Chapter 4

Vector differential equations

4.1 Problems VC-1

4.1.1 Topics of this homework:

Vector algebra and fields in \mathbb{R}^3 , gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss's (divergence) and Stokes's (curl) laws, system classification (postulates).

4.1.2 Scalar fields and the ∇ operator

Problem # 1: Let $T(x, y) = x^2 + y$ be an analytic scalar temperature field in two dimensions (single-valued $\in \mathbb{R}^2$).

-1.1: Find the gradient of T(x) and make a sketch of T and the gradient.

Ans:

-1.2: Compute $\nabla^2 T(x)$ to determine whether T(x) satisfies Laplace's equation.

Ans:

-1.3: Sketch the iso-temperature contours at T = -10, 0, 10 degrees.

Ans:

-1.4: The heat flux¹ is defined as $\mathbf{J}(x,y) = -\kappa(x,y)\nabla T$, where $\kappa(x,y)$ is a constant that denotes thermal conductivity at the point (x,y). Given that $\kappa=1$ everywhere (the medium is homogeneous), plot the vector $\mathbf{J}(x,y) = -\nabla T$ at x=2, y=1. Be clear about the origin, direction, and length of your result.

Ans:

– 1.5: Find the vector \bot to $\nabla T(x,y)$ —that is, tangent to the iso-temperature contours. Hint: Sketch it for one (x,y) point (e.g.,2,1) and then generalize.

Ans:

– 1.6: The thermal resistance R_T is defined as the potential drop ΔT over the magnitude of the heat flux $|\mathbf{J}|$. At a single point the thermal resistance is

$$R_T(x,y) = -\nabla T/|\boldsymbol{J}|.$$

How is $R_T(x,y)$ related to the thermal conductivity $\kappa(x,y)$?

Problem # 2: Acoustic wave equation

Note: In this problem, we will work in the frequency domain.

¹The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.

4.1. PROBLEMS VC-1

-2.1: The basic equations of acoustics in one dimension are

$$-\frac{\partial}{\partial x}\mathcal{P} = \rho_o s \mathcal{V}$$
 and $-\frac{\partial}{\partial x}\mathcal{V} = \frac{s}{\eta_o P_o} \mathcal{P}.$

91

Here $\mathcal{P}(x,\omega)$ is the pressure (in the frequency domain), $\mathcal{V}(x,\omega)$ is the volume velocity (the integral of the velocity over the wavefront with area A), $s=\sigma+\omega\jmath$, $\rho_o=1.2$ is the specific density of air, $\eta_o=1.4$, and P_o is the atmospheric pressure (i.e., 10^5 Pa). Note that the pressure field \mathcal{P} is a scalar (pressure does not have direction), while the volume velocity field \mathcal{V} is a vector (velocity has direction).

We can generalize these equations to three dimensions using the ∇ operator

$$-\nabla \mathcal{P} = \rho_o s \mathcal{V} \quad \text{ and } \quad -\nabla \cdot \mathcal{V} = \frac{s}{\eta_o P_o} \mathcal{P}.$$

-2.2: Starting from these two basic equations, derive the scalar wave equation in terms of the pressure \mathcal{P} ,

$$\nabla^2 \mathcal{P} = \frac{s^2}{c_0^2} \mathcal{P},$$

where c_0 is a constant representing the speed of sound.

Ans:

-2.3: What is c_0 in terms of η_0 , ρ_0 , and P_0 ?

Ans:

– 2.4: Rewrite the pressure wave equation in the time domain using the time derivative property of the Laplace transform [e.g., $dx/dt \leftrightarrow sX(s)$]. For your notation, define the time–domain signal using a lowercase letter, $p(x, y, z, t) \leftrightarrow \mathcal{P}$.

Ans:

4.1.3 Vector fields and the ∇ operator

4.1.4 Vector algebra

Problem # 3: Let
$$\mathbf{R}(x, y, z) \equiv x(t)\mathbf{\hat{x}} + y(t)\mathbf{\hat{y}} + z(t)\mathbf{\hat{z}}$$
.

