### 1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence

## Pythagorean triplets

Problem \# 1: Euclid's formula for the Pythagorean triplets $a, b$, c is $a=p^{2}-q^{2}, b=2 p q$, and $c=p^{2}+q^{2}$.

- 1.1: What condition(s) must hold for $p$ and $q$ such that $a, b$, and $c$ are always positive and nonzero?

Ans:

- 1.2: Solve for $p$ and $q$ in terms of $a, b$, and $c$.


## Ans:

Problem \# 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded ( $a, c$ ) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

- 2.1: Find $p$ and $q$ for the first five pairs of a and $c$ shown here from Plimpton-322.

| $a$ | $c$ |
| :---: | :---: |
| 119 | 169 |
| 3367 | 4825 |
| 4601 | 6649 |
| 12709 | 18541 |
| 65 | 97 |

Find a formula for $a$ in terms of $p$ and $q$.
Ans:

- 2.2: Based on Euclid's formula, show that $c>(a, b)$.

Ans:

- 2.3: What happens when $c=a$ ?


## Ans:

- 2.4: Is $b+c$ a perfect square? Discuss.

Ans:

## Pell's equation:

Problem \# 3: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{I}$. We seek integer solutions of

$$
x^{2}-N y^{2}=1
$$

As shown in §2.5.2, the solutions $x_{n}, y_{n}$ for the case of $N=2$ are given by the linear $2 \times 2$ matrix recursion

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=1 \jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

with $\left[x_{0}, y_{0}\right]^{T}=[1,0]^{T}$ and $1 \jmath=\sqrt{-1}=e^{j \pi / 2}$. It follows that the general solution to Pell's equation for $N=2$ is

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\left(e^{\jmath \pi / 2}\right)^{n}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

To calculate solutions to Pell's equation using the matrix equation above, we must calculate

$$
A^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \cdots\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

which becomes tedious for $n>2$.

- 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as Pell's equation. Hint: Use Matlab's function [E, Lambda] = eig (A) to check your results!
Ans:
- 3.2: Solutions to Pell's equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell's equation is relevant to $\sqrt{2}$.
Ans:
- 3.3: Find the first three values of $\left(x_{n}, y_{n}\right)^{T}$ by hand and show that they satisfy Pell's equation for $N=2$. Ans: By hand, find the eigenvalues $\lambda_{ \pm}$of the $2 \times 2$ Pell's equation matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

Ans:

- 3.4: By hand, show that the matrix of eigenvectors, $E$, is

$$
E=\left[\begin{array}{ll}
e_{+} & \boldsymbol{e}_{-}
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
-\sqrt{2} & \sqrt{2} \\
1 & 1
\end{array}\right] .
$$

Ans:

- 3.5: Using the eigenvalues and eigenvectors you found for $A$, verify that

$$
E^{-1} A E=\Lambda \equiv\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]
$$

## Ans:

- 3.6: Once you have diagonalized $A$, use your results for $E$ and $\Lambda$ to solve for the $n=10$ solution $\left(x_{10}, y_{10}\right)^{T}$ to Pell's equation with $N=2$.
Ans:

Problem \# 4: Here we seek the general formula for $x_{n}$. Like Pell's equation, the Fibonacci equation has a recursive eigenanalysis solution. To find it we must recast $x_{n}$ as a $2 \times 2$ matrix relationship and then proceed, as we did for the Pell case.
-4.1: Show that the Fibonacci sequence $x_{n}=x_{n-1}+x_{n-2}$ may be generated by

$$
\left[\begin{array}{l}
x_{n}  \tag{NS-3.1}\\
y_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right], \quad\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

-4.2: What is the relationship between $y_{n}$ and $x_{n}$ ?

## Ans:

- 4.3: Write a Matlab/Octave program to compute $x_{n}$ using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is $x_{40}$ ? Note: Consider using the eigenanalysis of $A$, described by Eq. 2.5.18 of the text.


## Ans:

- 4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to obtain the general formula for the Fibonacci sequence

$$
\begin{equation*}
x_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right] \tag{NS-3.2}
\end{equation*}
$$

-4.5: What are the eigenvalues $\lambda_{ \pm}$of the matrix $A$ ?

## Ans:

- 4.6: How is the formula for $x_{n}$ related to these eigenvalues? Hint: Find the eigenvectors.


## Ans:

-4.7: What happens to each of the two terms

$$
[(1 \pm \sqrt{5}) / 2]^{n+1} ?
$$

## Ans:

- 4.8: What happens to the ratio $x_{n+1} / x_{n}$ ?


## Ans:

## Problem \# 5: Replace the Fibonacci sequence with

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2},
$$

such that the value $x_{n}$ is the average of the previous two values in the sequence.

- 5.1: What matrix $A$ is used to calculate this sequence?

Ans:

- 5.2: Modify your computer program to calculate the new sequence $x_{n}$. What happens as $n \rightarrow \infty$ ?

Ans:

- 5.3: What are the eigenvalues of your new A? How do they relate to the behavior of $x_{n}$ as $n \rightarrow \infty$ ? Hint: You can expect the closed-form expression for $x_{n}$ to be similar to Eq. NS-3.2.
Ans:

Problem \# 6: Consider the expression

$$
\sum_{1}^{N} f_{n}^{2}=f_{N} f_{N+1} .
$$

- 6.1: Find a formula for $f_{n}$ that satisfies this relationship. Hint: It holds for only the Fibonacci recursion formula.
Ans:

