An Invitation to Mathematical Physics and Its History

Jont B. Allen

Copyright © 2016,17,18 Jont Allen

University of Illinois at Urbana-Champaign
http://jontalle.web.engr.illinois.edu/uploads/298/

Saturday $23^{\text {rd }}$ March, 2019 @ 18:16; Version 0.98 .02

Contents

1 Introduction 17
1.1 Early Science and Mathematics 17
1.1.1 Lecture 1: (Week 1) Three Streams from the Pythagorean theorem 19
1.1.2 What is mathematics? 20
1.1.3 Early physics as mathematics 21
1.2 Modern mathematics is born 22
1.2.1 Science meets mathematics 22
1.2.2 The Three Pythagorean Streams 26
1.2.3 Exercises NS-1 28
2 Stream 1: Number Systems (9 Lectures) 31
2.1 Lecture 2: The taxonomy of numbers: $\mathbb{P}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C}$ 32
2.1.1 Numerical taxonomy: 35
2.1.2 Applications of integers 36
2.2 Lecture 3: (Week 2) The role of physics in mathematics 39
2.2.1 The three streams in mathematics 40
2.2.2 Stream 1: Prime number theorems 41
2.2.3 Stream 2: Fundamental theorem of algebra 41
2.2.4 Stream 3: Fundamental theorems of calculus 41
2.2.5 Other key theorems in mathematics 42
2.2.6 Exercises NS-2 43
2.3 Lecture 4: (Week 3) Applications of Prime number 48
2.3.1 Lecture 5: The Euclidean algorithm (GCD) 50
2.3.2 Lecture 6: Continued fractions 54
2.3.3 Lecture 7: Pythagorean triplets (Euclid's formula) 57
2.3.4 Lecture 8: Pell's equation 59
2.3.5 Lecture 9: Fibonacci sequence 61
2.3.6 Exercises NS-3 63
3 Stream 2: Algebraic Equations (12 Lectures) 69
3.1 Lecture 10: Algebra and geometry as physics 70
3.1.1 The first Algebra 72
3.1.2 Finding roots of polynomials 72
3.1.3 Matrix formulation of the polynomial 79
3.1.4 Working with polynomials in Matlab/Octave: 80
3.2 Lecture 11: (Week 4) Eigenanalysis 82
3.2.1 Eigenvalues of a matrix 82
3.2.2 Taylor series 85
3.2.3 Analytic functions: 90
3.3 Exercises AE-1 93
3.3.1 Polynomials and the fundamental theorem of algebra (FTA) 93
3.3.2 Analytic functions 94
3.3.3 Inverse analytic functions and composition 96
3.3.4 Convolution 96
3.3.5 Intersection and analytic geometry 97
3.3.6 Newton's root-finding method 98
3.3.7 Riemann zeta function $\zeta(s)$ 98
3.4 Lecture 12: (Week 5) Root classification 100
3.4.1 Convolution of monomials 100
3.4.2 Residue expansions of rational functions 102
3.5 Lecture 13: Introduction to Analytic Geometry 104
3.5.1 Development of Analytic Geometry 109
3.5.2 Lecture 14: Applications of scalar products 110
3.5.3 Lecture 15: (Week 6) Gaussian Elimination 112
3.5.4 Exercises AE-2 114
3.5.5 Integer equations: applications and solutions 117
3.5.6 Ohm's Law 118
3.5.7 2-port network analysis 119
3.6 Lecture 16: Transmission (ABCD) matrix composition method 120
3.6.1 Thévenin transfer impedance 121
3.6.2 Lecture 17: Impedance matrix 121
3.6.3 Lecture 18: Power relations and impedance 122
3.6.4 Power vs. power series, linear vs. nonlinear 122
3.7 Lecture 19: Signals: Fourier transforms 125
3.8 Lecture 20: Systems: Laplace transforms 128
3.8.1 Lecture 21: (Week 8) System (Network) Postulates 130
3.9 Lecture 22: (Week 7) Complex analytic mappings (domain-coloring) 132
3.9.1 The Riemann Sphere 135
3.9.2 Bilinear transformation 136
3.9.3 Exercises AE-3 138
3.9.4 Algebra 138
3.9.5 Möbius transforms and infinity 139
3.9.6 Probability 139
4 Stream 3a: Scalar Calculus (11 Lectures) 143
4.1 Modern mathematics 143
4.2 Lecture 23: Fundamental theorems of scalar calculus 146
4.2.1 The fundamental theorems of complex calculus: 146
4.2.2 Lecture 24: (Week 9) Cauchy-Riemann conditions 147
4.2.3 Exercises DE-1 150
4.3 Lecture 25: Complex Analytic functions and Brune Impedance 154
4.3.1 Complex impedance functions 154
4.3.2 Lecture 26: Branch cuts, Riemann Sheets 158
4.4 Lecture 27: (Week 10) Three complex integration theorems I 163
4.4.1 Cauchy's theorems for integration in the complex plane 163
4.4.2 Exercises DE-2 166
4.4.3 Lecture 28: Three complex integration theorems II, III 175
4.5 Lecture 29: Inverse Laplace transform $(t<0)$: Cauchy residue theorem 175
4.5.1 Lecture 30: (Week 11) Inverse Laplace transform $(t>0)$ 176
4.5.2 Lecture 31: Properties of the LT 177
4.5.3 Solving differential equations 178
4.5.4 Exercises DE-3 180

Chapter 1

Introduction

Much of early mathematics dating before 1600 BCE centered around the love of art and music, due to the sensations of light and sound. Our psychological senses of color and pitch are determined by the frequencies (i.e., wavelengths) of light and sound. The Chinese and later the Pythagoreans are well known for their early contributions to music theory. We are largely ignorant of exactly what the Chinese scholars knew. The best record comes from Euclid, who lived in the 3rd century, after Pythagoras. Thus we can only trace the early mathematics back to the Pythagoreans in the 6th century (580-500 BCE), which is centered around the Pythagorean theorem and early music theory.

Pythagoras strongly believed that "all is number," meaning that every number, and every mathematical and physical concept, could be explained by integral (integer) relationships, mostly based on either ratios, or the Pythagorean theorem. It is likely that his belief was based on Chinese mathematics from thousands of years earlier. It is also believed that his ideas about the importance of integers followed from the theory of music. The musical notes (pitches) obey natural integral ratio relationships, based on the octave (a factor of two in frequency). The western 12-tone scale breaks the octave into 12 ratios. Today this has been rationalized to be the 12 root of 2 , which is approximately equal to $18 / 17$. This innate sense of frequency ratios comes from the physiology of the auditory organ (the cochlea) which represents a fix distance along the Organ of Corti, the sensory organ of the inner ear.

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today:
With the digital computer, digital audio, and digital video coding everything, at least approximately, into sequences of whole numbers, we are closer than ever to a world in which "all is number."

1.1 Early Science and Mathematics

While early Asian mathematics has been lost, it clearly defined the course for math for at least several thousand years. The first recorded mathematics were those of the Chinese (5000-1200 BCE) and the Egyptians ($3,300 \mathrm{BCE}$). Some of the best early records were left by the people of Mesopotamia (Iraq, $1800 \mathrm{BCE}) .{ }^{1}$ While the first 5,000 years of math are not well documented, but the basic record is clear, as outlined in Fig. 1.2 (p. 19).

Thanks to Euclid, and later Diophantus (c250 CE), we have some basic (but vague) understanding of Chinese mathematics. For example, Euclid's formula (Eq. 2.11, p. 57) provides a method for computing Pythagorean triplets, a formula believed to be due to the Chinese (Stillwell, 2010, pp. 4-9). ${ }^{2}$

Chinese bells and stringed musical instruments were exquisitely developed with tonal quality, as documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was so rich that one must ask why the Chinese failed to initiate the industrial revolution. Specifically, why

[^0]did Europe eventually dominate with its innovation when it was the Chinese who did the extensive early invention?

It could have been for the wrong reasons, but perhaps our best insight into the scientific history from China may have come from an American chemist and scholar from Yale, Joseph Needham, who learned to speak Chinese after falling in love with a Chinese woman, and ended up researching early Chinese science and technology for the US government.

According to Lin (1995) this is known as the Needham question:

> "Why did modern science, the mathematization of hypotheses about Nature, with all its implications for advanced technology, take its meteoric rise only in the West at the time of Galieo[, but] had not developed in Chinese civilization or Indian civilization?"

Needham cites the many developments in China: ${ }^{3}$
"Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon considered as the three most important inventions facilitating the West's transformation from the Dark Ages to the modern world, were invented in China." (Lin, 1995)
"Needham's works attribute significant weight to the impact of Confucianism and Taoism on the pace of Chinese scientific discovery, and emphasize what it describes as the 'diffusionist' approach of Chinese science as opposed to a perceived independent inventiveness in the western world. Needham held that the notion that the Chinese script had inhibited scientific thought was 'grossly overrated' " (Grosswiler, 2004).

Lin was focused on military applications, missing the importance of non-military contributions. A large fraction of mathematics was developed to better understand the solar system, acoustics, musical instruments and the theory of sound and light. Eventually the universe became a popular topic, as it still is today.

Regarding the "Needham question," I suspect the resolution is now clear. In the end, China withdrew itself from its several earlier expansions, based on internal politics (Menzies, 2004, 2008).

Chronological history pre $16^{\text {th }}$ century

```
20th BCE Chinese (Primes; quadratic equation; Euclidean algorithm (GCD))
18 th BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)
6 th BCE Pythagoras (Thales) and the Pythagorean "tribe"
4 th BCE Euclid (quadratic equation); Archimedes
    3d BCE Eratosthenes 276-194BCE
    3d}\mathrm{ CE Diophantus c250CE
    4 th Alexandria Library destroyed 391CE
    6 th Brahmagupta (negative numbers; quadratic equation) 598-670CE
10th al-Khwārizmi (algebra) 830CE Hasan Ibn al-Haytham (Alhazen) 965-1040CE
12 'h Bhaskara (calculus) 1114-1183 Marco Polo 1254-1324
15*)}\mathrm{ Leonardo da Vinci 1452-1519; Michelangelo 1475-1564 Copernicus 1473-1543
16 th Tartaglia (cubic eqs); Bombelli 1526-1572 Galileo Galilei 1564-1642
```

Figure 1.1: Dates of many of the individuals shown in Fig. 1.2

[^1]

Figure 1.2: Mathematical timeline between 1500 BCE and 1650 CE . The western renaissance is considered to have occurred between the $15^{\text {th }}$ and $17^{\text {th }}$ centuries. However, the Asian "renaissance" was likely well before the 1 st century (i.e., 1500 BCE). There is significant evidence that a Chinese 'treasure ship' visited Italy in 1434, initiating the Italian renaissance (Menzies, 2008). This was not the first encounter between the Italians and the Chinese, as documented in 'The travels of Marco Polo' (c1300 CE). [fig:TimeLineBCE]

1.1. L Lec 1: The Pythagorean theorem

Thanks to Euclid's Elements (c323 BCE) we have an historical record, tracing the progress in geometry, as established by the Pythagorean theorem, which states that for any right triangle having sides of lengths $(a, b, c) \in \mathbb{R}$ that are either positive real numbers, or more interesting, integers $c>[a, b] \in N$ such that $a+b>c$,

$$
\begin{equation*}
c^{2}=a^{2}+b^{2} . \tag{1.1}
\end{equation*}
$$

Early integer solutions were likely found by trial and error rather than by an algorithm.
If a, b, c are lengths, then a^{2}, b^{2}, c^{2} are each the area of a square. Equation 1.1 says that the area a^{2} plus the area b^{2} equals the area c^{2}. Today a simple way to prove this is to compute the magnitude of the complex number $c=a+b \jmath$, which forces the right angle

$$
\begin{equation*}
|c|^{2}=\left(a+b_{\jmath}\right)\left(a-b_{\jmath}\right)=a^{2}+b^{2} . \tag{1.2}
\end{equation*}
$$

However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers and algebra had yet to be discovered.

Almost 700 years after Euclid's Elements, the Library of Alexandria was destroyed by fire (391 CE), taking with it much of the accumulated Greek knowledge. As a result, one of the best technical records remaining is Euclid's Elements, along with some sparse mathematics due to Archimedes (c300 BCE) on geometrical series, computing the volume of a sphere, the area of the parabola, and elementary hydrostatics. In c1572 a copy Diophantus's Arithmetic was discovered by Bombelli in the Vatican library (Stillwell, 2010, p. 51). This book became an inspiration for Galileo, Descartes, Fermat and Newton.

Early number theory: Well before Pythagoras, the Babylonians (c1,800 BCE) had tables of triplets of integers $[a, b, c]$ that obey Eq. 1.1, such as $[3,4,5]$. However, the triplets from the Babylonians were larger numbers, the largest being $a=12709, c=18541$. A stone tablet (Plimpton-322) dating back to 1800 BCE (Fig. 2.2, p. 59) was found with integers for $[a, c]$. Given such sets of two numbers, which determined a third positive integer $b=13500$ such that $b=\sqrt{c^{2}-a^{2}}$, this table is more than convincing that the Babylonians were well aware of Pythagorean triplets (PTs), but less convincing that they had access to Euclid's formula, a formula for PTs. (Eq. 2.11 p. 57).

It seems likely that Euclid's Elements was largely the source of the fruitful era due to the Greek mathematician Diophantus (215-285) (Fig. 1.2), who developed the field of discrete mathematics now known as Diophantine analysis. The term means that the solution, not the equation, is integer. The work of Diophantus was followed by fundamental change in mathematics, possibly leading to the development of algebra, but at least including the discovery of

1. negative numbers,
2. quadratic equation (Brahmagupta, $7^{\text {th }} \mathrm{CE}$),
3. algebra (al-Khwārizmī, $9^{\text {th }} \mathrm{CE}$), and
4. complex arithmetic (Bombelli, $15^{\text {th }} \mathrm{CE}$).

These discoveries overlapped with the European middle (aka, dark) ages. While Europe went "dark," presumably European intellectuals did not stop working during these many centuries. ${ }^{4}$

1.1.2 What is mathematics?

It seems strange when people complain they "can't learn math," ${ }^{5}$ but then claim to be good at languages. Pre-high-school students tend to confuse arithmetic with math. One does not need to be good at arithmetic to be good at math (but it doesn't hurt).

Math is a language, with the symbols taken from various languages, not so different from other languages. Today's mathematics is a written language with an emphasis on symbols and glyphs, biased toward Greek letters, obviously due to the popularity of Euclid's Elements. The specific evolution of these symbols is interesting (Mazur, 2014). Each symbol is dynamically assigned a meaning, appropriate for the problem being described. These symbols are then assembled to make sentences. It is similar to Chinese in that the spoken and written versions are different across dialects. Like Chinese, the sentences may be read out loud in any language (dialect), while the mathematical sentence (like Chinese characters) is universal.

Learning languages is an advanced social skill. However, the social outcomes of learning a language and math are very different. First learning a new language is fun because it opens doors to other cultures. Second math is different due to the rigor of the rules of the language, along with the way it is taught (e.g., not as a language). A third difference between math and language is that math evolved from physics, with important technical applications.

Like any language, the more mathematics you learn, the easier it is to understand, because mathematics is built from the bottom up. It's a continuous set of concepts, much like the construction of a house. If you try to learn calculus and differential equations, while skipping simple number theory, the lessons will be more difficult to understand. You will end up memorizing instead of understanding, and as a result you will likely forget it. When you truly understand something, it can never be forgotten. A nice example is the solution to a quadratic equation: If you learn how to complete the square (p.73), you will never forget the quadratic formula.

The topics need to be learned in order, just as in the case of building the house. You can't build a house if you don't know about screws or cement (plaster). Likewise in mathematics, you will not learn to integrate if you have failed to understand the difference between integers, complex numbers, polynomials, and their roots.

A short list of topics for mathematics is numbers $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{C})$, algebra, derivatives, anti-derivatives (i.e., integration), differential equations, vectors and the spaces they define, matrices, matrix algebra, eigenvalues and vectors, solutions of systems of equations, matrix differential equations and their eigensolution. Learning is about understanding, not memorizing.

The rules of mathematics are formally defined by algebra. For example, the sentence $a=b$ means that the number a has the same value as the number b. The sentence is spoken as "a equals b." The numbers are nouns and the equal sign says they are equivalent, playing the role of a verb, or action symbol. Following the rules of algebra, this sentence may be rewritten as $a-b=0$. Here the symbols for minus and equal indicate two types of actions (verbs).

Sentences can become arbitrarily complex, such as the definition of the integral of a function, or a differential equation. But in each case, the mathematical sentence is written down, may be read out loud, has a well-defined meaning, and may be manipulated into equivalent forms following the rules of algebra and calculus. This language of mathematics is powerful, with deep consequences, first known as algorithms, but eventually as theorems.

[^2]The writer of an equation should always translate (explicitly summarize the meaning of the expression), so the reader will not miss the main point, as a simple matter of clear writing.

Just as math is a language, so language may be thought of as mathematics. To properly write correct English it is necessary to understand the construction of the sentence. It is important to identify the subject, verb, object, and various types of modifying phrases. Look up the interesting distinction between that and which. ${ }^{6}$ Thus, like math, language has rules. Most individuals use what "sounds right," but if you're learning English as a second language, it is necessary to understand the rules, which are arguably easier to master than the foreign speech sounds.

Context is everything, and the most important context is physics. Without a physical problem to solve, there can be no mathematics. People wanted to navigate the earth, and weigh things. This required an understand of gravity. Many questions about gravity were deep, such as "Where is the center of the universe?" Actually this answer is simple: Ask the Pope and he will tell you. But church dogma only goes so far. Mathematics, along with a heavy dose of physics, finally answered this huge question. Someone needed to perfect the telescope, and put satellites into space, and view the cosmos. Without mathematics none of this would have happened.

1.1.3 Early physics as mathematics: Back to Pythagoras

There is a second answer to the question What is mathematics? The answer comes from studying its history, which starts with the earliest record. This chronological view starts, of course, with the study of numbers. First there is the taxonomy of numbers. It took thousands of years to realize that numbers are more than the counting numbers \mathbb{N}, and to create a symbol for nothing (i.e., zero), and to invent negative numbers. With the invention of the abacus, a memory aid for the manipulation of complex sets of real integers, one could do very detailed calculations. But this required the discovery of algorithms (procedures) to add, subtract, multiply (many adds of the same number) and divide (many subtracts of the same number), such as the Euclidean algorithm. Eventually it became clear to the experts (early mathematicians) that there were natural rules to be discovered, thus books (e.g., Euclid's Elements) were written to summarize this knowledge.

The role of mathematics is to summarize algorithms (i.e., sets of rules), and formalize the idea as a theorem. Pythagoras and his followers, the Pythagoreans, believed that there was a fundamental relationship between mathematics and the physical world. The Pythagoreans may have been the first to capitalize on the relationship between science and mathematics, to use mathematics to design things for profit. ${ }^{7}$ This may have been the beginning of capitalizing technology (i.e., engineering), based on the relationship between physics and math. This impacted commerce in many ways, such as map making, tools, implements of war (the wheel, gunpowder), art (music), water transport, sanitation, secure communication, food, etc. Of course the Chinese were the first to master many of these technologies.

Why is Eq. 1.1 called a theorem? Theorems require a proof. What exactly needs to be proved? We do not need to prove that (a, b, c) obey this relationship, since this is a condition that is observed. We do not need to prove that a^{2} is the area of a square, as this is the definition of an area. What needs to be proved is that the relation $c^{2}=a^{2}+b^{2}$ holds if, and only if, the angle between the two shorter sides is 90°. The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras, rather they appreciated its importance, and documented its proof.

In the end the Pythagoreans, who instilled fear in the neighborhood, were burned out, and murdered, likely the fate of mixing technology with politics:
"Whether the complete rule of number (integers) is wise remains to be seen. It is said that when the Pythagoreans tried to extend their influence into politics they met with popular resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 BCE."
-Stillwell (2010, p. 16)

[^3]
1.2 Modern mathematics is born

Modern mathematics (what we practice today) was born in the $15-16^{\text {th }}$ centuries, in the minds of Leonardo da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Stillwell, 2010). Many of these early masters were, like the Pythagoreans, secretive to the extreme about how they solved problems. This soon changed due to Galileo, Mersenne, Descartes and Newton, causing mathematics to blossom. The developments during this time may seemed hectic and disconnected. But this is a wrong impression, as the development was dependent on new technologies such as the telescope (optics) and more accurate time and frequency measurements, due to Galileo's studies of the pendulum, and a better understanding of the relation $f \lambda=c_{o}$ between frequency f, wavelength λ and the wave speed c_{o}.

Chronological history: $\mathbf{1 6}^{\text {th }}$ to $19^{\text {th }}$ centuries

\|1525		\|1600	\|1643		\|1700	\|1750	\|1800	\|1855
Bombelli			Newton			Gauss		
\|1526	Galileo			cob B	noulli	Moza		
	1564	Fermat	16		Euler	\|1756		
		\|1601		Joha	Bernou		oven	
		Descartes		$\mid 166$	Daniel	oulli		
		\|1596				bert		

Figure 1.3: Timeline for the development of the theory of calculus, between $16^{\text {th }}$ and $19^{t h}$ CE. Given the timeline, it seems likely that Bombelli's discovery of Diophantus's book "Arithmetic" in the Vatican library triggered many of the ideas presented by Galileo, Descartes and Fermat, followed by others (i.e., Newton). Bombelli's discovery might be considered as a magic moment in mathematics. The vertical red lines indicate mentor-student relationships. Mozart and Beethoven are shown as landmarks. Related timelines include (see index): Fig. 1.2 (p. 19) which gives the timeline from 1500 BCE to 1650 CE; Fig. 3.1 ($p .69$) presents the 17-20 CE (Newton-Einstein) view from 1640-1950; Fig. 3.5 (p. 104) presents the period from Descartes to Gauss and Cauchy; Fig. 4.1 (p.144) presents the period from Bombelli to Einstein (1525-1925).

1.2.1 Science meets mathematics

Galileo: In 1589 Galileo famously conceptualized an experiment where he suggested dropping two different weights from the Leaning Tower of Pisa, and he suggested that they must take the same time to hit the ground.

Conceptually this is a mathematically sophisticated experiment, driven by a mathematical argument in which he considered the two weights to be connected by an elastic cord (a spring). His studies resulted in the concept of conservation of energy, one of the cornerstones of physical theory since that time.

Being joined with an elastic cord, the masses become one. If the velocity were proportional to the mass, as believed by Archimedes, the sum of the two weights would necessarily fall even faster. This results in a logical fallacy: How can two masses fall faster than either? This also violates the concept of conservation of energy, as the total energy of two masses would be greater than that of the parts. In fact Galileo's argument may have been the first time that the principle of conservation of energy was clearly stated.

It seems likely that Galileo was attracted to this model of two masses connected by a spring because he was also interested in planetary motion, which consist of masses (sun, earth, moon), also mutually attracted by gravity (i.e., the spring).

Galileo also performed related experiments on pendulums, where he varied the length l, mass m, and angle θ of the swing. By measuring the period (periods/unit time) he was able to formulate precise rules between the variables. This experiment also measured the force exerted by gravity, so the experiments were related, but in very different ways. The pendulum served as the ideal clock, as it needed very little energy to keep it going, due to its very low friction (energy loss). ${ }^{8}$

[^4]

Figure 1.4: Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses (i.e., weight) must fall with the same velocity, contrary to what Archimedes had proposed c250 BCE.

In a related experiment, Galileo measured the duration of a day by counting the number of swings of the pendulum in 24 hours, measured precisely by the daily period of a star as it crossed the tip of a church steeple. The number of seconds in a day is $24 \times 60 \times 60=86400=2^{7} 3^{3} 5^{2}$ [s/day]. Since 86,400 is the product of the first three primes, it is highly composite, and thus may be reduced in many equivalent ways. For example, the day can be divided evenly into 3 , 5 or 6 parts, and remain exact in terms of the number of seconds that transpire. Factoring the number of days in a year $(365=5 * 73)$ is not useful, since it may not be decomposed into many small primes. ${ }^{9}$ Galileo also extended work on the relationship of wavelength and frequency of a sound wave in musical instruments. On top of these impressive accomplishments, Galileo greatly improved the telescope, which he needed for his observations of the planets.

Many of Galileo's contributions resulted in new mathematics, leading to Newton's discovery of the wave equation (c1687), followed 60 years later by its one-dimensional general solution by d'Alembert (c1747).

Mersenne: Marin Mersenne (1588-1648) also contributed to our understanding of the relationship between the wavelength and the dimensions of musical instruments, and is said to be the first to measure the speed of sound. At first Mersenne strongly rejected Galileo's views, partially due to errors in Galileo's reports of his results. But once Mersenne saw the significance of Galileo's conclusion, he became Galileo's strongest advocate, helping to spread the word (Palmerino, 1999).

This incident invokes an important theorem of nature: Is data more like bread or wine? The answer is, it depends on the data. Galileo's original experiments on pendulums and ball falling down slopes, were flawed by inaccurate data. This is likely because he didn't have good clocks. But he soon solved that problem and the data became more accurate. We don't know if Mersenne repeated Galileo's experiments, and then appreciated his theory, or if he communicated with Galileo. But resolution was that the early data were like bread (it rots), but when the experimental method was improved, with a better clock, the corrected data was like wine (which gets better with age). Galileo claimed that the time for the mass to drop a fixed distance was exactly proportional to the square of the time. This expression lead to $F=m a$. One follows from the other. If the mass varies then you get Newton's second law of motion (Eq. 3.2, p. 70).

He was also a decent mathematician, inventing (1644) the Mersenne primes (MP) π_{m} of the form

$$
\pi_{m}=2^{\pi_{k}}-1
$$

where $\pi_{k}(k<m)$ denotes the k th prime (p. 32). As of Dec 201851 MPs are known. ${ }^{10}$ The first MP is $3=\pi_{2}=2^{\pi_{1}}-1$, and the largest known prime is a MP. Note that $127=\pi_{31}=2^{\pi_{7}}-1$ is the MP of the MP π_{7}.

[^5]Newton: With the closure of Cambridge University due to the plague of 1665, Newton returned home to Woolsthorpe-by-Colsterworth (95 [mi] north of London), to work by himself for over a year. It was during this solitary time that he did his most creative work.

While Newton (1642-1726) may be best known for his studies on light, he was the first to predict the speed of sound. However, his theory was in error ${ }^{11}$ by $\sqrt{c_{p} / c_{v}}=\sqrt{1.4}=1.183$. This famous error would not be resolved for 140 years, awaiting the formulation of thermodynamics and the equi-partition theorem by Laplace in 1816. ${ }^{12}$

Just 11 years prior to Newton's 1687 Principia, there was a basic understanding that sound and light traveled at very different speeds, due to the experiments of Ole Rømer. ${ }^{13} 14$

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (as opposed to instantaneously) by studying the apparent motion of Jupiter's moon Io. In 1865, James Clerk Maxwell proposed that light was an electromagnetic wave, and therefore traveled at the speed c_{o} appearing in his theory of electromagnetism. ${ }^{15}$

The idea behind Rømer's discovery was that due to the large distance between Earth and Io, there was a difference between the period of the moon when Jupiter was closest to Earth vs. when it was farthest from Earth. This difference in distance caused a delay or advance in the observed eclipse of Io as it went behind Jupiter, delayed by the difference in time due to the difference in distance. It is like watching a video of a clock, delayed or sped up. When the video is slowed down, the time will be inaccurate (it will indicate an earlier time).

Studies of vision and hearing: Since light and sound (music) played such a key role in the development of the early science, it was important to fully understand the mechanism of our perception of light and sound. There are many outstanding examples where physiology impacted mathematics. Leonardo da Vinci (1452-1519) is well known for his early studies of the human body. Exploring our physiological senses requires a scientific understanding of the physical processes of vision and hearing, first considered by Newton (1687) (1643-1727), but first properly researched much later by Helmholtz (Stillwell, 2010, p. 261). Helmholtz's (1821-1894) studies and theories of music and the perception of sound are fundamental scientific contributions (Helmholtz, 1863a). His best known mathematical contribution is today known as the fundamental theorem of vector calculus, or simply Helmholtz theorem.

The amazing Bernoulli family: The first individual who seems to have openly recognized the importance of mathematics, enough to actually teach it, was Jacob Bernoulli (1654-1705) (Fig. 1.5). Jacob worked on what is now viewed as the standard package of analytic "circular" (i.e., periodic) functions: $\sin (x), \cos (x), \exp (x)), \log (x) .{ }^{16}$ Eventually the full details were developed (for real variables) by Euler (Sections 3.1 p. 91). and ??, p. ??).

From Fig. 1.3 we see that Jacob was contemporary with Descartes, Fermat, and Newton. Thus it seems likely that he was strongly influenced by Newton, who in turn was influenced by Descartes, ${ }^{17}$ Vite and Wallis, but mostly by Galileo, who died 1 year before Newton was born, on Christmas day 1642 (Stillwell, 2010, p. 175). Because the calendar was modified during Newton's lifetime, his birth date is no longer given as Christmas.

Jacob Bernoulli, like all successful mathematicians of the day, was largely self-taught. Yet Jacob was in a new category of mathematicians because he was an effective teacher. Jacob taught his sibling Johann (1667-1748), who then taught his sibling Daniel (1700-1782). But most importantly, Johann

[^6]

Figure 13.10: Portrait of Jakob Bernoulli by Nicholas Bernoulli

Figure 10.4: Leonhard Euler

Figure 13.11: Johann Bermoulli

Figure 1.5: Above: Jakob (1655-1705) and Johann (1667-1748) Bernoulli. Below: Leonhard Euler (1707-1783) and Jean le Rond d'Alembert (1717-1783). Euler was blind in his right eye, hence the left portrait view. The figure numbers are from Stillwell (2010).
taught Leonhard Euler (1707-1783) (Figs. 1.3 and 1.5), the most prolific (thus influential) of all mathematicians. This teaching resulted in an explosion of new ideas and understanding. It is most significant that all four mathematicians published their methods and findings. Much later, Jacob studied with students of Descartes ${ }^{18}$ (Stillwell, 2010, p. 268-9).

Euler: Euler's mathematical talent went far beyond the Bernoulli family (Stillwell, 2010, p. 315). Another special strength of Euler was the degree to which he published. First he would master a topic, and then he would publish. His papers continued to appear long after his death (Calinger, 2015). It is also somewhat interesting that Leonhard Euler was a contemporary of Mozart (and James Clerk Maxwell of Abraham Lincoln).

Bach's mathematics: It turns out which I need to further document that JS Bach did a mathematical analysis of music. This seems to be about the same time that Euler was writing a book on music theory. Someone please help to fill in these details. ${ }^{19}$
d'Alembert: Another individual of that time of special note, who also published extensively, was d'Alembert (Fig. 1.5). Some of the most innovative ideas were first proposed by d'Alembert. Unfortunately, and perhaps somewhat unfairly, his rigor was criticized by Euler, and later by Gauss (Stillwell, 2010). But once the tools of mathematics were finally openly published, largely by Euler, mathematics grew exponentially. ${ }^{20}$

Gauss: Figure 4.1 (p. 144) shows the timeline of the most famous mathematicians. It was one of the most creative times in mathematics. Gauss was born at the end of Euler's long and productive life. I suspect that Gauss owed a great debt to Euler: surely he must have been a scholar of Euler. One of Gauss's most important achievements may have been his contribution to solving the open question about the density of prime numbers. ${ }^{21}$

1.2.2 Three Streams from the Pythagorean theorem

From the outset of his presentation, Stillwell (2010, p. 1) defines "three great streams of mathematical thought: Numbers, Geometry and Infinity" that flow from the Pythagorean theorem, as summarized in Table 1.1. This is a useful concept, based on reasoning not as obvious as one might think. Many factors are in play here. One of these is the strongly held opinion of Pythagoras that all mathematics should be based on integers. ${ }^{22}$ The rest are tied up in the long, necessarily complex history of mathematics, as best summarized by the fundamental theorems (Table 2.1, p. 40), each of which is discussed in detail in a relevant chapter. Stillwell's concept of three streams, following from the Pythagorean theorem, is the organizing principle behind this book:

1. Introduction Section 1 is intended to be a self-contained survey of basic pre-college mathematics, as a detailed overview of the fundamentals, presented as three main streams:

2 Number systems: Stream 1 (p. 31)
3 Algebraic equations: Stream 2 (p. 69)
4 Scalar calculus: Stream 3a (p. 143)

[^7]Table 1.1: Three streams followed from Pythagorean theorem: number systems (Stream 1), geometry (stream 2) and infinity (stream 3).

- The Pythagorean theorem is the mathematical spring which bore the three streams.
- Several centuries per stream:

> 1) Numbers:
> $6^{\text {th }} \mathrm{BCE} \mathbb{N}$ counting numbers, \mathbb{Q} rationals, \mathbb{P} primes
> $5^{\text {th }} B C E \mathbb{Z}$ common integers, \mathbb{I} irrationals
> $7^{\text {th }} C E$ zero $\in \mathbb{Z}$
> 2) Geometry: (e.g., lines, circles, spheres, toroids, ...)
> $17^{\text {th }}$ CE Composition of polynomials (Descartes, Fermat) Euclid's geometry \& algebra \Rightarrow analytic geometry
> $18^{\text {th }} \mathrm{CE}$ Fundamental theorem of algebra
> 3) Infinity: $(\infty \rightarrow$ Sets)
> $17-18^{\text {th }} \mathrm{CE}$ Taylor series, functions, calculus (Newton, Leibniz)
> $19^{\text {th }} \mathrm{CE} \mathbb{R}$ real, \mathbb{C} complex 1851
> $20^{\text {th }} \mathrm{CE}$ Set theory

5 Vector calculus: Stream 3b (p. 185)
If you're a student, stick to these sections.
Sections 2-5 are disorganized research ideas that have not yet found a home. Students, please stay out of these later chapters.
2. Number Systems (Stream 1, p. ??) Some uncertain ideas of number systems, starting with prime numbers, through complex numbers, vectors and matrices.
3. Algebraic Equations (Stream 2, p. ??) Algebra and its development, as we know it today. The theory of real and complex equations and functions of real and complex variables. Complex impedance $Z(s)$ of complex frequency $s=\sigma+\omega \jmath$ is covered with some care, developing the topic which is needed for engineering mathematics.
4. Scalar Calculus (Stream 2a) Ordinary differential equations. Integral theorems. Acoustics.
5. Vector Calculus: (Stream 2b) Vector partial differential equations. Gradient, divergence and curl differential operators. Stokes's and Green's theorems. Maxwell's equations.

Chapter 2

Stream 1: Number Systems

Number theory (the study of numbers) was a starting point for many key ideas. For example, in Euclid's geometrical constructions the Pythagorean theorem for real $[a, b, c]$ was accepted as true, but the emphasis in the early analysis was on integer constructions, such as Euclid's formula for Pythagorean triplets (Eq. 2.11, Fig. 2.7, p. 57).

As we shall see, the derivation of the formula for the Pythagorean triplets is the first of a rich source of mathematical constructions, such as solutions of the Fibonacci recursion formula $f_{n+1}=$ $f_{n}+f_{n-1}$ (p.61), and solutions of Pell's equation (p.59), ${ }^{1}$ Recursive difference equation solutions predate calculus, going back at least to the Chinese (c2000 BCE). These are early (pre-limit) forms of linear differential equations, best analyzed using an eigen-function (e.g., eigenmatrix) expansion (a geometrical concept from linear algebra), as an orthogonal set of normalized unit-length vectors (Appendix B.2, p. 261).

The first use of zero and ∞ : It is hard to imagine that one would not appreciate the concept of zero and negative numbers when using an abacus. It does not take much imagination to go from counting numbers \mathbb{N} to the set of all integers \mathbb{Z}, including zero. On an abacus, subtraction is obviously the inverse of addition. Subtraction, to obtain zero abacus beads, is no different than subtraction from zero, giving negative beads. To assume the Romans, who first developed counting sticks, or the Chinese who then deployed the concept using beads, did not understand negative numbers, is impossible.

However, understanding the concept of zero (and negative numbers) is not the same as having a symbolic notation. The Roman number system has no such symbols. The first recorded use of a symbol for zero is said to be by Brahmagupta ${ }^{2}$ in 628 CE. ${ }^{34}$ Defining zero (c628 CE) depends on the concept of subtraction, which formally requires the creation of algebra (c830 CE, Fig. 1.2, p. 19). But apparently it takes more than 600 years, i.e., from the time Roman numerals were put into use, without any symbol for zero, to the time when the symbol for zero is first documented. Likely this delay is more about the political situation, such as government rulings, than mathematics.

The concept that caused much more difficulty was ∞, first resolved by Riemann in 1851 with the development of the extended plane, which mapped the plane to a sphere (Fig. 3.7 p. 135). His construction made it clear that the point at ∞ is simply another point on the open complex plane, since rotating the sphere (extended plane) moves the point at ∞ to a finite point on the plane, thereby closing the complex

[^8]
2.1 Lec 2: The taxonomy of numbers: $\mathbb{N}, \mathbb{P}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C}$

Once symbols for zero and negative numbers were accepted, progress could be made. To fully understand numbers, a transparent notation was required. First one must differentiate between the different classes (genus) of numbers, providing a notation that defines each of these classes, along with their relationships. It is logical to start with the most basic counting numbers, which we indicate with the doublebold symbol \mathbb{N}. For easy access, double-bold symbols and set-theory symbols, i.e., $\{\cdot\}, \cup, \cap, \in, \notin, \perp$ etc., are summarized in Appendix A, Sect. A.4, p. 247.

Counting numbers \mathbb{N} : These are known as the "natural numbers" $\mathbb{N}=\{1,2,3, \cdots\}$, denoted by the double-bold symbol \mathbb{N}. For clarity we shall refer to the natural numbers as counting numbers, since natural, which means integer, is vague. The mathematical sentence " $2 \in \mathbb{N}$ " is read as 2 is a member of the set of counting numbers. The word set is defined as the collection of any objects that share a specific property. Typically the set may be defined either as a sentence, or by example.

Primes \mathbb{P} : A number is prime $\left(\pi_{n} \in \mathbb{P}\right)$ if its only factors are 1 and itself. The set of primes \mathbb{P} is a subset of the counting numbers $(\mathbb{P} \subset \mathbb{N})$. A somewhat amazing fact, well known to the earliest mathematicians, is that every integer may be written as a unique product of primes. A second key idea is that the density of primes $\rho_{\pi}(N) \sim 1 / \log (N)$, that is $\rho_{\pi}(N)$ is inversely proportional to the \log of N (Eq. ??, p. ??), an observation first made by Gauss (Goldstein, 1973). A third is that there is a prime between every integer $N>2$ and $2 N$.

We shall use the convenient notation π_{n} for the prime numbers, indexed by $n \in \mathbb{N}$. The first 12 primes $\{n \mid 1 \leq n \leq 12\}=\left\{\pi_{n} \mid 2,3,5,7,11,13,17,19,23,29,31,37\right\}$. Since $4=2^{2}$ and $6=2 \cdot 3$ may be factored, $4,6 \notin \mathbb{P}$ (read as: 4 and 6 are not in the set of primes). Given this definition, multiples of a prime, i.e., $[2,3,4,5, \ldots] \cdot \pi_{k}$ of any prime π_{k}, cannot be prime. It follows that all primes except 2 must be odd and every integer N is unique in its prime factorization.

Exercise: Write out the first 10 to 20 integers in prime-factored form. Solution: 1, 2, 3, 22, 5, 2 . $3,7,2^{3}, 3^{2}, 2 \cdot 5,11,3 \cdot 2^{2}, 13,2 \cdot 7,3 \cdot 5,2^{4}, 17,2 \cdot 3^{2}, 19,2^{2} \cdot 5$.

Exercise: Write integers 2 to 20 in terms of π_{n}. Here is a table to assist you:

n	1	2	3	4	5	6	7	8	9	10	11	\cdots
π_{n}	2	3	5	7	11	13	17	19	23	29	31	\cdots

Solution:

n	2	3	4	5	6	7	8	9	10	11	12	13	14	\cdots
$\Pi \pi_{n}$	π_{1}	π_{2}	π_{1}^{2}	π_{3}	$\pi_{1} \pi_{2}$	π_{4}	π_{1}^{3}	π_{2}^{2}	$\pi_{1} \pi_{3}$	π_{5}	$\pi_{1}^{2} \pi_{2}$	π_{6}	$\pi_{1} \pi_{4}$	\cdots

Coprimes, or relatively prime, are two numbers with no common (i.e, prime) factors. For example, $21=3 \cdot 7$ and $10=2 \cdot 5$ are coprime whereas $4=2 \cdot 2$ and $6=2 \cdot 3$, which have 2 as a common factor, are not. By definition all unique pairs of primes are coprime. We shall use the notation $m \perp n$ to indicate that m, n are coprime. The ratio of two coprimes is reduced, as it has no factors to cancel. The ratio of two numbers that are not coprime may always be reduced by canceling the common factors. This is called the reduced form, or an irreducible fraction. When doing numerical work, for computational accuracy it is always beneficial to work with coprimes. Generalizing this idea we could define tri-primes as three primes with no common factor, such as $\left\{\pi_{3}, \pi_{9}, \pi_{2}\right\}$.

The fundamental theorem of arithmetic states that each integer may be uniquely expressed as a product of primes. The Prime Number Theorem estimates the mean density of primes over \mathbb{N}.

Integers \mathbb{Z} : These include positive and negative counting numbers and zero. Notionally we might indicate this using set notation as $\mathbb{Z}=-\mathbb{N} \cup\{0\} \cup \mathbb{N}$. Read this as The integers are in the set composed of the negative natural numbers $-\mathbb{N}$, zero, and \mathbb{N}.

Rational numbers \mathbb{Q} : These are defined as numbers formed from the ratio of two integers. Given two numbers $n, d \in \mathbb{N}$, then $n / d \in \mathbb{Q}$. Since d may be 1 , it follows that the rationals include the counting numbers as a subset. For example, the rational number $3 / 1 \in \mathbb{N}$.

The main utility of rational numbers is that that they can efficiently approximate any number on the real line, to any precision. For example, the rational approximation $\pi \approx 22 / 7$ has a relative error of $\approx 0.04 \%$.

Fractional number $\mathbb{F}: \quad$ A fractional number \mathbb{F} is defined as the ratio of signed coprimes. If $n, d \in \pm \mathbb{P}$, then $n / d \in \mathbb{F}$. Given this definition, $\mathbb{F} \subset \mathbb{Q}=\mathbb{Z} \cup \mathbb{F}$. Because of the powerful approximating power of rational numbers, the fractional set \mathbb{F} has special utility. For example, $\pi \approx 22 / 7,1 / \pi \approx 7 / 22$ (to 0.04%), $e \approx 19 / 7$ to 0.15%, and $\sqrt{2} \approx 7 / 5$ to 1%.

Irrational numbers \mathbb{I} : Every real number that is not rational is irrational $(\mathbb{Q} \perp \mathbb{I})$. Irrational numbers include π, e and the square roots of primes. These are decimal numbers that never repeat, thus requiring infinite precision in their representation. Such numbers cannot be represented on a computer, as they would require an infinite number of bits (precision).

The rationals \mathbb{Q} and irrationals \mathbb{I} split the reals $(\mathbb{R}=\mathbb{Q} \cup \mathbb{I}, \mathbb{Q} \perp \mathbb{I})$, thus each is a subset of the reals $(\mathbb{Q} \subset \mathbb{R}, \mathbb{I} \subset \mathbb{R})$. This relation is analogous to that of the integers \mathbb{Z} and fractionals \mathbb{F}, which split the rationals $(\mathbb{Q}=\mathbb{Z} \cup \mathbb{F}, \mathbb{Z} \perp \mathbb{F})$ (thus each is a subset of the rationals $(\mathbb{Z} \subset \mathbb{Q}, \mathbb{F} \subset \mathbb{Q})$).

Irrational numbers (\mathbb{I}) were famously problematic for the Pythagoreans, who incorrectly theorized that all numbers were rational. Like ∞, irrational numbers required mastering a new and difficult concept before they could even be defined: It was essential to understand the factorization of counting numbers into primes (i.e., the fundamental theorem of arithmetic) before the concept of irrationals could be sorted out. Irrational numbers could only be understood once limits were mastered.

As discussed in Sect. 2.3 .2 (p. 54), fractionals can approximate any irrational number with arbitrary accuracy. Integers are also important, but for a very different reason. All numerical computing today is done with $\mathbb{Q}=\mathbb{F} \cup \mathbb{Z}$. Indexing uses integers \mathbb{Z}, while the rest of computing (flow dynamics, differential equations, etc.) is done with fractionals \mathbb{F} (i.e., IEEE-754). Computer scientists are trained on these topics, and computer engineers need to be at least conversant with them.

Real numbers \mathbb{R} : Reals are the union of rational and irrational numbers, namely $\mathbb{R}=\mathbb{Q} \cup \mathbb{I}=$ $\mathbb{Z} \cup \mathbb{F} \cup \mathbb{I}$. Lengths in Euclidean geometry are reals. Many people assume that IEEE 754 floating point numbers (c1985) are real (i.e., $\in \mathbb{R}$). In fact they are rational $(\mathbb{Q}=\{\mathbb{F} \cup \mathbb{Z}\})$ approximations to real numbers, designed to have a very large dynamic range. The hallmark of fractional numbers (\mathbb{F}) is their power in making highly accurate approximations of any real number.

Using Euclid's compass and ruler methods, one can make line length proportionally shorter or longer, or (approximately) the same. A line may be made be twice as long, an angle bisected. However, the concept of an integer length in Euclid's geometry was not defined. ${ }^{5}$ Nor can one construct an imaginary or complex line, as all lines are assumed to be real lengths.

Real numbers were first fully accepted only after set theory was developed by Cantor (1874) (Stillwell, 2010, pp. 461). At first blush, this seems amazing, given how widely accepted real numbers are today. In some sense they were accepted by the Greeks, as lengths of real lines.

Complex numbers \mathbb{C} : Complex numbers are best defined as ordered pairs of real numbers. ${ }^{6}$ For example, if $a, b \in \mathbb{R}$ and $\jmath=-\imath= \pm \sqrt{-1}$, then $c=a+b \jmath \in \mathbb{C}$. The word "complex," as used here, does not mean that the numbers are complicated or difficult. They are also known as "imaginary" numbers, but this does not mean the numbers disappear. Complex numbers are quite special in engineering

[^9]mathematics, as roots of polynomials. The most obvious example is the quadratic formula, for the roots of polynomials of degree 2 , having coefficients $\in \mathbb{C}$. All real numbers have a natural order on the real line. Complex numbers do not have a natural order. For example, $\jmath>1$ makes no sense.

Today the common way to write a complex number is using the notation $z=a+b_{\jmath} \in \mathbb{C}$, where $a, b \in \mathbb{R}$. Here $1 \jmath=\sqrt{-1}$. We also define $1 \imath=-1 \jmath$ to account for the two possible signs of the square root. Accordingly $1 \jmath^{2}=1 \imath^{2}=-1$.

Cartesian multiplication of complex numbers follows the basic rules of real algebra, for example, the rules of multiplying two monomials and polynomials. Multiplication of two first-degree polynomials (i.e., monomials) gives

$$
(a+b x)(c+d x)=a c+(a d+b c) x+b d x^{2} .
$$

If we substitute $1 \jmath$ for x, and use the definition $1 \jmath^{2}=-1$, we obtain the Cartesian product of the two complex numbers

$$
(a+b \jmath)(c+d \jmath)=a c-b d+(a d+b c) \jmath .
$$

Thus multiplication and division of complex numbers obey the usual rules of algebra.
However, there is a critical extension: Cartesian multiplication only holds when the angles sum to less than $\pm \pi$, namely the range of the complex plane. When the angles add to more that $\pm \pi$, one must use polar coordinates, where the angles add for angles beyond $\pm \pi$ (Boas, 1987, p. 8). This is particularly striking for the Laplace transform of a delay (Table C.2, p. 268).

Complex numbers can be challenging, providing unexpected results. For example, it is not obvious that $\sqrt{3+4 \jmath}= \pm(2+\jmath)$.

Exercise: Verify that $\sqrt{3+4 \jmath}= \pm(2+\jmath)$. Solution: Square the left side gives $\sqrt{3+4 \jmath}^{2}=3+4 \jmath$. Squaring the right side gives $(2+\jmath)^{2}=4-\jmath^{2}+4 \jmath=3+4 \jmath$. Thus the two are equal.

Exercise: What is special about this example? Solution: Note this is a $\{3,4,5\}$ triangle. Can you find another example like this one? Namely how does one find integers that obey Eq. 1.1 (p. 19)?

An alternative to Cartesian multiplication of complex numbers is to work in polar coordinates. The polar form of complex number $z=a+b \jmath$ is written in terms of its magnitude $\rho=\sqrt{a^{2}+b^{2}}$ and angle $\theta=\angle z=\tan ^{-1} z=\arctan z$, as

$$
z=\rho e^{\theta_{\jmath}}=\rho(\cos \theta+\jmath \sin \theta)
$$

From the definition of the complex natural log function

$$
\ln z=\ln \rho e^{\theta_{\jmath}}=\ln \rho+\theta_{J},
$$

which is important, even critical, in engineering calculations. When the angles of two complex numbers are greater that $\pm \pi$, one must use polar coordinates. It follows that when computing the phase, this is much different than the single- and double-argument $\angle \theta=\arctan (z)$ function.

The polar representation makes clear the utility of a complex number: Its magnitude scales while its angle Θ rotates. The property of scaling and rotating is what makes complex numbers useful in engineering calculations. This is especially obvious when dealing with impedances, which have complex roots with very special properties, as discussed in Sect. 4.3 (p. 154).

Matrix representation: An alternative way to represent complex numbers is in terms of 2×2 matrices. This relationship is defined by the mapping from a complex number to a 2×2 matrix

$$
a+b_{J} \leftrightarrow\left[\begin{array}{cc}
a & -b \tag{2.1}\\
b & a
\end{array}\right], \quad 1 \leftrightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right], \quad 1 \jmath \leftrightarrow\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad e^{\theta_{\jmath}} \leftrightarrow\left[\begin{array}{cc}
\sin (\theta) & -\cos (\theta) \\
\cos (\theta) & \sin (\theta)
\end{array}\right] .
$$

The conjugate of $a+b \jmath$ is then defined as $a-b \jmath \leftrightarrow\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$. By taking the inverse of the 2×2 matrix (assuming $\left|a+b_{j}\right| \neq 0$), one can define the ratio of one complex number by another. Until you try out this representation, it may not seem obvious, or even that it could work.

This representation proves that $1 \jmath$ is not necessary when defining a complex number. What $1 \jmath$ can do is to conceptually simplify the algebra. It is worth your time to become familiar with the matrix representation, to clarify any possible confusions you might have about multiplication and division of complex numbers. This matrix representation can save you time, heartache and messy algebra. Once you have learned how to multiply two matrices, it's a lot simpler than doing the complex algebra. In many cases we will leave the results of our analysis in matrix form, to avoid the algebra altogether. ${ }^{7}$ Thus both representations are important. More on this topic may be found in Section ?? (p. ??).

History of complex numbers: It is notable how long it took for complex numbers to be accepted (1851), relative to when they were first introduced by Bombelli ($16^{\text {th }}$ century CE). One might have thought that the solution of the quadratic, known to the Chinese, would have settled this question. It seems that complex integers (aka, Gaussian integers) were accepted before non-integral complex numbers. Perhaps this was because real numbers (\mathbb{R}) were not accepted (i.e., proved to exist, thus mathematically defined) until the development of real analysis in the late $19^{\text {th }}$ century, thus sorting out a proper definition of the real number (due to the existence of irrational numbers).

Exercise: Using Matlab/Octave, verify that

$$
\frac{a+b \jmath}{c+d \jmath}=\frac{a b+b d+(b c-a d) \jmath}{c^{2}+d^{2}} \longleftrightarrow\left[\begin{array}{cc}
a & -b \tag{2.2}\\
b & a
\end{array}\right]\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]^{-1}=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{cc}
c & d \\
-d & c
\end{array}\right] \frac{1}{c^{2}+d^{2}}
$$

Solution: The best way may be using numbers. The better solution is to use a symbolic code:

```
syms a b c d A B
```

$\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & -\mathrm{b} ; \mathrm{b} & \mathrm{a}\end{array}\right]$;
$B=\left[\begin{array}{ll}c & -d ; d\end{array}\right]$;
$\mathrm{C}=\mathrm{A} * \operatorname{inv}(\mathrm{~B})$

2.1.1 Numerical taxonomy:

A simplified taxonomy of numbers is given by the mathematical sentence

$$
\pi_{k} \in \mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

This sentence says:

1. Every prime number π_{k} is in the set of primes \mathbb{P},
2. which is a subset of the set of counting numbers \mathbb{N},
3. which is a subset of the set of integers $\mathbb{Z}=-\mathbb{N},\{0\}, \mathbb{N}$,
4. which is a subset of the set of rationals \mathbb{Q} (ratios of signed counting numbers $\pm \mathbb{N}$),
5. which is a subset of the set of reals \mathbb{R},
6. which is a subset of the set of complex numbers \mathbb{C}.
[^10]The rationals \mathbb{Q} may be further decomposed into the fractionals \mathbb{F} and the integers $\mathbb{Z}(\mathbb{Q}=\mathbb{F} \cup \mathbb{Z})$, and the reals \mathbb{R} into the rationals \mathbb{Q} and the irrationals $\mathbb{I}(\mathbb{R}=\mathbb{I} \cup \mathbb{Q})$. This classification nicely defines all the numbers (scalars) used in engineering and physics.

The taxonomy structure may be summarize with the single compact sentence, starting with the prime numbers π_{k} and ending with complex numbers \mathbb{C} :

$$
\pi_{k} \in \mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset(\mathbb{Z} \cup \mathbb{F}=\mathbb{Q}) \subset(\mathbb{Q} \cup \mathbb{I}=\mathbb{R}) \subset \mathbb{C}
$$

As discussed in Appendix A (p. 247), all numbers may be viewed as complex. Namely, every real number is complex if we take the imaginary part to be zero (Boas, 1987). For example, $2 \in \mathbb{P} \subset \mathbb{C}$. Likewise every purely imaginary number (e.g., $0+1 \jmath$) is complex with zero real part.

Finally, note that complex numbers \mathbb{C}, much like vectors, do not have "rank-order," meaning one complex number cannot be larger or smaller than another. It makes no sense to say that $\jmath>1$ or $\jmath=1$ (Boas, 1987). The real and imaginary parts, and the magnitude and phase, have order. Order seems restricted to \mathbb{R}. If time t were complex, there could be no yesterday and tomorrow. ${ }^{8}$

2.1.2 Applications of integers

The most relevant question at this point is "Why are integers important?" First, we count with them, so we can keep track of "how much." But there is much more to numbers than counting: We use integers for any application where absolute accuracy is essential, such as banking transactions (making change), 5 the precise computing of dates (Stillwell, 2010, p. 70) and locations ("I'll meet you at $34 t h$ and Vine at noon on Jan. 1, 2034."), or building roads or buildings out of bricks (objects built from a unit size).

To navigate we need to know how to predict the tides, the location of the moon and sun, etc. Integers are important, precisely because they are precise: Once a month there is a full moon, easily recognizable. The next day it's slightly less than full. If one could represent our position as integers in time and space, we would know exactly where we are at all times. But such an integral representation of our position or time is not possible.

The Pythagoreans claimed that all was integer. From a practical point of view, it seems they were right. Today all computers compute floating point numbers as fractionals. However, in theory they were wrong. The error (difference) is a matter of precision.

Numerical Representations of $\mathbb{I}, \mathbb{R}, \mathbb{C}$: When doing numerical work, one must consider how we may compute within the set of reals (i.e., which contain irrationals). There can be no irrational number representation on a computer. The international standard of computation, IEEE floating point numbers, ${ }^{9}$ is based on rational approximation. The mantissa and the exponent are both integers, having sign and magnitude. The size of each integer depends on the precision of the number being represented. An IEEE floating-point number is rational because it has a binary (integer) mantissa, multiplied by 2 raised to the power of a binary (integer) exponent. For example, $\pi \approx \pm a 2^{ \pm b}$ with $a, b \in \mathbb{Z}$. In summary, IEEE floating-point rational numbers cannot be irrational, because irrational representations would require an infinite number of bits.

True floating point numbers contain irrational numbers, which must be approximated by fractional numbers. This leads to the concept of fractional representation, which requires the definition of the mantissa, base and exponent, where both the mantissa and the exponent are signed. Numerical results must not depend on the base. One could dramatically improve the resolution of the numerical representation by the use of the fundamental theorem of arithmetic (Section 2.2.2, page 41). For example, one could factor the exponent into its primes and then represent the number as $a 2^{b} 3^{c} 5^{d} 7^{e}(a, b, c, d, e \in \mathbb{Z})$,

[^11]etc. Such a representation would improve the resolution of the representation. But even so, the irrational numbers would be approximate. For example, base ten ${ }^{10}$ is natural using this representation since $10^{n}=2^{n} 5^{n}$. Thus
$$
\pi \cdot 10^{5} \approx 314159.27 \ldots=3 \cdot 2^{5} 5^{5}+1 \cdot 2^{4} 5^{4}+4 \cdot 2^{3} 5^{3}+\cdots+9 \cdot 2^{0} 5^{0}+\not 2 \cdot 2^{-1} 5^{-1} \cdots
$$

Exercise: If we work in base 2, and use the approximation $\pi \approx 22 / 7$, then according to the Matlab/Octave $\operatorname{DEC} 2 \operatorname{BIN}()$ routine, show that the binary representation of $\hat{\pi}_{2} \cdot 2^{17}$ is

$$
\pi \cdot 2^{17} \approx 411,940_{10}=64,924_{16}=1100100100100100100_{2}
$$

Solution: First we note that this must be an approximation since $\pi \in \mathbb{I}$, which cannot have an exact representation $\in \mathbb{F}$. Thus above, we have asked for a large integer approximation to π, with

$$
\begin{equation*}
\hat{\pi}_{2}=22 / 7=3+1 / 7=[3 ; 7], \tag{2.3}
\end{equation*}
$$

where int $64\left(\operatorname{fix}\left(2^{\wedge} 17 * 22 / 7\right)\right)=411,940$ and dec2hex (int64 (fix (2^17*22/7))) $=64,924$, where 1 and 0 are multipliers of powers of 2 , which are then added together as follows:

$$
411,940_{10}=2^{18}+2^{17}+2^{14}+2^{11}+2^{8}+2^{5}+2^{2}
$$

Computers keep track of the decimal point using the exponent, which in this case is the factor 2^{17} $=131072_{10}$. The concept of the decimal point is replaced by an integer, having the desired precision, and a scale factor of any base (radix). This scale factor may be thought of as moving the decimal point to the right (larger number) or left (smaller number). The mantissa "fine-tunes" the value about a scale factor (the exponent). In all cases the number actually used is a positive integer. Negative numbers are represented by an extra sign bit.

Exercise: Using Matlab/Octave, use base 16 (i.e., hexadecimal) numbers, with $\pi \approx 22 / 7$, find

1. $\pi \times 10^{5}$

Solution: Using the command dec2hex (fix (22/8*1e5)) we get $4 c b a d_{16}$, since $22 / 7 \times 10^{5}=$ $314285.7 \cdots$ and hex2dec ($\left.{ }^{\prime} 4 \mathrm{cbad}^{\prime}\right)=314285$.
2. $2^{17} \cdot 22 / 7$

Solution: $2^{18} \cdot 11_{16} / 7_{16}$.
Exercise: Write out the first 11 primes, base 16. Solution: The Octave/Matlab command dec2hex () provides the answer:

n	dec	1	2	3	4	5	6	7	8	9	10	11	\cdots
π_{n}	dec	2	3	5	7	11	13	17	19	23	29	31	\cdots
π_{n}	hex	2	3	5	7	0 B	0D	11	13	17	1 D	1 F	\cdots

Example: $x=2^{17} \times 22 / 7$, using IEEE-754 double precision, ${ }^{11}$

$$
\begin{aligned}
x & =411,940.5625_{10} \\
& =2^{54} \times 1198372 \\
& =0,10010,00,110010,010010,010010,010010_{2} \\
& =0 x 48 c 92492_{16} .
\end{aligned}
$$

[^12]The exponent is 2^{18} and the mantissa is $4,793,490_{10}$. Here the commas in the binary $(0,1)$ string are to help visualize the quasi-periodic nature of the bit-stream. The numbers are stored in a 32 bit format, with 1 bit for sign, 8 bits for the exponent and 23 bits for the mantissa. Perhaps a more instructive number is

$$
\begin{aligned}
x & =4,793,490.0 \\
& =0,100,1010,100,100,100,100,100,100,100,100_{2} \\
& =0 x 4 a 924924_{16}
\end{aligned}
$$

which has a repeating binary bit pattern of $((100))_{3}$, broken by the scale factor $0 x 4 a$. Even more symmetrical is

$$
\begin{aligned}
x & =0 x 24,924,924_{16} \\
& =00,100,100,100,100,100,100,100,100,100,100_{2} \\
& =6.344,131,191,146,900 \times 10^{-17} .
\end{aligned}
$$

In this example the repeating pattern is clear in the hex representation as a repeating $((942))_{3}$, as represented by the double brackets, with the subscript indicating the period, in this case, three digits. As before, the commas are to help with readability and have no other meaning.

The representation of numbers is not unique. For example, irrational complex numbers have approximate rational representations (i.e., $\pi \approx 22 / 7$). A better example is complex numbers $z \in \mathbb{C}$, which have many representations, as a pair of reals (i.e., $z=(x, y)$), or by Euler's formula, and matrices $(\theta \in \mathbb{R})$

$$
e^{\jmath \theta}=\cos \theta+j \sin \theta \leftrightarrow\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

At a higher level, differentiable functions, aka, analytic functions, may be represented by a single-valued 5 Taylor series expansion (Sect. 3.2.2, p. 85), limited by its region of convergence (RoC).

Pythagoreans and Integers: The integer is the cornerstone of the Pythagorean doctrine, so much so that it caused a fracture within the Pythagoreans when it was discovered that not all numbers are rational. One famous proof of such irrational numbers comes from the spiral of Theodorus, as shown in Fig. 2.1, where the short radius of each triangle has length $b_{n}=\sqrt{n}$ with $n \in \mathbb{N}$, and the long radius (the hypotenuses) is $c_{n}=\sqrt{1+b_{n}^{2}}=\sqrt{1+n}$. This figure may be constructed using a compass and ruler by maintain right triangles.

Figure 2.1: This construction is called the spiral of Theodorus, made from contiguous triangles having lengths $a=1$, $b_{n}=\sqrt{n}$, with $n \in \mathbb{N}$, and $c_{n}=\sqrt{n+1}$. In this way, each value of $c_{n}^{2}=b_{n}^{2}+1 \in \mathbb{N}$ (Adapted from https://en.wikipedia.org/wiki/sprial_of_Theodorus). The first side that is not a perfect square is $c_{1}=\sqrt{2}$, as are most values of c_{n}.

Public-key security: An important application of prime numbers is public-key encryption, essential for internet security applications (e.g., online banking). Most people assume encryption is done by a
personal login and passwords. Passwords are fundamentally insecure, for many reasons. Decryption depends on factoring large integers, formed from products of primes having thousands of bits. ${ }^{12}$ The security is based on the relative ease of multiplying large primes, along with the virtual impossibility of factoring their products.

When a computation is easy in one direction, but its inverse is impossible, it is called a trap-door function. We shall explore trapdoor functions in Appendix ??. If everyone were to switch from passwords to public-key encryption, the internet would be much more secure. ${ }^{13}$

Puzzles: Another application of integers is imaginative problems that use integers. An example is the classic Chinese four stone problem: Find the weight of four stones that can be used with a scale to weigh anything (e.g., salt, gold) between $0,1,2, \ldots, 40$ [gm] (Fig. 1.1, p. 118 in Assignment AE-2). As with the other problems, the answer is not as interesting as the method, since the problem may be easily recast into a related one. This type of problem can be found in airline magazines as amusement on a long flight. This puzzle is best cast as a linear algebra problem, with integer solutions. Again, once you know the trick, it is "easy." ${ }^{14}$

2.2 Lec 3: The role of physics in mathematics

Bells, chimes and eigenmodes: Integers naturally arose in art, music and science. Examples include the relations between musical notes, the natural eigenmodes (tones) of strings and other musical instruments. These relations were so common that Pythagoras believed that to explain the physical world (aka, the universe), one needed to understand integers. As discussed on p. 17, "all is integer" was a seductive song (Stillwell, 2010, p. 16).

As will be discussed in Sections 3.1 (p. 70), it is best to view the relationship between acoustics, music and mathematics as historical, since these topics inspired the development of mathematics. Today integers play a key role in quantum mechanics, again based on eigenmodes, but in this case, eigenmodes follow from solutions of Schrödinger equation, with the roots of the characteristic equation being purely imaginary. If there were a real part (i.e., damping), the modes would not be integers.

As discussed by Salmon (1946, p. 201), Schrödinger's equation follows directly from the Webster horn equation. While Morse (1948, p. 281) fails to make the direct link, he comes close to the same view when he shows that the real part of the horn resistance goes exactly to zero below a cutoff frequency. He also discusses the trapped modes inside musical instruments due to the horn flair (p. 268). One may infer Morse read his student Salmon's paper on horns, since he cites Salmon (Morse, 1948, Footnote 1, p. 271).

Engineers are so accustomed to working with real (or complex) numbers, the distinction between real (i.e., irrational) and fractional numbers is rarely acknowledged. Integers, on the other-hand, arise in many contexts. One cannot master programming computers without understanding integer, hexadecimal, octal, and binary representations, since all numbers in a computer are represented in numerical computations in terms of rationals $(\mathbb{Q}=\mathbb{Z} \cup \mathbb{F}) .{ }^{15}$

As discussed in Section 2.1 (p. 32), the primary reason integers are so important is their absolute precision. Every integer $n \in \mathbb{Z}$ is unique, ${ }^{16}$ and has the indexing property, which is essential for making lists that are ordered, so that one can quickly look things up. The alphabet also has this property (e.g., a book's index).

[^13]Because of the integer's absolute precision, the digital computer quickly overtook the analog computer, once it was practical to make logic circuits that were fast. From 1946 the first digital computer was thought to be the University of Pennsylvania's Eniac. We now know that the code-breaking effort in Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer (The Colossus), used to break the WWII German "Enigma" code. Due to the high secrecy of this war effort, the credit was only acknowledged in the 1970s when the project was finally declassified.

Table 2.1: The fundamental theorems of mathematics. See Flanders (1973) for a discussion on integration, relevant for stream 3.

1. Fundamental theorems of:
(a) Number systems: Stream 1

- arithmetic
- prime number
(b) Geometry: Stream 2
- algebra
(c) Calculus: Stream 3
- Leibniz \mathbb{R}^{1}
- complex $\mathbb{C} \subset \mathbb{R}^{2}$
- vectors $\mathbb{R}^{3}, \mathbb{R}^{n}, \mathbb{R}^{\infty}$
- Gauss's law (divergence theorem)
- Stokes's law (curl theorem, or Green's theorem)
- Vector calculus (Helmholtz's theorem)

There is zero possibility of analog computing displacing digital computing, due to the importance of precision (and speed). But even with binary representation, there is a non-zero probability of error, for example on a hard drive, due to physical noise. To deal with this, error correcting codes have been developed, reducing the error by many orders of magnitude. Today error correction is a science, and billions of dollars are invested to increase the density of bits per area, to increasingly larger factors. A few years ago the terabyte drive was unheard of; today it is the standard. In a few years petabyte drives will certainly become available. It is hard to comprehend how these will be used by individuals, but they are essential for on-line (cloud) computing.

2.2.1 The role of mathematics in physics: The three streams

Modern mathematics is built on a hierarchical construct of fundamental theorems, as summarized in Table 2.1. The importance of such theorems cannot be overemphasized. Gauss's and Stokes's laws play a major role in understanding and manipulating Maxwell's equations. Every engineering student needs to fully appreciate the significance of these key theorems. If necessary, memorize them. But that will not do over the long run, as each and every theorem must be fully understood. Fortunately most students already know several of these theorems, but perhaps not by name. In such cases, it is a matter of mastering the vocabulary.

These theorems are naturally organized, and may be thought of, in terms of Stillwell's three streams. For Stream 1 there is the fundamental theorem of arithmetic and the prime number theorem. For on calculus, ordered by their dimensionality. Some of these theorems seem trivial (e.g., the fundamental theorem of arithmetic). Others are more challenging, such as the fundamental theorem of vector calculus and Green's theorem.

Complexity should not be confused with importance. Each of these theorems, as stated, is fundamental. Taken as a whole, they are a powerful way of summarizing mathematics.

2.2.2 Stream 1: Prime number theorems

There are two easily described fundamental theorems about primes:

1. The fundamental theorem of arithmetic: This states that every integer $n \in \mathbb{Z}$ may be uniquely factored into prime numbers. This raises the question of the meaning of factor (split into a product). The product of two integers $m, n \in \mathbb{Z}$ is $m n=\sum_{m} n=\sum_{n} m$. For example, $2 * 3=2+2+2=3+3$.
2. The prime number theorem: One would like to know how many primes there are. That is easy: $|\mathbb{P}|=\infty$ (the size of the set of primes is infinite). One way of asking this questions is What is the average density of primes, in the limit as $n \rightarrow \infty$? This question was answered, for all practical purposes, by Gauss, who in his free time computed the first three million primes by hand. He discovered that, to a good approximation, the primes are equally likely on a \log scale. This is nicely summarized by the jingle:

Chebyshev said, and I say it again: There is always a prime between n and $2 n$.
attributed to the mathematician Pafnuty Chebyshev, which nicely summarizes theorem 3 (Stillwell, 2010, p. 585).

When the ratio of two frequencies (pitches) is 2, the relationship is called an octave. Thus we might say, with a slight stretch of terminology, there is at least one prime per octave. Thus one might wonder about the maximum number of primes per octave, as a function of the number of primes less than N, for example.

In modern western music the octave is further divided into 12 intervals called semitones (factors), equal to the $\sqrt[12]{2}$. Twelve semitones is an octave. Thus one might ask how many primes there are in fractions of an octave. In the end, it is a question of the density of primes on a $\log -\log$ (i.e., ratio) scale.

2.2.3 Stream 2: Fundamental theorem of algebra

This theorem states that every polynomial in x of degree N

$$
\begin{equation*}
P_{N}(x)=\sum_{k=0}^{N} a_{k} x^{k} \tag{2.4}
\end{equation*}
$$

has at least one root (Section 3.4, p. 100). When a common root is factored out, the degree of the polynomial is reduced by 1 . Applied recursively, a polynomial of degree N has N roots. Note there are $N+1$ coefficients (i.e., $\left[a_{N}, a_{N-1}, \cdots, a_{0}\right]$). If we are only interested in the roots of $P_{N}(x)$ it is best to define $a_{N}=1$, which defines the monic polynomial. If the roots are fractional numbers this might be possible. However if the roots are irrational numbers (likely), a perfect factorization is at least unlikely.

2.2.4 Stream 3: Fundamental theorems of calculus

In Sections 5.7 and 5.7 .5 we will deal with each of the theorems for Stream 3, where we consider the several fundamental theorems of integration, starting with Leibniz's formula for integration on the real line (\mathbb{R}), then progressing to complex integration in the complex plane (\mathbb{C}) (Cauchy's theorem), which is required for computing the inverse Laplace transform. Gauss's and Stokes's laws for \mathbb{R}^{2} require closed and open surfaces, respectively. One cannot manipulate Maxwell's equations, fluid flow, or acoustics, without understanding these theorems. Any problem that deals with the wave equation in more than
one dimension requires an understanding of these theorems. They are the basis of the derivation of the Kirchhoff voltage and current laws.

Finally we define the four basic vector operations based on the gradient operator differential vector operator

$$
\begin{equation*}
\nabla \equiv \hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z} \tag{2.5}
\end{equation*}
$$

pronounced as "del" (preferred) or "nabla," which are the gradient $\nabla()$, divergence $\nabla \cdot()$, curl $\nabla \times()$ and Laplacian $\nabla \cdot \nabla()=\nabla^{2}()$.

The first three operations are defined in terms of integral operations on a surface in 1,2 or 3 dimensions, by taking the limit as that surface, or the volume contained within, goes to zero. These three differential operators are essential to fully understand Maxwell's equations, the crown jewel of mathematical physics. Hence mathematics plays a key role in physics, as does physics in math.

2.2.5 Other key mathematical theorems

Besides the widely recognized fundamental theorems for the three streams, there are a number of equally important theorems that have not yet been labeled as "fundamental." $"$

The widely recognized Cauchy integral theorem is an excellent example, since it is a stepping stone to Green's theorem and the fundamental theorem of complex calculus. In Section 4.4 (p . 163) we clarify the contributions of each of these special theorems.

Once these fundamental theorems of integration (Stream 3) have been mastered, the student is ready for the complex frequency domain, which takes us back to Stream 2 and the complex frequency plane $(s=\sigma+\omega \jmath \in \mathbb{C})$. While the Fourier and Laplace transforms are taught in mathematics courses, the concept of complex frequency is rarely mentioned. The complex frequency domain (p.129) and causality are fundamentally related (Sects. 4.4.3-4.5.1, p. 175-176), and are critical for the analysis of signals and systems, and especially when dealing with the concept of impedance (Sect. 4.3, p. 154).

Without the concept of time and frequency, one cannot develop an intuition for the Fourier and Laplace transforms, especially within the context of engineering and mathematical physics. The Fourier transform covers signals, while the Laplace transform describes systems. Separating these two concepts, based on their representations as Fourier and Laplace transforms, is an important starting place for understanding physics and the role of mathematics. However, these methods, by themselves, do not provide the insight into physical systems necessary to be productive, or better, creative with these tools. One needs to master the tools of differential equations, and then partial differential equations, to fully appreciate the world that they describe. Electrical and mechanical networks, composed of inductors, capacitors and resistors, are isomorphic to mechanical systems composed of masses, springs and dashpots. Newton's laws are analogous to those of Kirchhoff, which are the rules needed to analyze simple physical systems composed of linear (and nonlinear) sub-components. When lumped-element systems are taken to the limit, in several dimensions, we obtain Maxwell's partial differential equations, the laws of continuum mechanics, and beyond.

The ultimate goal of this book is to make you aware of and productive in using these tools. This material can be best absorbed by treating it chronologically through history, so you can see how this body of knowledge came into existence, through the minds and hands of Galileo, Newton, Maxwell and Einstein. Perhaps one day you too can stand on the shoulders of the giants who went before you.

[^14]
2.3 Lec 4: Applications of prime number

If someone asked you for a theory of counting numbers, I suspect you would laugh and start counting. It sounds like either a stupid question, or a bad joke. Yet integers are a rich topic, so the question is not even slightly dumb. ${ }^{18}$ It is somewhat amazing that even birds and bees can count. While I doubt birds and bees can recognize primes, cicadas and other insects only crawl out of the ground in prime number cycles, (e.g., 13 or 17 year cycles). If you have ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally, there is an analytic function, first introduced by Euler, based on his analysis of the sieve, now known as the Riemann zeta function $\zeta(s)$, which is complex analytic, with its poles at the logs of the prime numbers. The exact relationship between the primes and the poles will be discussed in Section 3.3.7 (p. 99). The properties of this function are truly amazing, even fun. Many of the questions and answers about primes go back to at least the early Chinese (c1500 BCE) (Stillwell, 2010).

1. Write out $N-1$ integers n, starting from $2: n \in\{2,3, \cdots, N\}$. (e.g., $N=4, n \in\{2,3,4\}$). Note that the first element $\pi_{1}=2$ is the first prime. Cross out all multiples of π_{1}. That is, cross out $n \cdot \pi_{1}=4,6,8,10, \cdots, 50$, that is all n where $\bmod \left(n, \pi_{1}\right)=0$.

	2	3	A	5		7	$\not 8$	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	$\boxed{50}$

This first step $k=1$ has identified the first prime $\pi_{1}=2$.
2. Let $k=2$ and note that $\pi_{2}=3$. Cross out $n \pi_{2} 3 \cdot(2,3,4,5,6,7, \cdots, 45)$, i.e., all n where $\bmod \left(\mathrm{n}, \pi_{2}\right)=0$.

	2	3	A	5	6	7	$\not 8$	$\not y$	10
11	12	13	14	16	16	17	18	19	26
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	46
41	42	43	44	45	46	47	48	49	50

3. Let $k=3, \pi_{3}=5$. Cross out $n \pi_{3} \cdot(25,35)($ use $\bmod (\mathrm{n}, 5))$.

	2	3	A	5	6	7	8	$\not 9$	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

4. Finally let $k=4, \pi_{4}=7(\operatorname{use} \bmod (\mathrm{n}, 7))$. Cross out $n \pi_{4}:(49)$. Thus there are 15 primes less than $N=50: \pi_{k}=2,3,5,7,11,13,17,19,23,29,31,37,41,43,47$ (highlighted in red). Above 2 , all end in odd numbers, and above 5 , all end with $1,3,7,9$.