– 3.1: If
$$a$$
, b , and c are constants, what is $\mathbf{R}(x,y,z)\cdot\mathbf{R}(a,b,c)$? Ans:

– 3.2: If a, b, and c are constants, what is
$$\frac{d}{dt} (\mathbf{R}(x,y,z) \cdot \mathbf{R}(a,b,c))$$
? **Ans:**

Problem # 4: Find the divergence and curl of the following vector fields:

$$-4.1: \mathbf{v} = \mathbf{\hat{x}} + \mathbf{\hat{y}} + 2\mathbf{\hat{z}}$$
Ans:

$$-4.2: \ {m v}(x,y,z) = x{f \hat x} + xy{f \hat y} + z^2{f \hat z}$$
 Ans:

$$-4.3$$
: $\boldsymbol{v}(x,y,z) = x\mathbf{\hat{x}} + xy\mathbf{\hat{y}} + \log(z)\mathbf{\hat{z}}$
Ans:

4.1. PROBLEMS VC-1 93

$$-4.4: \mathbf{v}(x, y, z) = \nabla(1/x + 1/y + 1/z)$$
Ans:

4.1.5 Vector and scalar field identities

Problem # 5: Find the divergence and curl of the following vector fields:

$$-5.1$$
: $\mathbf{v} = \nabla \phi$, where $\phi(x, y) = xe^y$
Ans:

$$-5.2$$
: $oldsymbol{v}=
abla imesoldsymbol{A}$, where $oldsymbol{A}=x\mathbf{\hat{x}}+y\mathbf{\hat{y}}+z\mathbf{\hat{z}}$

-5.3:
$$\mathbf{v} = \nabla \times \mathbf{A}$$
, where $\mathbf{A} = y\hat{\mathbf{x}} + x^2\hat{\mathbf{y}} + z\hat{\mathbf{z}}$

Ans:

⁻ 5.4: For any differentiable vector field \mathbf{V} , write two vector calculus identities that are equal to zero.

– 5.5: What is the most general form a vector field may be expressed in, in terms of scalar Φ and vector \boldsymbol{A} potentials?

Ans:

Problem # 6: Perform the following calculations. If you can state the answer without doing the calculation, explain why.

-6.1: Let
$$\mathbf{v} = \sin(x)\mathbf{\hat{x}} + y\mathbf{\hat{y}} + z\mathbf{\hat{z}}$$
. Find $\nabla \cdot (\nabla \times \mathbf{v})$.

– 6.2: Let
$$\mathbf{v}=\sin(x)\mathbf{\hat{x}}+y\mathbf{\hat{y}}+z\mathbf{\hat{z}}$$
. Find $\nabla\times(\nabla\sqrt{\mathbf{v}\cdot\mathbf{v}})$ Ans:

– 6.3: Let
$$\mathbf{v}(x,y,z) = \nabla(x+y^2+\sin(\log(z))$$
. Find $\nabla \times \mathbf{v}(x,y,z)$. Ans:

4.1.6 Integral theorems

Problem # 7: For each of the following problems, in a few words, identify either Gauss's or Stokes's law, define what it means, and explain the formula that follows the question.

- 7.1: What is the name of this formula?

$$\int_{\mathcal{S}} \hat{\mathbf{n}} \cdot \boldsymbol{v} \ dA = \int_{\mathcal{V}} \nabla \cdot \boldsymbol{v} \ dV.$$

Ans:

- 7.2: What is the name of this formula?

$$\int_{S} (\nabla \times \boldsymbol{V}) \cdot d\boldsymbol{S} = \oint_{C} \boldsymbol{V} \cdot d\boldsymbol{R}$$

Give one important application. Ans:

- 7.3: Describe a key application of the vector identity

$$\nabla \times (\nabla \times \mathbf{V}) = \nabla(\nabla \cdot \mathbf{V}) - \mathbf{\nabla^2 V}.$$

Ans: