Chapter 1

Number systems

1.1 Problems NS-1

Topic of this homework:
Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)
Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab

Problem # 1: Consider the functions \(f(s) = s^2 + 6s + 25 \) and \(g(s) = s^2 + 6s + 5 \).

- 1.1: Find the zeros of functions \(f(s) \) and \(g(s) \) using the command \texttt{roots()}.

Ans:

- 1.2: Show the roots of \(f(s) \) as red circles and of \(g(s) \) as blue plus signs.
The \(x \)-axis should display the real part of each root, and the \(y \)-axis should display the imaginary part. Use \texttt{hold on} and \texttt{grid on} when plotting the roots.

Ans:
2

CHAPTER 1. NUMBER SYSTEMS

– 1.3 Give your figure the title “Complex Roots of f(s) and g(s).” Label the x- and y-axes “Real Part” and “Imaginary Part.” Hint: Use xlabel, ylabel, ylim([-10 10]), and xlim([-10 10]) to expand the axes.

Problem # 2: Consider the function \(h(t) = e^{2\pi ft} \) for \(f = 5 \) and \(t = [0:0.01:2] \).

– 2.1: Use subplot to show the real and imaginary parts of \(h(t) \).

Make two graphs in one figure. Label the x-axes “Time (s)” and the y-axes “Real Part” and “Imaginary Part.”

Ans:

– 2.2: Use subplot to plot the magnitude and phase parts of \(h(t) \).

Use the command angle or unwrap(angle()) to plot the phase. Label the x-axes “Time (s)” and the y-axes “Magnitude” and “Phase (radians).”

Ans:

Prime numbers, infinity, and special functions in Octave/Matlab

Problem # 3: Prime numbers, infinity, and special functions.

– 3.1: Use the Matlab/Octave function factor to find the prime factors of 123, 248, 1767, and 999,999.

Ans:

– 3.2: Use the Matlab/Octave function isprime to determine whether 2, 3, and 4 are prime numbers. What does the function isprime return when a number is prime or not prime? Why?

Ans:
– 3.3: Use the Matlab/Octave function `primes` to generate prime numbers between 1 and 10^6. Save them in a vector x. Plot this result using the command `hist(x)`.

Ans:

– 3.4: Now try $[n, \text{bincenters}] = \text{hist}(x)$. Use `length(n)` to find the number of bins.

Ans:

– 3.5: Set the number of bins to 100 by using an extra input argument to the function `hist`. Show the resulting figure, give it a title, and label the axes. Hint: `help hist` and `doc hist`.

Ans:

Problem # 4: Inf, NaN, and logarithms in Octave/Matlab.

– 4.1: Try $1/0$ and $0/0$ in the Octave/Matlab command window. What are the results? What do these “numbers” mean in Octave/Matlab? **Ans:**

– 4.2: Try $\log(0), \log10(0), \text{and } \log2(0)$ in the command window. In Matlab/Octave, the natural logarithm $\ln(\cdot)$ is computed using the function `log`. Functions \log_{10} and \log_2 are computed using `log10` and `log2`. **Ans:**
4.3: Try \(\log(1) \) in the command window. What do you expect for \(\log_{10}(1) \) and \(\log_2(1) \)?

\textbf{Ans:}

4.4: Try \(\log(-1) \) in the command window. What do you expect for \(\log_{10}(-1) \) and \(\log_2(-1) \)?

\textbf{Ans:}

4.5: Explain how Matlab/Octave arrives at the answer in problem 4.4. Hint: \(-1 = e^{i\pi}\).

\textbf{Ans:}

4.6: Try \(\log(\exp(j\sqrt{\pi})) \) (i.e., \(\log e^{j\sqrt{\pi}} \)) in the command window. What do you expect?

\textbf{Ans:}

4.7: What does inverse mean in this context? What is the inverse of \(\ln f(x) \)?

\textbf{Ans:}
– 4.8: What is a decibel? (Look up decibels on the internet.)

Ans:

Problem # 5: Very large primes on Intel computers. Find the largest prime number that can be stored on an Intel 64-bit computer, which we call π_{max}. Hint: As explained in the Matlab/Octave command `help flintmax`, the largest positive integer is 2^{53}; however, the largest integer that can be factored is $2^{52} = 2^{54} - 6$. Explain the logic of your answer. Hint: `help isprime()`.

Ans:

Problem # 6: We are interested in primes that are greater than π_{max}. How can you find them on an Intel computer (i.e., one using IEEE floating point)? Hint: Consider a sieve that contains only odd numbers, starting from 3 (not 2). Since every prime number greater than 2 is odd, there is no reason to check the even numbers. $n_{\text{odd}} \in \mathbb{N}/2$ contain all the primes other than 2.

Ans:

Problem # 7: The following identity is interesting. Can you find a proof?

\[
\begin{align*}
1 & = 1^2 \\
1 + 3 & = 2^2 \\
1 + 3 + 5 & = 3^2 \\
1 + 3 + 5 + 7 & = 4^2 \\
1 + 3 + 5 + 7 + 9 & = 5^2 \\
\vdots \\
\sum_{n=0}^{N-1} 2n + 1 & = N^2.
\end{align*}
\]

Ans: