Chapter 1

Number systems

1.1 Problems NS-1

Topic of this homework:

Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)
Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab

Problem \# 1: Consider the functions $f(s)=s^{2}+6 s+25$ and $g(s)=s^{2}+6 s+5$.

- 1.1: Find the zeros of functions $f(s)$ and $g(s)$ using the command roots ().

Ans:

- 1.2: Show the roots of $f(s)$ as red circles and of $g(s)$ as blue plus signs.

The x-axis should display the real part of each root, and the y-axis should display the imaginary part. Use hold on and grid on when plotting the roots.

Ans:

- 1.3 Give your figure the title "Complex Roots of $f(s)$ and $g(s)$." Label the x - and y-axes "Real Part" and "Imaginary Part." Hint: Use xlabel, ylabel, ylim([-10 10]), and xlim([-10 10]) to expand the axes.

Problem \# 2: Consider the function $h(t)=e^{2 \pi f t}$ for $f=5$ and $t=[0: 0.01: 2]$.

- 2.1: Use subplot to show the real and imaginary parts of $h(t)$.

Make two graphs in one figure. Label the x-axes "Time (s)" and the y-axes "Real Part" and "Imaginary Part."
Ans:

- 2.2: Use subplot to plot the magnitude and phase parts of $h(t)$.

Use the command angle or unwrap (angle ()) to plot the phase. Label the x-axes "Time (s)" and the y-axes ' 'Magnitude" and "Phase (radians)."

Ans:

Prime numbers, infinity, etc. in Octave/Matlab

Problem \# 3: Prime numbers, infinity, etc.

- 3.1: Use the Matlab/Octave function fact or to find the prime factors of 123,248, 1767, and 999,999.
Ans:
- 3.2: Use the Matlab/Octave function isprime to check if 2, 3 and 4 are prime numbers. What does the function isprime return when a number is prime, or not prime? Why?

Ans:

- 3.3: Use the Matlab/Octave function primes.m to generate prime numbers between 1 and 10^{6} Save them in a vector x . Plot this result using the command hist (x). Ans:
- 3.4: Now try [n,bincenters] $=$ hist (x).

Use length (n) to find the number of bins. Ans:

- 3.5: Set the number of bins to 100 by using an extra input argument to the function hist. Show the resulting figure and give it a title and axes labels. Ans:

Problem \# 4: Inf, NaN and logarithms in Octave/Matlab

- 4.1: Try 1/0 and $0 / 0$ in the Octave/Matlab command window.

What are the results? What do these 'numbers' mean in Octave/Matlab? Ans:
-4.2: Try $\log (0), \log 10(0)$ and $\log 2(0)$ in the command window.
In Matlab/Octave, the natural logarithm $\ln (\cdot)$ is computed using the function \log. Functions $\log _{10}$, and $\log _{2}$ are computed using $\log 10$ and $\log 2$. Ans:
-4.3: Try $\log (1)$ in the command window. What you expect for $\log 10(1)$ and $\log 2(1)$?
Ans:
-4.4: Try $\log (-1)$ in the command window. What do you expectfor $\log 10(-1)$ and $\log 2(-1)$?
Ans:

- 4.5: Show how Matlab/Octave arrives at the above answer because $-1=e^{i \pi}$.

Ans:

- 4.6: Try $\log (\exp (j * \operatorname{sqrt}(\mathrm{pi})))$ (i.e., $\left.\log e^{\sqrt{\pi} \pi}\right)$ in the command window. What do you expect?
Ans:
- 4.7: What does inverse mean in this context? What is the inverse of $\ln f(x)$?

Ans:

- 4.8: What is a decibel? (Look up decibels on the internet.)

Ans:

Problem \# 5: Very large primes on Intel computers

- 5.1: Find the largest prime number that can be stored on an Intel 64 bit computer, which we call $\pi_{\text {max }}$.
Hint: As explained in the Matlab/Octave command help flintmax, the largest positive integer is 2^{53}, however the largest integer that can be factored is $2^{32}=\sqrt{2^{64}}$. Explain the logic of your answer. Hint: help isprime(). Ans:

Problem \# 6: Suppose you are interested in primes that are greater than $\pi_{\max }$. How can you find them on an Intel computer (i.e., one using IEEE-floating point)?

- 6.1: Extending the number of primes you may considered.

Hint 1: Use uint 64 (myprimes) to extend the numbers unsigned 64 bit integers (we don't need negative primes). Hint 2: Since every prime number greater than 2 is odd, there is no reason to check the even numbers. Starting from 3 (not 2). $n_{\text {odd }} \in \mathbb{N} / 2$ contain all the primes other than 2 . Ans:

Problem \# 7: The following idenity is interesting:

$$
\begin{aligned}
1 & =1^{2} \\
1+3 & =2^{2} \\
1+3+5 & =3^{2} \\
1+3+5+7 & =4^{2} \\
1+3+5+7+9 & =5^{2} \\
\cdots & \\
\sum_{n=0}^{N-1} 2 n+1 & =N^{2} .
\end{aligned}
$$

- 7.1: Can you find a proof? ${ }^{1}$

Ans:

[^0]
[^0]: ${ }^{1}$ This problem came from an exam problem for Math 213, Fall 2016.