Figure 2.2: Sieve of Eratosthenes for $N=50$.

The importance of prime numbers: Each prime perfectly predicts multiples of that prime, but there seems to be no regularity in predicting primes themselves explaining irregularities of numbers. It

[^15]follows that prime numbers are the key to the theory of numbers, because of the fundamental theorem of arithmetic (FTA),

Likely the first insight into the counting numbers started with the sieve, shown in Fig. 2.2. A sieve answers the question "How can one identify the prime numbers?" The answer comes from looking for irregular patterns in the counting numbers, by playing the counting numbers against themselves.

A recursive sieve method for finding primes was first devised by the Greek Eratosthenes ${ }^{19}$ (276-194, $B C E)$.

For example, starting from $\pi_{1}=2$ one strikes out all even numbers $2 \cdot(2,3,4,5,6, \cdots)$, but not 2 . By definition the multiples are products of the target prime (2 in our example) and every another integer ($n \geq 2$). In this way all the even numbers are removed in this first iteration. The next remaining integer (3 in our example) is identified as the second prime π_{2}. Then all the multiples of $\pi_{2}=3$ are removed. The next remaining number is $\pi_{3}=5$, so all multiples of $\pi_{3}=5$ are removed (i.e., $10,15,25$ etc., \cdots). This process is repeated until all the numbers of the list have either been canceled or identified as prime.

As the word sieve implies, this process takes a heavy toll on the integers, rapidly pruning the nonprimes. In four iterations of the sieve algorithm, all the primes below $N=50$ are identified in red. The final set of primes is displayed in step 4 of Fig. 2.2.

Once a prime greater than $N / 2$ has been identified (25 in the example), the recursion stops, since twice that prime is greater than N, the maximum number under consideration. Thus once $\sqrt{49}$ has been reached, all the primes have been identified (this follows from the fact that the next prime π_{n} is multiplied by an integer $n=1, \ldots N$).

When using a computer, memory efficiency and speed are the main considerations. There are various schemes for making the sieve more efficient. For example, the recursion $n \pi_{k}=(n-1) \pi_{k}+\pi_{k}$ will speed up the process by replacing the multiply with an addition of π_{k}.

Two fundamental theorems of primes: Early theories of numbers revealed two fundamental theorems (there are many more than two), as discussed on pages 39, 48 and Section ?? (p. ??). The first of these is the fundamental theorem of arithmetic, which says that every integer $n \in \mathbb{N}$ greater than 1 may be uniquely factored into a product of primes

$$
\begin{equation*}
n=\prod_{k=1}^{K} \pi_{k}^{\beta_{k}} \tag{2.6}
\end{equation*}
$$

where $k=1, \ldots, K$ indexes the integer's K prime factors $\pi_{k} \in \mathbb{P}$. Typically prime factors appear more than once, for example $25=5^{2}$. To make the notation compact we define the multiplicity β_{k} of each prime factor π_{k}. For example $2312=2^{3} \cdot 17^{2}=\pi_{1}^{3} \pi_{7}^{2}$ (i.e., $\pi_{1}=2, \beta_{1}=3 ; \pi_{7}=17, \beta_{7}=2$) and $2313=3^{2} \cdot 257=\pi_{3}^{2} \pi_{55}$ (i.e., $\pi_{2}=3, \beta_{3}=2 ; \pi_{55}=257, \beta_{55}=1$). Our demonstration of this is empirical, using the Matlab/Octave factor (N) routine, which factors $N .{ }^{20}$

What seems amazing is the unique nature of this theorem. Each counting number is uniquely represented as a product of primes. No two integers can share the same factorization. Once you multiply the factors out, the result is unique (N). Note that it's easy to multiply integers (e.g., primes), but expensive to factor them. And factoring the product of three primes is significantly more difficult than factoring two.

Factoring is much more expensive than division. This is not due to the higher cost of division over multiplication, which is less than a factor of $2 .{ }^{21}$ Dividing the product of two primes, given one, is trivial, slightly more expensive that multiplying. Factoring the product of two primes is nearly impossible, as one needs to know what to divide by. Factoring means dividing by some integer and obtaining another integer with remainder zero.

[^16]Thus one could factor a product of primes $N=\pi_{k} \pi_{l}$ by doing M divisions, where M is the number of primes less than N. This assumes the list of primes less than N are known. However, most integers are not a simple product of two primes

But the utility has to do with the sheer density of primes (the prime number theorem, i.e., Gauss's hypothesis). If we were simply looking up a few numbers from a short list of primes, it would be easy, but the density of primes among the integers is logarithmic (>1 per octave).

This brings us to the prime number theorem (PNT). The security problem is the reason why these two theorems are so important: 1) Every integer has a unique representation as a product of primes, and 2) the density of primes is large (see the discussions on p. 41 and Section ??, p. ??). Thus security reduces to the "needle in the haystack problem" due to the cost of a search.

$$
\text { Examples of the GCD: } k=\operatorname{gcd}(m, n)
$$

- Examples ($m, n, k \in \mathbb{Z}$):
$-5=\operatorname{gcd}(13 \cdot 5,11 \cdot 5)$. The GCD is the common factor 5 .
$-\operatorname{gcd}(13 \cdot 10,11 \cdot 10)=10(\operatorname{gcd}(130,110)=10=2 \cdot 5$, is not prime $)$
$-\operatorname{gcd}(1234,1024)=2\left(1234=2 \cdot 617,1024=2^{10}\right)$
$-\operatorname{gcd}\left(\pi_{k} \pi_{m}, \pi_{k} \pi_{n}\right)=\pi_{k}$
- $k=\operatorname{gcd}(m, n)$ is the part that cancels in the fraction $m / n \in F$
- $m / \operatorname{gcd}(m, n) \in \mathbb{Z}$
- Coprimes $(m \perp n)$ are numbers with no distinct common factors: i.e., $g c d(m, n)=1$
- The GCD of two primes is always 1: $\operatorname{gcd}(13,11)=1, \operatorname{gcd}\left(\pi_{m}, \pi_{n}\right)=1(m \neq n)$
- $m=7 \cdot 13, n=5 \cdot 19 \Rightarrow(7 \cdot 13) \perp(5 \cdot 19)$
- If $m \perp n$ then $\operatorname{gcd}(m, n)=1$
- If $\operatorname{gcd}(m, n)=1$ then $m \perp n$
- The GCD may be extended to polynomials: e.g., $g c d\left(a x^{2}+b x+c, \alpha x^{2}+\beta x+\gamma\right)$
$-\operatorname{gcd}((x-3)(x-4),(x-3)(x-5))=(x-3)$
$-\operatorname{gcd}\left(x^{2}-7 x+12,3\left(x^{2}-8 x+15\right)\right)=3(x-3)$
$-\operatorname{gcd}\left(x^{2}-7 x+12,\left(3 x^{2}-24 x+45\right)=3(x-3)\right.$
- $\operatorname{gcd}((x-2 \pi)(x-4),(x-2 \pi)(x-5))=(x-2 \pi)$ (Needs long division)

Figure 2.3: The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in mathematics, and is highly relevant today. It is both powerful and simple. It was used by the Chinese during the Han dynasty (Stillwell, 2010, p. 70) for reducing fractions. It may be used to find pairs of integers that are coprime (their GCD must be 1). The GCD may be used to identify factors of polynomials by long division. It has an important sister algorithm called the continued fraction algorithm (CFA), that generalizes the Euclidean algorithm.

2.3.1 Lec 5: Greatest common divisor (Euclidean algorithm)

The Euclidean algorithm is a method to find the greatest common divisor (GCD) k between two integers n, m, denoted $k=\operatorname{gcd}(n, m)$, where $n, m, k \in \mathbb{N}$ (Graham et al., 1994). For example, $15=$ $\operatorname{gcd}(30,105)$ since, when factored $(30,105)=(2 \cdot 3 \cdot 5,7 \cdot 3 \cdot 5)=3 \cdot 5 \cdot(2,7)=15 \cdot(2,7)$. The Euclidean algorithm is a method for finding the largest common divisor without factoring the two numbers. It was known to the Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41). The GCD may be used to find coprimes, as described below in Fig. 2.3.

There are six closely related numeric operators which return integers $\in \mathbb{Z}$ (Sect. A.6, p. 250). In Matlab/Octave: floor (x), ceil (x), round (x) take $\boldsymbol{x} \in \mathbb{R}$, and $\bmod (n, m)$ (modulo), rem (n, m) (remainder), $\operatorname{gcd}(\mathrm{n}, \mathrm{m})$ (greatest common divisor) take $n, m \in \mathbb{N}$. Rounding schemes are used in continued fractions and the others are widely used when doing arithmetic, such as division.

The remainder function (modulo) for real arguments is closely related to the phase of a pure delay, since the Laplace transform of a delay [Sect. C. 2 (p. 268)] (delayed Dirac) is related to the phase is the
remainder $(\operatorname{modular})$ function $(\bmod 2 \pi)$, since

$$
\angle e^{-\jmath \omega T}=\operatorname{rem}(\omega T, 2 \pi) .
$$

Interestingly, in this instance the arguments of the remainder function are real $(\in \mathbb{R})$. Modular arithmetic may be alternatively written as $\bmod (t, T)=((t))_{T}$. Thus modular functions are the group of periodic functions. In Matlab/Octave unwrap () is the inverse of mod ().

The Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers be 6,9 . At each step the smaller number (6) is subtracted from the larger (9) and the smaller number and the difference (the remainder) are saved. This process continues until the two resulting numbers are equal, which is the GCD. For our example: $9-6=3$, leaving the smaller number 6 and the difference 3. Repeating this we get $6-3=3$, leaving the smaller number 3 and the difference 3 . Since these two numbers are the same we are done and the GCD $=3$. We can easily verify this result by factoring [e.g., $(9,6)=3(3,2)]$. The value may also be numerically verified using the Matlab/Octave GCD command $\operatorname{gcd}(6,9)$, which returns 3 .

Direct matrix method: The GCD may be written as a matrix recursion given the starting vector $\left(m_{0}, n_{0}\right)^{T}$. The recursion is then

$$
\left[\begin{array}{c}
m_{k+1} \tag{2.7}\\
n_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
m_{k} \\
n_{k}
\end{array}\right] .
$$

This recursion continues until $m_{k+1}<n_{k+1}$, at which point m and n must be swapped. The process is repeated until $m=n$, which equals the GCD. The direct method is inefficient because it recursively subtracts n many times until the resulting m is less than n, as shown in Fig. 2.4. It also must test for $m \leq n$ at each iteration, and then swap m and n if they are not equal.

Since this matrix may be inverted, the process may be reversed, which is closely related to the continued fraction algorithm (CFA) (p. 54).

Exercise: Show that

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & -n \\
0 & 1
\end{array}\right]
$$

Solution: Let $n=2$. Next show that the recursive multiplication add 1 to the upper right corner.
Why is the GCD important? The utility of the GCD algorithm arises directly from the fundamental difficulty in factoring large integers. Computing the GCD, using the Euclidean algorithm, is low cost, compared to factoring when finding the coprime factors, which is extremely expensive. This utility surfaces when the two numbers are composed of very large primes.

When two integers have no common factors they are said to be coprimes, and their GCD is 1 . The ratio of two integers which are coprime is automatically in reduced form (they have no common factors). For example, $4 / 2 \in \mathbb{Q}$ is not reduced since $2=g c d(4,2)$ (with no remainder). Canceling out the common factor 2 gives the reduced form $2 / 1 \in \mathbb{F}$. Thus if we wish to form the ratio of two integers, first compute the GCD, then remove it from the two numbers to form the ratio. This assures the rational number is in its reduced form ($\in \mathbb{F}$ rather than $\in \mathbb{Q}$). If the GCD were 10^{3} digits, it is obvious that any common factor would need to be be removed, thus greatly simplifying further computation. This will make a huge difference when using IEEE-754.

The floor function and the GCD are related in an important way, as discussed next.
Exercise: What does it mean to reach the turning point when using the Euclidean algorithm? Solution: When $m / n-\lfloor m / n\rfloor<n$ we have reached a turning point. When the remainder is zero (i.e., $m / n-\lfloor m / n\rfloor=0$), we have reached the GCD.

The GCD and long division: When one learns how to divide a smaller number into a larger one, they must learn how to use the GCD. For example, suppose we which to compute $6 \div 110$. One starts by finding out how many times 6 goes into 11 . Since $6 \times 2=12$, which is larger than 11 , the answer is 1 . We then subtract 6 from 11 to find the remainder 5 . This is, of course, the floor function (e.g., $\lfloor 11 / 6\rfloor=1,\lfloor 11 / 5\rfloor=2)$.

Example: Divide 10 into 99, the floor function (floor (99/10)) must be used, followed by the remainder function (rem $(99,10)$). Solution: When we divide a smaller number into a larger one, we must first find the floor followed by the remainder. For example $99 / 10=9+9 / 10$ has a floor of 9 and a remainder of 9/10.

Example: Start with the two integers [873, 582]. In factored form these are $\left[\pi_{25} \cdot 3^{2}, \pi_{25} \cdot 3 \cdot 2\right]$. Given the factors, we see that the largest common factor is $\pi_{25} \cdot 3=291\left(\pi_{25}=97\right)$. When we take the ratio of the two numbers this common factor cancels

$$
\frac{873}{582}=\frac{\pi_{25} \cdot \nexists 2 \cdot 3}{\pi_{25} \cdot \not \supset \cdot 2}=\frac{3}{2}=1.5 .
$$

Of course if we divide 582 into 873 we will numerically obtain the answer $1.5 \in \mathbb{F}$.
Exercise: Show that in Matlab/Octave rat $(873 / 582)=1+1 /(-2)$ gives the wrong answer. Solution: Since

$$
\text { factor }(873)=3 \cdot 3 \cdot 97 \text { and factor }(582)=2 \cdot 3 \cdot 97 \text {, }
$$

thus $3 / 2=1+1 / 2$ is the correct answer. But due to rounding methods, it is not $3 / 2$. As an example, in Matlab/Octave rat $(3 / 2)=2+1 /(-2)$. Matlab's rat () command uses rounding rather than the floor function, which explains the difference. When the rat () function produces negative numbers, rounding is employed.

Figure 2.4: The Euclidean algorithm recursively subtracts n from m until the remainder $m-k n$ is either less than n or zero. Note that this recursion is the same as $\bmod (m, n)$. Thus the $G C D$ recursively computes $\bmod (m, n)$ until the remainder rem (m, n) is less than n. It then swaps m, n, so that $n<m$. This repeats, until it terminates on the GCD. For the case depicted here the value of k, that renders the remainder $m-6 n<n$. If one more step were taken $(k=7)$ the remainder would become negative. By linear interpolation we can find that $m-\alpha n=0, \alpha \in \mathbb{R}$, where the solid line cross the abscissa. For this example $k=6.5$, thus $6=\lfloor m / n\rfloor<n$. This is nonlinear (truncation) arithmetic, which is a property related to the GCD. The floor () functions finds the turning point, where we swap the two numbers, since by definition, $m>n$. In this example $k=6=\lfloor m / n\rfloor$.

Graphical description of the GCD: The Euclidean algorithm is very simple when viewed graphically. In Fig. 2.4 we show what is happening as one approaches the threshold. After reaching the threshold, the two numbers must be swapped, which is addressed by the upper row of Eq. 2.8.

Below is a simple Matlab/Octave code to find $k=\operatorname{gcd}(m, n)$ based on the Stillwell (2010) definition of the EA:

```
function k = gcd(m,n)
    while m ~}=
    A=m; B=n;
    m=max(A,B); n=min(A,B); %m>n
    m=m-n;
    end
```

This program loops until $m=0$.
Multiplication is simply recursive addition, and finding the GCD takes advantage of this fact. Let's take a trivial example, $(9,6)$. Taking the difference $9-6$ (the larger from the smaller), and writing multiplication as sums, one can see what is going on. The GCD may be written two equivalent ways:

$$
9-6=(3+3+3)-(3+3)=0+0+3=3
$$

and

$$
9-6=(3+3+3)-(2+2+2)=1+1+1=3
$$

Written the first way, it is 3 , because subtracting $(3+3)$ from $(3+3+3)$ leaves 3 . Written the second way, each 3 is matched with a -2 , leaving 3 ones, which add to 3 . Of course the two decomposition must yield the same result because $2 \cdot 3=3 \cdot 2$. Thus finding the remainder of the larger number minus the smaller yields the GCD of the two numbers.

Coprimes: When the GCD of two integers is 1 , the only common factor is 1 . This is of key importance when trying to find common factors between the two integers. When $1=\operatorname{gcd}(m, n)$ they are said to be coprime or "relatively prime," which is frequently written as $m \perp n$. By definition, the largest common factor of coprimes is 1 . But since 1 is not a prime $\left(\pi_{1}=2\right)$, they have no common primes. It can be shown (Stillwell, 2010, p. 41-42) that when $a \perp b$, there exist $m, n \in \mathbb{Z}$ such that

$$
a m+b n=\operatorname{gcd}(a, b)=1
$$

This equation may by related to the addition of two fractions having coprime numerators ($a \perp b$). For example

$$
\frac{a}{m}+\frac{b}{n}=\frac{a n+b m}{m n}
$$

It is not obvious to me that this is simply $1 / m n$.
A much more efficient method uses the floor () function, which is called division with rounding. Specifically the GCD may be written in one step as

$$
\left[\begin{array}{c}
m \tag{2.8}\\
n
\end{array}\right]_{k+1}=\left[\begin{array}{cc}
0 & 1 \\
1 & -\left\lfloor\frac{m}{n}\right\rfloor
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]_{k}
$$

This matrix is simply Eq. 2.7 to the power $\lfloor m / n\rfloor$, followed by swapping the inputs (the smaller must always be on the bottom).

Exercise: Show that

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & -\left\lfloor\frac{m}{n}\right\rfloor
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]^{\left\lfloor\frac{m}{n}\right\rfloor}
$$

Solution: This uses the result of the exercise from a previous page, times the row swap matrix. Consider this result in terms of an Eigenanalysis.

2.3.2 Lec 6: Continued fraction algorithm

As shown in Fig. 2.5, the continued fraction algorithm (CFA) starts from a single real decimal number $x_{o} \in \mathbb{R}$, and recursively expands it as a fraction $x \in \mathbb{F}$ (Graham et al., 1994). Thus the CFA may be used for forming rational approximations to any real number. For example, $\pi \approx 22 / 7$, and excellent approximation, well known to Chinese mathematicians.

The the Euclidean algorithm (i.e., GCD), on the other hand, operates on a pair of integers $m, n \in \mathbb{N}$ and returns their greatest common divisor $k \in \mathbb{N}$, such that $m / k, n / k \in \mathbb{F}$ are coprime, thus reducing the ratio to its irreducible form (i.e., $m / k \perp n / k$). Note this is done without factoring m, n.

Despite this seemingly irreconcilable difference between the GCD and CFA, the two are closely related, so close that Gauss called the Euclidean algorithm, for finding the GCD, the continued fraction algorithm (CFA) (Stillwell, 2010, P. 48).

At first glance it is not clear why Gauss would be so "confused." One is forced to assume that Gauss had some deeper insight into this relationship. If so, that insight would be valuable to understand. ${ }^{22}$

Definition of the CFA

1. Start with $n=0$ and the positive input target $x_{o} \in \mathbb{R}^{+}$.
2. Rounding: Let $m_{n}=\left\lfloor x_{n}\right\rceil \in \mathbb{N}$.
3. The input vector is then: $\left[x_{n}, m_{n}\right]^{T}$.
4. Remainder: $r_{n}=x_{n}-m_{n} \quad\left(-0.5 \leq r_{n} \leq 0.5\right)$.
5. Reciprocate:

$$
x_{n+1}=\left\{\begin{array}{lll}
1 / r_{n}, & \text { return to step } 2 & r_{n} \neq 0 \\
0, & \text { terminate } & r_{n}=0 .
\end{array} \quad x_{1}=1 / 0.14159=7.062646\right.
$$

6. The output vector is $\left[x_{n+1}, m_{n}\right]^{T}$.

$$
\begin{array}{r}
n=0, m_{0}=0, x_{o}=\pi \\
m_{0}=\lfloor\pi\rceil=3 \\
{[\pi, 3]_{0}^{T} .} \\
r_{0}=\pi-3 \approx 0.14159
\end{array}
$$

Figure 2.5: The CFA of any positive number, $x_{o} \in \mathbb{R}^{+}$, is defined in this figure. Numerical values for $n=0, x_{o}=\pi, m_{0}=0$ are given in blue on the far right. For $n=1$ the input vector is $\left[x_{1}, m_{1}\right]^{T}=$ $[7.062646,3]^{T}$. If at any step the remainder is zero, the algorithm terminates (Step 5). Convergence is guaranteed. The recursion may continue to any desired accuracy. Alternative rounding schemes are given on p. 250.

Notation: Writing out all the fractions can become tedious. For example, expanding $e=2.7183 \ldots$ using the Matlab/Octave command rat (exp (1)) gives the approximation

$$
\begin{aligned}
\exp (1) & =3+1 /(-4+1 /(2+1 /(5+1 /(-2+1 /(-7)))))-o\left(1.75 \times 10^{-6}\right) \\
& =[3 ;-4,2,5,-2,-7]-o\left(1.75 \times 10^{-6}\right)
\end{aligned}
$$

Here we use a compact bracket notation, $\hat{e}_{6} \approx[3 ;-4,2,5,-2,-7]$ where $o()$ indicates the error of the CFA expansion.

Since many entries are negative, we may deduce that rounding arithmetic is being used by Matlab/Octave (but this is not documented). Note that the leading integer part may be noted by an optional semicolon. ${ }^{23}$ If the process is carried further, the values of $a_{n} \in \mathbb{N}$ give increasingly more accurate rational approximations.

[^17]Example: Let $x_{o} \equiv \pi \approx 3.14159 \ldots$ Thus $a_{o}=3, r_{o}=0.14159, x_{1}=7.065 \approx 1 / r_{o}$, and $a_{1}=7$. If we were to stop here we would have

$$
\begin{equation*}
\widehat{\pi}_{2}=3+\frac{1}{7+0.0625 \ldots}=3+\frac{1}{7}=\frac{22}{7} \tag{2.9}
\end{equation*}
$$

This approximation of $\widehat{\pi}_{2}=22 / 7$ has a relative error of 0.04%

$$
\frac{22 / 7-\pi}{\pi} \approx 4 \times 10^{-4}
$$

Example: For a second level of approximation we continue by reciprocating the remainder $1 / 0.0625 \approx$ 15.9966 which rounds to 16 giving a negative remainder of $\approx-1 / 300$:

$$
\widehat{\pi}_{3} \approx 3+1 /(7+1 / 16)=3+16 /(7 \cdot 16+1)=3+16 / 113=355 / 113
$$

With rounding the remainder is -0.0034 , resulting in a much more rapid convergence. If floor rounding is used $(15.9966=15-0.9966)$ the remainder is positive and close to 1 , resulting in a much less accurate rational approximation for the same number of terms. It follows that there can be a dramatic difference depending on the rounding scheme, which, for clarity, should be specified, not inferred.

Rational approximation examples

$$
\begin{aligned}
\hat{\pi}_{2}=\frac{22}{7} & =[3 ; 7] & & \approx \hat{\pi}_{2}+o\left(1.3 \times 10^{-3}\right) \\
\hat{\pi}_{3}=\frac{355}{113} & =[3 ; 7,16] & & \approx \hat{\pi}_{3}-o\left(2.7 \times 10^{-7}\right) \\
\hat{\pi}_{4}=\frac{104348}{33215} & =[3 ; 7,16,-249] & & \approx \hat{\pi}_{4}+o\left(3.3 \times 10^{-10}\right)
\end{aligned}
$$

Figure 2.6: The expansion of π to various orders, using the CFA, along with the order of the error of each rational approximation, with rounding. For example, $\hat{\pi}_{2}=22 / 7$ has an absolute error $(|22 / 7-\pi|)$ of about 0.13%.

CFA as a matrix recursion: Start with $n_{0}=0 \in \mathbb{N}, x_{0} \in \mathbb{I}, n_{1}=\left\lfloor x_{0}\right\rfloor \in \mathbb{N}, r_{1}=x-\lfloor x\rfloor \in \mathbb{I}$ and $\quad 5$ $x_{1}=1 / r_{1} \in \mathbb{I}, r_{n} \neq 0$.

May need work.
In matrix notation, with $k \in \mathbb{N}$

$$
\left[\begin{array}{l}
n \\
x
\end{array}\right]_{k+1}=\left[\begin{array}{cc}
0 & \left\lfloor x_{0}\right\rfloor \\
0 & \frac{1}{x_{0}-\left\lfloor x_{0}\right\rfloor}
\end{array}\right]\left[\begin{array}{l}
n \\
x
\end{array}\right]_{k}
$$

This generates the next CFA parameter n_{1}, and $x_{1}=1 / r_{1}$ from n_{0} and x_{0}.

Example: If $x_{0}=\pi$, then $n_{1}=\lfloor\pi\rfloor=3, r_{1}=\pi-n_{1}=0.141592656 \cdots$, and $x_{1}=1 / r_{1}$:

$$
\left[\begin{array}{c}
3 \\
7.06251331
\end{array}\right]_{1}=\left[\begin{array}{cc}
0 & \lfloor\pi\rfloor \\
0 & \frac{1}{\pi-\lfloor\pi\rfloor}
\end{array}\right]\left[\begin{array}{l}
0 \\
\pi
\end{array}\right]_{0}
$$

and for $n=2$

$$
\left[\begin{array}{c}
7 \\
15.99659
\end{array}\right]_{2}=\left[\begin{array}{c}
7 \\
\frac{1}{0.06251331}
\end{array}\right]_{2}=\left[\begin{array}{cc}
0 & 7 \\
0 & \frac{1}{7.0625-7}
\end{array}\right]\left[\begin{array}{c}
3 \\
7.06251331
\end{array}\right]_{1}
$$

For $n=3, \pi_{3}=\left[n_{1} ; n_{2}, n_{3}\right]=[3 ; 7,15]$. Continuing $n_{4}=\lfloor 1.003418\rfloor=1$ and $n_{5}=292$.
Clean up indexing.

Exercise: Find the CFA using the floor function, to 12 th order.
Solution: $\hat{\pi}_{12}=[3 ; 7,15,1,292,1,1,1,2,1,3,1]$.

Example: Matlab/Octave's rat (pi,1e-20) gives:
$3+1 /(7+1 /(16+1 /(-294+1 /(3+1 /(-4+1 /(5+1 /(-15+1 /(-3)))))))$).
In bracket notation

$$
\hat{\pi}_{9}=[3 ; 7,16,-294,3,-4,5,-15,03] .
$$

Because the sign changes, it is clear that Matlab/Octave use rounding rather than the floor function.

Exercise: Based on several examples, which rounding scheme is the most accurate? Explain why.

Solution: Rounding will result in a smaller remainder at each iteration, thus a smaller net error and thus improved convergence.

When the CFA is applied and the expansion terminates $\left(r_{n}=0\right)$, the target is rational. When the expansion does not terminate (which is not always easy to determine, as the remainder may be ill-conditioned due to small numerical rounding errors), the number is irrational. Thus the CFA has important theoretical applications regarding irrational numbers. You may explore this using Matlab's rats (pi) command.

Besides these five basic rounding schemes, there are two other important $\mathbb{R} \rightarrow \mathbb{N}$ functions (i.e., mappings), which will be needed later: $\bmod (\mathrm{x}, \mathrm{y}), \operatorname{rem}(\mathrm{x}, \mathrm{y})$ with $x, y \in \mathbb{R}$. The base 10 numbers may be generated from the counting numbers using $y=\bmod (x, 10)$.

Exercise:

1. Show how to generate a base-10 real number $y \in \mathbb{R}$ from the counting numbers \mathbb{N} using the $\mathrm{m}=\bmod (\mathrm{n}, 10)+k 10$ with $n, k \in \mathbb{N}$. Solution: Every time n reaches a multiple of $10, m$ is reset to 0 and the next digit to the left is increased by 1 , by adding 1 to k, generating the digit pair $k m$. Thus the $\bmod ()$ function forms the underlying theory behind decimal notation.
2. How would you generate binary numbers (base 2) using the $\bmod (x, b)$ function? Solution: Use the same method as in the first example above, but with $b=2$.
3. How would you generate hexadecimal numbers (base 16) using the $\bmod (x, b)$ function? Solution: Use the same method as in the first example above, but with $b=16$.
4. Write out the first 19 numbers in hex notation, starting from zero. Solution: $0,1,2,3,4,5,6,7$, $8,9, A, B, C, D, E, F, 10,11,12$. Recall that $10_{16}=16_{10}$ thus $12_{16}=18_{10}$, resulting in a total of 19 numbers if we include 0 .
5. What is $F F_{16}$ in decimal notation? Solution: hex2dec $\left({ }^{\prime} f f^{\prime}\right)=255_{10}$.

Symmetry: A continued fraction expansion can have a high degree of "recursive symmetry." For example, the CFA of

$$
\begin{equation*}
R_{1} \equiv \frac{1+\sqrt{5}}{2}=1+\frac{1}{1+\frac{1}{1+\cdots}}=1.618033988749895 \cdots \tag{2.10}
\end{equation*}
$$

Here a_{n} in the CFA is always $1\left(R_{1} \equiv[1 ., 1,1, \cdots]\right)$, thus the sequence cannot terminate, proving that $\sqrt{5} \in \mathbb{I}$. A related example is $R_{2} \equiv$ rat ($1+$ sqrt (2)) , which gives $R_{2}=[2 ., 2,2,2, \cdots]$.

When expanding a target irrational number $\left(x_{o} \in \mathbb{I}\right)$, and the CFA is truncated, the resulting rational fraction approximates the irrational target. For the example above, if we truncate at three coefficients ($[1 ; 1,1]$) we obtain

$$
1+\frac{1}{1+\frac{1}{1+0}}=1+1 / 2=3 / 2=1.5=\frac{1+\sqrt{5}}{2}+0.118 \cdots
$$

Truncation after six steps gives

$$
[1 ., 1,1,1,1,1,1]=13 / 8 \approx 1.6250=\frac{1+\sqrt{5}}{2}+.0070 \cdots
$$

Because all the coefficients are 1 , this example converges very slowly. When the coefficients are large (i.e., remainder small), the convergence will be faster. The expansion of π is an example of faster convergence.

Exercise: Discuss the relationship between the CFA and the transmission line modeling method of Sect. 3.6 (p. 120). Solution: The solution is detailed in Appendix E (p. 275).

In summary: Every rational number $m / n \in \mathbb{F}$, with $m>n>1$, may be uniquely expanded as a continued fraction, with coefficients a_{k} determined using the CFA. When the target number is irrational $\left(x_{o} \in \mathbb{Q}\right)$, the CFA does not terminate; thus, each step produces a more accurate rational approximation, converging in the limit as $n \rightarrow \infty$.

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational, but with an important caveat: one must determine if the expansion terminates. This may not be obvious. The fraction $1 / 3=0.33333 \cdots$ is an example of such a target, where the CFA terminates yet the fraction repeats. It must be that

$$
1 / 3=3 \times 10^{-1}+3 \times 10^{-2}+3 \times 10^{-3}+\cdots
$$

Here $3 * 3=9$. As a second example ${ }^{24}$

$$
1 / 7=0.142857142857142857142857 \cdots=142857 \times 10^{-6}+142857 \times 10^{-12}+\cdots
$$

There are several notations for repeating decimals such as $1 / 7=0.1 \overline{142857}$ and $1 / 7=0.1((142857))$. Note that $142857=999999 / 7$. Related identities include $1 / 11=0.090909 \cdots$ and $11 \times 0.090909=$ 999999. When the sequence of digits repeats, the sequence is predictable, and it must be rational. But it is impossible to be sure that it repeats because the length of the repeat can be arbitrarily long.

One of the many useful things about the procedure is its generalizations to the expansion of transmission lines, as complex functions of the Laplace complex frequency s. In Assignment 4.5.4, [see
$z_{5}^{-\pi_{k}}+z^{-2 \pi_{k}} \ldots$
Disc: $\frac{1}{1-z^{-\pi_{k}}}=1+$ Fig. 4.10 (p. 181)], a transmission line is analogized in terms of the CFA, but residue-expanded (p. 80) in terms of the Laplace frequency s, rather than as integers. This method, called a Cauer synthesis, is based on the ABCD transmission line method of Secs. 3.6 (p. 120).

2.3.3 Lec 7: Pythagorean triplets (Euclid's formula)

Euclid's formula is a method for finding three integer lengths $[a, b, c] \in \mathbb{N}$ that satisfy Eq. 1.1. It is important to ask: Which set are the lengths [a,b,c] drawn from? There is a huge difference, both practical and theoretical, if they are from the real numbers \mathbb{R}, or the counting numbers \mathbb{N}. Given $p, q \in \mathbb{N}$ with $p>q$, the three lengths $[a, b, c] \in \mathbb{N}$ of Eq. 1.1 are given by

$$
\begin{equation*}
a=p^{2}-q^{2}, \quad b=2 p q, \quad c=p^{2}+q^{2} \tag{2.11}
\end{equation*}
$$

This result may be directly verified, since

$$
\left[p^{2}+q^{2}\right]^{2}=\left[p^{2}-q^{2}\right]^{2}+[2 p q]^{2}
$$

[^18]

Figure 2.7: Beads on a string form perfect right triangles when the number of unit lengths between beads for each side satisfies Eq. 1.1. For example, when $p=2, q=1$, the sides are $[3,4,5]$.
or

$$
p^{4}+q^{4}+2 p^{2} q^{2}=p^{4}+q^{4}-2 p^{2} q^{2}+4 p^{2} q^{2}
$$

Thus, Eq. 2.11 is easily proven, once given. Deriving Euclid's formula is obviously much more difficult, and is shown in AE-1, Fig. 3.4 (p. 97).

A well-known example is the right triangle depicted in Fig. 2.7, defined by the integers $[3,4,5] \in N$, having angles $[0.54,0.65, \pi / 2][\mathrm{rad}]$, which satisfies Eq. 1.1 (p. 19). As quantified by Euclid's formula (Eq. 2.11), there are an infinite number of Pythagorean triplets (PTs). Furthermore the seemingly simple triangle, having angles of $[30,60,90] \in N$ [deg] (i.e., $[\pi / 6, \pi / 3, \pi / 2] \in \mathbb{I}[\mathrm{rad}]$), has one irrational (\mathbb{I}) length ($[1, \sqrt{3}, 2]$).

a	c
119	169
3367	4825
4601	6649
12709	18541
65	97
319	481
2291	3541
799	1249
481	769
4961	8161
45	75
1679	2929
161	289
1771	3229
56	106

Figure 2.8: "Plimpton-322" is a stone tablet from 1800 [BCE], displaying a and c values of the Pythagorean triplets $[a, b, c]$, with the property $b=\sqrt{c^{2}-a^{2}} \in \mathbb{N}$. Several of the c values are primes, but not the a values. The stone is item 322 (item 3 from 1922) from the collection of George A. Plimpton.

The technique for proving Euclid's formula for PTs $[a, b, c] \in \mathbb{Q}$, derived in Fig. 3.4 (p. 97) is much more interesting than the PTs themselves.

The set from which the lengths $[a, b, c]$ are drawn was not missed by the Indians, Chinese, Egyptians, Mesopotamians, Greeks, etc. Any equation whose solution is based on integers is called a Diophantine equation, named after the Greek mathematician Diophantus of Alexandria (c250 CE) (Fig. 1.2, p. 19).

A stone tablet having the numbers engraved on it, as shown in Fig. 2.2, was discovered in Mesopotamia, from the $19^{\text {th }}$ century [BCE], and cataloged in 1922 by George Plimpton. ${ }^{25}{ }^{26}$ These numbers are a and c pairs from PTs [a,b,c]. Given this discovery, it is clear that the Pythagoreans were following those who

[^19]Table 2.2: Table of Pythagorean triples computed from Euclid's formula Eq. 2.11 for various $[p, q]$. The last three columns are the first, fourth and penultimate values of "Plimpton-322," along with their corresponding $[p, q]$. In all cases $c^{2}=a^{2}+b^{2}$ and $p=q+l$, where $l=\sqrt{c-b} \in \mathbb{N}$.

q	1	1	1	2	2	2	3	3	3	5	54	27
l	1	2	3	2	2	3	1	2	3	7	71	23
p	2	3	4	3	4	5	4	5	6	12	125	50
a	3	8	15	5	12	21	7	16	27	119	12709	1771
b	4	6	8	12	16	20	24	30	36	120	13500	2700
c	5	10	17	13	20	29	25	34	45	169	18541	3229

came long before them. Recently a second similar stone, dating between 350 and 50 [BCE] has been reported, that indicates early calculus on the orbit of Jupiter's moons, the very same moons that Rømer observed to show that the speed of light was finite (p. 24). ${ }^{27}$

2.3.4 Lec 8: Pell's equation

Pell's equation

$$
\begin{equation*}
x_{n}^{2}-N y_{n}^{2}=\left(x_{n}-\sqrt{N} y_{n}\right)\left(x_{n}+\sqrt{N} y_{n}\right)=1, \tag{2.12}
\end{equation*}
$$

with non-square $N \in \mathbb{N}$ specified and $x, y \in \mathbb{N}$ unknown, has a venerable history in both physics (p.31) and mathematics. Given its factored form it is obvious that every solution x_{n}, y_{n} has the asymptotic property

$$
\left.\frac{x_{n}}{y_{n}}\right|_{n \rightarrow \infty} \rightarrow \pm \sqrt{N}
$$

It is believed that Pell's equation is directly related to the Pythagorean theorem, and therefore to the Euclidean algorithm, since they are both simple binomials having integer coefficients (Stillwell, 2010, 48), with Pell's equation being the hyperbolic version of Eq. 1.1. For example, with $N=2$, a solution is $x=17, y=12$ (i.e., $17^{2}-2 \cdot 12^{2}=1$).

A 2×2 matrix recursion algorithm likely due to the Chinese, and used by the Pythagoreans to investigate \sqrt{N}, is

$$
\left[\begin{array}{l}
x \tag{2.13}\\
y
\end{array}\right]_{n+1}=\left[\begin{array}{cc}
1 & N \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n},
$$

where we indicate the index outside the vectors.
Starting with the trivial solution $\left[x_{o}, y_{o}\right]^{T}=[1,0]^{T}$ (i.e., $x_{o}^{2}-N y_{o}^{2}=1$), additional solutions of Pell's equations are determined, having the propriety $\boldsymbol{x}_{n} / y_{n} \rightarrow \sqrt{N} \in \mathbb{F}$ (Stillwell, 2010, p. 44). This approach was motivated by the Euclidean algorithm (GCD, p. 50, 275), since $y_{n} / x_{n} \rightarrow \sqrt{2}$ (Stillwell, 2010, p. 37, 55).

