?

Ans:

Problem \# 4:Summing the series
The Taylor series of functions have more than one region of convergence.
-4.1: Given some function $f(x)$, if $a=0.1$, what is the value of

$$
f(a)=1+a+a^{2}+a^{3}+\cdots ?
$$

-4.2: Let $a=10$. What is the value of

$$
f(a)=1+a+a^{2}+a^{3}+\cdots ?
$$

Ans:

3.1.3 Cauchy-Riemann Equations

Problem \# 5: For this problem $\jmath=\sqrt{-1}, s=\sigma+\omega \jmath$, and $F(s)=u(\sigma, \omega)+\jmath v(\sigma, \omega)$. According to the fundamental theorem of complex calculus (FTCC), the integration of a complex analytic function is independent of the path. It follows that the derivative of $F(s)$ is defined as

$$
\begin{equation*}
\frac{d F}{d s}=\frac{d}{d s}[u(\sigma, \omega)+\jmath v(\sigma, \omega)] \tag{DE-1.1}
\end{equation*}
$$

If the integral is independent of the path, then the derivative must also be independent of the direction:

$$
\begin{equation*}
\frac{d F}{d s}=\frac{\partial F}{\partial \sigma}=\frac{\partial F}{\partial \jmath \omega} \tag{DE-1.2}
\end{equation*}
$$

The Cauchy-Riemann (CR) conditions

$$
\frac{\partial u(\sigma, \omega)}{\partial \sigma}=\frac{\partial v(\sigma, \omega)}{\partial \omega} \quad \text { and } \quad \frac{\partial u(\sigma, \omega)}{\partial \omega}=-\frac{\partial v(\sigma, \omega)}{\partial \sigma}
$$

may be used to show where Equation DE-1.2 holds.

- 5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Ans:

- 5.2: Merge the CR equations to show that u and v obey Laplace's equations

$$
\nabla^{2} u(\sigma, \omega)=0 \quad \text { and } \quad \nabla^{2} v(\sigma, \omega)=0
$$

Ans:

Ans:

Problem \# 6: Apply the CR equations to the following functions. State for which values of $s=\sigma+i \omega$ the CR conditions do or do not hold (e.g., where the function $F(s)$ is or is not analytic). Hint: Review where CR-1 and CR-2 hold.
-6.1: $F(s)=e^{s}$
Ans:
-6.2: $F(s)=1 / s$
Ans:

3.1.4 Branch cuts and Riemann sheets

Problem \# 7: Consider the function $w^{2}(z)=z$. This function can also be written as $w_{ \pm}(z)=$ $\sqrt{z_{ \pm}}$. Assume $z=r e^{\phi_{J}}$ and $w(z)=\rho e^{\theta_{j}}=\sqrt{r} e^{\phi_{j} / 2}$.

- 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully represent this function as single-valued?

Ans:

- 7.2: Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in the range.

Ans:

- 7.3: Use zviz.m to plot the positive and negative square roots $+\sqrt{z}$ and $-\sqrt{z}$. Describe what you see.

Ans:

- 7.4: Where does zviz.mplace the branch cut for this function?

Ans:

- 7.5: Must the branch cut necessarily be in this location?

Ans:

Problem \# 8: Consider the function $w(z)=\log (z)$. As in Problem 7, let $z=r e^{\phi \jmath}$ and $w(z)=\rho e^{\theta_{j}}$.
-8.1: Describe with a sketch and then discuss the branch cut for $f(z)$.

Ans:

- 8.2: What is the inverse of the function $z(f)$? Does this function have a branch cut? If so, where is it?

Ans:

- 8.3: Using zviz.m, show that

$$
\begin{equation*}
\tan ^{-1}(z)=-\frac{\jmath}{2} \log \frac{\jmath-z}{\jmath+z} . \tag{DE-1.3}
\end{equation*}
$$

In Fig. 4.1 (p. 132) these two functions are shown to be identical.
Ans:

- 8.4: Algebraically justify Eq. DE-1.3. Hint: Let $w(z)=\tan ^{-1}(z)$ and $z(w)=\tan w=\sin w / \cos w$; then solve for $e^{w j}$.

Ans:

3.1.5 A Cauer synthesis of any Brune impedance

Problem \# 9: One may synthesize a transmission line (ladder network) from a positive real impedance $Z(s)$ by using the continued fraction method. To obtain the series and shunt impedance values, we can use a residue expansion. Here we shall explore this method.
-9.1: Starting from the Brune impedance $Z(s)=\frac{1}{s+1}$, find the impedance network as a ladder network.
Ans:

- 9.2: Use a residue expansion in place of the CFA floor function (Sec. ??, p. ??) for polynomial expansions. Find the residue expansion of $H(s)=s^{2} /(s+1)$ and express it as a ladder network.

Ans:

- 9.3: Discuss how the series impedance $Z(s, x)$ and shunt admittance $Y(s, x)$ determine the wave velocity $\kappa(s, x)$ and the characteristic impedance $z_{o}(s, x)$ when (1) $Z(s)$ and $Y(s)$ are both independent of x; (2) $Y(s)$ is independent of $x, Z(s, x)$ depends on x; (3) $Z(s)$ is independent of $x, Y(s, x)$ depends on x; and (4) both $Y(s, x), Z(s, x)$ depend on x.
Ans:

