1 Exercises AE-1

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolution, roots.

Deliverable: Answers to problems

Note: The term ‘analytic’ is used in two different ways. (1) An analytic function is a function that may be expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Polynomials and the fundamental theorem of algebra (FTA) (6pt)

Problem # 1: (2pt) A polynomial of degree N is defined as

$$P_N(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_N x^N$$

- 1.1: (1pt) How many coefficients a_n does a polynomial of degree N have?

- 1.2: (1pt) How many roots does $P_N(x)$ have?

Problem # 2: (2pt) The fundamental theorem of algebra (FTA)

- 2.1: (1pt) State and then explain the Fundamental Theorem of Algebra.

- 2.2: (1pt) Using the FTA, prove your answer to Q 1.2.

Hint: Apply the FTA to prove how many roots a polynomial $P_N(x)$ of order N has.

Problem # 3: (1pt) Consider the polynomial function $P_2(x) = 1 + x^2$ of degree $N = 2$, and its reciprocal $F(x) = 1/P_2(x)$.

- 3.1: (1pt) What are the roots (e.g. ‘zeros’) x_{\pm} of $P_2(x)$?

Problem # 4: (1pt) $F(x) = 1/P_2(x)$ may be expressed as $(A, B, x_{\pm} \in \mathbb{C})$

$$F(x) = \frac{A}{x - x_+} + \frac{B}{x - x_-}, \quad (1.1)$$

where x_{\pm} are the roots (zeros) of $P_2(x)$, which become the poles of $F(x)$, and A, B are the residues. The expression for $F(x)$ is sometimes called a ‘partial fraction expansion’ or ‘residue expansion,’ and it appears frequently in engineering applications.

- 4.1: (1pt) Find $A, B \in \mathbb{C}$ in terms of the roots x_{\pm} of $P_2(x)$.
Analytic functions (13 pt)

A classic series is the geometric series

\[\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n, \]

(1.2)

with Taylor coefficients \(a_n = 1 \).

Problem # 5: (5 pt) The geometric series

- 5.1: (1pt) What is the region of convergence (RoC) for the power series of \(1/(1-x) \) given above? Namely, where does the power series \(P(x) \) converge to \(1/(1-x) \)? State your answer as a condition on \(x \).

- 5.2: (1pt) How does the RoC relate to the location of the pole of \(1/(1-x) \)?

- 5.3: (1pt) Where are the zeros, if any, in Eq. 1.2?

- 5.4: (1pt) Assuming \(x \) is in the RoC, prove that the geometric series correctly represents \(1/(1-x) \), by multiplying both sides of Eq. 1.2 by \(1-x \).

- 5.5: (1pt) Describe the Taylor series having expansion point \(x_0 = \infty \).

Problem # 6: (5pt) We may use the geometric series to study the polynomial

\[P_N(x) = 1 + x + x^2 + \ldots + x^N = \sum_{n=0}^{N} x^n. \]

(1.3)

- 6.1: (1pt) What is the RoC for Eq. 1.3?

- 6.2: (1pt) Does Eq. 1.3 have both poles and zeros? Explain.

- 6.3: (1pt) Prove that

\[P_N(x) = \frac{1-x^{N+1}}{1-x} \]

(1.4)

- 6.4: (1pt) What is the RoC for Eq. 1.4?

- 6.5: (1pt) Is the function \(1/(1-x) \) analytic outside of the RoC?

Problem # 7: (3 pt) The exponential series is

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

(1.5)

with Taylor coefficients \(a_n = 1/n! \), which may be derived from the Taylor formula.
– 7.1:(1pt) What is the region of convergence (RoC) for the exponential series given above (e.g. where does the power series \(P(x) \) converge to the function value \(f(x) \))?

– 7.2:(1pt) What is the RoC for Eq. 1.5?

– 7.3:(1pt) Let \(x = j \) in Eq. 1.5, and write out the series expansion of \(e^x \) in terms of its real and imaginary parts.

Inverse analytic functions and composition (8 pt)

Overview: It may be surprising, but every analytic function has an inverse function. Starting from the function \((x, y) \in \mathbb{C}\)

\[
y(x) = \frac{1}{1 - x}
\]

the inverse is

\[
x = \frac{y - 1}{y} = 1 - \frac{1}{y}.
\]

Problem # 8:(2 pt) Consider the inverse function described above.

– 8.1:(1pt) Where are the poles and zeros of \(x(y) \)?

– 8.2:(1pt) Where (for what condition on \(y \)) is \(x(y) \) analytic?

Problem # 9:(4 pt) Consider the exponential function \(z(s) = e^s \) \((s, z) \in \mathbb{C}) \).