Note that Eq. 2.13 is a 2×2 matrix composition method (see p. 102), since the output of one matrix multiply is the input to the next. Why Eqs. 2.13 and 2.12 are equivalent is explained in Section 3.2.3 (p. 90).

Asian solutions: The first solution of Pell's equation was published by Brahmagupta (c628), who independently discovered the equation (Stillwell, 2010, p. 46). Brahmagupta's novel solution also used the composition method, but different from Eq. 2.13 (Stillwell, 2010, p. 69). Then in 1150CE, Bhâskara II independently obtained solutions using Eq. 2.13 (Stillwell, 2010, p.69). This is the composition method we shall explore here, as summarized in Table G. 1 (p. 282).

[^20]The best way to see how this recursion results in solutions to Pell's equation is by example. Initializing the recursion with the trivial solution $\left[x_{o}, y_{o}\right]^{T}=[1,0]^{T}$ gives

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{4} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
17 \\
12
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
7 \\
5
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{5} \\
y_{5}
\end{array}\right]=\left[\begin{array}{l}
41 \\
29
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
17 \\
12
\end{array}\right]}
\end{aligned}
$$

Thus the recursion results in a modified version of Pell's equation

$$
\begin{equation*}
x_{n}^{2}-2 y_{n}^{2}=(-1)^{n} \tag{2.14}
\end{equation*}
$$

where only even values of n are solutions. This sign change had no effect on the Pythagoreans' goal, since they only cared about the ratio $y_{n} / x_{n} \rightarrow \pm \sqrt{2}$.

Modified recursion: The following summarizes the solution $(\in \mathbb{C})$ of Pell's equation for $N=2$ using a slightly modified matrix recursion. Note that $x_{n} / y_{n} \rightarrow \sqrt{2}$ as $n \rightarrow \infty$, which was what the Pythagoreans were pursuing, and that the odd solutions are pure-imaginary.

As shown below the recursion may be slightly modified to fix the $(-1)^{n}$ problem, by multiplying the 2×2 matrix by $1 \jmath=\sqrt{-1}$. This results in Pell's equation for every step of the recursion:

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\jmath\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{1}=\jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{0}} & \jmath^{2}-2 \cdot \jmath^{2}=1 \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]_{2}=\jmath^{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{2}=\jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \jmath\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{1}} & 3^{2}-2 \cdot 2^{2}=1 \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]_{3}=\jmath^{3}\left[\begin{array}{l}
7 \\
5
\end{array}\right]_{3}=\jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \jmath^{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{2}} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]_{4}=\left[\begin{array}{l}
17 \\
12
\end{array}\right]_{4}=\jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \jmath^{3}\left[\begin{array}{l}
7 \\
5
\end{array}\right]_{3}} & (7 \jmath)^{2}-2 \cdot(5 \jmath)^{2}=1 \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]_{5}=\jmath\left[\begin{array}{l}
41 \\
29
\end{array}\right]_{5}=\jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
17 \\
12
\end{array}\right]_{4}} & (41 \jmath)^{2}-2 \cdot(29 \jmath)^{2}=1
\end{array}
$$

Solution to Pell's equation: By multiplying the matrix by 11 , all the solutions ($\boldsymbol{x}_{k} \in \mathbb{C}$) to Pell's equation are determined. The $1 \jmath$ factor corrects the alternation in sign, so every iteration yields a solution. Fig. G. 1 (p. 282) shows that every output of this slightly modified matrix recursion gives solutions to Pell's equation. For $n=0$ (the initial solution) $\left[x_{0}, y_{0}\right]$ is $[1,0]_{0},\left[x_{1}, y_{1}\right]=\jmath[1,1]_{1}$, and $\left[x_{2}, y_{2}\right]=-[3,2]_{2}$. These are easily checked using this recursion.

At each iteration, the ratio x_{n} / y_{n} approaches $\sqrt{2}$ with increasing accuracy, coupling it to the CFA which may also be used to find approximations to \sqrt{N}. The value of $41 / 29 \approx \sqrt{2}$, with a relative error of $<0.03 \%$. The solution for $N=3$ is given in Appendix G.1.1 (p. 282).

2.3.5 Lec 9: Fibonacci sequence

Another classic problem, also formulated by the Chinese, was the Fibonacci sequence, generated by the relation

$$
\begin{equation*}
f_{n+1}=f_{n}+f_{n-1} . \tag{2.15}
\end{equation*}
$$

Here the next number $f_{n+1} \in \mathbb{N}$ is the sum of the previous two. If we start from $[0,1]$, this difference equation leads to the Fibonacci sequence $f_{n}=[0,1,1,2,3,5,8,13,21,34, \ldots]$. Alternatively, if we define $y_{n+1}=x_{n}$, then Eq. 2.15 may be compactly represented by a 2 x 2 companion matrix recursion (see Exercise on p. 66)

$$
\left[\begin{array}{l}
x \tag{2.16}\\
y
\end{array}\right]_{n+1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n},
$$

which has eigenvalues $(1 \pm \sqrt{5}) / 2$.
The correspondence of Eqs. 2.15 and 2.16 is easily verified. Starting with $[x, y]_{0}^{T}=[0,1]^{T}$ we obtain for the first few steps
$\left[\begin{array}{l}1 \\ 0\end{array}\right]_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]_{0}, \quad\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]_{1}, \quad\left[\begin{array}{l}2 \\ 1\end{array}\right]_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]_{2}, \quad\left[\begin{array}{l}3 \\ 2\end{array}\right]_{4}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]_{3}, \quad \cdots$.
From the above $x_{n}=[0,1,1,2,3,5, \ldots]$ is the Fibonacci sequence, since the next x_{n} is the sum of the previous two, and the next y_{n} is x_{n}.

Figure 2.9: This construction is called the Fibonacci spiral. Note how it is constructed out of squares having areas given by the square of the Fibonacci numbers. In this way, the spiral is smooth and the radius increases as the Fibonacci numbers (e.g., $8=3+5,13=5+8$, etc.). (Adapted from https://en.wikipedia.org/wiki/Golden_spiral.)

Exercise: Use the Octave/Matlab command compan (c) to find the companion matrix of the polynomial coefficients defined by Eq. 2.15. Solution: Using the Matlab/Octave code: $c=[1,-1$, -1]; C=compan (c); returning

$$
C=\left[\begin{array}{ll}
1 & 1 \tag{2.17}\\
1 & 0
\end{array}\right]
$$

Exercise: Find the eigenvalues of matrix C. Solution: The characteristic equation is

$$
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=0
$$

or $\lambda^{2}-\lambda-1=(\lambda-1 / 2)^{2}-1 / 4-1=0$, which has roots $\lambda_{ \pm}=(1 \pm \sqrt{5}) / 2 \approx\{1.618,-0.618\}$.
The mean-Fibonacci sequence: Suppose that the Fibonacci sequence recursion is replaced by the mean of the last two values, namely let

$$
\begin{equation*}
f_{n+1}=\frac{f_{n}+f_{n-1}}{2} \tag{2.18}
\end{equation*}
$$

This seems like a small change. But how does the solution differ? To answer this question it is helpful to look at the corresponding 2×2 matrix.

Exercise: Find the 2×2 matrix corresponding to Eq. 2.18. The 2×2 matrix may be found using the companion matrix method Sect. 3.1.3 (p. 79. Solution: Using Matlab/Octave code:
$A=[1,-1 / 2,-1 / 2]$;
$\mathrm{C}=$ compan (A) ;
which returns

$$
A=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]
$$

Exercise: Find the sequence from the mean-Fibonacci starting from $[1,0]_{0}$. Solution: By inspection one steady-state solution is $[1,1]_{\infty}$. What is the second steady-state in the solution?

Relations to digital signal processing: Today we recognize Eq. 2.15 as a difference equation, which is a pre-limit (pre Stream 3) form of a differential equation. The Greek 2×2 matrix form of Eq. 2.15 is an early precursor to $17^{\text {th }}$ and $18^{\text {th }}$ century developments in linear algebra. Thus the Greeks' recursive solution for the $\sqrt{2}$ and Bhâskara's $(1030 \mathrm{CE})$ solution of Pell's equation are early precursors to discretetime processing, as well as to calculus.

There are strong similarities between Pell's equation and the Pythagorean theorem. As we shall see in Appendix ??, Pell's equation is related to the geometry of a hyperbola, just as the Pythagorean equation is related to the geometry of a circle. We shall show, as one might assume, that there is a Euclidean formula for the case of Pell's equations, since these are all conic sections with closely related conic geometry. As we have seen, the solutions involve $\sqrt{-1}$. The derivation is a trivial extension of that for the Euclidean algorithm. The early solution of Brahmagupta was not related to such a simple formula. Rather it was based on the recursion Eq. 2.15 (Stillwell, 2010).

It makes one wonder if Eq. 1.1 , written as $x_{n}^{2}+y_{n}^{2}=z_{n}^{2}$, with $x_{n}, y_{n}, z_{n} \in \mathbb{N}$, has a 2×2 matrix composition solution.

Exercise: Work out the details of this conjecture. Hint: $z^{2}=x^{2}+y^{2}=(x+y \jmath)(x-y \jmath)$. Solution: The solution may be found in (???). See Pell's equation for a hint

Chapter 3

Algebraic Equations: Stream 2

The era of 1640 to 1900 (Fig. 3.1) produced a continuous stream of fundamental theorems. A few of the individuals who played notable roles in this development, in chronological (birth) order, include: Galileo, Mersenne, Newton, d'Alembert, Fermat, Huygens, Descartes and Helmholtz. These individuals were some of the first to develop the basic ideas, in various forms, that were then later reworked into the proofs, that today we recognize as the fundamental theorems of mathematics.

Chronological history from the $\mathbf{1 7}^{\text {th }}$ century

```
17 th Newton 1642-1727, Bernoulli, Johann 1667-1748
18}\mp@subsup{}{}{th}\mathrm{ Bernoulli, Daniel, Cauchy 1789-1857, Euler 1707-1783, d'Alembert 1717-1783, Gauss
    1777-1855
19 th Helmholtz 1821-1894, Kirchhoff 1824-87, Kelvin 1824-1907, Riemann 1826-1866,
    Maxwell 1831-1879, Rayleigh 1842-1919, Heaviside 1850-1925, Poincare 1854-1912
20th Harvey Fletcher 1884-1981, Arnold Sommerfeld 1886-1951, Albert Einstein 1879-1955,
    Léon Brillouin 1889-1969, Harry Nyquist 1889-1976 ...
\(21^{21}\) Hendrik Wade Bode 1905-1982,
```


Time Line

Figure 3.1: Timeline of the three centuries from the mid $17^{\text {th }}$ to $20^{t h} \mathrm{CE}$, one of the most productive times of all, because mathematicians were sharing information. Figure 1.3 (p. 22) (Bombelli-Gauss) provides a closer look at the 16-19 CE, and Fig. 4.1 (p.144) (Bombelli-Einstein) provides the full view 16-20 CE.

3.1 Lec 10: The physics behind nonlinear Algebra (Euclidean geometry)

The second theme of Stillwell's history of mathematics, Stream 2, is geometry, which led to the merging of Euclid's geometrical methods and the $9^{t h}$ century development of algebra by al-Khwarizmi (830 CE). This migration of ideas led Descartes and Fermat to develop analytic geometry.

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served students of mathematics for more than two thousand years. Algebra and geometry were, at first, independent lines of thought. When merged, the focus returned to the Pythagorean theorem. Algebra generalized the analytic conic section into the complex plane, greatly extending the geometrical approach as taught in Euclid's Elements. With the introduction of algebra, numbers, rather than lines, could be used to represent a geometrical lengths in the complex plane. Thus the appreciation for geometry grew, given the addition of the rigorous analysis using numbers.

Physics inspires algebraic mathematics: The Chinese used music, art, and navigation to drive mathematics. Unfortunately much of their knowledge has been handed down either as artifacts, such as musical bells and tools, or mathematical relationships documented, but not created, by scholars such as Euclid, Archimedes, Diophantus, and perhaps Brahmagupta. With the invention of algebra by alKhwārizmi $(830 \mathrm{CE})$, mathematics became more powerful, and blossomed. During the 16 th and 17 th century, it had become clear that differential equations (DEs), such as the wave equation, can characterize a law of nature, at a single point in space and time. This principle was not obvious. A desire to understand motions of objects and planets precipitated many new discoveries. This period, centered around Galileo, Newton and Euler, is illustrated in Fig. 1.3 (p. 22).

As previously described, the law of gravity was first formulated by Galileo using the concept of conservation of energy, which determines how masses are accelerated when friction is not considered and the mass is constant. Kepler investigated the motion of the planets. While Kepler was the first to observe that the orbits of planets are described by ellipses, it seems he under-appreciated the significance of his finding, as he continued working on his incorrect epicycle planetary model. Following up on Galileo's work (Galileo, 1638), Newton (c1687) went on to show that there must be a gravitational potential between two masses $\left(m_{1}, m_{2}\right)$ of the form

$$
\begin{equation*}
\phi_{\mathrm{New}}(r(t)) \propto \frac{m_{1} m_{2}}{r(t)} \tag{3.1}
\end{equation*}
$$

where $r=\left|x_{1}-x_{2}\right|$ is the Euclidean distance between the two point masses at locations x_{1} and x_{2}. Using algebra and his calculus, Newton formalized the equation of gravity, forces and motion (Newton's three laws), the most important being

$$
\begin{equation*}
f(t)=\frac{d}{d t} M v(t) \tag{3.2}
\end{equation*}
$$

and showed that Kepler's discovery of planetary elliptical motion naturally follows from these laws (see p. 10). With the discovery of Uranus (1781) "Kepler's theory was ruined" (i.e., proven wrong) (Stillwell, 2010, p. 23).

Once Newton proposed the basic laws of gravity, and explained the elliptical motion of the planets, he proceeded to calculate, for the first time, the speed of sound. This required some form of the pressure wave equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} \varrho(x, t)=\frac{1}{c_{o}^{2}} \frac{\partial^{2}}{\partial t^{2}} \varrho(x, t) \tag{3.3}
\end{equation*}
$$

a key equation in mathematical physics, where the speed of sound is

$$
c_{o}=\sqrt{\frac{\eta_{o} P_{o}}{\rho_{o}}}=343, \quad[\mathrm{~m} / \mathrm{s}]
$$

which is a function of the density $\rho_{o}=1.12\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ and the dynamic stiffness ηP_{o} of air. ${ }^{1}$ In other units the speed of sound is $767[\mathrm{mph}], 1125.3[\mathrm{ft} / \mathrm{s}], 1.125[\mathrm{ft} / \mathrm{ms}]$ and $1234.8[\mathrm{~km} / \mathrm{h}]$. One of the earliest measurements was by Marin Mersenne in 1630 as 1,380 [Parisian feet per second]. 1 English foot is 1.06575 Paris feet.

Exercise: How much smaller is one from Paris France than one from London England? Solution: The French seem to have been about $94[\%]$ smaller than the English, according to this measure.

If we substitute for the pressure

$$
\begin{equation*}
\varrho(x, t)=e^{\jmath(\omega t \pm 2 \pi k x)} \tag{3.4}
\end{equation*}
$$

where t is time and x is position, we find that $2 \pi k=2 \pi / \lambda=2 \pi f / c_{o}$, because $f \lambda=c_{o}$.

Case of dispersive wave propagation: This classic relation $\lambda f=c$ is deceptively simple, yet confusing, because the wave number $k=2 \pi / \lambda$ becomes a complex (has both real and imaginary parts) function of frequency in dispersive media (e.g., acoustic waves in tubes) when losses are considered (Kirchhoff, 1868; Mason, 1928). A more important example is the case of electron waves in silicon crystals (Brillouin, 1953). In these more general cases, the wave number $k(f)=2 \pi f / c$ is replaced with the complex analytic function called the propagation function $\kappa(s)$ of s, i.e., the wave becomes the eigen-function of the wave equation

$$
\begin{equation*}
p^{ \pm}(x, t)=P_{o}(s) e^{s t} e^{ \pm \kappa(s) x} \tag{3.5}
\end{equation*}
$$

In these more general cases $\kappa(s)$ must be a complex analytic function of the Laplace frequency $s=$ $\sigma+\omega j$, as used with the Laplace transform. This is because electron "waves" in a dispersive semiconductor, such as silicon, are "filtered" in magnitude and phase. Silicon is a highly dispersive "wavefilter," forcing the wavelength to be a complex function of frequency. This view is elegantly explained by Brillouin (1953, Chap. 1) in his historic text. Modern acoustics contains a rich source of related examples (Morse, 1948; Beranek, 1954; Ramo et al., 1965; Fletcher and Rossing, 2008).

Newton's Principia was finally published in 1687, and the general solution to Newton's wave equation [i.e., $p(x, t)=G(t \pm x / c)$], where G is any function, was first published 60 years later by d'Alembert (c1747), which showed that for single frequency sounds, the wavelength λ and frequency f were related by

$$
\begin{equation*}
f \lambda=c \tag{3.6}
\end{equation*}
$$

Today d'Alembert's single-frequency analytic wave solution must be written as Eq. 3.5 having a complex wave number $\kappa(s)=2 \pi / \lambda(s)$ [m^{-1}]. This formulation led to the frequency domain concept of the Laplace analysis, based on the linearity (i.e., superposition) property of the wave equation (Postulate P2, p. 130).

Newton's value for the speed of sound in air c_{o} was incorrect by the thermodynamic constant $\sqrt{\eta_{o}}$, a problem that would take 130 years to formulate. What was needed was the adiabatic process (the concept of constant-heat). For audio frequencies $(0.02-20[\mathrm{kHz}])$, the small temperature gradients cannot diffuse the distance of a wavelength in one cycle (Pierce, 1981; Boyer and Merzbach, 2011), "trapping" the heat energy in the wave. ${ }^{2}$ Repairing Newton's formula for the sound speed was to define the dynamic stiffness of air $\eta_{o} P_{o}$, where $P_{o}\left(1[\mathrm{~atm}]\right.$ or $\left.10^{5}[\mathrm{~Pa}]\right)$ is the static stiffness of air. But this fix still ignores losses (Kirchhoff, 1868).

Newton's success was important because it quantified the physics behind the speed of sound, and demonstrated that momentum $(m v)$, not mass m, was transported by the wave. His concept was correct, and his formulation using algebra and calculus represented a milestone in science. In air, assuming no visco-elastic losses, it is constant (i.e., $c_{o}=\sqrt{\eta_{o} P_{o} / \rho_{o}}$). When including losses, the wave number

[^21]becomes a complex function of frequency, leading to Eq. 3.5. In periodic structures, again the wave number becomes complex due to diffraction, as commonly observed in optics (e.g., diffraction gratings) and acoustics. Thus Eq. 3.6 only holds for the simplest cases, but in general it must be considered as a complex analytic function of s, as $\kappa(s)$ in Eq. 3.5.

The corresponding discovery for the formula for the speed of light was made 174 years after Principia, by Maxwell (c1861). Maxwell's formulation also required great ingenuity, as it was necessary to hypothesize an experimentally unmeasured term in his equations, to get the mathematics to correctly predict the speed of light.

It is somewhat amazing that to this day, we have failed to understand gravity significantly better than Newton's theory. Perhaps this is too harsh, given the 1905 work of Einstein. ${ }^{3}$

3.1.1 The first Algebra

Prior to the invention of algebra, people worked out problems as sentences using an obtuse description of the problem (Stillwell, 2010, p. 93). Algebra changed this approach, resulting in a compact language of mathematics, where numbers are represented as abstract symbols (e.g., x and α). The problem to be solved could be formulated in terms of sums of powers of smaller terms, the most common being powers of some independent variable (i.e., time or frequency). If we set $a_{n}=1$

$$
\begin{equation*}
P_{n}(z) \equiv z^{n}+a_{n-1} z^{n-1}+\cdots+a_{o} z^{0}=z^{m}+\sum_{k=0}^{n-1} a_{k} z^{k}=\prod_{k=0}^{n}\left(z-z_{k}\right) . \tag{3.7}
\end{equation*}
$$

is called a monic polynomial. The coefficient a_{n} cannot be zero, or the polynomial would not be of degree n. The resolution is to force $a_{n}=1$, since this simplifies the expression and does not change the roots.

The key question is: What values of $z=z_{k}$ result in $P_{n}\left(z_{k}\right)=0$. In other words, what are the roots z_{k} of the polynomial? Answering this question consumed thousands of years, with intense efforts by many aspiring mathematicians. In the earliest attempts, it was a competition to evaluate mathematical acumen. Results were held as a secret to the death bed. It would be fair to view this effort as an obsession. Today the roots of any polynomial may be found, to high accuracy, by numerical methods. Finding roots is limited by the numerical limits of the representation, namely by IEEE-754 (p. 37). There are also a number of important theorems.

Of particular interest is composing a circle with a line, by finding the intersection (root). There was no solution to this problem using geometry. The resolution of this problem is addressed in the assignments below.

3.1.2 Finding roots of polynomials

The problem of factoring polynomials has a history more than a millennium in the making. While the quadratic (degree $N=2$) was solved by the time of the Babylonians (i.e., the earliest recorded history of mathematics), the cubic solution was finally published by Cardano in 1545 . The same year, Cardano's student solved the quartic $(N=4)$. In 1826 (281 years later) it was proved that the quintic ($N=5$) could not be factored by analytic methods.

As a concrete example we begin with the important but trivial case of the quadratic

$$
\begin{equation*}
P_{2}(x)=a x^{2}+b x+c \tag{3.8}
\end{equation*}
$$

First note that if $a=0$, the quadratic reduces to the monomial $P_{1}(x)=b x+c$. Thus we have the necessary condition that $a \neq 0$. The best way to proceed is to divide a out and work directly with the monic $\widehat{P}_{2}(x)=\frac{1}{a} P_{2}(x)$. In this way we do not need to worry about the exception, $a=0$.

[^22]The roots are those values of x such that $\widehat{P}_{2}\left(x_{k}\right)=0$. One of the first results (recorded by the Babylonians, c2000 BCE) was the factoring of this equation by completing the square (Stillwell, 2010, p. 93). One may isolate x by rewriting Eq. 3.8 as

$$
\begin{equation*}
\frac{1}{a} P_{2}(x)=(x+b / 2 a)^{2}-(b / 2 a)^{2}+c / a . \tag{3.9}
\end{equation*}
$$

This is easily verified by expanding the squared term and canceling $(b / 2 a)^{2}$

$$
\frac{1}{a} P_{2}(x)=\left[x^{2}+(b / a) x+(b / 2 a)^{2}\right]-(b / 2 a)^{2}+c / a .
$$

Setting Eq. 3.9 to zero and solving for the two roots $x_{ \pm}$gives the quadratic formula

$$
\begin{equation*}
x_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{3.10}
\end{equation*}
$$

The roots of $\widehat{P}_{2}(x)$, with $a=1$, simplify to

$$
\begin{equation*}
x_{ \pm}=-b / 2 \pm \sqrt{(b / 2)^{2}-c} . \tag{3.11}
\end{equation*}
$$

This can be further simplified. The term $b^{2}-c>0$ under the square root is called the discriminant, and in physics and engineering problems, $>99.9 \%$ of the time it is negative. Finally $b / 2 \ll \sqrt{c}$; thus, the most natural way (i.e., corresponding to the most common physical cases) of writing the solution is ${ }^{4}$

$$
\begin{equation*}
x_{ \pm}=-b / 2 \pm \jmath \sqrt{c-(b / 2)^{2}} \approx-b / 2 \pm \jmath \sqrt{c} \tag{3.12}
\end{equation*}
$$

This form separates the real and imaginary parts of the solution in a natural way. The term $b / 2$ is called the damping, which accounts for losses in a resonant circuit, while the term \sqrt{c}, for mechanical, acoustical and electrical networks, is called the resonant frequency, typically written as ω_{0}. The last approximation ignores the (typically) minor correction to the resonant frequency, which in engineering practice is almost always ignored. Knowing that there is a correction is highlighted by this formula, making one aware it exists.

It is not required that $a, b, c \in \mathbb{R}>0$, but for physical problems of interest, this is always true ($>99.9 \%$ of the time).

Summary: The quadratic equation and its solution are ubiquitous in physics and engineering. It seems obvious that instead of memorizing the meaningless Eq. 3.10, one should learn the physically meaningful solution, Eq. 3.12, obtained via Eq. 3.9, with $a=1$. Arguably, the factored and normalized form (Eq. 3.9) is easier to remember, as a method (completing the square), rather than as a formula to be memorized.

Additionally, the real $(b / 2)$ and imaginary $\pm \sqrt{c}$ parts of the two roots have physical significance as the damping and resonant frequency. Equation 3.10 has none.

No insight is gained by memorizing the quadratic formula. To the contrary, an important concept is gained by learning how to complete the square, which is typically easier than identifying a, b, c and blindly substituting them into Eq. 3.10. Thus it's worth learning the alternate solution (Eq. 3.12) since it is more common in practice and requires less algebra to interpret the final answer.

[^23]Exercise: By direct substitution demonstrate that Eq. 3.10 is the solution of Eq. 3.8. Hint: Work with $\widehat{P}_{2}(x)$. Solution: Setting $a=1$ the quadratic formula may be written

$$
x_{ \pm}=\frac{-b \pm 1 \jmath \sqrt{4 c-b^{2}}}{2}
$$

Substituting this into $\widehat{P}_{2}(x)$ gives

$$
\begin{aligned}
\widehat{P}_{ \pm}\left(x_{ \pm}\right) & =x_{ \pm}^{2}+b x_{ \pm}+c \\
& =\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}\right)^{2}+b\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}\right)+c \\
& =\frac{1}{4}\left(b^{2} \pm 2 b \sqrt{b^{2}-4 c}+\left(b^{2}-4 c\right)\right)+\frac{1}{4}\left(-2 b^{2} \pm 2 b \sqrt{b^{2}-4 c}\right)+\not \subset \\
& =0
\end{aligned}
$$

Exercise: By direct substitution, show that Eq. 3.12 satisfies Eq. 3.10. Solution: Putting Eq. 3.10 into Eq. 3.10 in factored form gives

$$
\begin{aligned}
\widehat{P}_{2}(x) & =\left(x-x_{+}\right)\left(x-x_{-}\right) \\
& =\left(x+\frac{1}{2} b+\jmath \sqrt{c-(b / 2)^{2}}\right)\left(x+\frac{1}{2} b-\jmath \sqrt{c-(b / 2)^{2}}\right) \\
& =\left(x+\frac{b}{2}\right)^{2}+\left(c-b^{2} / 4\right) \\
& =\left(x^{2}+b x+b^{2} / 4\right)+\left(c-b^{2} / 4\right) \\
& =x^{2}+b x+c .
\end{aligned}
$$

In third grade I learned the times-table trick for 9:

$$
\begin{equation*}
9 \cdot n=(n-1) \cdot 10+(10-n) \tag{3.13}
\end{equation*}
$$

With this simple rule I did not need to depend on my memory for the 9 times tables. ${ }^{5}$ Learning an algorithm is much more powerful than memorization of the 9 times tables. Note that the two terms ($n-1$) and $(10-n)$, add to 9 . How one thinks about a problem can have great impact.

Newton's method for finding roots of $P_{n}(s)$ Newton is well known for an approximate but efficient method to find the roots of a polynomial. ${ }^{6}$ Consider polynomial $P_{n}(s) \in \mathbb{C}$ for $s \in \mathbb{C}$

$$
P_{n}(s)=c_{n}\left(s-s_{0}\right)^{n}+c_{n-1}\left(s-s_{0}\right)^{n-1}+\cdots+c_{1}\left(s-s_{0}\right)+c_{0}
$$

where we may use Taylor's formula (p. 85) to determine the coefficients

$$
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d s^{n}} P_{n}(s)\right|_{s=s_{0}}
$$

[^24]If an initial guess for the root s_{0} is close to a root, then $\left|\left(s-s_{0}\right)\right|^{n} \ll\left|\left(s-s_{0}\right)\right|$ for $n \geq 2 \in \mathbb{N}$. Thus we may truncate $P_{n}\left(s-s_{o}\right)$ to its linear term

$$
\begin{aligned}
P_{n}(s) & \left.\approx\left(s-s_{0}\right) \frac{d}{d s} P_{n}(s)\right|_{s=s_{0}}+P_{n}\left(s_{0}\right) \\
& =\left(s-s_{0}\right) P_{n}^{\prime}\left(s_{0}\right)+P_{n}\left(s_{0}\right)
\end{aligned}
$$

where $P_{n}^{\prime}(s)$ is shorthand for $d P_{n}(s) / d s$.
Root s_{0} may be found by iteration, defining a sequence $s_{n} \rightarrow s_{0}, n \in \mathbb{N}$, such that $P_{n}\left(s_{n}\right)=0$ as $n \rightarrow \infty$. Replacing s with s_{n}, and s_{0} with s_{n-1}, the formula becomes a recursion for the root s_{n}

$$
\left(s_{n}-s_{n+1}\right) P_{n}^{\prime}\left(s_{n+1}\right)+P_{n}\left(s_{n+1}\right)=P_{n}\left(s_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Solving for s_{n} gives Newton's root-finding formula, which involves the reciprocal of the logarithmic derivative P_{n}^{\prime} / P_{n}

$$
\begin{equation*}
s_{n}=s_{n-1}-\frac{P_{n}\left(s_{n-1}\right)}{P_{n}^{\prime}\left(s_{n-1}\right)} \tag{3.14}
\end{equation*}
$$

Here s_{n-1} is the expansion point and s_{n} is the $n^{t h}$ approximation to the root. With every step, the expansion point moves closer to the root, converging to the root in the limit. As it comes closer, the linearity assumption becomes more accurate, ultimately resulting in the convergence to the root.

This expression is related to the log-derivative $d \log P(x) / d x=P^{\prime}(x) / P(x)$. It follows that even for cases where fractional derivatives of roots are involved (p. 162), ${ }^{7}$ Newton's method should converge, since the log-derivative linearizes the equation. ${ }^{8}$

Figure 3.2: Newton's method applied to the polynomial having real roots [1, 2, 3, 4] (left) and 5 complex roots (right). A random starting point was chosen, and each curve shows the values of s_{n} as Newton's method converges to the root. Different random starting points converge to different roots. The method always results in convergence to a root. Claims to the contrary (Stewart, 2012, p. 347) are a result of forcing the roots to be real. For convergence, one must assume $s_{n} \in \mathbb{C}$.

Newton's view: Newton believed that imaginary roots and numbers have no meaning (p. 145), thus he sought only real roots (Stillwell, 2010, p. 119). In this case Newton's relation may be explored as a graph, which puts Newton's method in the realm of analytic geometry. The function $P_{n}^{\prime}(x)$ is the slope of the polynomial $P_{n}(x)$ at x_{n}. The ratio $P_{n}(x) / P_{n}^{\prime}(x)$ has poles at the roots of P^{\prime} and zeros at the roots we seek.

[^25]Example: When the polynomial is $P_{2}=1-x^{2}$, and $P_{2}^{\prime}(x)=-2 x$, Newton's iteration becomes

$$
x_{n+1}=x_{n}+\frac{1-x_{n}^{2}}{2 x_{n}}
$$

Note the roots are $\left.x_{ \pm}= \pm 1\right)$. For the case of $N=2$ the root of $P_{2}^{\prime}(x)$ is always the average of the roots of $P_{2}(x)$.

To start the iteration $(n=0)$ we need an initial guess for x_{0}, which is an "initial random guess" of where a root might be. For $P_{2}(x)=1-x^{2}$,

$$
x_{1}=x_{0}+\frac{1-x_{0}^{2}}{2 x_{0}}=x_{0}+\frac{1}{2}\left(-x_{0}+1 / x_{0}\right)
$$

1. Let $P_{2}(x)=1-x^{2}$, and $x_{0}=1 / 2$. Draw a graph describing the first step of the iteration. Solution: Start with an (x, y) coordinate system and put points at $x_{0}=(1 / 2,0)$ and the vertex of $P_{2}(x)$, i.e.: $(0,1)\left(P_{2}(0)=1\right)$. Then draw $1-x^{2}$, along with a line from x_{0} to x_{1}.
2. Calculate x_{1} and x_{2}. What number is the algorithm approaching? Is it a root of P_{2} ? Solution: First we must find $P_{2}^{\prime}(x)=-2 x$. Thus the equation we will iterate is

$$
x_{n+1}=x_{n}+\frac{1-x_{n}^{2}}{2 x_{n}}=\frac{x_{n}^{2}+1}{2 x_{n}}
$$

By hand

$$
\begin{aligned}
& x_{0}=1 / 2 \\
& x_{1}=\frac{(1 / 2)^{2}+1}{2(1 / 2)}=\frac{1}{4}+1=5 / 4=1.25 \\
& x_{2}=\frac{(5 / 4)^{2}+1}{2(5 / 4)}=\frac{(25 / 16)+1}{10 / 4}=\frac{41}{40}=1.025
\end{aligned}
$$

These estimates rapidly approach the positive real root $x=1$. Note that if one starts at the root of $P^{\prime}(x)=0$ (i.e., $x_{0}=0$), the first step is indeterminate.
3. Write an Octave/Matlab script to check your answer for part (a). Solution:

```
x=1/2;
for n = 1:3
x = x+(1-x*x)/(2*x);
end
```

(a) For $n=4$, what is the absolute difference between the root and the estimate, $\left|x_{r}-x_{4}\right|$?

Solution: 4.6E-8 (very small!)
(b) What happens if $x_{0}=-1 / 2$? Solution: You converge on the negative root, $x=-1$.
4. Does Newton's method work for $P_{2}(x)=1+x^{2}$? Why? ${ }^{9}$ Hint: What are the roots in this case?

Solution: In this case $P_{2}^{\prime}(x)=+2 x$ thus the iteration gives

$$
x_{n+1}=x_{n}-\frac{1+x_{n}^{2}}{2 x_{n}}
$$

In this case the roots are $x_{ \pm}= \pm 1 \jmath$, namely purely imaginary. Obviously Newton's method fails because there is no way for the answer to become complex. If like Newton, you didn't believe in complex numbers, your method would fail to converge to the complex roots (i.e., real in, real out). This is because Octave/Matlab assumes $x \in \mathbb{C}$, since it is initialized as \mathbb{C}.

[^26]5. What if you let $x_{0}=(1+\jmath) / 2$ for the case of $P_{2}(x)=1+x^{2}$? Solution: By starting with a complex initial value, we fix the Real in = Real out problem.

Fractal diagrams: When the initial guess is real, but the nearest root is complex, Newton's iteration fails, as discussed in the exercises above. This failure to converge gives rise to fractal patterns, today known as the Mandelbrot set. ${ }^{10}$

Exercise: Find the logrithmic derivative of $f(x) g(x)$. Solution: From the definiton of the logarithmic derivative and the chain rule for the differentiation of a product:

$$
\begin{aligned}
\frac{d}{d x} \ln f(x) g(x) & =\frac{d}{d x} \ln f+\frac{d}{d x} \ln g \\
& =\frac{1}{f} \frac{d}{d x} f+\frac{1}{g} \frac{d}{d x} g
\end{aligned}
$$

Example: Assume that polynomial $P_{3}(s)=(s-a)^{2} /(s-b)^{\pi}$. Then

$$
\ln P_{3}(s)=2 \ln (s-a)-\pi \ln (s-b)
$$

and

$$
\frac{d}{d s} \ln P_{3}(s)=\frac{2}{s-a}-\frac{\pi}{s-b} .
$$

Reduction by the logarithmic derivative to simple poles: As shown by the above trivial example, any polynomial, having zeros of arbitrary degree (i.e., π in the example), may be reduced to the ratio of two polynomials, by taking the logarithmic derivative, since

$$
\begin{equation*}
L_{N}(s)=\frac{N(s)}{D(s)}=\frac{d}{d s} \ln P_{n}(s)=\frac{P_{n}^{\prime}(s)}{P_{n}(s)} \tag{3.15}
\end{equation*}
$$

Here the starting polynomial is the denominator $D(s)=P_{n}(s)$ while the numerator $N(s)=P_{n}^{\prime}(s)$ is the derivative of $D(s)$. Thus the logarithmic derivative can play a key role in analysis of complex analytic functions, as it reduces higher order poles, even those of irrational degree, to simple poles.

The logarithmic derivative $L_{N}(s)$ has a number of special properties:

1. $L_{N}(s)$ has simple poles s_{p} and zeros s_{z}.
2. The poles of $L_{N}(s)$ are the zeros of $P_{n}(s)$.
3. The zeros of $L_{N}(s)$ (i.e., $P_{n}^{\prime}\left(s_{z}\right)=0$) are the zeros of $P_{n}^{\prime}(s)$.
4. $L_{N}(s)$ is analytic everywhere other than its poles.
5. Since the zeros of $P_{n}(s)$ are simple (no second-order poles), it is obvious that the zeros of $L_{N}(s)$ always lie close to the line connecting the two poles. One may easily demonstrate the truth of the statement numerically, and has been quantified by the Gauss-Lucas theorem which specifies the relationship between the roots of a polynomial and those of its derivative. Specifically, the roots of P_{N-1}^{\prime} lie inside the convex hull of the roots of P_{n}.
To understand the meaning of the convex hull, consider the following construction: If stakes are placed at each of the N roots of $P_{N}(x)$, and a string is then wrapped around the stakes, with all the stakes inside the string, the convex hull is then the closed set inside the string. One can then begin to imagine how the $N-1$ roots of the derivative must evolve with each set inside the convex hull of the previous set. This concept may be recursed to $N-2$, and below.

[^27]6. Newton's method may be expressed in terms of the reciprocal of the logarithmic derivative, since
$$
s_{k+1}=s_{k}+\epsilon_{o} / L_{N}(s)
$$
where ϵ_{o} is called the step size, which is used to control the rate of convergence of the algorithm. If the step size is too large, the root-finding path may jump to a different domain of convergence, thus a different root of $P_{n}(s)$.
7. Not surprisingly, given all the special proprieties, $L_{N}(x)$ plays an key role in mathematical physics.

Euler's product formula: Counting may be written as a linear recursion, simply by adding 1 to the previous value starting from 0 . The even numbers may be generated by adding 2 , starting from 0 . Multiples of 3 may be similarly generated by adding 3 to the previous value, starting from 0 . Such recursions are fundamentally related to prime numbers $\varrho_{k} \in \mathbb{P}$. as first shown by Euler. The logic is based on the properties of the sieve (Sect. 2.3, p. 48). The basic idea is both simple and basic, taking almost everyone by surprise, likely even Euler. It is related on the old idea that the integers may be generated by the geometric series, when viewed as a recursion.

Example: Let's look at counting modulo prime numbers. For example, if $k \in \mathbb{N}$ then

$$
k \cdot \bmod (k, 2), \quad k \cdot \bmod (k, 3), \quad k \cdot \bmod (k, 5)
$$

are all multiples of the primes $\pi_{1}=2, \pi_{2}=3$ and $\pi_{3}=5$.

$$
N_{n}=\alpha N_{n-M}+u_{n}
$$

Figure 3.3: This feedback network is described by a time-domain difference equation with delay M [s], has an all-pole transfer function.

To see this define the step function $u_{n}=0$ for $n<0$ and $u_{n}=1$ for $n \geq 0$ and the counting number function $N_{n}=0$ for $n<0$. The counting numbers may be recursively generated from the recursion

$$
\begin{equation*}
N_{n+1}=N_{n-M}+u_{n} \tag{3.16}
\end{equation*}
$$

which for $M=1$ gives $N_{n}=n$. For $M=2 N_{n}=0,2,4, \cdots$ are the even numbers.
As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in Euler's product formula. Based on the argument given the discussion of the Sieve (Lec. 2.3, 48), one may automate the process and create a recursive procedure to identify multiples of the first item on the list, and then remove the multiples of that prime. The lowest number on this list is the next prime. One may then recursively generate all the multiples of this new prime, and remove them from the list. Any numbers that remain are candidates for primes.

The observation that this procedure may be automated with a recursive filter, such as that shown in Fig. 3.3, implies that it may be transformed into the frequency domain, and described in terms of its poles and zeros. He was successful in finding the function that describes these poles, which are related to the primes. For example, the poles of the filter shown in Fig. 3.3 may be determined by taking the ztransform of the recursion equation, and solving for the roots of the resulting polynomial. The recursion equation is the time-domain equivalent to Riemann's zeta function $\zeta(s)$, which the frequency domain equivalent representation.

Exercise: Show that $N_{n}=n$ follows from the above recursion. Solution: If $n=-1$ we have $N_{n}=0$ and $u_{n}=0$. For $n=0$ the recursion gives $N_{1}=N_{0}+u_{0}$, thus $N_{1}=0+1$. When $n=1$ we have $N_{2}=N_{1}+1=1+1=2$. For $n=2$ the recursion gives $N_{3}=N_{2}+1=3$. Continuing the recursion we find that $N_{n}=n$. Today we denote such recursions of this form as digital filters. The state diagram for N_{n} is given in Fig. 3.3.

To start the recursion define $u_{n}=0$ for $n<0$. Thus $u_{0}=u_{-1}+1$. But since $u_{-1}=0, u_{0}=1$. The counting numbers follow from the recursion. A more understandable notation is the convolution of the step function with itself, namely

$$
n u_{n}=u_{n} \star u_{n} \leftrightarrow \frac{1}{s^{2}},
$$

which says that the counting numbers $\hat{\boldsymbol{n}} \in \mathbb{N}$ are easily generated by convolution, which corresponds to a second order pole at $s=0$, in the Laplace frequency domain.

Exercise: Write an Octave/Matlab program that generates removes all the even number, to give the odds $N_{n}=\{1,0,3,0,5,0,7,0,9, \cdots\}$.

Solution:
$\mathrm{M}=50$; $\mathrm{N}=(0: \mathrm{M}-1)$;
$\mathrm{u}=$ ones $(1, \mathrm{M})$; $\mathrm{u}(1)=0$;
Dem=[11]; Num=[1];
$\mathrm{n}=$ filter (Num, Dem, u) ;
$\mathrm{y}^{2}=\mathrm{n} . * \mathrm{~N} ; \quad \mathrm{F} 1=\mathrm{N}-\mathrm{y}^{2}$
which gives: $F 1=[0,1,0,3,0,5,0,7,0,9,0, \cdots]$.
Exercise: Write a program to recursively down-sample N_{n} by 2:1. Solution:
$\mathrm{N}=\left[\begin{array}{llllllllllllll}1 & 0 & 3 & 0 & 5 & 0 & 7 & 0 & 9 & 0 & 11 & 0 & 13 & 0\end{array}\right.$ 15$]$
$\mathbf{M}=\mathbf{N}(2: 2:$ end $)$; which gives: $M=[1,3,5,7,9,11,13,15, \cdots]$

$$
C_{N}=\left[\begin{array}{cccccc}
0 & & & & & \tag{3.17}\\
1 & 0 & & & 0 & \\
-c_{0} \\
0 & 1 & 0 & & & \\
-c_{1} \\
\vdots & 0 & 1 & 0 & \cdots & \\
& & \cdots & \ddots & 0 & \\
& 0 & & & 1 & 0 \\
\hline
\end{array}\right.
$$

is derived from the monic polynomial of degree N

$$
\begin{aligned}
P_{N}(s) & =s^{N}+c_{N-1} s^{N-1} \cdots+c_{2} s^{2}+c_{1} s+c_{o} \\
& =s^{N}+\sum_{n=0}^{N-1} c_{n} s^{n}
\end{aligned}
$$

having coefficient vector

$$
\mathbf{c}_{N-1}^{T}=\left[1, c_{N-1}, c_{N-2}, \cdots c_{o}\right]^{T}
$$

The roots of the monic polynomial are the eigenvalues of the companion matrix C_{N}. The degrees of freedom (DoF) of a polynomial, and thus of its companion matrix, are the number of non-zero eigenvalues.

Exercise: Show that the eigenvalues of the 3×3 companion matrix are the same as the roots of $P_{3}(s)$. Solution: Expanding the determinant of $C_{3}-s I_{3}$ along the right-most column:

$$
-\left|\begin{array}{ccc}
-s & 0 & -c_{0} \\
1 & -s & -c_{1} \\
0 & 1 & -\left(c_{2}+s\right)
\end{array}\right|=c_{0}+c_{1} s+\left(c_{2}+s\right) s^{2}=s^{3}+c_{2} s^{2}+c_{1} s+c_{0}
$$

This is the negative of the characteristic polynomial $\left(-P_{3}(s)\right)$, which has the same roots.

Exercise: Find the companion matrix for the Fibonacci sequence, defined by the recursion (i.e., difference equation)

$$
f_{n+1}=f_{n}+f_{n-1}
$$

initialized with $f_{n}=0$ for $n<0$ and $f_{0}=1$. Solution: Taking the " Z transform" gives the polynomial $z^{1}=z^{0}-z^{-1}=0$ having coefficient vector $Z=[1,-1,-1]$, resulting in the Fibonacci companion matrix

$$
C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

as discussed Section 2.3.5 on page 61.

Example: Matlab/Octave: A polynomial is represented in Matlab/Octave in terms of its coefficient vector. When the polynomial vector for the poles of a differential equation is

$$
\boldsymbol{c}_{N}=\left[1, c_{N-1}, c_{N-2}, \cdots c_{0}\right]^{T}
$$

the coefficient $c_{N}=1$. This normalization guarantees that the leading term is not zero, and the number of roots (N) is equal to the degree of the monic polynomial.

3.1.4 Working with polynomials in Matlab/Octave:

In Matlab/Octave there are seven related functions you must become familiar with:

1. $\mathrm{R}=\operatorname{roots}(\mathrm{A})$ Vector $\mathrm{A}=\left[a_{N}, a_{N-1}, \ldots, a_{o}\right] \in \mathbb{C}$ are the complex coefficients of polynomial $P_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n} \in \mathbb{C}$, where $N \in \mathbb{N}$ is the degree of the polynomial. It is convenient to force $a_{N}=1$, corresponding to dividing the polynomial by this value, when it is not 1 , guaranteeing it cannot be zero. Further R is the vector of roots, $\left[z_{1}, z_{2}, \cdots, z_{n}\right] \in \mathbb{C}$ such that polyval (A, z_{k}) $=0$.

Example: $\operatorname{roots}([1,-1])=1$.
2. $\mathrm{y}=\mathrm{polyval}(\mathrm{A}, \mathrm{x})$: This evaluates the polynomial defined by vector $\mathrm{A} \in \mathbb{C}^{N}$ evaluated at x $\in \mathbb{C}$, returning vector $y(x) \in \mathbb{C}$.
Example: polyval $([1-1], 1)=0, \operatorname{polyval}([1,1], 3)=4$.
3. $P=p \circ l y(R)$: This is the inverse of root (), returning a vector of polynomial coefficients P $\in \mathbb{C}^{N}$ of the corresponding characteristic polynomial, starting from either a vector of roots R, or a matrix A, for example, defined with the roots on the diagonal. The characteristic polynomial is defined as the determinant of $|A-\lambda I|=0$ having roots R.
Example: $\operatorname{poly}([1])=[1,-1] i, \operatorname{poly}([1,2])=[1,-3,2]$.
Due to IEEE-754 scaling issues, this can give strange results that are numerically correct, but only within the limits of IEEE-754 accuracy.
4. R=polyder (C) This routine takes the N coefficients of polynomial C and returns the $N-1$ coefficients of the derivative of the polynomial. This is useful when working with Newton's method, where each step is proportional to $P_{N}(x) / P_{N-1}^{\prime}(x)$.
Example: polyder $([1,1])=[1]$
5. $[K, R]=$ residue (N, D): Given the ratio of two polynomials N, D, residue (N, D) returns vectors K, R such that

$$
\begin{equation*}
\frac{N(s)}{D(s)}=\sum_{k} \frac{K_{k}}{s-s_{k}} \tag{3.18}
\end{equation*}
$$

where $s_{k} \in \mathbb{C}$ are the roots of the denominator D polynomial and $\mathrm{K} \in \mathbb{C}$ is a vector of residues, which characterize the roots of the numerator polynomial $N(s)$. The use of residue () will be discussed in Sect. 4.4 (p. 164), and C.3, p. 270. This is one of the most valuable time-saving routine I know of.

Example: Residue (2, [1 0 -1 $]$) $=\left[\begin{array}{ll}1 & -1\end{array}\right]$
6. $\mathrm{C}=\operatorname{conv}(\mathrm{A}, \mathrm{B}):$ Vector $\mathrm{C} \in \mathbb{C}^{N+M-1}$ contains the polynomial coefficients of the convolution of the two vector of coefficients of polynomials $A, B \in \mathbb{C}^{N}$ and $B \in \mathbb{C}^{M}$.
Example: $[1,2,1]=\operatorname{conv}([1,1],[1,1])$.
7. $[C, R]=\operatorname{deconv}(N, D): V e c t o r s C, N, D \in \mathbb{C}$. This operation uses long division of polynomials to find $C(s)=N(s) / D(s)$ with remainder $R(s)$, where $\mathrm{N}=\operatorname{conv}(\mathrm{D}, \mathrm{C})+\mathrm{R}$, namely

$$
\begin{equation*}
C=\frac{N}{D} \quad \text { remainder } \quad R \tag{3.19}
\end{equation*}
$$

Example: Defining the coefficients of two polynomials as $A=\left[1, a_{1}, a_{2}, a_{3}\right]$ and $B=\left[1, b_{1}, b+\right.$ 2], one may find the coefficients of the product from $\mathrm{C}=\operatorname{conv}(\mathrm{A}, \mathrm{B})$, and recover B from C with $B=\operatorname{deconv}(C, A)$.
8. A=compan (D): Vector $D=\left[1, d_{N-1}, d_{N-2}, \cdots, d_{0}\right]^{T} \in \mathbb{C}$ contains the coefficients of the monic polynomial

$$
D(s)=s^{N}+\sum_{k=1}^{N} d_{N-k} s^{k}
$$

and A is the companion matrix of vector D (Eq. C.3, p. 270). The eigenvalues of A are the roots of monic polynomial $D(s)$.

Example: compan $\left(\left[\begin{array}{lll}1 & -1 & -1\end{array}\right]\right)=\left[\begin{array}{llll}1 & 1 ; & 1 & 0\end{array}\right]$

Exercise: Practice the use of Matlab's/Octave's related functions, which manipulate roots, polynomials and residues: root (), conv(), deconv(), poly(), polyval(), polyder(), residue(), compan ().

Solution: Try Newton's method for various polynomials. Use $N=p o l y(R)$ to provide the coefficients of a polynomial given the roots R. Then use root () to factor the resulting polynomial. Then use Newton's method and show that the iteration converges to the nearest root. ${ }^{11}$

Solution: Write more examples similar to the ones provided above, and manually verify them.

Exercise: Write an Octave/Matlab script that finds the companion matrix of the Fibonacci recursion formula, and verify it manually. Solution: $Z=[1,-1,-1] ; C=\operatorname{compan}(Z)$

3.2 Lec 11: Eigenanalysis I: eigenvalues of a matrix

At this point we turn a corner in the discussion, to discuss the important topic of eigenanalysis, which starts with the computation of the eigenvalues and their eigenvectors of a matrix. As briefly discussed in Lecture 2.2 (p. 39), eigenvectors are mathematical generalizations of resonances, or modes, naturally found in physical systems.

When you pluck the string of a violin or guitar, or hammer a bell or tuning fork, there are natural resonances that occur. These are the eigenmodes of the instrument. The frequency of each mode is related to the eigenvalue, which in physical terms is the frequency of the mode. But this idea goes way beyond simple acoustical instruments. Wave-guides and atoms can be resonant systems. The resonances of the hydrogen atom are called the Lyman series, ${ }^{12}$ a special case of the Rydberg series and Rydberg atom (p. ??).

Thus this topic runs deep in both physics and, eventually, mathematics. In some real sense, eigenanalysis was what the Pythagoreans were seeking to understand. This relationship is rarely spoken about in the open literature, but once you see it, it can never be forgotten, as it colors your entire view of all aspects of modern physics.

3.2.1 Eigenvalues of a matrix

The method for finding eigenvalues is best described by an example. ${ }^{13}$ Starting from the matrix Eq. 2.3.5 (p. 62), the eigenvalues are defined by the eigenmatrix equation

$$
\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]
$$

The unknowns here are the eigenvalue λ and the eigenvector $\boldsymbol{e}=\left[e_{1}, e_{2}\right]^{T}$. First find λ by subtracting the right from the left

$$
\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \tag{3.20}\\
2 & 0
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]-\lambda\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1-2 \lambda & 1 \\
2 & -2 \lambda
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=0
$$

The only way that this equation for e can have a solution is if the matrix is singular. If it is singular, the determinant of the matrix is zero.

[^28]Example: The determinant of the above 2×2 example is the product of the diagonal elements, minus the product of the off-diagonal elements, which results in the quadratic equation

$$
-2 \lambda(1-2 \lambda)-2=4 \lambda^{2}-2 \lambda-2=0
$$

Completing the square gives

$$
\begin{equation*}
(\lambda-1 / 4)^{2}-(1 / 4)^{2}-1 / 2=0 \tag{3.21}
\end{equation*}
$$

thus the roots (i.e., eigenvalues) are $\lambda_{ \pm}=\frac{1 \pm 3}{4}=\{1,-1 / 2\}$.

Exercise: Expand Eq. 3.21 and recover the quadratic equation. Solution:

$$
(\lambda-1 / 4)^{2}-(1 / 4)^{2}-1 / 2=\lambda^{2}-\lambda / 2+(1 / 4)^{2}-(1 / 4)^{2}-1 / 2=0
$$

Thus completing the square is equivalent to the original equation.

Exercise: Find the eigenvalues of matrix Eq. 2.12. (Hint: see p. 260) Solution: This is a minor variation on the previous example. Briefly

$$
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & N \\
1 & 1-\lambda
\end{array}\right]=(1-\lambda)^{2}-N=0
$$

Thus $\lambda_{ \pm}=1 \pm \sqrt{N}$.

Exercise: Starting from $\left[x_{n}, y_{n}\right]^{T}=[1,0]^{T}$ compute the first 5 values of $\left[x_{n}, y_{n}\right]^{T}$. Solution: Here is a Matlab/Octave code for computing x_{n} :

```
x(1:2,1)=[1;0];
A=[1 1;2 0]/2;
for k=1:10; x(k+1)=A*x(:,k); end
```

which gives the rational $\left(x_{n} \in \mathbb{Q}\right)$ sequence: $1,1 / 2,3 / 4,5 / 8,11 / 2^{4}, 21 / 2^{5}, 43 / 2^{6}, 85 / 2^{7}, 171 / 2^{8}$, $341 / 2^{9}, 683 / 2^{10}, \cdots$.

Exercise: Show that the solution to Eq. 2.18 is bounded, unlike that of the divergent Fibonacci sequence. Explain what is going on. Solution: Because the next value is the mean of the last two, the sequence is bounded. To see this one needs to compute the eigenvalues of the matrix Eq. 2.3 .5 (p. 62).

Eigenanalysis: The key to the analysis of such equations is called the eigenanalysis, or modal-analysis method. These are also known as resonant modes in the physics literature. Eigenmodes describe the naturally occurring "ringing" found in physical wave-dominated boundary value problems. Each mode's "eigenvalue" quantifies the mode's natural frequency. Complex eigenvalues result in damped modes, which decay in time due to energy losses. Common examples include tuning forks, pendulums, bell, and strings of musical instruments, all of which have a characteristic frequency.

Two modes with the same frequency are said to be degenerate. This is a very special condition, with a high degree of symmetry.

Cauchy's residue theorem (p. 163) is used to find the time-domain response of each frequencydomain complex eigenmode. Thus eigenanalysis and eigenmodes of physics are the same thing (see Sect. 4.3, p. 154), but are described using different (i.e., mutually unrecognizable) notional methods. ${ }^{14}$ The "eigen method" is summarized in Appendix B.2, p. 261.

[^29]Taking a simple example of a 2×2 matrix $\boldsymbol{T} \in \mathbb{C}$, we start from the definition of the two eigenequations

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{e}_{ \pm}=\lambda_{ \pm} \boldsymbol{e}_{ \pm} \tag{3.22}
\end{equation*}
$$

corresponding to two eigenvalues $\lambda_{ \pm} \in \mathbb{C}$ and two 2×1 eigenvectors $\boldsymbol{e}_{ \pm} \in \mathbb{C}$.

Example: Assume that \boldsymbol{T} is the Fibonacci matrix Eq. 2.16.
The eigenvalues $\lambda_{ \pm}$may be merged into a 2×2 diagonal eigenvalue matrix

$$
\Lambda=\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]
$$

while the two eigenvectors \boldsymbol{e}_{+}and \boldsymbol{e}_{-}are merged into a 2×2 eigenvector matrix

$$
\boldsymbol{E}=\left[\boldsymbol{e}_{+}, \boldsymbol{e}_{-}\right]=\left[\begin{array}{ll}
e_{1}^{+} & e_{1}^{-} \tag{3.23}\\
e_{2}^{+} & e_{2}^{-}
\end{array}\right],
$$

corresponding to the two eigenvalues. Using matrix notation, this may be compactly written as

$$
\begin{equation*}
\boldsymbol{T} \boldsymbol{E}=\boldsymbol{E} \Lambda . \tag{3.24}
\end{equation*}
$$

Note that while $\lambda_{ \pm}$and $\boldsymbol{E}_{ \pm}$commute, $\boldsymbol{E} \Lambda \neq \Lambda \boldsymbol{E}$.
From Eq. 3.24 we may obtain two very important forms:

1. the diagonalization of \boldsymbol{T}

$$
\begin{equation*}
\Lambda=\boldsymbol{E}^{-1} \boldsymbol{T} \boldsymbol{E} \tag{3.25}
\end{equation*}
$$

and
2. the eigen-expansion of \boldsymbol{T}

$$
\begin{equation*}
\boldsymbol{T}=\boldsymbol{E} \Lambda \boldsymbol{E}^{-1} \tag{3.26}
\end{equation*}
$$

which is used for computing power of \boldsymbol{T} (i.e., $\boldsymbol{T}^{100}=\boldsymbol{E}^{-1} \Lambda^{100} \boldsymbol{E}$).

Example: If we take

$$
\boldsymbol{T}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],
$$

then the eigenvalues are given by $\left(1-\lambda_{ \pm}\right)\left(1+\lambda_{ \pm}\right)=-1$, thus $\lambda_{ \pm}= \pm \sqrt{2}$. This method of eigenanalysis is discussed in Section ?? (p. ??) and Appendix G (p. 281).

Exercise: Use the formula for the generalized diagonalization of a matrix to find the general solution of the mean-Fibonacci sequence. Solution: The eigenvalues are given by the roots of

$$
0=-\lambda(1 / 2-\lambda)-1 / 2=(\lambda-1 / 4)^{2}-9 / 16
$$

which are $[1,-1 / 2]$.
By studying the eigenvalues of Eq. 2.3 .5 one finds that the steady state solution approaches 1 . Namely $f_{n} \rightarrow 1=\left(f_{n-1}+f_{n-2}\right) / 2$ is the solution, as $n \rightarrow \infty$. Namely the average of the last two values must approach 1 for large n.

Exercise: Show that the geometric series formula holds for 2×2 matrices. Starting with the 2×2 identity matrix I_{2} and $a \in \mathbb{C}$, with $|a|<1$, show that

$$
I_{2}\left(I_{2}-a I_{2}\right)^{-1}=I_{2}+a I_{2}+a^{2} I_{2}^{2}+a^{3} I_{2}^{3}+\cdots
$$

Solution: Since $a^{k} I_{2}^{k}=a^{k} I_{2}$, we may multiply both sides by $I_{2}-a I_{2}^{k}$ to obtain

$$
\begin{aligned}
I_{2} & =I_{2}+a I_{2}+a^{2} I_{2}^{2}+a^{3} I_{2}^{3}+\cdots-a I_{2}\left(a I_{2}+a^{2} I_{2}^{2}+a^{3} I_{2}^{3}+\cdots\right) \\
& =\left[1+\left(a+a^{2}+a^{3}+\cdots\right)-\left(a+a^{2}+a^{3}+a^{4}+\cdots\right)\right] I_{2} \\
& =I_{2}
\end{aligned}
$$

Exercise: \quad Show that when \boldsymbol{T} is not a square matrix, Eq. 3.22 can be generalized to

$$
\boldsymbol{T}_{m, n}=\mathbf{U}_{m, m} \Lambda_{m, n} \mathbf{V}_{n, n}^{\dagger}
$$

This important generalization of eigenanalysis is called a singular value decomposition (SVD).

Summary: The GCD (Euclidean algorithm), Pell's equation and the Fibonacci sequence may all be written as compositions of 2×2 matrices. Thus Pell's equation and the Fibonacci sequence are special cases of 2×2 matrix composition

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n+1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]_{n}
$$

This is an important and common thread of these early mathematical findings. It will turn out that this 2×2 matrix recursion plays a special role in physics, mathematics and engineering, because such equations are solved using the eigenanalysis method. More than several thousand years of mathematical, by trial and error, set the stage for this breakthrough. But it took even longer to be fully appreciated.

The key idea of the 2×2 matrix solution, widely used in modern engineering, can be traced back to Brahmagupta's solution of Pell's equation, for arbitrary N. Brahmagupta's recursion, identical to that of the Pythagoreans' $N=2$ case (Eq. 2.13), eventually led to the concept of linear algebra, defined by the simultaneous solutions of many linear equations. The recursion by the Pythagoreans ($6^{\text {th }} \mathrm{BCE}$) predated the creation of algebra by al-Khwārizmi $\left(9^{\text {th }}\right.$ CE century) (Fig. 1.2) (Stillwell, 2010, p. 88).

3.2.2 Taylor series

An analytic function is one that

1. may be expanded in a Taylor series

$$
\begin{equation*}
P(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{o}\right)^{n} \tag{3.27}
\end{equation*}
$$

2. converges for $\left|x-x_{o}\right|<1$, called the RoC, with coefficients c_{n} that are determined by the derivatives of $P(x)$, evaluated at the expansion point $x=x_{o}$.
3. The Taylor series coefficients c_{n} are defined by taking derivatives of $P(x)$ and evaluating them at the expansion point x_{0}, namely

$$
\begin{equation*}
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}} P\left(x-x_{o}\right)\right|_{x=x_{o}} \tag{3.28}
\end{equation*}
$$

Properties: The Taylor formula is a prescription for how to uniquely define the coefficients c_{n}. Without the Taylor series formula, we would have no way of determining c_{n}. The proof of the Taylor formula is transparent, simply by taking successive derivatives of Eq. 3.27, and then evaluating the result at the expansion point. If $P(x)$ is analytic then this procedure will always work. If $P(x)$ fails to have a derivative of any order, then the function is not analytic and Eq. 3.27 is not valid for $P(x)$. For example, if $P(x)$ has a pole at x_{o} then it is not analytic at that point.

The Taylor series representation of $P(x)$ has special applications for solving differential equations because

1. it is single valued
2. all its derivatives and integrals are uniquely defined
3. it may be trivially continued into the complex plane by extending $x \in \mathbb{C}$.

Analytic continuation: A limitation of the Taylor series expansion is that it is not valid outside of its RoC. One method for avoiding this limitation is to move the expansion point. This is called analytic continuation. However, analytic continuation is a non-trivial operation because it (1) requires manipulating an infinite number of derivatives of $P(x)$, (2) at the new expansion point x_{o}, where (3) $P\left(x-x_{o}\right)$ may not have derivatives, due to possible singularities. (4) Thus one needs to know where the singularities of $P(s)$ are in the complex s plane. Due to these many problems, analytic continuation is rarely used, other than as an important theoretical concept.

Example: The trivial case is the geometric series $P(x)=1 /(1-x)$ about the expansion point $x=1$. The function $P(x)$ is defined everywhere, except at the singular point $x=1$, whereas the geometric series is only valid for $|x|<1$.

Exercise: Verify that c_{o} and c_{1} of Eq. 3.27 follow from Eq. 3.28. Solution: To obtain c_{0}, for $n=0$, there is no derivative ($d^{0} / d x^{0}$ indicates no derivative is taken), so we must simply evaluate $P\left(x-x_{o}\right)=$ $c_{0}+c_{1}\left(x-x_{o}\right)+\cdots$ at $x=x_{o}$, leaving c_{o}. To find c_{1} we take one derivative which results in $\left.P^{\prime}(x)=c_{1}+2 c_{2}\left(x-x_{0}\right)\right) \cdots$. Evaluating this at $x=x_{0}$ leaves c_{1}. Each time we take a derivative we reduce the degree of the series by 1 , leaving the next constant term.

Exercise: Suppose we truncate the Taylor series expansion to N terms. What is the name of such functions and what are their properties? Solution: When an infinite series is truncated the resulting function is called an N th degree polynomial

$$
P_{N}(x)=\sum_{n=0}^{N}=c_{0}+c_{1}\left(x-x_{o}\right)+c_{2}\left(x-x_{o}\right)^{2} \cdots c_{N}\left(x-x_{0}\right)^{N} .
$$

We can find c_{o} by evaluating $P_{N}(x)$ at the expansion point x_{o}, since from the above formula $P_{N}\left(x_{o}\right)=$ c_{0}. From the Taylor formula $c_{1}=\left.P_{N}^{\prime}(x)\right|_{x_{o}}$.

Exercise: How many roots do $P_{N}(x)$ and $P_{N}^{\prime}(x)$ have? Solution: According to the fundamental theorem of algebra $P_{N}(x)$ has N roots. $P_{N}^{\prime}(x)$ has $N-1$ roots. The Gauss-Lucas theorem states that the $N-1$ roots of $P_{N}^{\prime}(x)$ lie inside the convex hull (p. 77) of the N roots of $P_{N}(x)$.

Exercise: Would it be possible to find the inverse Gauss-Lucas theorem that states where the roots of the integral of a polynomial might be? Solution: With each integral there is a new degree of freedom that must be taken into account, thus this problem is much more difficult. But since there is only 1 extra degree of freedom, it does not seem impossible. To solve this problem more constraints will be needed.

Role of the Taylor series: The Taylor series plays a major role in the mathematics of differential equations and their solution, as the coefficients of the series uniquely determine the analytic series representation via its derivatives. The implications and limitations of the power series representation are very specific: if the series fails to converge (i.e., outside the RoC), it is essentially meaningless.

A very important fact about the RoC: It is only relevant to the series, not the function being expanded. Typically the function has a pole at the radius of the RoC, where the series fails to converge. However the function being expanded is valid everywhere, other than at the pole. It seems that this point has been poorly explained in many texts. Besides the RoC is the region of divergence RoD, which is the RoC's complement.

The Taylor series does not need to be infinite to converge to the function it represents, since it obviously works for any polynomial $P_{N}(x)$ of degree N. But in the finite case $(N<\infty)$, the RoC is infinite, and the series is the function $P_{N}(x)$ exactly, everywhere. Of course $P_{N}(x)$ is called a polynomial of degree N. When $N \rightarrow \infty$, the Taylor series is only valid within the RoC, and it is (typically) the representation of the reciprocal of a polynomial.

These properties are both the curse and the blessing of the analytic function. On the positive side, analytic functions are the ideal starting point for solving differential equations, which is exactly how they were used by Newton and others. Analytic functions are "smooth" since they are infinitely differentiable, with coefficients given by Eq. 3.28. They are single valued, so there can be no ambiguity in their interpretation.

Two well-known analytic functions are the geometric series $(|x|<1)$

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n} \tag{3.29}
\end{equation*}
$$

and exponential series $(|x|<\infty)$

$$
\begin{equation*}
e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{3 \cdot 2} x^{3}+\frac{1}{4 \cdot 3 \cdot 2} x^{4}+\ldots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \tag{3.30}
\end{equation*}
$$

Exercise: Relate the Taylor series expressions for Eq. 3.29 to the following functions:
1.

$$
\begin{equation*}
F_{1}(x)=\int^{x} \frac{1}{1-x} d x \tag{3.31}
\end{equation*}
$$

Solution: $=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\ldots$.
2.

$$
\begin{equation*}
F_{2}(x)=\frac{d}{d x} \frac{1}{1-x} \tag{3.32}
\end{equation*}
$$

Solution: $1+2 x+3 x^{2} \ldots$
3.

$$
\begin{equation*}
F_{3}(x)=\ln \frac{1}{1-x} \tag{3.33}
\end{equation*}
$$

Solution: $1+\frac{1}{2} x+\frac{1}{3} x^{2}$.
4.

$$
\begin{equation*}
F_{4}(x)=\frac{d}{d x} \ln \frac{1}{1-x} \tag{3.34}
\end{equation*}
$$

Solution: $1+x+s^{2}+s^{3} \ldots$.

Exercise: Using symbolic manipulation (Matlab, Octave, Mathematica), expand the given function $F(s)$ in a Taylor series, and find the recurrence relation between the Taylor coefficients c_{n}, c_{n-1}, c_{n-2}. Assume $a \in \mathbb{C}$ and $T \in \mathbb{R}$.
1.

$$
F(s)=e^{a s}
$$

Solution: A Google search on "octave syms taylor" is useful to answer this question. The Matlab/Octave code is to expand this in a taylor series is

```
syms s
```

taylor (exp (s), s, 0,'order', 10)

Exercise: Find the coefficients of the following functions by the method of Eq. 3.28, and give the RoC.

1. $w(x)=\frac{1}{1-x_{j}}$. Solution: From a straightforward expansion we know the coefficients are

$$
\frac{1}{1-x_{\jmath}}=1+x_{\jmath}+\left(x_{\jmath}\right)^{2}+\left(x_{\jmath}\right)^{3} \cdots=1+x \jmath-x^{2}+-\jmath x^{3} \cdots
$$

Working this out using Eq. 3.28 is more work:
$c_{0}=\left.\frac{1}{0!} w\right|_{0}=1 ; c_{1}=\left.\frac{1}{1!} \frac{d w}{d x}\right|_{0}=-\left.\frac{-\jmath}{(1-x \jmath)^{2}}\right|_{x=0}=\jmath ; c_{2}=\left.\frac{1}{2!} \frac{d^{2} w}{d x^{2}}\right|_{0}=\left.\frac{1}{2!} \frac{-2}{(1-x \jmath)^{3}}\right|_{0}=-1 ;$
$c_{3}=\left.\frac{1}{3!} \frac{d^{3} w}{d x^{3}}\right|_{0}=\left.\frac{-\jmath}{(1-x \jmath)^{4}}\right|_{0}=-j$.
However, if we take derivatives of the series expansion it is much easier, and one can even figure out the term for c_{n} :
$c_{0}=1 ; c_{1}=\left.\frac{d}{d x} \sum(\jmath x)^{n}\right|_{0}=j ; c_{2}=\left.\frac{1}{2!} \frac{d^{2}}{d x^{2}} \sum(j x)^{n}\right|_{0}=2(\jmath)^{2} ;$
$c_{3}=\left.\frac{1}{3!} \frac{d^{3}}{d x^{3}} \sum(j x)^{n}\right|_{0}=(\jmath)^{3}=-\jmath ;$
\cdots,
$c_{n}=\frac{1}{n!} \jmath^{n} n!=\jmath^{n}$.
The RoC is $|x j|=|x|<1$.
2. $w(x)=e^{x \jmath}$. Solution: $c_{n}=\frac{1}{n!} \jmath^{n}$. The RoC is $|x|<\infty$. Functions with an ∞ RoC are called entire.

Brune impedances: A third special family of functions is formed from ratios of two polynomials $Z(s)=N(s) / D(s)$, commonly used to define an impedance $Z(s)$, denoted the Brune impedance. Impedance functions are a very special class of complex analytic functions because they must have a non-negative real part

$$
\Re Z(s)=\Re \frac{N(s)}{D(s)} \geq 0
$$

so as to obey conservation of energy. A physical Brune impedance cannot have a negative resistance (the real part); otherwise it would act like a power source, violating conservation of energy. Most impedances used in engineering applications are in the class of Brune impedances, defined by the ratio of two polynomials, of degrees m and n

$$
\begin{equation*}
Z_{\mathrm{Brune}}(s)=\frac{P_{M}(s)}{P_{N}(s)}=\frac{s^{M}+a_{1} S^{M-1} \cdots a_{0}}{s^{N}+b_{1} S^{N-1} \cdots b_{0}} \tag{3.35}
\end{equation*}
$$

where $M=N \pm 1$ (i.e., $N=M \pm 1$). This fraction of polynomials is sometimes known as a "Padé approximation," but more specifically this ratio is a Brune impedance, with poles and zeros, defined as
the complex roots of the two polynomials. The key property of the Brune impedance is that the real part of the impedance is non-negative (positive or zero) in the right s half-plane

$$
\begin{equation*}
\Re Z(s)=\Re[R(\sigma, \omega)+j X(\sigma, \omega)]=R(\sigma, \omega) \geq 0 \quad \text { for } \quad \Re s=\sigma \geq 0 \tag{3.36}
\end{equation*}
$$

Since $s=\sigma+\omega \jmath$, the complex frequency (s) right half-plane (RHP) corresponds to $\Re s=\sigma \geq 0$). This condition defines the class of positive-real functions, also known as the Brune condition, which is frequently written in the abbreviated form

$$
\Re Z(\Re s \geq 0) \geq 0
$$

As a result of this positive-real constraint on impedance functions, the subset of Brune impedances (those given by Eq. 3.35 satisfying Eq. 3.36) must be complex analytic in the entire right s half-plane. This is a powerful constraint that places strict limitations on the locations of both the poles and the zeros of every positive-real Brune impedance.

Exercise: Show that $Z(s)=1 / \sqrt{s}$ is positive real, but not a Brune impedance. Solution: Since it may not be written as the ratio of two polynomials, it is not in the Brune impedance class. By writing $Z(s)=\mid Z(s) e^{\phi_{\jmath}}$ in polar coordinates, since $-\pi / 4 \leq \phi \leq \pi / 4$ when $|\angle| s<\pi / 2, Z(s)$ satisfies the Brune condition, thus is positive real.

Determining the region of convergence (RoC): Determining the RoC for a given analytic function is quite important, and may not always be obvious. In general the RoC is a circle whose radius extends from the expansion point out to the nearest pole. Thus when the expansion point is moved, the RoC changes since the location of the pole is fixed.

Example: For the geometric series (Eq. 3.29), the expansion point is $x_{o}=0$, and the RoC is $|x|<1$, since $1 /(1-x)$ has a pole at $x=1$. We may move the expansion point by a linear transformation, for example, by replacing x with $z+3$. Then the series becomes $1 /((z+3)-1)=1 /(z+2)$, so the RoC becomes 2 because in the z plane the pole has moved to -2 .

Example: A second important example is the function $1 /\left(x^{2}+1\right)$, which has the same RoC as the geometric series, since it may be expressed in terms of its residue expansion (aka, partial fraction expansion)

$$
\frac{1}{x^{2}+1}=\frac{1}{(x+1 \jmath)(x-1 \jmath)}=\frac{1}{2 \jmath}\left(\frac{1}{x-1 \jmath}-\frac{1}{x+1 \jmath}\right)
$$

Each term has an RoC of $|x|<|1 \jmath|=1$. The amplitude of each pole is called the residue, defined in Section 4.4 Eq. 4.36, p. 164 . The residue for the pole at $1 \jmath$ is $1 / 2 \jmath$.

In summary, the function $1 /\left(x^{2}+1\right)$ is the sum of two geometric series, with poles at $\pm 1 \jmath$ which are not as obvious because the roots are complex and conjugate. Once factored, it becomes clear what is going on.

Exercise: Verify the above expression is correct, and show that the residues are $\pm 1 / 2 \jmath$. Solution: Crossmultiply and cancel, leaving 1 , as required. The RoC is the coefficient on the pole. Thus the residue of the pole at $x \jmath$ is $\jmath / 2$.

Exercise: Find the residue of $\frac{d}{d z} z^{\pi}$. Solution: Taking the derivative gives $z^{\pi-1}$ which has a pole at $z=0$. Applying the formula for the residue (Eq. 4.36, p. 164) we find

$$
c^{-1}=\lim _{z \rightarrow 0} z z^{\pi-1}=\lim _{z \rightarrow 0} z^{\pi}=0
$$

Thus the residue is zero. The exponential series converges for every finite value of $x \in \mathbb{R}$ (the RoC is the entire real line), thus the exponential is called an entire function.

Exercise: Find the residue of $g(z)=\frac{d}{d z}(z-1)^{-\pi}$. Solution: $g(z)=-\pi /(z-1)^{\pi+1}$, and apply the definition of the residue (Eq. 4.36).

3.2.3 Analytic functions:

Any function that has a Taylor series expansion is called an analytic function. Within the RoC, the series expansion defines a single-valued function. Polynomials $1 /(1-x)$ and e^{x} are examples of analytic functions that are real functions of their real argument x. This is not the entire story. Because analytic functions are easily manipulated term by term, they may be used to find solutions of differential equations since the derivatives of a series are uniquely determined within the RoC, due to Eq. 3.28.

Every analytic function has a corresponding differential equation, which is determined by the coefficients a_{k} of the analytic power series. An example is the exponential, which has the property that it is the eigen-function of the derivative operation

$$
\frac{d}{d x} e^{a x}=a e^{a x},
$$

which may be verified using Eq. 3.30. This relationship is a common definition of the exponential function, which is very special because it is the eigen-function of the derivative.

The complex analytic power series (i.e., complex analytic functions) may also be integrated, term by term, since

$$
\begin{equation*}
\int^{x} f(x) d x=\sum \frac{a_{k}}{k+1} x^{k+1} . \tag{3.37}
\end{equation*}
$$

Newton took full advantage of this property of the analytic function and used the analytic series (Taylor series) to solve analytic problems, especially for working out integrals, allowing him to solve differential equations. To fully understand the theory of differential equations, one must master single-valued analytic functions and their analytic power series.

Single- vs. multi-valued functions: Polynomials and their ∞-degree extensions (analytic functions) are single valued: for each x there is a single value for $P_{N}(x)$. The roles of the domain and codomain may be swapped to obtain an inverse function, with properties that can be different from those of the function. For example, $y(x)=x^{2}+1$ has the inverse $x= \pm \sqrt{y-1}$, which is double valued, and complex when $y<1$. Periodic functions such as $y(x)=\sin (x)$ are even more "exotic" since $x(y)=$ $\arcsin (x)=\sin ^{-1}(x)$ has an infinite number of $x(y)$ values for each y. This problem was first addressed in Riemann's 1851 PhD thesis, written while he was working with Gauss.

Exercise: Let $y(x)=\sin (x)$. Then $d y / d x=\cos (x)$. Show that $d x / d y=-1 / \sqrt{1-x^{2}}$. Hint: $x(y)=\cos ^{-1}(y)=\arccos (y)$. Solution: See the implicit function theorem (D'Angelo, 2017, p. 104). Add solution.

Exercise: Let $y(x)=\sin (x)$. Then $d y / d x=\cos (x \jmath)$. Show that $d x / d y=-\jmath / \sqrt{1+x^{2}}$. Solution: Add solution.

Exercise: Find the Taylor series coefficients of $y=\sin (x)$ and $x=\sin ^{-1}(y)$. Solution: Add solution.

Complex analytic functions: When the argument of an analytic function $F(x)$ is complex, that is, $x \in \mathbb{R}$ is replaced by $s=\sigma+\omega_{\jmath} \in \mathbb{C}$ (recall that $\mathbb{R} \subset \mathbb{C}$)

$$
\begin{equation*}
F(s)=\sum_{n=0}^{\infty} c_{n}\left(s-s_{o}\right)^{n} \tag{3.38}
\end{equation*}
$$

with $c_{n} \in \mathbb{C}$, that function is said to be a complex analytic.

For example, when the argument of the exponential becomes complex, it is periodic on the ω axis, since

$$
\begin{equation*}
e^{s t}=e^{(\sigma+\omega \jmath) t}=e^{\sigma t} e^{\jmath \omega t}=e^{\sigma t}[\cos (\omega t)+\jmath \sin (\omega t)] \tag{3.39}
\end{equation*}
$$

Taking the real part gives

$$
\Re\left\{e^{s t}\right\}=e^{\sigma t} \frac{e^{\omega \jmath t}+e^{-\omega \jmath t}}{2}=e^{\sigma t} \cos (\omega t)
$$

and $\Im\left\{e^{s t}\right\}=e^{\sigma t} \sin (\omega t)$. Once the argument is allowed to be complex, it becomes obvious that the exponential and circular functions are fundamentally related. This exposes the family of entire circular functions [i.e., $\left.e^{s}, \sin (s), \cos (s), \tan (s), \cosh (s), \sinh (s)\right]$ and their inverses $[\ln (s), \arcsin (s)$, $\left.\arccos (s), \arctan (s), \cosh ^{-1}(s), \sinh ^{-1}(s)\right]$, first fully elucidated by Euler (c1750) (Stillwell, 2010, p. 315). Note that because a function, such as $\sin (\omega t)$, is periodic, its inverse must be multi-valued. What is needed is some systematic way to account for this multi-valued property. Euler also studied the Gamma function $(\Gamma(s)$), which generalizes the factorial operation for real, and eventually by Gauss, for complex arguments $(s, \Gamma(s) \in \mathbb{C})$:

$$
s!=\Gamma(s+1)
$$

Given a complex analytic function of a complex variable, one must resort to the extended complex plane, Riemann sheets and branch cuts, as discussed in Section 3.9.1 (p. 135). The extended complex plane is a tool that extends the domain of complex analytic functions to include the point at infinity. This topic is critically important in engineering mathematics and will be discussed at length in Sections 3.9.1-3.8 (pp. 135-128).

Definition of the Taylor series of a complex analytic function: However, there is a fundamental problem: we cannot formally define the Taylor series for the coefficients c_{k} until we have defined the derivative with respect to the complex variable $d F(s) / d s$, with $s \in \mathbb{C}$. Thus simply substituting s for x in an analytic function leaves a major hole in one's understanding of the complex analytic function.

To gain a feeling for the nature of the problem, we make take derivatives of a function with respect to various variables. For example,

$$
\begin{gathered}
\frac{d}{d t} e^{s t}=s e^{s t} \\
e^{\omega t t} \frac{d}{d \sigma} e^{\sigma t}=\sigma e^{s t}
\end{gathered}
$$

and

$$
e^{\sigma t} \frac{d}{d \omega j} e^{\omega \jmath}=\omega j e^{s t}
$$

It was Cauchy (1814) (Fig. 3.1) who uncovered much deeper relationships within complex analytic functions (Sect. 3.9, p. 132) by defining differentiation and integration in the complex plane, leading to several fundamental theorems of complex calculus, including the fundamental theorem of complex integration, and Cauchy's formula. We shall explore this and several fundamental theorems in Sect. 4.2 (p. 146).

There seems to be some disagreement as to the status of multi-valued functions: Are they functions, or is a function strictly single valued? If so, then we are missing out on a host of interesting possibilities, including all the inverses of nearly every complex analytic function. For example, the inverse of a complex analytic function is a complex analytic function (e.g., e^{s} and $\log (s)$).

Impact of complex analytic mathematics on physics: It seems likely, if not obvious, that the success of Newton was his ability to describe physics by the use of mathematics. He was inventing new mathematics at the same time he was explaining new physics. The same might be said for Galileo. It seems likely that Newton was extending the successful techniques and results of Galileo's work on gravity (Galileo, 1638). ${ }^{15}$ Galileo died on Jan 8, 1642, and Newton was born Jan 4, 1643, just short of

[^30]one year later. Certainly Newton was well aware of Galileo's great success, and naturally would have been influenced by it (see p. 22).

The application of complex analytic functions to physics was dramatic, as may be seen in the six volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of his many (36) students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg, and Seebach, to name a few), notable coworkers (i.e., Leon Brillouin) and others (i.e., John Bardeen) upon whom Sommerfeld had a strong influence. Sommerfeld is famous for training many students who were awarded the Nobel Prize in Physics, yet he never won a Nobel (the prize is not awarded in mathematics). Sommerfeld brought mathematical physics (the merging of physical and experimental principles via mathematics) to a new level with the use of complex integration of analytic functions to solve otherwise difficult problems, thus following the lead of Newton who used real integration of Taylor series to solve differential equations (Brillouin, 1960, Ch. 3 by Sommerfeld, A.).

3.4 Lec 12: Root classification by convolution

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was being formulated by d'Alembert. The idea behind this theorem is that every polynomial of degree N (Eq. 3.7) has at least one root. This may be written as the product of the root and a second polynomial of degree of $N-1$. By the recursive application of this concept, it is clear that every polynomial of degree N has N roots. Today this result is known as the fundamental theorem of algebra:

Every polynomial equation $P(z)=0$ has a solution in the complex numbers. As Descartes observed, a solution $z=a$ implies that $P(z)$ has a factor $z-a$. The quotient

$$
\begin{equation*}
Q(z)=\frac{P(z)}{z-a}=\frac{P(z)}{a}\left[1+\frac{z}{a}+\left(\frac{z}{a}\right)^{2}+\left(\frac{z}{a}\right)^{3}+\cdots\right] \tag{3.10}
\end{equation*}
$$

is then a polynomial of one lower degree. ... We can go on to factorize $P(z)$ into n linear factors.
—Stillwell (2010, p. 285).

The ultimate expression of this theorem is given by Eq. 3.7 (p. 72), which indirectly states that an $n^{\text {th }}$ degree polynomial has n roots. We shall use the term degree when speaking of polynomials and the term order when speaking of differential equations. A general rule is that order applies to the time domain and degree to the frequency domain, since the Laplace transform of a differential equation, having constant coefficients, of order N, is a polynomial of degree N in Laplace frequency s.

Today this theorem is so widely accepted we fail to appreciate it. Certainly about the time you learned the quadratic formula, you were prepared to understand the concept of polynomials having roots. The simple quadratic case may be extended to a higher degree polynomial. The Octave/Matlab command roots ($\left[1, a_{2}, a_{1}, a_{o}\right]$) provides the roots $\left[s_{1}, s_{2}, s_{3}\right]$ of the cubic equation, defined by the coefficient vector $\left[1, a_{2}, a_{1}, a_{o}\right]$. The command poly ($\left[s_{1}, s_{2}, s_{3}\right]$) returns the coefficient vector. I don't know the largest degree that can be accurately factored by Matlab/Octave, but I'm sure its well over $N=10^{3}$. Today, finding the roots numerically is a solved problem.

Factorization versus convolution: The best way to gain insight into the polynomial factorization problem is through the inverse operation, multiplication of monomials. Given the roots x_{k}, there is a simple algorithm for computing the coefficients a_{k} of $P_{N}(x)$ for any n, no matter how large. This method is called convolution. Convolution is said to be a trap-door function since it is easy, while the inverse, factoring (deconvolution), is hard, and analytically intractable for degree $N \geq 5$ (Stillwell, 2010, p. 102).

3.4.1 Convolution of monomials

As outlined by Eq. 3.7, a polynomial has two descriptions, first as a series with coefficients a_{n} and second in terms of its roots x_{r}. The question is: What is the relationship between the coefficients and the roots? The simple answer is that they are related by convolution.

Let us start with the quadratic

$$
\begin{equation*}
(x+a)(x+b)=x^{2}+(a+b) x+a b \tag{3.11}
\end{equation*}
$$

where in vector notation $[-a,-b]$ are the roots and $[1, a+b, a b]$ are the coefficients.
To see how the result generalizes, we may work out the coefficients for the cubic ($N=3$). Multiplying the following three factors gives)
$(x-1)(x-2)(x-3)=\left(x^{2}-3 x+2\right)(x-3)=x\left(x^{2}-3 x+2\right)-3\left(x^{2}-3 x+2\right)=x^{3}-6 x^{2}+11 x-6$.

When the roots are $[1,2,3]$ the coefficients of the polynomial are $[1,-6,11,-6]$. To verify, substitute the roots into the polynomial, and show that they give zero. For example, $r_{1}=1$ is a root since $P_{3}(1)=1-6+11-6=0$.

As the degree increases, the algebra becomes more difficult. Imagine trying to work out the coefficients for $N=100$. What is needed is a simple way of finding the coefficients from the roots. Fortunately, convolution keeps track of the book-keeping, by formalizing the procedure, along with Newton's deconvolution method for finding roots of polynomials (p. 75).

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vectors $[1, a]$ and $[1, b]$. To find the coefficients we must convolve the vectors, indicated by $[1, a] \star[1, b]$, where \star denotes convolution. Convolution is a recursive operation. The convolution of $[1, a] \star[1, b]$ is done as follows: reverse one of the two monomials, padding unused elements with zeros. Next slide one monomial against the other, forming the local scalar product (element-wise multiply and add):

a	1	0	0	a	1	0	a	1	0	0	a	1	0	0	a	1
0	0	1	b	0	1	b	1	b	0	1	b	0	1	b	0	0
$=$	0			$=$	x^{2}		$=$	$(a+b) x$		$=$	$a b x^{0}$		$=$	0		

resulting in coefficients $[\cdots, 0,0,1, a+b, a b, 0,0, \cdots]$.
By reversing one of the polynomials, and then taking successive scalar products, all the terms in the sum of the scalar product correspond to the same power of x. This explains why convolution of the coefficients gives the same answer as the product of the polynomials.

As seen by the above example, the positions of the first monomial coefficients are reversed, and then slid across the second set of coefficients, the dot-product is computed, and the result placed in the output vector. Outside the range shown, all the elements are zero. In summary,

$$
[1,-1] \star[1,-2]=[1,-1-2,2]=[1,-3,2]
$$

In general

$$
[a, b] \star[c, d]=[a c, b c+a d, b d]
$$

Convolving a third term $[1,-3]$ with $[1,-3,2]$ gives (p. 100)

$$
[1,-3] \star[1,-3,2]=[1,-3-3,9+2,-6]=[1,-6,11,-6]
$$

which is identical to the cubic example, found by the algebraic method.
By convolving one monomial factor at a time, the overlap is always two elements, thus it is never necessary to compute more than two multiplies and an add for each output coefficient. This greatly simplifies the operations (i.e., they are easily done in your head). Thus the final result is more likely to be correct. Comparing this to the algebraic method, convolution has the clear advantage.

Exercise:

1. What are the three nonlinear equations that one would need to solve to find the roots of a cubic?

Solution: From our formula for the convolution of three monomials we may find the nonlinear "deconvolution" relations between the roots ${ }^{19}[-a,-b,-c]$ and the cubic's coefficients $[1, \alpha, \beta, \gamma]$

$$
\begin{aligned}
(x+a) \star(x+b) \star(x+c) & =(x+c) \star\left(x^{2}+(a+b) x+a b\right) \\
& =x \cdot\left(x^{2}+(a+b) x+a b\right)+c \cdot\left(x^{2}+(a+b) x+a b\right) \\
& =x^{3}+(a+b+c) x^{2}+(a b+a c+c b) x+a b c \\
& =[1, a+b+c, a b+a c+c b, a b c] .
\end{aligned}
$$

[^31]It follows that the nonlinear equations must be

$$
\begin{aligned}
\alpha & =a+b+c \\
\beta & =a b+a c+b c \\
\gamma & =a b c
\end{aligned}
$$

These may be solved by the classic cubic solution, which therefore is a deconvolution problem, also know as long division of polynomials. It follows that the following long-division of polynomials must be true:

$$
\frac{x^{3}+(a+b+c) x^{2}+(a b+a c+b c) x+a b c}{x+a}=x^{2}+(b+c) x+b c
$$

The product of monomial $P_{1}(x)$ with a polynomial $P_{N}(x)$ gives $P_{N+1}(x)$: This statement is another way of stating the fundamental theorem of algebra. Each time we convolve a monomial with a polynomial of degree N, we obtain a polynomial of degree $N+1$. The convolution of two monomials results in a quadratic (degree 2 polynomial). The convolution of three monomials gives a cubic (degree 3). In general, the degree k of the product of two polynomials of degree n, m is the sum of the degrees $(k=n+m)$. For example, if the degrees are each $5(n=m=5)$, then the resulting degree is 10 .

While we all know this theorem from high school algebra class, it is important to explicitly identify the fundamental theorem of algebra.

Note that the degree of a polynomial is one less than the length of the vector of coefficients. Since the leading term of the polynomial cannot be zero, else the polynomial would not have degree N, when looking for roots, the coefficient can (and should always) be normalized to 1 .

In summary, the product of two polynomials of degree m, n having m and n roots gives a polynomial of degree $m+n$. This is an analysis process of merging polynomials, by coefficient convolution. Multiplying polynomials is a merging process, into a single polynomial.

Composition of polynomials: Convolution is not the only important operation between two polynomials. Another is composition, which may be defined for two functions $f(z), g(z)$. Then the composition $c(z)=f(z) \circ g(z)=f(g(z))$. As a specific example, suppose $f(z)=1+z+z^{2}$ and $g(z)=e^{2 z}$. With these definitions

$$
f(z) \circ g(z)=1+e^{2 z}+\left(e^{2 z}\right)^{2}=1+e^{2 z}+e^{4 z}
$$

Note that $f(z) \circ g(z) \neq g(z) \circ f(z)$.
Exercise: Find $g(z) \circ f(z)$. Solution: $e^{2 f(z)}=e^{2\left(1+z+z^{2}\right)}=e^{2} e^{\left(1+z+z^{2}\right)}=e^{3} e^{z} e^{z^{2}}$.

3.4.2 Residue expansions of rational functions

As discussed in Section 3.1.4, p. 80, there are at least seven important Matlab/Octave routines that are closely related: conv(), deconv(), poly(), polyder(), polyval(), residue(), root(). Several of these are complements of each other, or do a similar operation in a slightly different way. Routines conv(), poly () build polynomials from the roots, while root () solves for the roots given the polynomial coefficients. The operation residue () converts the ratio of two polynomials and expands it in a partial fraction expansion, with poles and residues.

When lines and planes are defined, the equations are said to be linear in the independent variables. In keeping with this definition of linear, we say that the equations are non-linear when the equations have degree greater than 1 in the independent variables. The term bilinear has a special meaning, in that both the domain and codomain are linearly related by lines (or planes). As an example, impedance is
defined in frequency as the ratio of the voltage over the current, but it frequently has a representation as the ratio of two polynomials $N(s)$ and $D(s)$

$$
\begin{equation*}
Z(s)=\frac{N(s)}{D(s)}=s L_{o}+R_{o}+\sum_{k=0}^{K} \frac{K_{k}}{s-s_{k}} . \tag{3.12}
\end{equation*}
$$

Here $Z(s)$ is the impedance and V and I are the voltage and current at radian frequency $\omega .^{20}$
Such an impedance is typically specified as a rational or bilinear function, namely the ratio of two polynomials, $P_{N}(s)=N(s)=\left[a_{N}, a_{n-1}, \cdots, a_{o}\right]$ and $P_{K}(s)=D(s)=\left[b_{K}, b_{K-1}, \cdots, b_{o}\right]$ of degrees $N, K \in \mathbb{N}$, as functions of complex Laplace frequency $s=\sigma+\jmath \omega$, having simple roots. Most impedances are rational functions since they may be written as $D(s) V=N(s) I$. Since $D(s)$ and $N(s)$ are both polynomials in s, rational functions are also called bilinear transformation or in the mathematical literature Möbius transformation, which comes from a corresponding scalar differential equation, of the form

$$
\begin{equation*}
\sum_{k=0}^{K} b_{k} \frac{d^{k}}{d t^{k}} i(t)=\sum_{n=0}^{N} a_{n} \frac{d^{n}}{d t^{n}} v(t) \quad \leftrightarrow \quad I(\omega) \sum_{k=0}^{K} b_{k} s^{k}=V(\omega) \sum_{n=0}^{N} a_{n} s^{n} \tag{3.13}
\end{equation*}
$$

This construction is also known as the ABCD method in the engineering literature (Eq. 3.35, p. 120). This equation, as well as 3.12 , follows from the Laplace transform (see Section 3.8, p. 128) of the differential equation (on left), by forming the impedance $Z(s)=V / I=A(s) / B(s)$. This form of the differential equation follows from Kirchhoff's voltage and current laws (KCL, KVL) or from Newton's laws (for the case of mechanics).

The physical properties of an impedance: Based on d'Alembert's observation that the solution to the wave equation is the sum of forward and backward traveling waves, the impedance may be rewritten in terms of forward and backward traveling waves (see p. 205)

$$
\begin{equation*}
Z(s)=\frac{V}{I}=\frac{V^{+}+V^{-}}{I^{+}-I^{-}}=r_{o} \frac{1+\Gamma(s)}{1-\Gamma(s)} \tag{3.14}
\end{equation*}
$$

where $r_{o}=P^{+} / I^{+}$is called the surge impedance of the transmission line (e.g., wire) connected to the load impedance $Z(s)$, and $\Gamma(s)=P^{-} / P_{+}=I^{-} / I^{+}$is the reflection coefficient corresponding to $Z(s)$. Any impedance of this type is called a Brune impedance due to its special properties (discussed on p. ??) (Brune, 1931a). Like $Z(s), \Gamma(s)$ is causal and complex analytic. The impedance and the reflectance function must both be complex analytic, since they are related to the bilinear transformation, which assures the mutual complex analytic properties.

Due to the bilinear transformation, the physical properties of $Z(s)$ and $\Gamma(s)$ are very different. Specifically, the real part of the load impedance must be non-negative $(\Re\{Z(\omega J)\} \geq 0)$, if and only if $|\Gamma(s)| \leq 1 \mid$. In the time domain, the impedance $z(t) \leftrightarrow Z(s)$ must have a value of r_{o} at $t=0$. Correspondingly, the time domain reflectance $\gamma(t) \leftrightarrow \Gamma(s)$ must be zero at $t=0$.

This is the basis of conservation of energy, which may be traced back to the properties of the reflectance $\Gamma(s)$.

Exercise: Show that if $\Re\{Z(s)\} \geq 0$ then $|\Gamma(s)| \leq 1$. Solution: Taking the real part of Eq. 3.14, which must be ≥ 0, we find

$$
\Re\{Z(s)\}=\frac{r_{o}}{2}\left[\frac{1+\Gamma(s)}{1-\Gamma(s)}+\frac{1+\Gamma^{*}(s)}{1-\Gamma^{*}(s)}\right]=r_{o} \frac{1-|\Gamma(s)|^{2}}{|1+\Gamma(s)|^{2}} \geq 0
$$

Thus $|\Gamma| \leq 1$.

[^32]
3.5 Lec 13: Introduction to Analytic Geometry

Analytic geometry came about with the merging of Euclid's geometry with algebra. The combination of Euclid's (323 BCE) geometry and al-Khwarizmi's (830 CE) algebra resulted in a totally new and powerful tool, analytic geometry, independently worked out by Descartes and Fermat (Stillwell, 2010). The addition of matrix algebra during the $18^{t h}$ century enabled analysis in more than three dimensions, which today is one of the most powerful tools used in artificial intelligence, data science and machine learning. The utility and importance of these new tools cannot be overstated. The timeline for this period is provided in Fig. 3.5.

Figure 3.5: Expanded timeline of Fig. 3.1 (p. 69) covering the two centuries from 1596CE to 1855CE, covering the development of the modern theories of analytic geometry, calculus, differential equations and linear algebra. The vertical red lines indicate mentor-student relationships. Lagrange had a role in the development of linear algebra. Note the overlap between Newton and Johann and his son Daniel Bernoulli, and Euler. Gauss had the advantage of input from Newton, Euler, d'Alembert and Lagrange. Likely Cauchy had an influence on Gauss as well.

There are many important relationships between Euclidean geometry and 16th century algebra. An attempt at a detailed comparison is summarized in Table 3.1. Important similarities include vectors, their Pythagorean lengths $[a, b, c]$

$$
\begin{equation*}
c=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{3.15}
\end{equation*}
$$

$a=x_{2}-x_{1}$ and $b=y_{2}-y_{1}$, and the angles. Euclid's geometry had length and angles, but no concept of coordinates, thus of vectors. One of the main innovations of analytic geometry is that one may compute with real, and soon after, complex numbers.

There are several new concepts that come with the development of analytic geometry:

1. Composition of functions: If $y=f(x)$ and $z=g(y)$ then the composition of functions f and g is denoted $z(x)=g \circ f(x)=g(f(x))$.
2. Elimination: Given two functions $f(x, y)$ and $g(x, y)$, elimination removes either x or y. This procedure, known to the Chinese, is called Gaussian elimination.
3. Intersection: While one may speak of the intersection of two lines to give a point, or two planes to give a line, the term intersection is also an important but very different concept in set theory. This is a special case of elimination when the functions $f(x, y), g(x, y)$ are linear in their arguments.
4. Vectors: Analytic geometry provides the concept of a vector (see Appendix A), as a line with length and orientation (i.e., direction). Analytic geometry defines vectors in any number of dimensions, as ordered sets of points.
5. Analytic geometry extends the ideas of Euclidean geometry with the introduction of the scalar (dot) product of two vectors $\mathbf{f} \cdot \mathbf{g}$, and the vector (cross) product $\mathbf{f} \times \mathbf{g}$ (see Fig. 3.6, p. 106).
6. All of these exist independently of any coordinate system, thus are more general than analytic geometry.

Table 3.1:
An ad-hoc comparison between Euclidean geometry and analytic geometry. I am uncertain as to the classification of the items in the third column.

Euclidean geometry: \mathbb{R}^{3}	Analytic geometry: \mathbb{R}^{n}	Uncertain
	(a) Numbers	
(a) Proof (b) Algebra (b) Line length (a) Cross product (\mathbb{R}^{3}) (c) Line intersection (b) Recursion (d) Point (d) Analytic functions (c) Iteration $\in \mathbb{C}^{2}$ (e.g., (e) Projection (e.g. (e) Complex analytic (f) Lunctions: e.g., (d) Iteration $\in \mathbb{R}^{n}$ (g) Vector (sort of) (f) Composition (h) Conic section (g) Elimination (i) Square roots (e.g., (h) Integration spiral of Theodorus) (i) Derivatives (j) Calculus (k) Polynomial $\in \mathbb{C}$ (l) Fund. thm. algebra		
	(m) Normed vector spaces	

What algebra also added to geometry was the ability to compute with complex numbers. For example, the length of a line (Eq. 3.15) was measured in Geometry with a compass: numbers played no role. Once algebra was available, the line's Euclidean length could be computed numerically, directly from the coordinates of the two ends, defined by the 3-vector

$$
\mathbf{e}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}=[x, y, z]^{T}
$$

which represents a point at $(x, y, z) \in \mathbb{R}^{3} \subset \mathbb{C}^{3}$ in three dimensions, having direction, from the origin $(0,0,0)$ to (x, y, z). An alternative matrix notation is $\mathbf{e}=[x, y, z]^{T}$, a column vector of three numbers. These two notations are different ways of representing exactly the same thing.

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative, beyond the physical drawing of an object (e.g., a sphere, triangle or line). With analytic geometry we have the Euclidean concept of a vector, a line having a magnitude (length) and direction, but analytic defined in terms of physical coordinates (i.e., numbers). The difference between two vectors defines a third vector, a concept already present in Euclidean geometry. For the first time, complex numbers were allowed into geometry (but rarely used until Cauchy and Riemann).

As shown in Fig. 3.6, there are two types of products: the 1) scalar $\boldsymbol{A} \cdot \boldsymbol{B}$ and 2) vector $\boldsymbol{A} \times \boldsymbol{B}$ products.

Scalar product of two vectors: When using algebra, many concepts, obvious with Euclid's geometry, may be made precise. There are many examples of how algebra extends Euclidean geometry, the most basic being the scalar product (aka dot product) between vectors $\boldsymbol{x}, \boldsymbol{\kappa} \in \mathbb{C}^{3}$

$$
\begin{aligned}
\mathbf{x} \cdot \boldsymbol{\kappa} & =(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}) \cdot(\alpha \hat{\mathbf{x}}+\beta \hat{\mathbf{y}}+\gamma \hat{\mathbf{z}}), \quad \in \mathbb{C} \\
& =\alpha x+\beta y+\gamma z
\end{aligned}
$$

Figure 3.6: Vectors $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are used to define the scalar product $\boldsymbol{A} \cdot \boldsymbol{B}$, vector (cross) product $\boldsymbol{A} \times \boldsymbol{B}$ and triple product $\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})$. The two vector products complement each other, one proportional to the $\sin \theta$ of the angle θ between them and the other to the $\cos \theta$. It follows that $\|\boldsymbol{A} \cdot \boldsymbol{B}\|^{2}+\|\boldsymbol{A} \times \boldsymbol{B}\|^{2}=\|\boldsymbol{A}\|^{2}\|\boldsymbol{B}\|^{2}$. The scalar product computes the projection of one vector on the other. The vector product $\boldsymbol{A} \times \boldsymbol{B}$ computes the area of the trapezoid formed by the two vectors, while the triple product $\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})$ defines the volume of the formed parallelepiped (i.e., prism). When all the angles are 90°, the volume becomes a cuboid (p.209).

In matrix notation the scalar product is written as (p. 209)

$$
\mathbf{x} \cdot \boldsymbol{\kappa}=\left[\begin{array}{l}
x \tag{3.16}\\
y \\
z
\end{array}\right]^{T}\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=[x, y, z]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\alpha x+\beta y+\gamma z
$$

The scalar product takes the character of $\boldsymbol{\kappa}$. For example, if $\boldsymbol{\kappa}(s) \in \mathbb{C}$ is a function of complex frequency s, then the scalar product is complex. If $\zeta \in \mathbb{R}$ is real, then the scalar product is real.

Norm (length) of a vector: The norm of a vector

$$
\|\mathbf{e}\| \equiv+\sqrt{\mathbf{e} \cdot \mathbf{e}} \geq 0
$$

is defined as the positive square root of the scalar product of the vector with itself. This is a generalization of the length, in any number of dimensions, forcing the sign of the square-root to be non-negative. The length is a concept of Euclidean geometry, and it must always be positive and real. A complex (or negative) length is not physically meaningful. More generally, the Euclidean length of a line is given as the norm of the difference between two real vectors $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}$

$$
\begin{aligned}
\left\|\mathbf{e}_{\mathbf{1}}-\mathbf{e}_{\mathbf{2}}\right\|^{2} & =\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right) \cdot\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right) \\
& =\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2} \geq 0
\end{aligned}
$$

From this formula we see that the norm of the difference of two vectors is simply a compact expression for the Euclidean length. A zero-length vector, such as is a point, is the result of the fact that

$$
\|x-x\|^{2}=(x-x) \cdot(x-x)
$$

is zero.

Integral definition of a scalar product: Up to this point, following Euclid, we have only considered a vector to be a set of elements $\left\{x_{n}\right\} \in \mathbb{R}$, index over $n \in \mathbb{N}$, as defining a linear vector space with scalar product $x \cdot y$, with the scalar product defining the norm or length of the vector $\|x\|=\sqrt{x \cdot x}$. Given the scalar product, the norm naturally follows.

At this point an obvious question presents itself: Can we extend our definition of vectors to differentiable functions (i.e., $f(t)$ and $g(t)$), indexed over $t \in \mathbb{R}$, with coefficients labeled by $t \in \mathbb{R}$, rather than by $n \in \mathbb{N}$? Clearly, if the functions are analytic, there is no obvious reason why this should be a problem, since analytic functions may be represented by a convergent series having Taylor coefficients, thus are integrable term by term.

Specifically, under certain conditions, the function $f(t)$ may be thought of as a vector, defining a normed vector space. This intuitive and somewhat obvious idea is powerful. In this case the scalar product can be defined in terms of the integral

$$
\begin{equation*}
f(t) \cdot g(t)=\int_{t} f(t) g(t) d t \tag{3.17}
\end{equation*}
$$

summed over $t \in \mathbb{R}$, rather than a sum over $n \in \mathbb{N}$.
This definition of the vector scalar product allows for a significant but straightforward generalization of our vector space, which will turn out to be both useful and an important extension of the concept of a normed vector space. In this space we can define the derivative of a norm with respect to t, which is not possible for the case of the discrete case, indexed over n. The distinction introduces the concept of continuity in the index t, which does not exist for the discrete index $n \in \mathbb{N}$.

Pythagorean theorem and the Schwarz inequality: Regarding Fig. 3.6, suppose we compute the difference between vector $\boldsymbol{A} \in \mathbb{R}$ and $\alpha \boldsymbol{B} \in \mathbb{R}$ as $L=\|\boldsymbol{A}-\alpha \boldsymbol{B}\| \in \mathbb{R}$, where $\alpha \in \mathbb{R}$ is a scalar that modifies the length of \boldsymbol{B}. We seek the value of α, which we denote as α^{*}, that minimizes the length of L. From simple geometrical considerations, $L(\alpha)$ will be minimum when the difference vector is perpendicular to \boldsymbol{B}, as shown in the figure by the dashed line from the tip of $\boldsymbol{A} \perp \boldsymbol{B}$.

To show this algebraically we write out the expression for $L(\alpha)$ and take the derivative with respect to α, and set it to zero, which gives the formula for α^{*}. The argument does not change, but the algebra greatly simplifies, if we normalize $\boldsymbol{A}, \boldsymbol{B}$ to be unit vectors $\boldsymbol{a}=\boldsymbol{A} /\|\boldsymbol{A}\|$ and $\boldsymbol{b}=\boldsymbol{B} /\|\boldsymbol{B}\|$, which have norm $=1$.

$$
\begin{equation*}
L^{2}=(\boldsymbol{a}-\alpha \boldsymbol{b}) \cdot(\boldsymbol{a}-\alpha \boldsymbol{b})=1-2 \alpha \boldsymbol{a} \cdot \boldsymbol{b}+\alpha^{2} \tag{3.18}
\end{equation*}
$$

Thus the length is shortest ($L=L_{*}$, as shown in Fig. 3.6) when

$$
\frac{d}{d \alpha} L_{*}^{2}=-2 \boldsymbol{a} \cdot \boldsymbol{b}+2 \alpha^{*}=0
$$

Solving for $\alpha^{*} \in \mathbb{R}$ we find $\alpha^{*}=\boldsymbol{a} \cdot \boldsymbol{b}$. Since $L_{*}>0(\boldsymbol{a} \neq \boldsymbol{b})$, Eq. 3.18 becomes

$$
1-2|\boldsymbol{a} \cdot \boldsymbol{b}|^{2}+|\boldsymbol{a} \cdot \boldsymbol{b}|^{2}=1-|\boldsymbol{a} \cdot \boldsymbol{b}|^{2}>0
$$

In conclusion $\cos \theta \equiv|\boldsymbol{a} \cdot \boldsymbol{b}|<1$. In terms of $\boldsymbol{A}, \boldsymbol{B}$ this is $|\boldsymbol{A} \cdot \boldsymbol{B}|<\|\boldsymbol{A}\|\|\boldsymbol{B}\| \cos \theta$, as shown next to \boldsymbol{B} in Fig. 3.6. Thus the scalar product between two vectors is their direction cosine. Furthermore, since this forms a right triangle, the Pythagorean theorem must hold. The triangle inequality says that the lengths of the two sides must be greater than the hypotenuse. Note that $\Theta \in \mathbb{R} \notin \mathbb{C}$.

This derivation is an abbreviated version of a related discussion in Section 3.4 (p. 111).

Vector cross (\times) and wedge (\wedge) product of two vectors: The vector product (aka, cross-product) $\boldsymbol{A} \times \boldsymbol{B}$ and exterior product (aka, wedge-product) $\boldsymbol{A} \wedge \boldsymbol{B}$ are the second and third types of vector products. As shown in Fig. 3.6,

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}=\left(a_{1} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}\right) \times\left(b_{1} \hat{\mathbf{x}}+b_{2} \hat{\mathbf{y}}+b_{3} \hat{\mathbf{z}}\right)=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

is \perp to the plane defined by \boldsymbol{A} and \boldsymbol{B}. The cross product is severely limited to two input vectors \boldsymbol{A} and $\boldsymbol{B} \in \mathbb{R}^{2}$, taken from three real dimensions (i.e., \mathbb{R}^{3}).

The exterior wedge product generalizes the cross product, since it may be defined in terms of $\boldsymbol{A}, \boldsymbol{B} \in$ \mathbb{C}^{2}, taken from n dimensions $\left(\mathbb{C}^{n}\right)$, with output in \mathbb{C}^{1}. Its output is a complex scalar with

$$
\boldsymbol{A} \wedge \boldsymbol{B}=-\boldsymbol{B} \wedge \boldsymbol{A}=e^{\theta_{j}}
$$

The difference between the two is that the cross product is a vector (typically in \mathbb{R}) while the wedge product is a signed complex scalar $\in \mathbb{C}$.

Example: If we define $\boldsymbol{A}=3 \jmath \hat{\mathbf{x}}-2 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}$ and $\boldsymbol{B}=1 \hat{\mathbf{x}}+1 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}$ then the cross product is
1.

$$
\boldsymbol{A} \times \boldsymbol{B}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
3 \jmath & -2 & 0 \\
1 & 1 & 0
\end{array}\right|=(3 \jmath+2) \hat{\mathbf{z}}
$$

Since $a_{1} \in \mathbb{C}$, this example violates the common assumption that $\boldsymbol{A} \in \mathbb{R}^{3}$.
2. The wedge product $\boldsymbol{A} \wedge \boldsymbol{B}$ is defined by

$$
\begin{aligned}
\boldsymbol{A} \wedge \boldsymbol{B} & =\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=\left|\begin{array}{cc}
3 \jmath & 1 \\
-2 & 1
\end{array}\right| \\
& =(3 \jmath \hat{\mathbf{x}}-2 \hat{\mathbf{y}}) \wedge(\hat{\mathbf{x}}+\hat{\mathbf{y}}) \\
& =3 \cdot 0 \boldsymbol{x} \wedge \overrightarrow{\boldsymbol{x}}-2 \hat{\mathbf{y}} \wedge \hat{\mathbf{x}}+3 \jmath \hat{\mathbf{x}} \wedge \hat{\mathbf{y}}-2 \hat{\mathbf{y}} \wedge \hat{\mathbf{y}} 0 \\
& =(3 \jmath+2) \hat{\mathbf{x}} \wedge \hat{\mathbf{y}}
\end{aligned}
$$

From the above example we see that the absolute value of the wedge product $|\mathbf{a} \wedge \mathbf{b}|=\|\mathbf{a} \times \mathbf{b}\|$, namely

$$
\left|\left(a_{2} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}\right) \wedge\left(b_{2} \hat{\mathbf{y}}+b_{3} \hat{\mathbf{z}}\right)\right|=\|(\mathbf{a} \times \mathbf{b})\|
$$

The wedge product is especially useful because it is zero when the two vectors are co-linear, namely $\hat{\mathbf{x}} \wedge$ $\hat{\mathbf{x}}=0$ and $\hat{\mathbf{x}} \wedge \hat{\mathbf{y}}=1$. The advantage of the "wedge" product is that it is valid in $n>3$ dimensions since it is defined for any two vectors, in any number of dimensions. Like the cross product, the magnitude of the wedge product is equal to the area of the trapezoid formed by the two vectors.

Scalar triple product: The triple of a third vector \boldsymbol{C} with the vector product $\boldsymbol{A} \times \boldsymbol{B} \in \mathbb{R}$ is

$$
\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\left|\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \quad \in \mathbb{R}^{3}
$$

which equals the volume of a parallelepiped.

