Chapter 1

Number systems

1.1 Problems NS-1

Topic of this homework:

Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)
Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab

Problem # 1: Consider the functions $f(s) = s^2 + 6s + 25$ and $g(s) = s^2 + 6s + 5$.

-1.1: Find the zeros of functions f(s) and g(s) using the command roots ().

Ans:

-1.2: Show the roots of f(s) as red circles and of g(s) as blue plus signs.

The x-axis should display the real part of each root, and the y-axis should display the imaginary part. Use hold on and grid on when plotting the roots.

Ans:

^{-1.3} Give your figure the title "Complex Roots of f(s) and g(s)." Label the x- and y-axes "Real Part" and "Imaginary Part." Hint: Use xlabel, ylabel, ylim([-10 10]), and xlim([-10 10]) to expand the axes.

Problem # 2:	Consider the	function $h(t)$	$(t) = e^{j2\pi ft}$	for t	t = 5 and $t = 1$	0:0.01:2	1.
--------------	--------------	-----------------	----------------------	-------	-------------------	----------	----

-2.1: Use subplot to show the real and imaginary parts of h(t). Make two graphs in one figure. Label the x-axes "Time (s)" and the y-axes "Real Part" and "Imaginary Part." Ans:

-2.2: Use subplot to plot the magnitude and phase parts of h(t). Use the command angle or unwrap (angle ()) to plot the phase. Label the x-axes "Time (s)" and the y-axes "Magnitude" and "Phase (radians)."

Ans:

Prime numbers, infinity, etc. in Octave/Matlab

Problem # 3: Prime numbers, infinity, etc.

-3.1: Use the Matlab/Octave function factor to find the prime factors of 123, 248, 1767, and 999,999. **Ans:**

- 3.2: Use the Matlab/Octave function isprime to check if 2, 3 and 4 are prime numbers. What does the function isprime return when a number is prime, or not prime? Why?

Ans:

-3.3: Use the Matlab/Octave function primes.m to generate prime numbers between 1 and 10^6 Save them in a vector x. Plot this result using the command hist (x). Ans:

- 4.5: Show how Matlab/Octave arrives at the above answer because $-1=e^{i\pi}$. **Ans:**

– 4.6: Try log(exp(j*sqrt(pi))) (i.e., $\log e^{\jmath\sqrt{\pi}}$) in the command window. What do you expect? Ans:

- 4.7: What does inverse mean in this context? What is the inverse of $\ln f(x)$? **Ans:**

- 4.8: What is a decibel? (Look up decibels on the internet.) **Ans:**

Problem # 5: Very large primes on Intel computers

– 5.1: Find the largest prime number that can be stored on an Intel 64 bit computer, which we call $\pi_{\rm max}$.

Hint: As explained in the Matlab/Octave command help flintmax, the largest positive integer is 2^{53} , however the largest integer that can be factored is $2^{32} = \sqrt{2^{64}}$. Explain the logic of your answer. Hint: help isprime(). **Ans:**

1.1. PROBLEMS NS-1 5

Problem #6: Suppose you are interested in primes that are greater than π_{max} . How can you find them on an Intel computer (i.e., one using IEEE-floating point)?

− 6.1: Extending the number of primes you may considered.

Hint 1: Use uint 64 (myprimes) to extend the numbers unsigned 64 bit integers (we don't need negative primes). Hint 2: Since every prime number greater than 2 is odd, there is no reason to check the even numbers. Starting from 3 (not 2). $n_{\text{odd}} \in \mathbb{N}/2$ contain all the primes other than 2. Ans:

Problem # 7: The following identity is interesting:

$$1 = 1^{2}$$

$$1 + 3 = 2^{2}$$

$$1 + 3 + 5 = 3^{2}$$

$$1 + 3 + 5 + 7 = 4^{2}$$

$$1 + 3 + 5 + 7 + 9 = 5^{2}$$

$$\dots$$

$$\sum_{n=0}^{N-1} 2n + 1 = N^{2}.$$

-7.1: Can you find a proof?¹

Ans:

¹This problem came from an exam problem for Math 213, Fall 2016.