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3.3 Problems DE-3

3.3.1 Topics of this homework: Brune impedance
lattice transmission line analysis

3.3.2 Brune Impedance
Problem # 1: Residue form

A Brune impedance is defined as the ratio of the force F (s) to the flow V (s) and may be expressed in residue form as

Z(s) = c0 +
K∑
k=1

ck
s− sk

= N(s)
D(s) (DE-3.1)

with

D(s) =
K∏
k=1

(s− sk) and ck = lim
s→sk

(s− sk)D(s) =
K−1∏
n′=1

(s− sn).

The prime on the index n′ means that n = k is not included in the product.

– 1.1: Find the Laplace transform (LT ) of a (1) spring, (2) dashpot, and (3) mass.
Express these in terms of the force F (s) and the velocity V (s), along with the electrical equivalent impedance: (1) Hooke’s
law f(t) = Kx(t), (2) dashpot resistance f(t) = Rv(t), and (3) Newton’s law for mass f(t) = Mdv(t)/dt. Ans:

– 1.2: Take the Laplace transform (LT ) of Eq. DE-3.2 and find the total impedance Z(s) of the
mechanical circuit.

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t)↔ (Ms2 +Rs+K)X(s) = F (s). (DE-3.2)

Ans:

– 1.3: What are N(s) and D(s) (see Eq. DE-3.1)?
Ans:
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– 1.4: Assume that M = R = K = 1 and find the residue form of the admittance Y (s) = 1/Z(s)
(see Eq. DE-3.1) in terms of the roots s±. Hint: Check your answer with Octave’s/Matlab’s residue
command.
Ans:

– 1.5: By applying Eq. 4.5.3 (page 149), find the inverse Laplace transform (LT −1). Use the
residue form of the expression that you derived in question 1.4.
Ans:

3.3.3 Transmission-line analysis
Problem # 2: Train-mission-line We wish to model the dynamics of a freight train that has N such
cars and study the velocity transfer function under various load conditions.

As shown in Fig. 4.11, the train model consists of masses connected by springs.
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Figure 3.2: Depiction of a train consisting of cars treated as masses M and linkages treated as springs of stiffness K or compliance C = 1/K.
Below it is the electrical equivalent circuit for comparison. The masses are modeled as inductors and the springs as capacitors to ground. The velocity is
analogous to a current and the force fn(t) to the voltage φn(t). The length of each cell is ∆ [m]. The train may be accurately modeled as a transmission
line (TL), since the equivalent electrical circuit is a lumped model of a TL. This method, called a Cauer synthesis, is based on the ABCD transmission
line method of Sec. 3.8 (p. 105).

Use the ABCD method (see the discussion in Appendix B.3, p. 228) to find the matrix representation of the system of
Fig. 4.11. Define the force on the nth train car fn(t)↔ Fn(ω) and the velocity vn(t)↔ Vn(ω).

Break the model into cells consisting of three elements: a series inductor representing half the mass (M/2), a shunt
capacitor representing the spring (C = 1/K), and another series inductor representing half the mass (L = M/2), trans-
forming the model into a cascade of symmetric (A = D ) identical cell matrices T (s).

– 2.1: Find the elements of the ABCD matrix T for the single cell that relate the input node 1 to
output node 2 [

F
V

]
1

= T
[
F (ω)
−V (ω)

]
2
. (DE-3.3)

Ans:
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– 2.2: Express each element of T (s) in terms of the complex Nyquist ratio s/sc < 1 (s = 2πjf ,
sc = 2πjfc). The Nyquist wavelength sampling condition is λc > 2∆. It says the critical wavelength
λc > 2∆. Namely it is defined in terms the minimum number of cells 2∆, per minimum wavelength λc.
The Nyquist wavelength sampling theorem says that there are at least two cars per wavelength.

Proof: From the figure, the distance between cars ∆ = coTo [m], where

co = 1√
MC

[m/s].

The cutoff frequency obeys fcλc = co. The Nyquist critical wavelength is λc = co/fc > 2∆. Therefore the Nyquist
sampling condition is

f < fc ≡
co
λc

= co
2∆ = 1

2∆
√
MC

[rad/sec]. (DE-3.4)

Finally, sc = 2πfc.
Ans:

– 2.3: Use the property of the Nyquist sampling frequency ω < ωc (Eq. DE-3.4) to remove higher
order powers of frequency

1 +
�

�
���

0(
s

sc

)2
≈ 1 (DE-3.5)

to determine a band-limited approximation of T (s).
Ans:

Problem # 3: Now consider the cascade of N such T (s) matrices and perform an eigenanalysis.

– 3.1: Find the eigenvalues and eigenvectors of T (s) as functions of s/sc.
Ans:

Problem # 4: Find the velocity transferfunction H12(s) = V2/V1|F2=0.

– 4.1: Assuming that N = 2 and F2 = 0 (two half-mass problem), find the transfer function
H(s) ≡ V2/V1. From the results of the T matrix, find

H21(s) = V2

V1

∣∣∣∣
F2=0
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Express H12 in terms of a residue expansion. Ans:

– 4.2: Find h21(t)↔ H21(s).
Ans:

– 4.3: What is the input impedance Z2 = F2/V2, assuming F3 = −r0V3?
Ans:

– 4.4: Simplify the expression for Z2 as follows:
1. Assuming the characteristic impedance r0 =

√
M/C,

2. terminate the system in r0: F2 = −r0V2 (i.e., −V2 cancels).

3. Assume higher-order frequency terms are less than 1 (|s/sc| < 1).

4. Let the number of cells N →∞. Thus |s/sc|N = 0.

When a transmission line is terminated in its characteristic impedance r0, the input impedance Z1(s) = r0. Thus, when
we simplify the expression for T (s), it should be equal to r0. Show that this is true for this setup.

Ans:

– 4.5: State the ABCD matrix relationship between the first and N th nodes in terms of the cell
matrix. Write out the transfer function for one cell, H21.
Ans:
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– 4.6: What is the velocity transfer function HN1 = VN
V1

?
Ans:
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