Impact of Analytic Geometry: The most obvious impact of analytic geometry was its detailed analysis of the conic sections, using algebra rather than drawings via a compass and ruler. An important example is the composition of the line and circle, a venerable construction, presumably going back to before Diophantus (250 CE). Once algebra was invented, the composition could be done using formulas. With this analysis came complex numbers.

The first two mathematicians to appreciate this mixture of Euclid's geometry and the new algebra were Fermat and Descartes (Stillwell, 2010, p. 111-115); soon Newton contributed to this effort by the addition of physics (e.g., calculations in acoustics, orbits of the planets, and the theory of gravity and light, significant concepts for 1687 (Stillwell, 2010, p. 115-117)).

Given these new methods, many new solutions to problems emerged. The complex roots of polynomials continued to appear, without any obvious physical meaning. Complex numbers seem to have been viewed as more of an inconvenience than a problem. Newton's solution to this dilemma was to simply ignore the imaginary cases (Stillwell, 2010, p. 119).

3.5.1 Development of Analytic Geometry

Intersection and Gaussian elimination: The first "algebra" (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory of polynomial equations in one variable, Taylor series, and composition versus intersections of curves. The solution of the quadratic equation had been worked out thousands of years earlier, but with algebra a general solution could be defined. The Chinese had found the way to solve several equations in several unknowns, for example, finding the values of the intersection of two circles. With the invention of algebra by al-Khwarizmi, a powerful tool became available to solve the difficult problems.

Composition and Elimination In algebra there are two contrasting operations on functions: composition and elimination.

Composition: Composition is the merging of functions, by feeding one into the other. If the two functions are f, g then their composition is indicated by $f \circ g$, meaning the function $y=f(x)$ is substituted into the function $z=g(y)$, giving $z=g(f(x))$.

Composition is not limited to linear equations, even though that is where it is most frequently applied. To compose two functions, one must substitute one equation into the other. That requires solving for that substitution variable, which is not always possible in the case of nonlinear equations. However, many tricks are available that may work around this restriction. For example, if one equation is in x^{2} and the other in x^{3} or \sqrt{x}, it may be possible to multiply the first by x or square the second. The point is that one of the variables must be isolated so that when it is substituted into the other equations, the variable is removed from the mix.

Examples: Let $y=f(x)=x^{2}-2$ and $z=g(y)=y+1$. Then

$$
\begin{equation*}
g \circ f=g(f(x))=\left(x^{2}-2\right)+1=x^{2}-1 . \tag{3.19}
\end{equation*}
$$

In general composition does not commute (i.e., $f \circ g \neq g \circ f$), as is easily demonstrated. Swapping the order of composition for our example gives

$$
\begin{equation*}
f \circ g=f(g(y))=z^{2}-2=(y+1)^{2}-2=y^{2}+2 y-1 \tag{3.20}
\end{equation*}
$$

Intersection: Complementary to composition is intersection (i.e., decomposition) (Stillwell, 2010, pp. 119,149). For example, the intersection of two lines is defined as the point where they meet. This is not to be confused with finding roots. A polynomial of degree N has N roots, but the points where two polynomials intersect has nothing to do with the roots of the polynomials. The intersection is a function (equation) of lower degree, implemented with Gaussian elimination.

Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear algebra this may be written as two linear equations ${ }^{21}$ (on the left), along with the intersection point $\left[x_{1}, x_{2}\right]^{T}$, given by the inverse of the 2×2 set of equations (on the right)

$$
\left[\begin{array}{ll}
a & b \tag{3.21}\\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

By substituting the expression for the intersection point $\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right]^{T}$ into the original equation, we see that it satisfies the equations. Thus the equation on the right is the solution to the equation on the left.

[^33]Note the structure of the inverse: 1) The diagonal values (a, d) are swapped, 2) the off-diagonal values (b, c) are negated and 3) the 2×2 matrix is divided by the determinant $\Delta=a d-b c$. If $\Delta=0$, there is no solution. When the determinant is zero $(\Delta=0)$, the slopes of the two lines

$$
\text { slope }=\frac{d x_{2}}{d x_{1}}=\frac{b}{a}=\frac{d}{c}
$$

are equal, thus the lines are parallel. Only if the slopes differ can there be a unique solution.

Exercise: Show that the equation on the right is the solution of the equation on the left. Solution: By a direct substitution of the right equation into the left equation

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \cdot \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right],=\frac{1}{\Delta}\left[\begin{array}{cc}
a d-b c & -a b+a b \\
c d-c d & -c b+a d
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & 0 \\
0 & \Delta
\end{array}\right]
$$

which gives the identity matrix.
Algebra will give the solution when geometry cannot. When the two curves fail to intersect on the real plane, the solution still exists, but is complex valued. In such cases, geometry, which only considers the real solutions, fails. For example, when the coefficients $[a, b, c, d]$ are complex, the solution exists, but the determinant can be complex. Thus algebra is much more general than geometry. Geometry fails when the solution has a complex intersection.

A system of linear $A x=y$ equations has many interpretations, and one should not be biased by the notation. As engineers we are trained to view x as the input and y as the output, in which case then $y=A x$ seems natural, much like the functional relation $y=f(x)$. But what does the linear relation $x=A y$ mean, when x is the input? The obvious answer is that $y=A^{-1} x$. But when working with systems of equations, there are many uses of equations, and we need to become more flexible in our interpretation. For example $y=A^{2} x$ has a useful meaning, and in fact we saw this type of relationship when working with Pell's equation (p. 59) and the Fibonacci sequence (p. 61). As another example consider

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1 x} & a_{1 y} \\
a_{2 x} & a_{2 y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

which is reminiscent of a three-dimensional surface $\mathbf{z}=\mathbf{f}(x, y)$. We shall find that such generalizations are much more than a curiosity.

3.5.2 Lec 14: Applications of scalar products

Another important example of algebraic expressions in mathematics is Hilbert's generalization of Eq. 1.1, known as the Schwarz inequality, shown in Fig. 3.7. What is special about this generalization is that it proves that when the vertex is 90°, the length of the leg is minimum.

Vectors may be generalized to have ∞ dimensions: $\mathbf{U}, \mathbf{V}=\left[v_{1}, v_{2}, \cdots, v_{\infty}\right]$). The Euclidean inner product (i.e., scalar product) between two such vectors generalizes the finite dimensional case

$$
\mathbf{U} \cdot \mathbf{V}=\sum_{k=1}^{\infty} u_{k} v_{k}
$$

As with the finite case, the norm $\|\mathbf{U}\|=\sqrt{\mathbf{U} \cdot \mathbf{U}}=\sqrt{\sum u_{k}^{2}}$ is the scalar product of the vector with itself, defining the length of the infinite component vector. Obviously there is an issue of convergence, if the norm for the vector is to have a finite length.

It is a somewhat arbitrary requirement that $a, b, c \in \mathbb{R}$ for the Pythagorean theorem (Eq. 1.1). This seems natural enough since the sides are lengths. But, what if they are taken from the complex numbers, as for the lossy vector wave equation, or the lengths of vectors in \mathbb{C}^{n} ? Then the equation generalizes to

$$
\mathbf{c} \cdot \mathbf{c}=\|\mathbf{c}\|^{2}=\sum_{k=1}^{n}\left|c_{k}\right|^{2}
$$

where $\|\mathbf{c}\|^{2}=(\mathbf{c}, \mathbf{c})$ is the inner (dot) product of a vector \mathbf{c} with itself, where $\left|c_{k}\right|$ is the magnitude the complex c_{k}. As before, $\|\mathbf{c}\|=\sqrt{\|\mathbf{c}\|^{2}}$ is the norm of vector \mathbf{c}, akin to a length.

Figure 3.7: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the two vectors. $\|U\|=\sqrt{U \cdot U}$ as the scalar product of that vector with itself.

Schwarz inequality The Schwarz inequality ${ }^{22}$ says that the magnitude of the inner product of two vectors is less than or equal to the product of their lengths

$$
|U \cdot V| \leq\|U\|\| \| V \| .
$$

This may be simplified by normalizing the vectors to have unit length $(\widehat{U}=U /\|U\|, \widehat{V}=V /\|V\|)$, in which case $-1<\widehat{U} \cdot \widehat{V} \leq 1$. Another simplification is to define the scalar product in terms of the direction cosine

$$
\cos \theta=|\widehat{U} \cdot \widehat{V}| \leq 1
$$

A proof of the Schwarz inequality is as follows: From these definitions we may define the minimum difference between the two vectors as the perpendicular from the end of the first to the intersection with the second. As shown in Fig. 3.7, $U \perp V$ may be found by minimizing the length of the vector difference:

$$
\begin{aligned}
\min _{\alpha}\|V-\alpha U\|^{2} & =\|V\|^{2}+2 \alpha V \cdot U+\alpha^{2}\|U\|^{2}>0 \\
0 & =\partial_{\alpha}(V-\alpha U) \cdot(V-\alpha U) \\
& =V \cdot U-\alpha^{*}\|U\|^{2} \\
\therefore \quad \alpha^{*} & =V \cdot U /\|U\|^{2} .
\end{aligned}
$$

The Schwarz inequality follows:

$$
\begin{gathered}
I_{\min }=\left\|V-\alpha^{*} U\right\|^{2}=\|V\|^{2}-\frac{|U \cdot V|^{2}}{\|U\|^{2}}>0 \\
0 \leq|U \cdot V| \leq\|U\|\|V\| .
\end{gathered}
$$

An important example of such a vector space includes the definition of the Fourier transform, where we may set

$$
U(\omega)=e^{-\omega_{0} t t} \quad V(\omega)=e^{\omega J t} \quad U \cdot V=\int_{\omega} e^{\jmath \omega t} e^{-\jmath \omega_{0} t} \frac{d \omega}{2 \pi}=\delta\left(\omega-\omega_{0}\right) .
$$

It seems that the Fourier transform is a result that follows from a minimization, unlike the Laplace transform that follows from causal system parameters. This explains the important differences between the two, in terms of their properties (unlike the LT, the FT is not complex analytic). We further explore this topic in Lecture 3.7 (p. 125).

[^34]
3.5.3 Lec 15: Gaussian Elimination

The method for finding the intersection of equations is based on the recursive elimination of all the variables but one. This method, known as Gaussian elimination (Appendix A.7, p. 251), works across a broad range of cases, but may be defined as a systematic algorithm when the equations are linear in the variables. ${ }^{23}$ Rarely do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian eliminations may still work in such cases (Stillwell, 2010, p. 90).

In Appendix A.7.3 (p. 257) the inverse of a 2×2 linear system of equations is derived. Even for a 2×2 case, the general solution requires a great deal of algebra. Working out a numeric example of Gaussian elimination is more instructive. For example, suppose we wish to find the intersection of the two equations

$$
\begin{aligned}
x-y & =3 \\
2 x+y & =2 .
\end{aligned}
$$

This 2×2 system of equations is so simple that you may immediately visualize the solution: By adding the two equations, y is eliminated, leaving $3 x=5$. But doing it this way takes advantage of the specific example, and we need a method for larger systems of equations. We need a generalized (algorithmic) approach. This general approach is called Gaussian elimination.

Start by writing the equations in matrix form (note this is not of the form $A x=y$)

$$
\left[\begin{array}{cc}
1 & -1 \tag{3.22}\\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Next, eliminate the lower left term ($2 x$) using a scaled version of the upper left term (x). Specifically, multiply the first equation by -2 , add it to the second equation, replacing the second equation with the result. This gives

$$
\left[\begin{array}{cc}
1 & -1 \tag{3.23}\\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
2-3 \cdot 2
\end{array}\right]=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

Note that the top equation did not change. Once the matrix is "upper triangular" (zero below the diagonal) you have the solution. Starting from the bottom equation, $y=-4 / 3$. Then the upper equation gives $x-(-4 / 3)=3$, or $x=3-4 / 3=5 / 3$.

In principle, Gaussian elimination is easy, but if you make a calculation mistake along the way, it is very difficult to find your error. The method requires a lot of mental labor, with a high probability of making a mistake. Thus you do not want to apply this method every time. For example, suppose the elements are complex numbers, or polynomials in some other variable such as frequency. Once the coefficients become more complicated, the seemingly trivial problem becomes highly error prone. There is a much better way, that is easily verified, which puts all the numerics at the end, in a single step.

The above operations may be automated by finding a carefully chosen upper-diagonalization matrix U that does the same operation. For example, let

$$
U=\left[\begin{array}{cc}
1 & 0 \tag{3.24}\\
-2 & 1
\end{array}\right]
$$

Multiplying Eq. 3.22 by U, we find

$$
\left[\begin{array}{cc}
1 & 0 \tag{3.25}\\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

thus we obtain Eq. 3.23. At this point we can either back-substitute and obtain the solution, as we did above, or find a matrix L that finishes the job, by removing elements above the diagonal.

[^35]Exercise: Show that $\operatorname{det}(U)=\operatorname{det}(U A)=1$. Solution: Since

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c,
$$

and $\operatorname{det}(U A)=\operatorname{det} U \cdot \operatorname{det}(A)$, and $\operatorname{det}(U)=1-0=1$, the result follows naturally. Common notation is to let $\operatorname{det}(A)=|A|$.

In Appendix A.7.3 the inverse of a general 2×2 matrix is summarized in terms of three steps: 1) swap the diagonal elements, 2) reverse the signs of the off-diagonal elements and 3) divide by the determinant $\Delta=a b-c d$. Specifically

$$
\left[\begin{array}{ll}
a & b \tag{3.26}\\
c & d
\end{array}\right]^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

There are very few things that you must memorize, but the inverse of a 2×2 is one of them. It needs to be in your tool-bag, like the quadratic formula.

While it is difficult to compute the inverse matrix from scratch (Appendix A.7), it takes only a few seconds to verify it (steps 1 and 2)

$$
\left[\begin{array}{ll}
a & b \tag{3.27}\\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{ll}
a d-b c & -a b+a b \\
c d-c d & -b c+a d
\end{array}\right]=\left[\begin{array}{cc}
\Delta & 0 \\
0 & \Delta
\end{array}\right] .
$$

Thus dividing by the determinant gives the 2×2 identity matrix. A good strategy, when you don't trust your memory, is to write down the inverse as best you can, and then verify.

Using the 2×2 matrix inverse on our example (Eq. 3.22), we find

$$
\left[\begin{array}{l}
x \tag{3.28}\\
y
\end{array}\right]=\frac{1}{1+2}\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
5 \\
-6+2
\end{array}\right]=\left[\begin{array}{c}
5 / 3 \\
-4 / 3
\end{array}\right] .
$$

If you use this method, you will rarely (never) make a mistake, and the solution is easily verified. Either you can check the numbers in the inverse, as was done in Eq. 3.27, or you can substitute the solution back into the original equation.

3.6 Lec 16: Transmission (ABCD) matrix composition method

Matrix composition: Matrix multiplication represents a composition of 2×2 matrices, because the input to the second matrix is the output of the first (this follows from the definition of composition: $f(x) \circ g(x)=f(g(x)))$. Thus the ABCD matrix is also known as the transmission matrix method, or occasionally the chain matrix. The general expression for an transmission matrix $\boldsymbol{T}(s)$ is

$$
\left[\begin{array}{c}
V_{1} \tag{3.35}\\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{A}(s) & \mathcal{B}(s) \\
\mathcal{C}(s) & \mathcal{D}(s)
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] .
$$

The four coefficients $\mathcal{A}(s), \mathcal{B}(s), \mathcal{C}(s), \mathcal{D}(s)$ are all complex functions of the Laplace frequency $s=$ $\sigma+j \omega$ (p. 129). Typically they are polynomials in $s, \mathcal{C}(s)=s^{2}+1$ for example.

It is a standard convention to always define the current into the node, but since the input current (on the left) is the same as the output current on the right $\left(I_{2}\right)$, hence the negative sign on I_{2}, to meet the convention of current into every node. When transmission matrices are cascaded, all the signs then match.

We have already used 2×2 matrix composition in representing complex numbers (p. 34), and for computing the $\operatorname{gcd}(m, n)$ of $m, n \in \mathbb{N}$ (p. 50), Pell's equation (p. 59) and the Fibonacci sequence (p. 61). It would appear that 2×2 matricies have high utility, yet are simple to work with.

Definitions of $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}: \quad$ By writing out the equations corresponding to Eq. 3.35, it is trivial to show that:

$$
\begin{equation*}
\mathcal{A}(s)=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}, \mathcal{B}(s)=-\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0}, \mathcal{C}(s)=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}, \mathcal{D}(s)=-\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0} \tag{3.36}
\end{equation*}
$$

Each equation has a physical interpretation, and a corresponding name. Functions \mathcal{A} and \mathcal{C} are said to be blocked, because the output current I_{2} is zero. Functions \mathcal{B} and \mathcal{D} are said to be shortcircuited, because the output voltage V_{2} is zero. These two terms (blocked, short-circuited) are electricalengineering centric, arbaritary, and fail to generalize to other cases, thus these terms should be avoided.

For example, in a mechanical system blocked would correspond to an output isometric (no length change) velocity of zero. In mechanics the isometric force is defined as the maximum applied force, conditioned on zero velocity (aka, the blocked force). Thus the short-circuited force (aka \mathcal{B}) would correspond to the force when the force is zero, which is nonsense. Thus these engineering-centric terms do not gracefully generalize, so better terminology is needed. Much of this was sorted out by Thévenin ${ }^{25}$ c1883 (Johnson, 2003) and (Kennelly, 1893).
\mathcal{A}, \mathcal{D} are called voltage (force) and current (velocity) transfer functions, since they are ratios of voltages and currents, whereas \mathcal{B}, \mathcal{C} are known as the transfer impedance and transfer admittance. For example, the unloaded (blocked) $\left(I_{2}=0\right)$ output voltage $V_{2}=I_{1} / \mathcal{C}$, which would correspond to the isometric force in mechanics. In this way each term expresses an output (port 2) in terms of an input (port 1), for a given load condition.

Exercise: Explain why \mathcal{C} is given as above. Solution: Writing out the lower equation gives $I_{1}=$ $\mathcal{C} V_{2}-\mathcal{D} I_{2}$. Setting $I_{2}=0$, we obtain the equation for $\mathcal{C}=I_{1} /\left.V_{2}\right|_{I_{2}=0}$.

Exercise: Can $\mathcal{C}=0$? Solution: Yes, if $I_{2}=0$ and $I_{1}=I_{2}, \mathcal{C}=0$. For $\mathcal{C} \neq 0$ there needs to be a finite "shunt" impedance across V_{1}, so that $I_{1} \neq I_{2}=0$.

[^36]
3.6.1 Thévenin parameters of a source:

An important concept in circuit theory is that of the Thévenin parameters, the open-circuit voltage and the short-circuit current, the ratio of which defines the Thévenin impedance (Johnson, 2003). The opencircuit voltage is defined as the voltage V_{2} when the load current $I_{2}=0$, which was shown in the previous exercise to be $V_{2} /\left.I_{1}\right|_{I_{2}=0}=1 / \mathcal{C}$.

Thévenin Voltage: The definition Thévenin voltage $V_{\text {Thév }}$ is the same as that for \mathcal{A}, thus

$$
\begin{equation*}
\left.\frac{V_{\text {Thév }}}{V_{1}}\right|_{I_{2}=0}=\frac{1}{\mathcal{A}} . \tag{3.37}
\end{equation*}
$$

Thévenin impedance The Thévenin impedance is the impedance looking into port 2 with $V_{1}=0$, thus

$$
Z_{\text {Thév }}=\left.\frac{V_{2}}{I_{2}}\right|_{V_{1}=0} .
$$

From the upper equation of Eq. 3.35, with $V_{1}=0$, we obtain $\mathcal{A} V_{2}=\mathcal{B} I_{2}$, thus

$$
Z_{\text {Thév }}=\frac{\mathcal{B}}{\mathcal{A}}
$$

Properties of the transmission matrix: The transmission matrix is always constructed from the product of elemental matrices of the form

$$
\left[\begin{array}{cc}
1 & Z(s) \\
0 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc}
1 & 0 \\
Y(s) & 1
\end{array}\right]
$$

Thus for the case of reciprocal systems (P6, p. 131),

$$
\Delta_{T}=\operatorname{det}\left[\begin{array}{ll}
\mathcal{A}(s) & \mathcal{B}(s) \\
\mathcal{C}(s) & \mathcal{D}(s)
\end{array}\right]=1
$$

since the determinant of the product of each elemental matrix is 1 , the determinant their product is 1 . An anti-reciprocal system may be synthesized by the use of a gyrator, and for such cases $\Delta_{T}=-1$.

The eigenvalues and vectors equations for a T matrix are summarized on p. 181 and discussed in Appendix B. 2 (p. 261).

3.6.2 Lec 17: The impedance matrix

With a bit of algebra, one may find the impedance matrix in terms of $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ (Van Valkenburg, 1964a, p. 310)

$$
\left[\begin{array}{l}
V_{1} \tag{3.38}\\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\frac{1}{\mathcal{C}}\left[\begin{array}{cc}
\mathcal{A} & \Delta_{T} \\
1 & \mathcal{D}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

Note that if $\mathcal{C}=0$, the impedance matrix does not exist.

Definitions of $z_{11}(s), z_{12}(s), z_{21}(s), z_{22}(s)$: The definitions of the matrix elements are easily read off of the equation, as

$$
\begin{equation*}
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}, z_{12}=-\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}, z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}, z_{22}=-\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \tag{3.39}
\end{equation*}
$$

These definitions follow trivially from Eq. 3.38 and each element has a physical interpretation. For example, the unloaded ($I_{2}=0$, aka blocked or isometric) input impedance is $z_{11}(s)=\mathcal{A}(s) / \mathcal{C}(s)$ while the unloaded transfer impedance is $z_{21}(s)=1 / \mathcal{C}(s)$. For reciprocal systems (P6, p. 131) $z_{12}=z_{21}$ since $\Delta_{T}=1$. For anti-reciprocal systems, such as dynamic (aka, magnetic) loudspeakers and microphones (Kim and Allen, 2013)), $\Delta_{T}=-1$, thus $z_{21}=-z_{12}=1 / \mathcal{C}$. Finally z_{22} is the impedance looking into port 2 with port 1 open/blocked $\left(I_{1}=0\right)$.

3.6.3 Lec 18: Network power relations

Impedance is a very general concept, closely tied to the definition of power $\mathcal{P}(t)$ (and energy). Power is defined as the product of the effort (force) and the flow (current). As described in Fig. 3.2, these concepts are very general, applying to mechanics, electrical circuits, acoustics, thermal circuits, or any other case where conservation of energy applies. Two basic variables are defined, generalized force and generalized flow, also called conjugate variables. The product of the conjugate variables is the power, and the ratio is the impedance. For example, for the case of voltage and current,

$$
\mathcal{P}(t) \equiv \int^{t} v(t) i(t) d t, \quad Z(s) \equiv \frac{V(\omega)}{I(\omega)}
$$

3.6.4 Power vs. power series, linear vs. nonlinear

Another place where equations of second degree appear in physical applications is in energy and power calculations. The electrical power is given by the product of the voltage $v(t)$ and current $i(t)$ (or in mechanics as the force times the velocity). For example if we define $\mathcal{P}=v(t) i(t)$ to be the power \mathcal{P} [watts], then the total energy [joules] at time t is (Van Valkenburg, 1964a, Chapter 14)

$$
\mathcal{E}(t)=\int_{0}^{t} v(t) i(t) d t .
$$

From this observe that the power is the rate of change of the total energy

$$
\mathcal{P}(t)=\frac{d}{d t} \mathcal{E}(t),
$$

reminiscent of the fundamental theorem of calculus [Eq. 4.7, (p. 146)].

Ohm's law and impedance: The ratio of voltage over the current is called the impedance which has units of [ohms]. For example given a resistor of $R=10$ [ohms],

$$
v(t)=R i(t) .
$$

Namely, 1 [amp] flowing through the resistor would give 10 [volts] across it. Merging the linear relation due to Ohm's law with the definition of power shows that the instantaneous power in a resistor is quadratic in voltage and current

$$
\begin{equation*}
\mathcal{P}(t)=v(t)^{2} / R=i(t)^{2} R . \tag{3.40}
\end{equation*}
$$

5 Note that Ohm's law is linear in its relation between voltage and current whereas the power and energy are nonlinear.

Ohm's law generalizes in a very important way, allowing the impedance (e.g., resistance) to be a linear complex analytic function of complex frequency $s=\sigma+\omega_{\jmath}$ (Kennelly, 1893; Brune, 1931a). Impedance is a fundamental concept in many fields of engineering. For example: ${ }^{26}$ Newton's second law $F=m a$ obeys Ohm's law, with mechanical impedance $Z(s)=s m$. Hooke's law $F=k x$ for a spring is described by a mechanical impedance $Z(s)=k / s$. In mechanics a "resistor" is called a dash-pot and its impedance is a positive and real constant. ${ }^{27}$

[^37]Kirchhoff's laws KCL, KVL: The laws of electricity and mechanics may be written down using Kirchhoff's current and voltage laws (KCL, KVL), which lead to linear systems of equations in the currents and voltages (velocities and forces) of the system under study, with complex coefficients having positive real parts.

Points of major confusion are a number of terms that are misused, and overused, in the fields of mathematics, physics and engineering. Some of the most obviously abused terms are linear/nonlinear, energy, power, power series. These have multiple meanings, which can, and are, fundamentally in conflict.

Transfer functions (transfer matrix): The only method that seems to work, to sort this out, is to cite the relevant physical application, in specific contexts. The most common standard reference is a physical system that has an input $x(t)$ and an output $y(t)$. If the system is linear, then it may be represented by its impulse response $h(t)$. In such cases the system equation is

$$
y(t)=h(t) \star x(t) \leftrightarrow Y(\omega)=\left.H(s)\right|_{\sigma=0} X(\omega) ;
$$

namely, the convolution of the input with the impulse response gives the output. From Fourier analysis this relation may be written in the real frequency domain as a product of the Laplace transform of the impulse response, evaluated on the ω_{\jmath} axis and the Fourier transform of the input $X(\omega) \leftrightarrow x(t)$ and output $Y(\omega) \leftrightarrow y(t)$.

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and Laplace transforms have no obvious meaning.

The question that must be addressed is why the power is nonlinear, whereas a power series of $H(s)$ is linear: Both have powers of the underlying variables. This is naturally confusing and rarely, if ever, address. The quick answer is that powers of the Laplace frequency s correspond to derivatives, which are linear, whereas the product of the voltage $v(t)$ and current $i(t)$ is nonlinear. The important and interesting question will be addressed in Section 3.8.1 (p. 130), in terms of the system postulates of physical systems.

Whats going on? The domain variables must be separated from the codomain variables. In our example, the voltage and current are multiplied together, resulting in a nonlinear output, the power. If the frequency is squared, this is describing the degree of a polynomial. This is not nonlinear because it does not impact the signal output; rather it characterizes the Laplace transform of the system response.

Table 3.2: The generalized impedance is defined as the ratio of a force over a flow, a concept that also holds in mechanics and acoustics. In mechanics, the 'force' is equal to the mechanical force on an element (e.g. a mass, dash-pot, or spring), and the 'flow' is the velocity. In acoustics, the 'force' is pressure, and the 'flow' is the volume velocity or particle velocity of air molecules.

Case	Force	Flow	Impedance	units ohms $[\Omega]$
Electrical	voltage (V)	current (I)	$Z=V / I$	$[\Omega]$
Mechanics	force (F)	velocity (U)	$Z=F / U$	mechanical $[\Omega]$
Acoustics	pressure (P)	particle velocity (V)	$Z=P / V$	specific $[\Omega]$
Acoustics	mean pressure (\mathcal{P})	volume velocity (V)	$Z=\mathcal{P} / \mathcal{V}$	acoustic $[\Omega]$
Thermal	temperature (T)	heat-flux (J)	$Z=T / J$	thermal $[\Omega]$

Ohm's law: In general, impedance is defined as the ratio of a force over a flow. For electrical circuits (Table 3.2), the voltage is the 'force' and the current is the 'flow.' Ohm's law states that the voltage across and the current through a circuit element are linearly related by the impedance of that element (which is typically a complex function of the complex Laplace frequency $s=\sigma+\omega \mathrm{j}$). For resistors, the voltage over the current is called the resistance, and is a constant (e.g. the simplest case, $V / I=R$). For inductors and capacitors, the impedance depends on the Laplace frequency s [e.g. $V / I=Z(s)]$).

As discussed in Fig. 3.2, the impedance concept also holds for mechanics and acoustics. In mechanics, the 'force' is equal to the mechanical force on an element (e.g. a mass, dash-pot, or spring), and
the 'flow' is the velocity. In acoustics, the 'force' is pressure, and the 'flow' is the volume velocity or particle velocity of air molecules.

In this section we shall derive the method of linear composition of systems, also known as the $A B C D$ transmission matrix method, or in the mathematical literature as the Möbius (bilinear) transformation. 5 Using the method of matrix composition, a linear system of 2×2 matrices can represent a large important family of networks. By the application of Ohm's law to the circuit shown in Fig. 3.2, we can model a cascade of such cells.

Figure 3.2: A single LC cell of the LC transmission line (see Fig. F.1, p. 280). Every cell of any transmission line may be modeled by the ABCD method, as the product of two matrices. For the example shown here, the inductance L of the coil and the capacitance C of capacitor are in units of [henry $/ \mathrm{m}$] and [farad $/ \mathrm{m}$], thus they depend on length $\Delta_{x}[\mathrm{~m}$] that the cell represents. Note the flows are always defined as into the + node.

Example of the use of the ABCD matrix composition: In Fig. 3.2 we see the network is composed of a series inductor (mass) having an impedance $Z_{l}=s L$, and a shunt capacitor (compliance) having an impedance $Z_{c}=1 / s C$, where $s \in \mathbb{C}$. As determined by Ohm's law, each impedance is described by a linear relation between the current and the voltage. For the inductive impedance, applying Ohm's law, we find

$$
V_{1}-V_{2}=Z_{l} I_{1},
$$

where Z_{l} is the complex impedance of the inductor. For the capacitive impedance, applying Ohm's law we find

$$
V_{2}=\left(I_{1}+I_{2}\right) Z_{c}
$$

where Z_{c} is the complex impedance of the capacitor.
Each of these linear impedance relations may be written in matrix form. The series inductor equation gives (note $I_{1}=-I_{2}$)

$$
\left[\begin{array}{c}
V_{1} \tag{3.41}\\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & Z_{l} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right],
$$

while the shunt capacitor equation yields (note $V_{1}=V_{2}$)

$$
\left[\begin{array}{c}
V_{2} \tag{3.42}\\
I_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
Y_{c} & 1
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
-I_{3}
\end{array}\right],
$$

where $Y_{c}=1 / Z_{c}$ is called the admittance.
When the second matrix equation for the shunt admittance (Eq. 3.42) is substituted into the series impedance equation (Eq. 3.41), we find the ABCD matrix ($\boldsymbol{T}_{1} \circ \boldsymbol{T}_{2}$) for the cell is simply the product of two matrices

$$
\left[\begin{array}{c}
V_{1} \tag{3.43}\\
I_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & Z_{l} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
Y_{c} & 1
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
-I_{3}
\end{array}\right]=\left[\begin{array}{cc}
1+Z_{l} Y_{c} & Z_{l} \\
Y_{c} & 1
\end{array}\right]\left[\begin{array}{c}
V_{3} \\
-I_{3}
\end{array}\right] .
$$

10 Note that the determinant of the matrix $\Delta=\mathcal{A D}-\mathcal{B C}=1$. This is not an accident since the determinant of the two matricies are each 1 , thus the determinant of their product is 1 . Every cascade of series and shunt elements will always have $\Delta=1$.

Thus for Fig. 3.2, Eq. 3.43 has $\mathcal{A}(s)=1+s^{2} L C, \mathcal{B}(s)=s L, \mathcal{C}(s)=s C$ and $\mathcal{D}=1$. This equation characterizes every possible relation between the input and output voltage and current of the cell. For example, the ratio of the output over input voltage, with the output unloaded, is

$$
\left.\frac{V_{3}}{V_{1}}\right|_{I_{3}=0}=\frac{1}{\mathcal{A}(s)}=\frac{1}{1+Z_{l} Y_{c}}=\frac{1}{1+Z_{l} / Z_{c}}=\frac{Z_{c}}{Z_{c}+Z_{l}}
$$

This relation is known as the voltage divider relation.
To derive the formula for the current divider equation, use the lower equation and set $V_{3}=0$, giving

$$
\left.\frac{-I_{3}}{I_{1}}\right|_{V_{2}=0}=\frac{1}{\mathcal{D}}=1
$$

3.7 Lec 19: Signals: Fourier transforms

Two basic transformations in engineering mathematics are the Fourier and the Laplace transforms, which deal with time-frequency analysis. the best books on this topic is Papoulis (1962).

Notation: The Fourier transform takes a time domain signal $f(t) \in \mathbb{R}$ and transforms it to the frequency domain $\omega \in \mathbb{R}$, where it is complex $(F(\omega) \in \mathbb{C})$. For the Fourier transform, both the time $-\infty<t<\infty$ and frequency $\infty<\omega<\infty$ are strictly real. The relationship between $f(t)$ and its transform $F(\omega)$ is indicated by the double arrow symbol

$$
f(t) \leftrightarrow F(\omega)
$$

Since the FT obeys superposition, it is possible to define a FT of a complex time function $f(t) \in \mathbb{C}, t \in$ \mathbb{R}. This is useful in certain engineering applications (i.e., Hilbert envelope, Hilbert transforms). It is accepted in the engineering and physics literature to use the case of the variable to indicate the type of argument. A time function is $f(t)$, where t has units of seconds [s] and is in lower case, whereas its Fourier transform, a function of frequency, having units of either hertz [Hz$]$ or radians [$2 \pi \mathrm{~Hz}$], is written using upper case $F(\omega)$. This helps the reader parse the type of variable under consideration. This is a helpful piece of notation, but not entirely in agreement with notation used in mathematics.

Definition of the Fourier transform: The forward transform takes $f(t)$ to $F(\omega)$ while the inverse transform takes $F(\omega)$ to $\tilde{f}(t)$. The tilde symbol indicates that in general the recovered inverse transform signal can be slightly different from $f(t)$. We give examples of this in Table 3.3.

$$
\begin{array}{ll}
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-\jmath \omega t} d t & \widetilde{f}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{\jmath \omega t} d \omega \\
F(\omega) \leftrightarrow f(t) & \widetilde{f}(t) \leftrightarrow F(\omega) \tag{3.45}
\end{array}
$$

Properties of Fourier Transforms:

1. Both time t and frequency ω are real.
2. For the forward transform (time to frequency), the sign of the exponential is negative.
3. The limits on the integrals in both the forward and reverse FTs are $[-\infty, \infty]$.
4. When taking the inverse Fourier transform, the scale factor of $1 / 2 \pi$ is required to cancel the 2π in the differential $d \omega$.

Table 3.3: Basic (Level I) Fourier transforms. Note $a>0 \in \mathbb{R}$ has units [rad/s]. To flag this necessary condition, we use $|a|$ to assure this condition will be met. The other constant $T_{o} \in \mathbb{R}[s]$ has no restrictions, other than being real. Complex constants may not appear as the argument to a delta function, since complex numbers do not have the order property.

$f(t) \leftrightarrow F(\omega)$	Name
$\widetilde{\delta}(t) \leftrightarrow 1(\omega) \equiv 1 \forall \omega$	Dirac
$1(t) \equiv 1 \forall t \leftrightarrow 2 \pi \widetilde{\delta}(\omega)$	Dirac
$\operatorname{sgn}(t)=\frac{t}{\|t\|} \leftrightarrow \frac{2}{\jmath \omega}$	
$\widetilde{u}(t)=\frac{1(t)+\operatorname{sgn}(t)}{2} \leftrightarrow \pi \widetilde{\delta}(\omega)+\frac{1}{\jmath \omega} \equiv \widetilde{U}(\omega)$	step
$\widetilde{\delta}\left(t-T_{o}\right) \leftrightarrow e^{-\jmath \omega T_{o}}$	delay
$\widetilde{\delta}\left(t-T_{o}\right) \star f(t) \leftrightarrow F(\omega) e^{-\jmath \omega T_{o}}$	delay
$\widetilde{u}(t) e^{-\|a\| t} \leftrightarrow \frac{1}{\jmath \omega+\|a\|}$	\exp
$\operatorname{rec}(t)=\frac{1}{T_{o}}\left[\widetilde{u}(t)-\widetilde{u}\left(t-T_{o}\right)\right] \leftrightarrow \frac{1}{T_{o}}\left(1-e^{-\jmath \omega T_{o}}\right)$	pulse
$\widetilde{u}(t) \star \widetilde{u}(t) \leftrightarrow \widetilde{\delta}^{2}(\omega) \quad$ Not defined	NaN

5. The Fourier step function may be defined by the use of superposition of 1 and $\operatorname{sgn}(t)=t /|t|$ as

$$
\widetilde{u}(t) \equiv \frac{1+\operatorname{sgn}(t)}{2}= \begin{cases}1 & t>0 \\ 1 / 2 & t=0 \\ 0 & t<0\end{cases}
$$

Taking the FT of a delayed step function

$$
\widetilde{u}\left(t-T_{o}\right) \leftrightarrow \frac{1}{2} \int_{-\infty}^{\infty}\left[1-\operatorname{sgn}\left(t-T_{o}\right)\right] e^{-j \omega t} d t=\pi \tilde{\delta}(\omega)+\frac{e^{-j \omega T_{o}}}{j \omega}
$$

Thus the FT of the step function has the term $\pi \delta(\omega)$ due to the 1 in the definition of the Fourier step. This term introduces a serious flaw with the FT of the step function: While it appears to be causal, it is not.
6. The convolution $\widetilde{u}(t) \star \widetilde{u}(t)$ is not defined because both $1 \star 1$ and $\widetilde{\delta}^{2}(\omega)$ do not exist (and cannot be defined).
7. The inverse FT has convergence problems whenever there is a discontinuity in the time response. This we indicate with a hat over the reconstructed time response. The error between the target time function and the reconstructed is zero in the root-mean sense, but not point-wise.
Specifically, at the discontinuity point for the Fourier step function $(t=0), \widetilde{u}(t) \neq u(t)$, yet $\int|\widetilde{u}(t)-u(t)|^{2} d t=0$. At the point of the discontinuity the reconstructed function displays Gibbs ringing (it oscillates around the step, hence does not converge at the jump). ${ }^{28}$ The $\mathcal{L} \mathcal{T}$ does not exhibit Gibbs ringing.

