Chapter 4

Vector differential equations

4.1 Problems VC-1

4.1.1 Topics of this homework:

Vector algebra and fields in \mathbb{R}^{3}, gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss's (divergence) and Stokes's (curl) laws, system classification (postulates).

4.1.2 Scalar fields and the ∇ operator

Problem \# 1: Let $T(x, y)=x^{2}+y$ be an analytic scalar temperature field in two dimensions (single-valued $\in \mathbb{R}^{2}$).

- 1.1: Find the gradient of $T(\boldsymbol{x})$ and make a sketch of T and the gradient.

Ans:

- 1.2: Compute $\nabla^{2} T(\boldsymbol{x})$ to determine whether $T(\boldsymbol{x})$ satisfies Laplace's equation.

Ans:

- 1.3: Sketch the iso-temperature contours at $T=-10,0,10$ degrees.

Ans:

- 1.4: The heat flux ${ }^{1}$ is defined as $\boldsymbol{J}(x, y)=-\kappa(x, y) \nabla T$, where $\kappa(x, y)$ is a constant that denotes thermal conductivity at the point (x, y). Given that $\kappa=1$ everywhere (the medium is homogeneous), plot the vector $\boldsymbol{J}(x, y)=-\nabla T$ at $x=2, y=1$. Be clear about the origin, direction, and length of your result.

Ans:

- 1.5: Find the vector \perp to $\nabla T(x, y)$-that is, tangent to the iso-temperature contours. Hint: Sketch it for one (x, y) point (e.g., 2,1) and then generalize.

Ans:

- 1.6: The thermal resistance R_{T} is defined as the potential drop ΔT over the magnitude of the heat flux $|\boldsymbol{J}|$. At a single point the thermal resistance is

$$
R_{T}(x, y)=-\nabla T /|\boldsymbol{J}| .
$$

How is $R_{T}(x, y)$ related to the thermal conductivity $\kappa(x, y)$?
Ans:

Problem \# 2: Acoustic wave equation
Note: In this problem, we will work in the frequency domain.

[^0]- 2.1: The basic equations of acoustics in one dimension are

$$
-\frac{\partial}{\partial x} \mathcal{P}=\rho_{o} s \mathcal{V} \quad \text { and } \quad-\frac{\partial}{\partial x} \mathcal{V}=\frac{s}{\eta_{o} P_{o}} \mathcal{P}
$$

Here $\mathcal{P}(x, \omega)$ is the pressure (in the frequency domain), $\mathcal{V}(x, \omega)$ is the volume velocity (the integral of the velocity over the wavefront with area $A), s=\sigma+\omega \jmath, \rho_{o}=1.2$ is the specific density of air, $\eta_{o}=1.4$, and P_{o} is the atmospheric pressure (i.e., $10^{5} \mathrm{~Pa}$). Note that the pressure field \mathcal{P} is a scalar (pressure does not have direction), while the volume velocity field \mathcal{V} is a vector (velocity has direction).

We can generalize these equations to three dimensions using the ∇ operator

$$
-\nabla \mathcal{P}=\rho_{o} s \mathcal{V} \quad \text { and } \quad-\nabla \cdot \mathcal{V}=\frac{s}{\eta_{o} P_{o}} \mathcal{P}
$$

- 2.2: Starting from these two basic equations, derive the scalar wave equation in terms of the pressure \mathcal{P},

$$
\nabla^{2} \mathcal{P}=\frac{s^{2}}{c_{0}^{2}} \mathcal{P}
$$

where c_{0} is a constant representing the speed of sound.
Ans:

- 2.3: What is c_{0} in terms of η_{0}, ρ_{0}, and P_{0} ?

Ans:

- 2.4: Rewrite the pressure wave equation in the time domain using the time derivative property of the Laplace transform [e.g., $d x / d t \leftrightarrow s X(s)$]. For your notation, define the timedomain signal using a lowercase letter, $p(x, y, z, t) \leftrightarrow \mathcal{P}$.

Ans:

4.1.3 Vector fields and the ∇ operator

4.1.4 Vector algebra

Problem \# 3: Let $\boldsymbol{R}(x, y, z) \equiv x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}+z(t) \hat{\mathbf{z}}$.

- 3.1: If a, b, and c are constants, what is $\boldsymbol{R}(x, y, z) \cdot \boldsymbol{R}(a, b, c)$?

Ans:

- 3.2: If a, b, and c are constants, what is $\frac{d}{d t}(\boldsymbol{R}(x, y, z) \cdot \boldsymbol{R}(a, b, c))$?

Ans:

Problem \# 4: Find the divergence and curl of the following vector fields:

$$
-4.1: v=\hat{\mathrm{x}}+\hat{\mathrm{y}}+2 \hat{\mathbf{z}}
$$

Ans:

$$
-4.2: \boldsymbol{v}(x, y, z)=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+z^{2} \hat{\mathbf{z}}
$$

Ans:

$$
-4.3: \boldsymbol{v}(x, y, z)=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+\log (z) \hat{\mathbf{z}}
$$

Ans:

$$
\text { -4.4: } \boldsymbol{v}(x, y, z)=\nabla(1 / x+1 / y+1 / z)
$$

Ans:

4.1.5 Vector and scalar field identities

Problem \# 5: Find the divergence and curl of the following vector fields:

$$
\text { - 5.1: } \boldsymbol{v}=\nabla \phi, \text { where } \phi(x, y)=x e^{y}
$$

Ans:

- 5.2: $\boldsymbol{v}=\nabla \times \boldsymbol{A}$, where $\boldsymbol{A}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$

Ans:

- 5.3: $\boldsymbol{v}=\nabla \times \boldsymbol{A}$, where $\boldsymbol{A}=y \hat{\mathbf{x}}+x^{2} \hat{\mathbf{y}}+z \hat{\mathbf{z}}$

Ans:

- 5.4: For any differentiable vector field \boldsymbol{V}, write two vector calculus identities that are equal to zero.
Ans:
- 5.5: What is the most general form a vector field may be expressed in, in terms of scalar Φ and vector \boldsymbol{A} potentials?

Ans:

Problem \# 6: Perform the following calculations. If you can state the answer without doing the calculation, explain why.

$$
-6.1: \text { Let } \boldsymbol{v}=\sin (x) \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} . \text { Find } \nabla \cdot(\nabla \times \boldsymbol{v})
$$

Ans:

-6.2: Let $\boldsymbol{v}=\sin (x) \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$. Find $\nabla \times(\nabla \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}})$

Ans:

$$
-6.3: \text { Let } \boldsymbol{v}(x, y, z)=\nabla\left(x+y^{2}+\sin (\log (z)) . \text { Find } \nabla \times \boldsymbol{v}(x, y, z)\right.
$$

Ans:

4.1.6 Integral theorems

Problem \# 7: For each of the following problems, in a few words, identify either Gauss's or Stokes's law, define what it means, and explain the formula that follows the question.

- 7.1: What is the name of this formula?

$$
\int_{\mathcal{S}} \hat{\mathbf{n}} \cdot \boldsymbol{v} d A=\int_{V} \nabla \cdot \boldsymbol{v} d V
$$

Ans:

- 7.2: What is the name of this formula?

$$
\int_{S}(\nabla \times \boldsymbol{V}) \cdot d \boldsymbol{S}=\oint_{C} \boldsymbol{V} \cdot d \boldsymbol{R}
$$

Give one important application. Ans:

- 7.3: Describe a key application of the vector identity

$$
\nabla \times(\nabla \times \mathbf{V})=\nabla(\nabla \cdot \mathbf{V})-\nabla^{2} \mathbf{V}
$$

Ans:

[^0]: ${ }^{1}$ The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.

