1 Exercises AE-1

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolution, roots.

Deliverable: Answers to problems
Note: The term 'analytic' is used in two different ways. (1) An analytic function is a function that may be expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Polynomials and the fundamental theorem of algebra (FTA) (6pt)

Problem \# 1:(2pt) A polynomial of degree N is defined as

$$
P_{N}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{N} x^{N}
$$

- 1.1:(1pt) How many coefficients a_{n} does a polynomial of degree N have?
- 1.2:(1pt) How many roots does $P_{N}(x)$ have?

Problem \# 2:(2pt) The fundamental theorem of algebra (FTA)

- 2.1:(1pt) State and then explain the Fundamental Theorem of Algebra.

- 2.2:(1pt) Using the FTA, prove your answer to Q 1.2.

Hint: Apply the FTA to prove how many roots a polynomial $P_{N}(x)$ of order N has.
Problem \# 3:(1pt) Consider the polynomial function $P_{2}(x)=1+x^{2}$ of degree $N=2$, and its reciprocal $F(x)=1 / P_{2}(x)$.

- 3.1:(1pt) What are the roots (e.g. 'zeros') $x_{ \pm}$of $P_{2}(x)$?

Problem \# 4:(lpt) $F(x)=1 / P_{2}(x)$ may be expressed as $\left(A, B, x_{ \pm} \in \mathbb{C}\right)$

$$
\begin{equation*}
F(x)=\frac{A}{x-x_{+}}+\frac{B}{x-x_{-}}, \tag{1.1}
\end{equation*}
$$

where $x_{ \pm}$are the roots (zeros) of $P_{2}(x)$, which become the poles of $F(x)$, and A, B are the residues. The expression for $F(x)$ is sometimes called a 'partial fraction expansion' or 'residue expansion,' and it appears frequently in engineering applications.

- 4.1:(1pt) Find $A, B \in \mathbb{C}$ in terms of the roots $x_{ \pm}$of $P_{2}(x)$.

Analytic functions (13 pt)

A classic series is the geometric series

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n} \tag{1.2}
\end{equation*}
$$

with Taylor coefficients $a_{n}=1$.
Problem \# 5:(5 pt) The geometric series
$-5.1:(1 p t)$ What is the region of convergence $(R o C)$ for the power series of $1 /(1-x)$ given above Namely, where does the power series $P(x)$ converge to $1 /(1-x)$? State your answer as a condition on x.
-5.2:(1pt) How does the RoC relate to the location of the pole of $1 /(1-x)$?

- 5.3:(1pt) Where are the zeros, if any, in Eq. 1.2?
- 5.4:(1pt) Assuming x is in the RoC, prove that the geometric series correctly represents $1 /(1-x)$, by multiplying both sides of Eq. 1.2 by $(1-x)$.
-5.5:(1pt) Describe the Taylor series having expansion point $x_{0}=\infty$.

Problem \# 6:(5pt) We may use the geometric series to study the polynomial

$$
\begin{equation*}
P_{N}(x)=1+x+x^{2}+\ldots+x^{N}=\sum_{n=0}^{N} x^{n} \tag{1.3}
\end{equation*}
$$

- 6.1:(1pt) What is the RoC for Eq. 1.3?
- 6.2:(1pt) Does Eq. 1.3 have both poles and zeros? Explain.
- 6.3:(1pt) Prove that

$$
\begin{equation*}
P_{N}(x)=\frac{1-x^{N+1}}{1-x} \tag{1.4}
\end{equation*}
$$

- 6.4:(1pt) What is the RoC for Eq. 1.4?
- 6.5:(1pt) Is the function $1 /(1-x)$ analytic outside of the RoC?

Problem \# 7:(3 pt) The exponential series is

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1.5}
\end{equation*}
$$

with Taylor coefficients $a_{n}=1 / n!$, which may be derived from the Taylor formula.

- 7.1:(lpt) What is the region of convergence (RoC) for the exponential series given above (e.g. where does the power series $P(x)$ converge to the function value $f(x)$)?
- 7.2:(1pt) What is the RoC for Eq. 1.5?
- 7.3:(lpt) Let $x=j$ in Eq. 1.5, and write out the series expansion of e^{x} in terms of its real and imaginary parts.

Inverse analytic functions and composition ($\mathbf{8} \mathbf{~ p t}$)

Overview: It may be surprising, but every analytic function has an inverse function. Starting from the function $(x, y \in \mathbb{C})$

$$
y(x)=\frac{1}{1-x}
$$

the inverse is

$$
x=\frac{y-1}{y}=1-\frac{1}{y} .
$$

Problem \# 8:(2 pt) Consider the inverse function described above.

- 8.1:(lpt) Where are the poles and zeros of $x(y)$?
-8.2:(lpt) Where (for what condition on y) is $x(y)$ analytic?

Problem \# 9:(4 pt) Consider the exponential function $z(s)=e^{s}(s, z \in \mathbb{C})$.

- 9.1:(1pt) Find the inverse $s(z)$.
- 9.2:(lpt) Next define $y(s)=1 /(1-s)$ and $z(s)=e^{s}(s=\sigma+\omega \jmath \in \mathbb{C})$. Compose these two functions (i.e., evaluate $(y \circ z)(s))$
- 9.3:(3pt) Where are the poles and zeros of $(y \circ z)(x)$?
- 9.4:(lpt) Where (for what condition on x) is $(y \circ z)(x)$ analytic?

Convolution (2pt)

Multiplying two polynomials, when they are short or simple, is not demanding. However if they have many terms, it can become tedious. For example, multiplying two $10^{\text {th }}$ degree polynomials is not trivial. An alternative is a method called convolution.

Problem \# 10:(1pt) Convolution of sequences.

Problem \# 11:(lpt) Multiplying two polynomials is the same as convolving their coefficients. Let

$$
\begin{gathered}
f(x)=x^{3}+3 x^{2}+3 x+1 \\
g(x)=x^{3}+2 x^{2}+x+2
\end{gathered}
$$

- 11.1:(1pt) Use convolution to find $h(x)=f(x) \cdot g(x)$?

Newton's root-finding method (6 pt)

Newton's method provides and iterative algorithm to find the roots of any polynomial $P_{N}(s)$ where $s \in \mathbb{C}$, of the form

$$
s_{n+1}=s_{n}-\frac{P_{N}\left(s_{n}\right)}{P_{N}^{\prime}\left(s_{n}\right)}
$$

where $P_{N}^{\prime}(s)=\frac{d}{d s} P_{N}(s), s_{n} \in \mathbb{C}$ and $n, N \in \mathbb{N}$.
Problem \# 12: (6 pt) Use Newton's iteration to find roots of the polynomial

$$
P_{3}(x)=1-x^{3} .
$$

- 12.1:(1pt) Starting with $x_{0}=j 3 / 2$, describe the first two steps of the iteration.

Hint: Start with the complex plane (as the coordinate system) and label (plot) the poles and zeros of the "update term" (on far right).

- 12.2:(3pt) Calculate x_{1} and x_{2}. What root is the iteration approaching?
- 12.3:(2pt) Does Newton's method work for $P_{2}(x)=1+x^{2}$?

If so, why? Hint: What are the roots in this case?

Riemann zeta function $\zeta(s)$

Definitions and preliminary analysis:

The zeta function $\zeta(s)$ is defined by the complex analytic power series

$$
\begin{equation*}
\zeta(s) \equiv \sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots . \tag{1.6}
\end{equation*}
$$

This series converges, and thus is valid, only in the region of convergence (ROC) given by $\Re s=\sigma>1$ since there $\left|n^{-\sigma}\right|<1$. To determine its formula in other regions of the s plane one must extend the series via analytic continuation.

Euler product formula: As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler's product formula. ${ }^{1}$ Multiplying $\zeta(s)$ by the factor $1 / 2^{s}$, and subtracting from $\zeta(s)$, removes all the terms $1 /(2 n)^{s}\left(\right.$ e.g., $1 / 2^{s}+1 / 4^{s}+1 / 6^{s}+1 / 8^{s}+\cdots$)

$$
\begin{equation*}
\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}} \cdots-\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\cdots\right), \tag{1.7}
\end{equation*}
$$

which results in

$$
\begin{equation*}
\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\cdots . \tag{1.8}
\end{equation*}
$$

[^0]
Problem \# 13:

- 13.1: What is the RoC for Eq. 1.8
- 13.2: Repeat this with a lead factor $1 / 3^{s}$ applied to Eq. 1.8.
- 13.3: What is the RoC for Eq. ??
- 13.4: Repeat this process, with all prime scale factors (i.e., $1 / 5^{s}, 1 / 7^{s}, \cdots, 1 / \pi_{k}^{s}, \cdots$), and show that

$$
\begin{equation*}
\zeta(s)=\prod_{\pi_{k} \in \mathbb{P}} \frac{1}{1-\pi_{k}^{-s}}=\prod_{\pi_{k} \in \mathbb{P}} \zeta_{k}(s) \tag{1.9}
\end{equation*}
$$

where π_{p} represents the $p^{t h}$ prime.

- 13.5: Given the product formula we may identify the poles of $\zeta_{p}(s)(p \in \mathbb{Z})$, which is important for defining the ROC of each factor.
For example, the $p^{t h}$ factor of Eq. 1.9, expressed as an exponential, is

$$
\begin{equation*}
\zeta_{p}(s) \equiv \frac{1}{1-\pi_{p}^{-s}}=\frac{1}{1-e^{-s T_{p}}}, \tag{1.10}
\end{equation*}
$$

where $T_{p} \equiv \ln \pi_{p}$.

- 13.6: Plot $\zeta_{p}(s)$ using zviz for $p=1$. Describe what you see.

[^0]: ${ }^{1}$ This is known as Euler's sieve, as distinguish from the Eratosthenes sieve.

