1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence

Pythagorean triplets

Problem # 1: Euclid's formula for the Pythagorean triplets a, b, c is $a = p^2 - q^2$, b = 2pq, and $c = p^2 + q^2$.

-1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

Ans:

-1.2: Solve for p and q in terms of a, b, and c.

Ans:

Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

-2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a	с
119	169
3367	4825
4601	6649
12709	18541
65	97

Find a formula for a in terms of p and q. Ans: -2.2: Based on Euclid's formula, show that c > (a, b).

Ans:

-2.3: What happens when c = a?

Ans:

-2.4: Is b + c a perfect square? Discuss.

Ans:

Pell's equation:

Problem # 3: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{I}$. We seek integer solutions of

$$x^2 - Ny^2 = 1.$$

As shown in §2.5.2, the solutions x_n, y_n for the case of N = 2 are given by the linear 2×2 matrix recursion

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = 1 \jmath \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

with $[x_0, y_0]^T = [1, 0]^T$ and $1j = \sqrt{-1} = e^{j\pi/2}$. It follows that the general solution to Pell's equation for N = 2 is

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = (e^{j\pi/2})^n \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

To calculate solutions to Pell's equation using the matrix equation above, we must calculate

$$A^{n} = e^{j\pi n/2} \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix}^{n} = e^{j\pi n/2} \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix},$$

which becomes tedious for n > 2.

-3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as Pell's equation. Hint: Use Matlab's function [E, Lambda] = eig(A) to check your results! Ans:

- 3.2: Solutions to Pell's equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell's equation is relevant to $\sqrt{2}$. Ans:

- 3.3: Find the first three values of $(x_n, y_n)^T$ by hand and show that they satisfy Pell's equation for N = 2. Ans: By hand, find the eigenvalues λ_{\pm} of the 2 × 2 Pell's equation matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

<u>Ans:</u>

-3.4: By hand, show that the matrix of eigenvectors, E, is

$$E = \begin{bmatrix} \boldsymbol{e}_+ & \boldsymbol{e}_- \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}.$$

Ans:

- 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

$$E^{-1}AE = \Lambda \equiv \begin{bmatrix} \lambda_+ & 0\\ 0 & \lambda_- \end{bmatrix}$$

Ans:

- 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the n = 10 solution $(x_{10}, y_{10})^T$ to Pell's equation with N = 2.

Problem # 4: Here we seek the general formula for x_n . Like Pell's equation, the Fibonacci equation has a recursive eigenanalysis solution. To find it we must recast x_n as a 2×2 matrix relationship and then proceed, as we did for the Pell case.

-4.1: Show that the Fibonacci sequence $x_n = x_{n-1} + x_{n-2}$ may be generated by

- 4.2: What is the relationship between y_n and x_n ? Ans:

- 4.3: Write a Matlab/Octave program to compute x_n using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is x_{40} ? Note: Consider using the eigenanalysis of A, described by Eq. 2.5.18 of the text. Ans:

-4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to obtain the general formula for the Fibonacci sequence

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right].$$
 (NS-3.2)

-4.5: What are the eigenvalues λ_{\pm} of the matrix A?

<u>Ans:</u>

-4.6: How is the formula for x_n related to these eigenvalues? Hint: Find the eigenvectors.

Ans:

-4.7: What happens to each of the two terms

$$\left[\left(1\pm\sqrt{5}\right)/2\right]^{n+1}?$$

Ans:

- 4.8: What happens to the ratio x_{n+1}/x_n ? Ans:

Problem # 5: Replace the Fibonacci sequence with

$$x_n = \frac{x_{n-1} + x_{n-2}}{2},$$

such that the value x_n is the average of the previous two values in the sequence.

-5.1: What matrix A is used to calculate this sequence? **Ans:**

-5.2: Modify your computer program to calculate the new sequence x_n . What happens as $n \to \infty$?

Ans:

- 5.3: What are the eigenvalues of your new A? How do they relate to the behavior of x_n as $n \to \infty$? Hint: You can expect the closed-form expression for x_n to be similar to Eq. NS-3.2. **Ans:**

Problem # 6: Consider the expression

$$\sum_{1}^{N} f_n^2 = f_N f_{N+1}.$$

– 6.1: Find a formula for f_n that satisfies this relationship. Hint: It holds for only the Fibonacci recursion formula. Ans: