1.4 Exercises NS-3

Topic of this homework: Pythagorean triples, Pell’s equation, Fibonacci sequence

Deliverable: Answers to problems

Pythagorean triplets

Problem #1: Euclid’s formula for the Pythagorean triplets a, b, c is:

$$a = p^2 - q^2, \quad b = 2pq, \quad c = p^2 + q^2.$$

Q 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

Sol: $p > q > 0$ (strictly greater than)

Q 1.2: Solve for p and q in terms of a, b and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the nonlinear system of equations for p, q.

First solve linear system of equations for p^2, q^2:

$$
\begin{bmatrix}
a \\
c
\end{bmatrix} = \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix} \begin{bmatrix}
p^2 \\
q^2
\end{bmatrix}
$$

Inverting this 2x2 matrix gives (the determinant $\Delta = 2$)

$$
\begin{bmatrix}
p^2 \\
q^2
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix} \begin{bmatrix}
a \\
c
\end{bmatrix}.
$$

Thus $p = \pm \sqrt{(a + c)/2}$, $q = \pm \sqrt{(c - a)/2}$.

Method 2: The algebraic approach is:

$$a + c = (p^2 - q^2) + (p^2 + q^2) = 2p^2$$

$$-a + c = -(p^2 - q^2) + (p^2 + q^2) = 2q^2.$$

Thus $p = \sqrt{(a + c)/2}$, $q = \sqrt{(c - a)/2}$, where $p, q \in \mathbb{N}$.

Method 1 seems more “transparent” than **Method 2**.

Problem #2: The ancient Babylonians (c2000BEC) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322.

–Q 2.1: Find p and q for the first five pairs of a and c from the tablet entries. Table 1: First five (a,c) pairs of Plimpton-322.

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>169</td>
</tr>
<tr>
<td>3367</td>
<td>4825</td>
</tr>
<tr>
<td>4601</td>
<td>6649</td>
</tr>
<tr>
<td>12709</td>
<td>18541</td>
</tr>
<tr>
<td>65</td>
<td>97</td>
</tr>
</tbody>
</table>

Find a formula for a in terms of p and q.

Sol:

$(a,c) = (119, 169) \Rightarrow (p,q) = \pm (12, 5)$
$(a,c) = (3367, 4825) \Rightarrow (p,q) = \pm (64, 27)$
$(a,c) = (4601, 6649) \Rightarrow (p,q) = \pm (75, 32)$
$(a,c) = (12709, 18541) \Rightarrow (p,q) = \pm (125, 54)$
$(a,c) = (65, 97) \Rightarrow (p,q) = \pm (9, 4)$

–Q 2.2: Based on Euclid’s formula, show that $c > (a, b)$.

Sol: $c - a = (p^2 + q^2) - (p^2 - q^2) = 2q^2$
Because $2q^2$ is always positive, $c > a$
$c - b = (p^2 + q^2) - 2pq = (p - q)^2 > 0$

Note that by the definition of $p, q \in \mathbb{N}, p > q$.

–Q 2.3: What happens when $c = a$?

Sol: Then it’s not a triangle since $b = 0$. The triangle is degenerate.

–Q 2.4: Is $b + c$ a perfect square? Discuss.

Sol: $b + c = p^2 + 2pq + q^2 = (p + q)^2$. Since p and q are integers, $b + c$ will always be a perfect square ($\sqrt{b + c}$ will always be an integer).

Pell’s equation:

Problem #3: Pell’s equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{I}$. We seek integer solutions of

$$x^2 - Ny^2 = 1.$$

As shown in Section 2.4.4 (p. 61) of the lecture notes, the solutions x_n, y_n for the case of $N = 2$ are given by the linear 2x2 matrix recursion

$$[x_{n+1} \ y_{n+1}] = 1J [x_n \ y_n],$$

with $[x_0, y_0]^T = [1, 0]^T$ and $1J = \sqrt{-1} = e^{i\pi/2}$. It follows that the general solution to Pell’s equation for $N = 2$ is

$$[x_n \ y_n] = (e^{i\pi/2})^n \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right]$$

To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

$$A^n = e^{i\pi n/2} \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] = e^{i\pi n/2} \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right] \ldots \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right]$$

which becomes tedious for $n > 2$, since it requires $n \times 2 \times 2$ matrix multiplications.
Diagonalization of a matrix ("eigenvalue/eigenvector decomposition"):

As derived in Appendix C of the lecture notes, the most efficient way to compute A^n is to diagonalize the matrix A, by finding its eigenvalues and eigenvectors.

The eigenvalues λ_k and eigenvectors e_k of a square matrix A are related by

$$ Ae_k = \lambda_k e_k, \quad (1.1) $$

such that multiplying an eigenvector e_k of A by the matrix A is the same as multiplying by a scalar, $\lambda_k \in \mathbb{C}$ (the corresponding eigenvalue). The complete eigenvalue problem may be written as

$$ AE = E\Lambda. $$

If A is a 2×2 matrix, the matrices E and Λ (of eigenvectors and eigenvalues, respectively) are

$$ E = \begin{bmatrix} e_1 & e_2 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}. $$

Thus, the matrix equation $AE = \begin{bmatrix} Ae_1 & Ae_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 e_1 & \lambda_2 e_2 \end{bmatrix} = E\Lambda$ contains Eq. 1.1 for each eigenvalue-eigenvector pair.

The diagonalization of the matrix A refers to the fact that the matrix of eigenvalues, Λ, has non-zero elements only on the diagonal. The key result is found by post-multiplication of the eigenvalue matrix by E^{-1}, giving

$$ AEE^{-1} = A = E\Lambda E^{-1}. \quad (1.2) $$

If we now take powers of A, the n^{th} power of A is

$$ A^n = (E\Lambda E^{-1})^n \\
= E\Lambda E^{-1}E\Lambda E^{-1} \cdots E\Lambda E^{-1} \\
= E\Lambda^n E^{-1}. \quad (1.3) $$

This is a very powerful result, because the n^{th} power of a diagonal matrix is extremely easy to calculate:

$$ \Lambda^n = \begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix}. $$

Thus, from Eq. 1.3 we can calculate A^n using only two matrix multiplications

$$ A^n = E\Lambda^n E^{-1}. $$

Finding the eigenvalues:

The eigenvalues λ_k are determined by Eq. 1.1, by factoring out e_k

$$ Ae_k = \lambda_k e_k,$$

$$(A - \lambda_k I)e_k = 0.$$

Matrix $I = [1, 0; 0, 1]^T$ is the identity matrix, having the dimensions of A, with elements δ_{ij} (i.e., diagonal elements $\delta_{11,22} = 1$ and off-diagonal elements $\delta_{12,21} = 0$).

The vector e_k is not zero, yet when operated on by $A - \lambda_k I$, the result must be zero. The only way this can happen is if the operator is degenerate (has no solution), that is

$$ \det(A - \lambda I) = \det \begin{bmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{22} - \lambda) \end{bmatrix} = 0. \quad (1.4) $$

This means that the two equations have the same slope (the equation is degenerate).

This determinant equation results in a second degree polynomial in λ

$$ (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0,$$

the roots of which are the eigenvalues of the matrix A.\hfill\footnote{These concepts may be easily extended to higher dimensions.}
Finding the eigenvectors:

An eigenvector e_k can be found for each eigenvalue λ_k from Eq. 1.1,

$$(A - \lambda_k I)e_k = 0.$$

The left side of the above equation becomes a column vector, where each element is an equation in the elements of e_k, set equal to 0 on the right side. These equations are always degenerate, since the determinant is zero. Thus the two equations have the same slope.

Solving for the eigenvectors is often confusing, because they have arbitrary magnitudes, $||e_k|| = \sqrt{e_k \cdot e_k} = \sqrt{e_{k,1}^2 + e_{k,2}^2} = d$. From Eq. 1.1, you can only determine the relative magnitudes and signs of the elements of e_k, so you will have to choose a magnitude d. It is common practice to normalize each eigenvector to have unit magnitude ($d = 1$).

-Q 3.1: Find the companion matrix, and thus the matrix A, having the same eigenvalues as Pell’s equation.

Hint: Use Matlab’s function $[E, Lambda] = eig(A)$ to check your results!

Sol: The companion matrix is

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

-Q 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell’s equation is relevant to $\sqrt{2}$.

Sol: As discussed in the notes (Lec 9 of Chapter 2), as the iteration n increases, the ratio of the x_n/y_n approaches $\sqrt{2}$.

-Q 3.3: Find the first 3 values of $(x_n, y_n)^T$ by hand and show that they satisfy Pell’s equation for $N = 2$.

Sol: See class notes (slide 9.4.2) for this calculation. By hand, find the eigenvalues λ_\pm of the 2×2 Pell’s equation matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Sol: The eigenvalues are given by the roots of the equation $(1 - \lambda)^2 = 2$. Thus $\lambda_\pm = 1 \pm \sqrt{2} = \{2.1412, -0.1412\}$

-Q 3.4: By hand, show that the matrix of eigenvectors, E, is

$$E = \begin{bmatrix} e_+ & e_- \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}$$

Sol: The eigenvectors e_\pm may be found by solving

$$A \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \lambda_\pm \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \rightarrow (A - \lambda_\pm I) \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 0$$

For λ_+, this gives

$$0 = \begin{bmatrix} 1 - (1 + \sqrt{2}) & 2 \\ 1 & 1 - (1 + \sqrt{2}) \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} -\sqrt{2} & 2 \\ 1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

which gives the relation between the elements of e_+, e_1, e_2, as $e_1 = \sqrt{2}e_2$.

The eigenvectors are defined to be unit length and orthogonal, namely

1. $||e_k||^2 = e_k \cdot e_k = 1$
2. \(\mathbf{e}_+ \cdot \mathbf{e}_- = 0 \).

Once we normalize \(\mathbf{e}_+ \) to have unit length, we obtain the first eigenvector
\[
\mathbf{e}_+ = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}
\]
Repeating this for \(\lambda_- \) gives
\[
\mathbf{e}_- = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}
\]
Thus, the matrix of eigenvalues is
\[
E = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}
\]

–Q 3.5: Using the eigenvalues and eigenvectors you found for \(A \), verify that
\[
E^{-1} AE = \Lambda \equiv \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix}
\]
Sol: Using the formula for a matrix inverse, we find
\[
E^{-1} = \frac{1}{\det(E)} \begin{bmatrix} e_{22} & -e_{12} \\ -e_{21} & e_{11} \end{bmatrix} = \frac{3}{-2\sqrt{2} \sqrt{3}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} = \frac{-\sqrt{3}}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix}
\]
Thus
\[
E^{-1} AE = \frac{-\sqrt{3}}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}
\]
\[
= \frac{-1}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} -\sqrt{2} + 2 & (\sqrt{2} + 2) \\ -\sqrt{2} + 1 & (\sqrt{2} + 1) \end{bmatrix}
\]
\[
= \begin{bmatrix} 1 & 0 \\ 0 & 1 + \sqrt{2} \end{bmatrix} = \Lambda
\]

–Q 3.6: Now that you have diagonalized \(A \) (Equation 1.3), use your results for \(E \) and \(\Lambda \) to solve for the \(n = 10 \) solution \((x_{10}, y_{10})^T \) to Pell’s equation with \(N = 2 \).
Sol: \(x_{10} = -3363 \) and \(y_{10} = -2378 \). Note this formulation gives the negative solution, but since the values for \(n = 10 \) are real, when they are squared in Pell’s equation, it makes no difference whether they are negative or positive.

The Fibonacci sequence

The Fibonacci sequence is famous in mathematics, and has been observed to play a role in the mathematics of genetics. Let \(x_n \) represent the Fibonacci sequence,
\[
x_{n+1} = x_n + x_{n-1},
\]
where the current input sample \(x_n \) is equal to the sum of the previous two inputs. This is a ‘discrete time’ recurrence relation. To solve for \(x_n \), we require some initial conditions. In this exercise, let us define \(x_0 = 1 \) and \(x_{n<0} = 0 \). This leads to the Fibonacci sequence \{1, 1, 2, 3, 5, 8, 13, …\} for \(n = 0, 1, 2, 3, \ldots \).

Equation 1.5 is equivalent to the \(2 \times 2 \) matrix equation
\[
\begin{bmatrix} x_n \\ y_n \end{bmatrix} = A \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.
\]
Problem #4: Here we seek the general formula for \(x_n \). Like the Pell’s equation, Eq. 1.5 has a recursive, eigen-decomposition solution. To find it we must recast \(x_n \) as a 2x2 matrix relation, and then proceed as we did for the Pell case.

–Q 4.1: By example, show that the Fibonacci sequence \(x_n \) as described above may be generated by
\[
\begin{bmatrix}
 x_n \\
 y_n
\end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} x_0 \\
 y_0 \end{bmatrix} \quad \begin{bmatrix} x_0 \\
 y_0 \end{bmatrix} = \begin{bmatrix} 1 \\
 0 \end{bmatrix}.
\] (1.7)

–Q 4.2: What is the relationship between \(y_n \) and \(x_n \)?

Sol: This equation says that \(x_n = x_{n-1} + y_{n-1} \) and \(y_n = x_{n-1} \). The latter equation may be rewritten as \(y_n = x_{n-1} \). Thus
\[
x_n = x_{n-1} + x_{n-2},
\]
which is Eq. 1.5.

–Q 4.3: Write a Matlab/Octave program to compute \(x_n \) using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is \(x_{40} \)?

Note: Consider using the eigen-decomposition of \(A \), described by Eq. 1.3 (p. 373).

Sol: You can try something like:

```matlab
function xn = fib(n)
    A = [1 1; 1 0]; [E,D] = eig(A); xy = E*D^n*inv(E)*[1; 0];
    xn = xy(1);
end
```

Given the initial conditions we defined, \(x_{40} = 165, 580, 141 \).

–Q 4.4: Using the eigen-decomposition of the matrix \(A \) (and a lot of algebra), it is possible to obtain the general formula for the Fibonacci sequence
\[
x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right].
\] (1.8)

–Q 4.5: What are the eigenvalues \(\lambda_{\pm} \) of the matrix \(A \)?

Sol: The eigenvalues of the Fibonacci matrix are given by
\[
det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 - \lambda - 1 = (\lambda - 1/2)^2 - (1/2)^2 - 1 = (\lambda - 1/2)^2 - 5/4 = 0,
\]
thus \(\lambda_{\pm} = \frac{1\pm\sqrt{5}}{2} = [1.618, -0.618] \).

–Q 4.6: How is the formula for \(x_n \) related to these eigenvalues? Hint: find the eigenvectors.

Sol: The eigenvectors (determined from the equation \((A - \lambda_{\pm} I)e_{\pm} = 0 \), and normalized to 1) are given by
\[
e_+ = \begin{bmatrix} \lambda_+ \\ \sqrt{\lambda_+^2 + 1} \end{bmatrix}, \quad e_- = \begin{bmatrix} \lambda_- \\ \sqrt{\lambda_-^2 + 1} \end{bmatrix}, \quad E = [e_+ \ e_-]
\]

From the eigen-decomposition, we find that
\[
\begin{bmatrix} x_n \\
 y_n
\end{bmatrix} = E \begin{bmatrix} \lambda_+^n \\
 0 \\
 0 \\
 \lambda_-^n
\end{bmatrix} E^{-1} \begin{bmatrix} 1 \\
 0 \\
 e_{11} e_{12} \\
 e_{21} e_{22}
\end{bmatrix} \begin{bmatrix} \lambda_+ \\ \sqrt{\lambda_+^2 + 1} \\
 \lambda_- \\
 \sqrt{\lambda_-^2 + 1}
\end{bmatrix} \frac{1}{(e_{11}e_{22} - e_{12}e_{21})} \begin{bmatrix} e_{22} & -e_{12} \\
 -e_{21} & e_{11}
\end{bmatrix} \begin{bmatrix} 1 \\
 0 \\ 0 \\
 1
\end{bmatrix}.
\]
Solving for \(x_n\) we find that

\[
x_n = \frac{1}{(e_{11}e_{22} - e_{12}e_{21})} \left(\lambda_+^n e_{11}e_{22} - \lambda_-^n e_{12}e_{21} \right)
= \frac{1}{\sqrt{\lambda_+^n} \sqrt{\lambda_-^n}} \left[\lambda_+^n \left(\frac{\lambda_+^n}{\sqrt{(\lambda_+^2 + 1)\lambda_+^n + 1}} \right) - \lambda_-^n \left(\frac{\lambda_-^n}{\sqrt{(\lambda_-^2 + 1)\lambda_-^n + 1}} \right) \right]
= \frac{1}{\sqrt{\lambda_+^n + \lambda_-^n}}.
\]

--Q 4.7: What happens to each of the two terms \([(1 \pm \sqrt{5})/2]^{n+1}\)? Sol: \([(1 - \sqrt{5})/2]^{n+1} \to 0\) and \([(1 + \sqrt{5})/2]^{n+1} \to \infty\).

--Q 4.8: What happens to the ratio \(x_{n+1}/x_n\)?
Sol: \(x_{n+1}/x_n \to (1 + \sqrt{5})/2\), because \([(1 - \sqrt{5})/2]^n \to 0\) as \(n \to \infty\) thus for large \(n\), \(x_n \approx (1 + \sqrt{5})/2\) \([(1 + \sqrt{5})/2]^{n+1}\).

Problem # 5: Replace the Fibonacci sequence with

\[x_n = \frac{x_{n-1} + x_{n-2}}{2},\]
such that the value \(x_n\) is the average of the previous two values in the sequence.

--Q 5.1: What matrix \(A\) is used to calculate this sequence?
Sol:

\[A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 0 \end{bmatrix}\]

--Q 5.2: Modify your computer program to calculate the new sequence \(x_n\). What happens as \(n \to \infty\)?
Sol: As \(n \to \infty\), \(x_n \to 2/3\).

--Q 5.3: What are the eigenvalues of your new \(A\)? How do they relate to the behavior of \(x_n\) as \(n \to \infty\)? Hint: you can expect the closed-form expression for \(x_n\) to be similar to Eq. 1.8.
Sol: The eigenvalues are \(\lambda_+ = 1\) and \(\lambda_- = -0.5\). From Eq. 1.3, the expression for \(A^n\) is

\[A^n = (E \Lambda E^{-1})^n = E \Lambda^n E^{-1} = \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix}^n = \begin{bmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{bmatrix}.
\]

The solution is the sum of two sequences, one a constant and the other an oscillation that quickly fades. As \(n \to \infty\), \(\lambda_+^n = 1^n \to 1\) and \(\lambda_-^n = (-1/2)^n \to 0\). The solution becomes

\[x_n = \frac{2}{3} [\lambda_+^n - \lambda_-^n] = \frac{2}{3} [1^n - (-1)^n] \to \frac{2}{3}.
\]

--Q 5.4: What matrix \(A\) is used to calculate this sequence?
Sol:

\[A = \begin{bmatrix} 1/2 & 1/0.1 \\ 1/2 & 0 \end{bmatrix}\]
–Q 5.5: Modify your computer program to calculate the new sequence x_n. What happens as $n \to \infty$?

Sol: As $n \to \infty$, $x_n \to \infty$

–Q 5.6: What are the eigenvalues of your new A? How do they relate to the behavior of x_n as $n \to \infty$? Hint: you can expect the closed-form expression for x_n to be similar to Eq. 1.8.

Sol: The eigenvalues are $\lambda_+ = 1.0033$ and $\lambda_- = -0.5033$. As $n \to \infty$, $\lambda_+^n \to \infty$ and $\lambda_-^n \to 0$. Because λ_+^n ‘blows up,’ the expression for x_n also ‘blows up.’

Problem # 6: Consider the expression

\[
\sum_{1}^{N} f_n^2 = f_N f_{N+1}.
\]

–Q 6.1: Prove this expression is always true.

Sol: Write this out for N and $N - 1$:

\[
\begin{align*}
\sum_{1}^{N} f_n^2 &= f_1^2 + f_2^2 + \cdots + f_{N-1}^2 + f_N^2 = f_N f_{N+1} \\
\sum_{1}^{N-1} f_n^2 &= f_1^2 + f_2^2 + \cdots + f_{N-2}^2 = f_{N-1} f_N
\end{align*}
\]

Subtracting gives

\[
\begin{align*}
f_N^2 &= f_N f_{N+1} - f_{N-1} f_N \\
f_N &= f_{N+1} - f_{N-1}
\end{align*}
\]

This last equation is exactly the Fibonacci equation we started from: $f_{N+1} = f_N + f_{N-1}$, hence the equation is true.

4I found this problem on a worksheet for Math 213 midterm (213practice.pdf).