– 9.1:(1pt) Find the inverse \(s(z) \).

– 9.2:(1pt) Next define \(y(s) = 1/(1 - s) \) and \(z(s) = e^s \) \((s = \sigma + \omega j) \in \mathbb{C}) \). Compose these two functions (i.e., evaluate \((y \circ z)(s)\))

– 9.3:(3pt) Where are the poles and zeros of \((y \circ z)(x)\)?

– 9.4:(1pt) Where (for what condition on \(x \)) is \((y \circ z)(x)\) analytic?

Convolution (2pt)

Multiplying two polynomials, when they are short or simple, is not demanding. However if they have many terms, it can become tedious. For example, multiplying two 10\(^{th}\) degree polynomials is not trivial. An alternative is a method called convolution.

Problem # 10:(1pt) Convolution of sequences.

– 10.1:(1pt) Calculate \(\{1, 1\} \ast \{1, 1\} \ast \{1, 1\}\)
Problem #11: (1pt) Multiplying two polynomials is the same as convolving their coefficients. Let
\[f(x) = x^3 + 3x^2 + 3x + 1 \]
\[g(x) = x^3 + 2x^2 + x + 2 \]

– 11.1: (1pt) Use convolution to find \(h(x) = f(x) \cdot g(x) \) ?

Newton’s root-finding method (6 pt)

Newton’s method provides and iterative algorithm to find the roots of any polynomial \(P_N(s) \) where \(s \in \mathbb{C} \), of the form
\[s_{n+1} = s_n - \frac{P_N(s_n)}{P_N'(s_n)}, \]
where \(P_N'(s) = \frac{d}{ds} P_N(s), s_n \in \mathbb{C} \) and \(n, N \in \mathbb{N} \).

Problem #12: (6 pt) Use Newton’s iteration to find roots of the polynomial
\[P_3(x) = 1 - x^3. \]

– 12.1: (1pt) Starting with \(x_0 = j3/2 \), describe the first two steps of the iteration.

Hint: Start with the complex plane (as the coordinate system) and label (plot) the poles and zeros of the “update term” (on far right).

– 12.2: (3pt) Calculate \(x_1 \) and \(x_2 \). What root is the iteration approaching?

– 12.3: (2pt) Does Newton’s method work for \(P_2(x) = 1 + x^2 \)? If so, why? Hint: What are the roots in this case?

Riemann zeta function \(\zeta(s) \)

Definitions and preliminary analysis:

The zeta function \(\zeta(s) \) is defined by the complex analytic power series
\[\zeta(s) \equiv \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots. \] (1.6)

This series converges, and thus is valid, only in the region of convergence (ROC) given by \(\Re s = \sigma > 1 \) since there \(|n^{-\sigma}| < 1 \). To determine its formula in other regions of the \(s \) plane one must extend the series via analytic continuation.

Euler product formula: As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler’s product formula.\(^1\) Multiplying \(\zeta(s) \) by the factor \(1/2^s \), and subtracting from \(\zeta(s) \), removes all the terms \(1/(2n)^s \) (e.g., \(1/2^s + 1/4^s + 1/6^s + 1/8^s + \cdots \))
\[\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots - \left(\frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + \frac{1}{8^s} + \cdots\right), \] (1.7)
which results in
\[\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \frac{1}{9^s} + \frac{1}{11^s} + \frac{1}{13^s} + \cdots. \] (1.8)
\(^1\)This is known as Euler’s sieve, as distinguish from the Eratosthenes sieve.
Problem # 13:

– 13.1: What is the RoC for Eq. 1.8

– 13.2: Repeat this with a lead factor $1/3^s$ applied to Eq. 1.8.

– 13.3: What is the RoC for Eq. ??

– 13.4: Repeat this process, with all prime scale factors (i.e., $1/5^s, 1/7^s, \ldots, 1/\pi_k^s, \ldots$), and show that

$$
\zeta(s) = \prod_{\pi_k \in P} \frac{1}{1 - \pi_k^{-s}} = \prod_{\pi_k \in P} \zeta_k(s)
$$

where π_p represents the p^{th} prime.

– 13.5: Given the product formula we may identify the poles of $\zeta_p(s)$ ($p \in \mathbb{Z}$), which is important for defining the ROC of each factor.

For example, the p^{th} factor of Eq. 1.9, expressed as an exponential, is

$$
\zeta_p(s) \equiv \frac{1}{1 - \pi_p^{-s}} = \frac{1}{1 - e^{-s T_p}},
$$

where $T_p \equiv \ln \pi_p$.

– 13.6: Plot $\zeta_p(s)$ using *zviz* for $p = 1$. Describe what you see.