[^38]8. The FT is not always analytic in ω, as in this example of the step function. The step function cannot be expanded in a Taylor series about $\omega=0$ because $\widetilde{\delta}(\omega)$ is not analytic in ω.
9. The Fourier δ function is denoted $\widetilde{\delta}(t)$, to differentiate it from the Laplace delta function $\delta(t)$. They differ because the step functions differ, due to the convergence problem described above.
10. One may define
$$
\widetilde{u}(t)=\int_{-\infty}^{t} \tilde{\delta}(t) d t
$$
and define the somewhat questionable notation
$$
\widetilde{\delta}(t)=\frac{d}{d t} \widetilde{u}(t)
$$
since the Fourier step function is not analytic.
11. The $\operatorname{rec}(t)$ function is defined as
\[

\operatorname{rec}(t)=\frac{\widetilde{u}(t)-\widetilde{u}\left(t-T_{o}\right)}{T_{o}}=\left\{$$
\begin{array}{ll}
0 & t<0 \\
1 / T_{o} & 0<t<T_{o} . \\
0 & t>T_{0}
\end{array}
$$.\right.
\]

It follows that $\widetilde{\delta}(t)=\lim _{T_{o} \rightarrow 0}$. Like $\widetilde{\delta}(t)$, the rec (t) has unit area.
Table 3.4: Summary of key properties of FTs.

FT Properties

$$
\begin{aligned}
\frac{d}{d t} v(t) & \leftrightarrow \jmath \omega V(\omega) & & \text { deriv } \\
f(t) \star g(t) & \leftrightarrow F(\omega) G(\omega) & & \text { conv } \\
f(t) g(t) & \leftrightarrow \frac{1}{2 \pi} F(\omega) \star G(\omega) & & \text { conv } \\
f(a t) & \leftrightarrow \frac{1}{a} F\left(\frac{\omega}{a}\right) & & \text { scaling }
\end{aligned}
$$

Periodic signals: Besides these two basic types of time-frequency transforms, there are several variants that depend on the symmetry in time and frequency. For example, when the time signal is sampled (discrete in time), the frequency response becomes periodic, leading to the discrete-time Fourier transform (DTFT). When a time response is periodic, the frequency response is sampled (discrete in frequency), leading to the Fourier series. These two symmetries may be simply characterized as periodic in time \Rightarrow discrete in frequency, and periodic in frequency \Rightarrow discrete in time. When a function is discrete both in time and frequency, it is necessarily periodic in time and frequency, leading to the discrete Fourier transform (DFT). The DFT is typically computed with an algorithm called the fast Fourier transform (FFT), which can dramatically speed up the calculation when the data is a power of 2 in length.

An important symmetry occurs given functions that are causal (in time) and periodic (in frequency). The best known example is the class of signals that have z transforms, which are causal (one-sided in
time) discrete-time signals. The harmonic series (Eq. 3.29, p. 87) is the z-transform of the discretetime step function and is thus, due to symmetry, analytic within the RoC in the complex frequency (z) domain.

The double brackets on $f((t))_{T_{o}}$ indicate that $f(t)$ is periodic in t with period T_{o}, i.e., $f(t)=$ $f\left(t+k T_{o}\right)$ for all $k \in \mathbb{N}$. Averaging over one period and dividing by the T_{o} gives the average value of $f(t)$.

Exercise: Consider the $\mathcal{F} \mathcal{T}$ as a scalar (dot) product (Eq. 3.16, p. 106) between "vectors" $f((t))_{T_{o}}$ and $e^{-\jmath \omega_{k} t}$

$$
\begin{aligned}
F\left(\omega_{k}\right) & =f((t))_{T_{o}} \cdot e^{-\jmath \omega_{k} t} \\
& \equiv \frac{1}{T_{o}} \int_{0}^{T_{o}} f(t) e^{-\jmath \omega_{k} t} d t
\end{aligned}
$$

where $\omega_{0}=2 \pi / T_{o}, f(t)$ has period T_{o}, i.e., $f(t)=f\left(t+n T_{o}\right)=e^{\jmath \omega_{n} t}$ with $n \in \mathbb{N}$, and $\omega_{k}=k \omega_{o}$.
What is the value of the scalar product? Solution: Evaluating the scalar product we find

$$
\begin{aligned}
e^{\jmath \omega_{n} t} \cdot e^{-\jmath \omega_{k} t} & =\frac{1}{T_{o}} \int_{0}^{T_{o}} e^{\jmath \omega_{n} t} e^{-\jmath \omega_{k} t} d t \\
& =\frac{1}{T_{o}} \int_{0}^{T_{o}} e^{2 \pi \jmath(n-k) t / T_{o}} d t= \begin{cases}1 & n=k \\
0 & n \neq k\end{cases}
\end{aligned}
$$

The two signals (vectors) are orthogonal.

Exercise: Consider the discrete time $\mathcal{F} \mathcal{T}$ (DTFT) as a scalar (dot) product (Eq. 3.16, between "vectors" $f_{n}=\left.f(t)\right|_{t_{n}}$ and $e^{-\jmath \omega t_{n}}$ where $t_{n}=n T_{s}$ and $T_{s}=1 / 2 F_{\max }$ is the sample period. The scalar product over $n \in \mathbb{Z}$ is

$$
\begin{aligned}
F((\omega))_{2 \pi} & =f_{n} \cdot e^{-\jmath \omega t_{n}} \\
& \equiv \sum_{n=-\infty}^{\infty} f_{n} e^{-\jmath \omega t_{n}}
\end{aligned}
$$

where $\omega_{0}=2 \pi / T_{o}$ and $\omega_{k}=k \omega_{o}$. If $f_{n}=e^{\jmath \omega_{n} t}$ what is the value of the scalar product? Solution: Evaluating the scalar product we find

$$
e^{\jmath \omega_{n} t} \cdot e^{-\jmath \omega_{k} t}=\frac{1}{T_{o}} \int_{0}^{T_{o}} e^{\jmath \omega_{n} t} e^{-\jmath \omega_{k} t} d t .=\frac{1}{T_{o}} \int_{0}^{T_{o}} e^{2 \pi \jmath(n-k) t / T_{o}} d t= \begin{cases}1 & n=k \\ 0 & n \neq k\end{cases}
$$

The two signals (vectors) are orthogonal.

3.8 Lec 20: Systems: Laplace transforms

The Laplace transform takes real signals $f(t) \in \mathbb{R}$, as a function of real time $t \in \mathbb{R}$, that are causal, i.e., strictly zero for negative time $(f(t)=0$ for $t<0)$, and transforms them into complex functions $F(s) \in \mathbb{C}$ of complex frequency $s=\sigma+\omega \jmath$. As for the Fourier transform, there is the notation $f(t) \leftrightarrow F(s)$.

When a signal is zero for negative time $f(t<0)=0$, it is said to be causal, and the resulting transform $F(s)$ is then complex analytic over significant regions of the s plane. For a function of time to be causal, time must be real $(t \in \mathbb{R})$, since if it were complex, it would lose the order property (thus it could not be causal). It is helpful to emphasize the causal nature of $f(t) u(t)$ by indicating the causal nature, using the Heaviside step function $u(t)$.

Any restriction on a function (e.g., real, causal, periodic, positive real part, etc.) is called a symmetry property. There are many forms of symmetry (Section 3.8 .1 , p. 130). The concept of symmetry is very general and widely used in both mathematics and physics, where it is more generally known as group theory. We shall restrict ourselves to only a few very basic symmetries.

Definition of the Laplace transform: The forward and inverse Laplace transforms are

$$
\begin{array}{ll}
F(s)=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t & f(t)=\frac{1}{2 \pi \jmath} \int_{\sigma_{o}-\infty \jmath}^{\sigma_{o}+\infty \jmath} F(s) e^{s t} d s \\
F(s) \leftrightarrow f(t) & f(t) \leftrightarrow F(s) \tag{3.47}
\end{array}
$$

Here $s=\sigma+j \omega \in \mathbb{C}[2 \pi \mathrm{~Hz}]$ is the complex Laplace frequency in radians and $t \in \mathbb{R}[\mathrm{~s}]$ is the time in seconds.

When dealing with engineering problems it is convenient to separate the signals we use from the systems that process them. We do this by treating signals, such as a music signal, differently from a system, such as a filter. In general signals may start and end at any time. The concept of causality has no mathematical meaning in signal space. Systems, on the other hand, obey very rigid rules (to assure that they remain physical). These physical restrictions are described in terms of the network postulates, which are discussed in Sect. 3.8.1 (p. 130). There is a question as to why postulates are needed, and which ones are the best choices. ${ }^{29}$ There may be no answers to these questions, but having a set of postulates is a useful way of thinking about physics. ${ }^{30}$

As discussed in Section 4.5.1 (p. 176), we must use the Cauchy residue theorem (CRT), requiring closure of the contour \mathcal{C} at $\omega j \rightarrow \pm j \infty$

$$
\oint_{\mathcal{C}}=\int_{\sigma_{0}-j \infty}^{\sigma_{0}+j \infty}+\int_{C_{\infty}}
$$

where the path represented by ' C_{∞} ' is a semicircle of infinite radius. For a causal, 'stable' (e.g. doesn't "blow up" in time) signal, all of the poles of $F(s)$ must be inside of the Laplace contour, in the left half s-plane.

Figure 3.3: Three-element mechanical resonant circuit consisting of a spring, mass and dash-pot (e.g., viscous fluid).
Hooke's law for a spring states that the force $f(t)$ is proportional to the displacement $x(t)$, i.e., $f(t)=K x(t)$. The formula for a dash-pot is $f(t)=R v(t)$, and Newton's famous formula for mass is $f(t)=d[M v(t)] / d t$, which for constant \mathbf{M} is $f(t)=M d v / d t$.

The equation of motion for the mechanical oscillator in Fig. 3.3 is given by Newton's second law; the sum of the forces must balance to zero

$$
\begin{equation*}
M \frac{d^{2}}{d t^{2}} x(t)+R \frac{d}{d t} x(t)+K x(t)=f(t) \tag{3.48}
\end{equation*}
$$

These three constants, the mass M, resistance R and stiffness $K(\in \mathbb{R} \geq 0)$ are real and non-negative. The dynamical variables are the driving force $f(t) \leftrightarrow F(s)$, the position of the mass $x(t) \leftrightarrow X(s)$ and its velocity $v(t) \leftrightarrow V(s)$, with $v(t)=d x(t) / d t \leftrightarrow V(s)=s X(s)$.

[^39]Newton's second law (c1650) is the mechanical equivalent of Kirchhoff's (c1850) voltage law (KVL), which states that the sum of the voltages around a loop must be zero. The gradient of the voltage results in a force on a charge (i.e., $F=q E$).

Equation 3.48 may be re-expressed in terms of impedances, the ratio of the force to velocity, once it

Example: The divergent series

$$
e^{t} u(t)=\sum_{0}^{\infty} \frac{1}{n!} t^{n} \leftrightarrow \frac{1}{s-1}
$$

is a valid description of $e^{t} u(t)$, with an unstable pole at $s=1$. For values of $\left|x-x_{o}\right|<1(x \in \mathbb{R})$, the analytic function $P(x)$ is said to have a region of convergence (RoC). For cases where the argument is complex ($s \in \mathbb{C}$), this is called the radius of convergence (RoC). We call the region $\left|s-s_{o}\right|>1$ the region of divergence (RoD), and $\left|s-s_{o}\right|=0$, the singular circle. Typically the underlying function $P(s)$, defined by the series, has a pole on the singular circle for $s \in \mathbb{C}$. One may isolate such poles by moving the expansion point s_{o} until the RoC approaches zero. Outside the circle the Taylor series is divergent and inside it is convergent.

There seems to be a conflict with the time response $f(t)=e^{a t} u(t)$, which has a divergent series (unstable pole). I'm not sure how to explain this conflict, other than to point out that $t \in \mathbb{R}$: thus, the series expansion of the diverging exponential is real-analytic, not complex analytic. First $f(t)$ has a Laplace transform with a pole at $s=1$, in agreement with its unstable nature. Second, every analytic function must be single valued. This follows from the fact that each term in Eq. 3.27 is single valued. Third, analytic functions are "smooth" since they may be differentiated an infinite number of times and the series still converges. There can be no jumps or kinks in such functions.

The key idea that every impedance must be complex analytic and ≥ 0 for $\sigma>0$ was first proposed by Otto Brune in his PhD at MIT, supervised by Ernst A. Guillemin, an MIT electrical engineering professor who played an important role in the development of circuit theory and was a student of Arnold Sommerfeld. ${ }^{31}$ Other MIT advisers were Norbert Wiener and Vannevar Bush. Brune's primary, but non-MIT, advisor was W. Cauer, also perhaps a student of Sommerfeld, who was well trained in 19th century German mathematics (Brune, 1931b).

Summary: While the definitions of the $\mathrm{FT}(\mathcal{F T})$ and $\mathrm{LT}(\mathcal{L T})$ transforms may appear similar, they are not. The key difference is that the time response of the Laplace transform is causal, leading to a complex analytic frequency response. While the frequency response of the Fourier transform is complex, it is not complex analytic since the frequency ω is real. Fourier transforms do not have poles. These are not superficial differences.

The concept of symmetry is helpful in understanding the many different types of time-frequency transforms. Two fundamental types of symmetry are causality and periodicity.

The Fourier transform $\mathcal{F T}$ characterizes the steady-state response while the Laplace transform $\mathcal{L T}$ characterizes both the transient and steady-state response. Given a causal system response $H(s) \leftrightarrow h(t)$ with input $x(t)$, the output is

$$
y(t)=h(t) \star x(t) \leftrightarrow Y(\omega)=\left.H(s)\right|_{s=\jmath \omega} X(\omega) .
$$

3.8.1 Lec 21: Ten system postulates

Solutions of differential equations, such as the wave equation, are conveniently described in terms of mathematical properties, which we present here in terms of 10 network postulates:

[^40](P1) Causality (non-causal/acausal): Causal systems respond when acted upon. Virtually all physical systems obey causality. An example of a causal system is an integrator, which has a response of a step function. Filters are also examples of causal systems. Signals represent acausal responses. They do not have a clear beginning or end, such as the sound of the wind or traffic noise. A causal linear system is typically complex analytic. A nonlinear system can be causal, but not complex analytic.
(P2) Linearity (nonlinear): Linear systems obey superposition. Two signals $x(t)$ and $y(t)$ are the inputs to a linear system, producing outputs $x^{\prime}(t)$ and $y^{\prime}(t)$. When the inputs are presented together as $a x(t)+b y(t)$ with weights $a, b \in \mathbb{C}$, the output will be $a x^{\prime}(t)+b y^{\prime}(t)$. If either a or b is zero, the corresponding signal is removed from the output.
Nonlinear systems mix the two inputs, thereby producing signals not present in the input. For example, if the inputs to a nonlinear system are two sine waves, the output will contain distortion components, having frequencies not present at the input. An example of a nonlinear system is one that multiplies the two inputs. A second is a diode, which rectifies a signal, letting current flow only in one direction. Most physical systems have some degree of nonlinear response, but this is not always desired. Other systems are designed to be nonlinear, such as the diode example.
(P3) Passive (active): An active system has a power source, such as a battery, while a passive system has no power source. While you may consider a transistor amplifier to be active, it is only so when connected to a power source.
(P4) Real (complex) time response: Typically systems are "real in, real out." They do not naturally have complex responses (real and imaginary parts). While a Fourier transform takes real inputs and produces complex outputs, this is not an example of a complex time response. P 4 is a characterization of the input signal, not its Fourier transform.
(P5) Time-invariant (time varying): For a system to be a time varying system the output must depend on when the input signal starts or stops. If the output, relative to the input, is independent of the starting time, then the system is said to be time-invariant (static).
(P6) Reciprocal (non- or anti-reciprocal): In many ways this is the most difficult propriety to characterize and thus to understand. It is best characterized by the ABCD matrix (Section 3.6, p. 120). If $B=C$, the system is said to be reciprocal. If $B=-C$, it is said to be anti-reciprocal. The impedance matrix is reciprocal while a loudspeaker is anti-reciprocal and modeled by the gyrator rather than a transformer. Non-reciprocal systems are modeled by gyrators, which may be thought of as transformers which swap the force and flow variables. For example, the input impedance of a gyrator, terminated by an inductor, is a capacitor. For an expanded discussion on reciprocity, see Sect. H, p. 283.
(P7) Reversibility (non-reversible): If swapping the input and output of a system leaves the system invariant, it is said to be reversible. When $A=D$, the system is reversible. Note the similarity and differences between reversible and reciprocal.
(P8) Space-invariant (space-variant): If a system operates independently as a function of where it physically is in space, then it is space-invariant. When the parameters that characterize the system depend on position, it is space-variant.
(P9) Deterministic (random): Given the wave equation, along with the boundary conditions, the system's solution may be deterministic, or not, depending on its extent. Consider a radar or sonar wave propagating out into uncharted territory. When the wave hits an object, the reflection can return waves that are not predicted, due to unknown objects. This is an example where the boundary condition is not known in advance.
(P10) Quasi-static $(k a<1)$ Quasi-statics follows the Nyquist sampling theorem, for systems that have dimensions that are small compared to the local wavelength. This assumption fails when the frequency is raised (the wavelength becomes short). Thus this is also known as the long-wavelength approximation. Quasi-statics is typically stated as $k a<1$, where $k=2 \pi / \lambda=\omega / c_{o}$ and a is the smallest dimension of the system. see p. 233 for a detailed discussion of the role of quasi-statics in acoustic horn wave propagation.
Postulate (P10) is closely related to the Feynman lecture The "underlying unity" of nature where Feynman asks (Feynman, 1970c, Ch. 12-7): Why do we need to treat the fields as smooth? His answer is related to the wavelength of the probing signal relative to the dimensions of the object being probed. This raises the fundamental question: Are Maxwell's equations a band-limited approximation to reality? Today we have no answers to this question.
Here is one helpful discussion. ${ }^{32}$
The Lorentz force formula and Maxwell's equations are two distinct physical laws, yet the two methods yield the same results.
Why the two results coincide was not known. In other words, the flux rule consists of two physically different laws in classical theories. Interestingly, this problem was also a motivation behind the development of the theory of relativity by Albert Einstein. In 1905, Einstein wrote in the opening paragraph of his first paper on relativity theory, "It is known that Maxwell's electrodynamics - as usually understood at the present time - when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena." But Einstein's argument moved away from this problem and formulated special theory of relativity, thus the problem was not solved.
Richard Feynman once described this situation in his famous lecture (The Feynman Lectures on Physics, Vol. II, 1964), "we know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena. Usually such a beautiful generalization is found to stem from a single deep underlying principle. ... We have to understand the "rule" as the combined effects of two quite separate phenomena."

Summary discussion of the $\mathbf{1 0}$ network postulates: Each postulate has at least two categories. For example, (P1) is either causal, non-causal or acausal while (P2) is either linear or non-linear. (P6) and (P9) only apply to 2 -port algebraic networks (those having an input and an output). The others apply to both 2 - and 1 -port networks (e.g., an impedance is a 1 -port). An interesting example is the antireciprocal transmission matrix of a loudspeaker (Sect. H, p. 283).

Related forms of these postulates may be found in the network theory literature (Van Valkenburg, 1964a,b; Ramo et al., 1965). Postulates (P1-P6) were introduced by Carlin and Giordano (1964) and (P7-P9) were added by Kim et al. (2016). While linearity (P2), passivity (P3), realness (P4) and timeinvariance (P5) are independent, causality (P1) is a consequence of linearity (P2) and passivity (P3) (Carlin and Giordano, 1964, p. 5).

3.9 Lec 22: Complex analytic mappings (domain-coloring)

One of the most difficult aspects of complex functions of a complex variable is visualizing the mappings from the $z=x+y \jmath$ to $w(z)=u+v \jmath$ planes. For example, $w(z)=\sin (x)$ is trivial when $z=x+y \jmath$ is real (i.e., $y=0$), because $\sin (x)$ is real. Likewise for the case where $x=0$,

$$
\sin (y \jmath)=\frac{e^{-y}-e^{y}}{2 \jmath}=-\jmath \sinh (y)
$$

[^41]is pure imaginary. However, the more general case
$$
w(z)=\sin (z) \in \mathbb{C}
$$
is not easily visualized. And when $u(x, y)$ and $v(x, y)$ are less well known functions, $w(z)$ can be even more difficult to visualize. For example, if $w(z)=J_{0}(z)$ then $u(x, y), v(x, y)$ are the real and imaginary parts of the Bessel function.

A software solution: Fortunately with computer software today, this problem can be solved by adding color to the chart. An Octave/Matlab script ${ }^{33}$ zviz.m has been used to make the charts shown in Fig. 3.4. Such charts are known as domain-coloring. ${ }^{34}$

Rather than plotting $u(x, y)$ and $v(x, y)$ separately, domain-coloring allows us to display the entire function on one color chart (i.e., colorized plot). For this visualization we see the complex polar form of $w(s)=|w| e^{\jmath \angle w}$, rather than the 2×2 (four-dimensional) Cartesian graph $w(x+y \jmath)=u(x, y)+v(x, y) \jmath$. On the left is the reference condition, the identity mapping ($w=s$), and on the right the origin has been shifted to the right and up by $\sqrt{2}$.

Mathematicians typically use abstract (i.e., non-physical) notation $w(z)$, where $w=u+v \imath$ and $z=x+y \imath$. Engineers prefer to think in terms of a physical com-

Figure 3.4: Left: Domain-colorized map showing the complex mapping from the $s=\sigma+\omega \jmath$ plane to the $w(s)=u(\sigma, \omega)+v(\sigma, \omega) \jmath$ plane. This mapping may be visualized by the use of intensity (light/dark) to indicate magnitude, and color (hue) to indicate angle (phase) of the mapping. Right: This shows the $w(z)=z-\sqrt{j}$ plane, shifted to the right and up by $\sqrt{2} / 2=0.707$. The white and black lines are the iso-real and iso-imaginary contours of the mapping. plex impedance $Z(s)=R(s)+\jmath X(s)$, having resistance $R(s)$ and reactance $X(s)$ [ohms], as a function of the complex Laplace radian frequency $s=\sigma+\omega_{j}[\mathrm{rad}]$, as used, for example, with the Laplace transform (Sect. 3.8, p. 128).

In Fig. 3.4 we use both notations, with $Z(s)=s$ on the left and $w(z)=z-\sqrt{\jmath}$ on the right, where we show this color code as a 2×2 dimensional domain-coloring graph. Intensity (dark to light) represents the magnitude of the function, while hue (color) represents the phase, where (see Fig. 3.4) red is 0°, sea-green is 90°, blue-green is 135°, blue is 180°, and violet is -90° (or 270°). ${ }^{35}$

The function $w=s=|s| e^{\jmath \theta}$ has a dark spot (a zero) at $s=0$, and becomes brighter away from the origin. On the right is $w(z)=z-\sqrt{\jmath}$, which shifts the zero to $z=\sqrt{\jmath}$. Thus domain-coloring gives the full 2×2 complex analytic function mapping $w(x, y)=u(x, y)+v(x, y) \jmath$, in colorized polar coordinates.

Visualizing complex functions: The mapping from $z=x+\imath y$ to $w(z)=u(x, y)+\imath v(x, y)$ is difficult to visualize because for each point in the domain z, we would like to represent both the magnitude and phase (or real and imaginary parts) of $w(z)$. A good way to visualize these mappings is to use color (hue) to represent the phase and intensity (dark to light) to represent the magnitude. The Octave/Matlab program zviz.m has been provided to do this (see Lecture 17 on the class website).

Example: Figure 3.5 shows a colorized plot of $w(z)=\sin (\pi(z-i) / 2)$ resulting from the Matlab/Octave command zviz sin (pi* (z-i)/2). The abscissa (horizontal axis) is the real x axis and the ordinate (vertical axis) is the complex $i y$ axis. The graph is offset along the ordinate axis by $1 i$, since the

[^42]argument $z-i$ causes a shift of the sine function by 1 in the positive imaginary direction. The visible zeros of $w(z)$ appear as dark regions at $(-2,1),(0,1),(2,1)$. As a function of $x, w(x+1 \jmath)$ oscillates between red (phase is zero degrees), meaning the function is positive and real, and sea-green (phase is 180°), meaning the function is negative and real.

Figure 3.5: Plot of $\sin (0.5 \pi(z-i))$.

To use the program in Matlab/Octave, use the syntax zviz <function of $z>$ (for example, type zviz z. ${ }^{\wedge} 2$). Note the period between z and ${ }^{\wedge}$ 2. This will render a domain-coloring (aka colorized) version of the function. Examples you can render with zviz are given in the comments at the top of the zviz.m program. A good example for testing is $z v i z ~ z-s q r t(j)$, which will show a dark spot (a zero) at $(1+1 \jmath) / \sqrt{2}=0.707(1+1 \jmath)$.

Along the vertical axis, the function is either a $\cosh (y)$ or $\sinh (y)$, depending on x. The intensity becomes lighter as $|w|$ increases, and white as $w \rightarrow$ ∞. The intensity becomes darker as $|w|$ decreases, and black as $w \rightarrow 0$.

Example: Two additional examples are given in Fig. 3.6 using the notation $w(z)=u(x, y)+v(x, y) \jmath$ showing the two complex mappings $w=e^{s}$ (left) and its inverse $s=\ln (w)$. The exponential is relatively easy to understand because $w(s)=\left|e^{\sigma} e^{\omega \jmath}\right|=e^{\sigma}$.

Figure 3.6: This domain-color map allows one to visualize complex mappings by the use of intensity (light/dark) to indicate magnitude, and color (hue) to indicate angle (phase). The white and black lines are the iso-real and iso-imaginary contours of the mapping. Left: This figure shows the domain-color map for the complex mapping from the $z=x+y$ plane to the $w(z)=u+v \jmath=e^{x+y \jmath}$ plane, which goes to zero as $x \rightarrow-\infty$, causing the domain-color map to become dark for $x<-2$. The white and black lines are always perpendicular because e^{z} is complex analytic everywhere. Right: This shows the principal value of the inverse function $u(x, y)+v((x, y) \jmath=\log (x+y \jmath)$, which has a zero (dark) at $z=1$, since there $\log (1)=0$ (the imaginary part is zero). Note the branch cut from $x=[0,-\infty j)$. On branches other than the one shown, there are no zeros since the phase $(\angle z=2 \pi n \in \mathbb{Z})$ is not zero. n is called the branch index.

The red region is where $\omega \approx 0$ in which case $w \approx e^{\sigma}$. As σ becomes large and negative, $w \rightarrow 0$, thus the entire field becomes dark on the left. The field is becoming light on the right where $w=e^{\sigma} \rightarrow \infty$. If we let $\sigma=0$ and look along the ω axis, we see that the function is changing phase, sea-green $\left(90^{\circ}\right)$ at the top and violet $\left(-90^{\circ}\right)$ at the bottom.

In the right panel note the zero for $\ln (w)=\ln |w|+\omega \jmath$ at $w=1$. The root of the log function is $\log \left(w_{r}\right)=0, w_{r}=1, \phi=0$, since $\log (1)=0$. More generally, the \log of $w=|w| e^{\phi \jmath}$ is $s=\ln |w|+\phi \jmath$. Thus $s(w)$ can be zero only when the angle of w is zero.

The $\ln (w)$ function has a branch cut along the $\phi=180^{\circ}$ axis. As one crosses over the cut, the phase goes above 180°, and the plane changes to the next sheet of the \log function. The only sheet with a zero is the principle value, as shown. For all others, the log function is either increasing or decreasing monotonically, and there is no zero, as seen for sheet 0 (the one showing in Fig. 3.6).

3.9.1 Riemann Sphere: 3^{d} extension of chord and tangent method

Once algebra was formulated by c830 CE, mathematicians were able to expand beyond the limits set by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell, 2010, p. 93). The geometry of Euclid's Elements had paved the way, but after 2000 years, the addition of the language of algebra changed everything. The analytic function was a key development, heavily used by both Newton and Euler. Also the investigations of Cauchy made important headway with his work on complex variables. Of special note was integration and differentiation in the complex plane of complex analytic functions, which is the topic of stream 3.

It was Riemann, working with Gauss in the final years of Gauss's life, who made the breakthrough, with the concept of the extended complex plane. ${ }^{36}$ This concept was based on the composition of a line with the sphere, similar to the derivation of Euclid's formula for Pythagorean triplets (Fig. 3.4, p. 97). While the importance of the extended complex plane was unforeseen, it changed analytic mathematics forever, along with the physics it supported. It unified and thus simplified many important integrals, to the extreme. The basic idea is captured by the fundamental theorem of complex integral calculus (Table 4.1, p. 147).

Figure 3.7: The left panel shows how the real line may be composed with the circle. Each real x value maps to a corresponding point x^{\prime} on the unit circle. The point $x \rightarrow \infty$ maps to the north pole N. This simple idea may be extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the sphere. As with the circle, the point on the complex plane $z \rightarrow \infty$ maps onto the north pole N. This construction is important because while the plane is open (does not include $z \rightarrow \infty$), the sphere is analytic at the north pole. Thus the sphere defines the closed extended plane. Figure adapted from Stillwell (2010, pp. 299-300).

The idea is outlined in Fig. 3.7. On the left is a circle and a line. The difference between this case and the derivation of the Pythagorean triplets is that the line starts at the north pole, and ends on the real $x \in \mathbb{R}$ axis at point x. At point x^{\prime}, the line cuts through the circle. Thus the mapping from x to x^{\prime} takes every point on \mathbb{R} to a point on the circle. For example, the point $x=0$ maps to the south pole (not indicated). To express x^{\prime} in terms of x one must compose the line and the circle, similar to the composition used in Fig. 3.4 (p. 97). The points on the circle, indicated here by x^{\prime}, require a traditional polar coordinate system, having a unit radius and an angle defined between the radius and a vertical line passing through the north pole. When $x \rightarrow \infty$ the point $x^{\prime} \rightarrow N$, known as the point at infinity. But this idea goes much further, as shown on the right half of Fig. 3.7.

Here the real tangent line is replaced by a tangent complex plane $z \in \mathbb{C}$, and the complex puncture point $z^{\prime} \in \mathbb{C}$, in this case on the complex sphere, called the extended complex plane. This is a natural

[^43]extension of the chord/tangent method on the left, but with significant consequences. The main difference between the complex plane z and the extended complex plane, other than the coordinate system, is what happens at the north pole. The point at $|z|=\infty$ is not defined on the plane, whereas on the sphere, the point at the north pole is simply another point, like every other point on the sphere.

Open vs. closed sets: Mathematically the plane is said to be an open set, since the limit $z \rightarrow \infty$ is not defined, whereas on the sphere, the point z^{\prime} is a member of a closed set, since the north pole is defined. The distinction between an open and closed set is important, because the closed set allows the function to be complex analytic at the north pole, which it cannot be on the plane (since the point at infinity is not defined).

The z plane may be replaced with another plane, say the $w=F(z) \in \mathbb{C}$ plane, where w is some function F of $z \in \mathbb{C}$. For the moment we shall limit ourselves to complex analytic functions of z, namely $w=F(z)=u(x, y)+v(x, y) \jmath=\sum_{n=0}^{\infty} c_{n} z^{n}$.

In summary, given a point $z=x+y \jmath$ on the open complex plane, we map it to $w=F(z) \in \mathbb{C}$, the complex $w=u+v_{\jmath}$ plane, and from there to the closed extended complex plane $w^{\prime}(z)$. The point of doing this is that it allows us to allow the function $w^{\prime}(z)$ to be analytic at the north pole, meaning it can have a convergent Taylor series at the point at infinity $z \rightarrow \infty$. Since we have not yet defined $d w(z) / d z$, the concept of a complex Taylor series remains undefined.

3.9.2 Bilinear transformation

In mathematics the bilinear transformation has special importance because it is linear in its action on both the input and output variables. Since we are engineers we shall stick with the engineering terminology. But if you wish to read about this on the internet, be sure to also search for the mathematical term, Möbius transformation.

When a point on the complex plane $z=x+y \jmath$ is composed with the bilinear transform ($a, b, c, d \in$ \mathbb{C}), the result is $w(z)=u(x, y)+v(x, y) \jmath$

$$
\begin{equation*}
w=\frac{a z+b}{c z+d} \tag{3.49}
\end{equation*}
$$

The transformation from $z \rightarrow w$ is a cascade of four independent compositions:

1. translation ($w=z+b: a=1, b \in \mathbb{C}, c=0, d=1$),
2. scaling ($w=|a| z: a \in \mathbb{R}, b=0, c=0, d=1$),
3. rotation ($w=\frac{a}{|a|} z: a \in \mathbb{C}, b=0, c=0, d=|a|$) and
4. inversion ($w=\frac{1}{z}: a=0, b=1, c=1, d=0$).

Each of these transformations is a special case of Eq. 3.49, with the inversion the most complicated. I highly recommend a video showing the effect of the bilinear (Möbius) transformation on the plane. ${ }^{37}$

The bilinear transformation is the most general way to move the expansion point in a complex analytic expansion. For example, starting from the harmonic series, the bilinear transform gives

$$
\frac{1}{1-w}=\frac{1}{1-\frac{a z+b}{c z+d}}=\frac{c z+d}{(c-a) z+(d-b)} .
$$

The RoC is transformed from $|w|<1$ to $|(a z-b) /(c z-d)|<1$. An interesting application might be in moving the expansion point until it is on top of the nearest pole, so that the RoC goes to zero. This might be a useful way of finding a pole, for example.

[^44]When the extended plane (Riemann sphere) is analytic at $z=\infty$, one may take the derivatives there, defining the Taylor series with the expansion point at ∞. When the bilinear transformation rotates the Riemann sphere, the point at infinity is translated to a finite point on the complex plane, revealing the analytic nature at infinity. A second way to transform the point at infinity is by the bilinear transformation $\zeta=1 / z$, mapping a zero (or pole) at $z=\infty$ to a pole (or zero) at $\zeta=0$. Thus this construction of the Riemann sphere and the Mb̈ious (bilinear) transformation allows us to understand the point at infinity, and treat it like any other point. If you felt that you never understood the meaning of the point at ∞ (likely), this should help.

Chapter 4

Stream 3a: Scalar (i.e., Ordinary) Differential Equations

Stream 3 is ∞, a concept which typically means unbounded (immeasurably large), but in the case of calculus, ∞ means infinitesimal (immeasurably small), since taking a limit requires small numbers. Taking a limit means you may never reach the target, a concept that the Greeks called Zeno's paradox (Stillwell, 2010, p. 76).

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is preferable, since the term "ordinary" is vague, if not a meaningless label. There is a special subset of fundamental theorems for scalar calculus, all of which are about integration, as summarized in Table 4.1 (p. 147), starting with Leibniz's theorem. These will be discussed below, and more extensively in Lec. 4.2 (p. 146) and Sections 4 (p. 143) and 5 (p. 143).

Chronological history post $\mathbf{1 6}^{\text {th }}$ century

$$
\begin{aligned}
16^{\text {th }} & \text { Bombelli 1526-1572 } \\
17^{\text {th }} & \begin{array}{l}
\text { Galileo 1564-1642, Kepler 1571-1630, Newton 1642-1727 Principia 1687; Mersenne; Huy- } \\
\text { gens; Pascal; Fermat, Descartes (analytic geometry); and the three Bernoullis (Jakob, Johann } \\
\text { \& son Daniel) }
\end{array} \\
18^{\text {th }} & \begin{array}{l}
\text { Euler 1707-1783 (Student of Johann Bernoulli), d'Alembert 1717-1783, Lagrange 1736- } \\
\\
\\
\text { 1833, Laplace 1749-1827, Fourier 1768-1830, Gauss 1777-1855 Cauchy 1789-1857, }
\end{array} \\
19^{\text {th }} & \begin{array}{l}
\text { Helmholtz 1821-1894, Kelvin 1824-1907, Helmholtz 1821-1894, Kirchhoff 1824-1887, Rie- } \\
\text { mann 1826-1866, Maxwell 1831-1879, Rayleigh 1842-1919 Heaviside 1850-1925, }
\end{array} \\
20^{\text {th }} & \text { Hilbert 1862-1942, Einstein 1879-1955 }
\end{aligned}
$$

Following the integral theorems on scalar calculus are those on vector calculus, without which there could be no understanding of Maxwell's equations. Of these, the fundamental theorem of complex calculus (aka, Helmholtz decomposition), Gauss's law and Stokes's theorem form the cornerstone of modern vector field analysis. These theorems allow one to connect the differential (point) and macroscopic (integral) relationships. For example, Maxwell's equations may be written as either vector differential equations, as shown by Heaviside (along with Gibbs and Hertz), ${ }^{1}$ or in integral form. It is helpful to place these two forms side-by-side, to fully appreciate their significance. To understand the differential (microscopic) view, one must understand the integral (macroscopic) view. These are presented in Section 5.7 (p. 221) and Fig. 5.7 (p. 224).

4.1 The beginning of modern mathematics

As outlined in Fig. 4.1, mathematics as we know it today began in the 16th to 18th centuries, arguably starting with Galileo, Descartes, Fermat, Newton, the Bernoulli family, and Euler. Galileo

[^45]
TimeLine

Figure 4.1: Final overview of the timeline for the four centuries from the $16^{\text {th }}$ and $20^{t h} C E$ covering Bombelli to Einstein. Mozart and the US Civil War are indicated along the bottom, for orientation.
was formidable, due to his fame, fortune, and his "successful" stance against the powerful Catholic establishment. His creativity in scientific circles was certainly well known due to his many skills and accomplishments. Descartes and Fermat were at the forefront of merging algebra and geometry. While Fermat kept meticulous notebooks, he did not publish, and tended to be secretive. Thus Descartes's contributions were more widely acknowledged, but not necessarily deeper.

Regarding the development of calculus, much was yet to be done by Newton and Leibniz, using term-by-term integration of functions based on Taylor series representation. This was a powerful technique, but as stated earlier, incomplete because the Taylor series can only represent single-valued functions, within the RoC. But more importantly, Newton (and others) failed to recognize the powerful generalization to complex analytic functions. The first major breakthrough was Newton's publication of Principia (1687), and the second was Riemann (1851), advised by Gauss.

Following Newton's lead, the secretive and introverted behavior of the typical mathematician dramatically changed with the Bernoulli family (Fig. 4.1). The oldest brother Jacob taught his much younger brother Johann, who then taught his son Daniel. But Johann's star pupil was Euler. Euler first mastered all the tools and then published, with a prolificacy previously unknown.

Euler and the circular functions: The first major task was to understand the family of analytic circular functions, $e^{x}, \sin (x), \cos (x)$, and $\log (x)$, a task begun by the Bernoulli family, but mastered by Euler. Euler sought relations between these many functions, some of which may not be thought of as being related, such as the log and sin functions. The connection that may "easily" be made is through their complex Taylor series representation (Eq. 3.28, p. 85). By the manipulation of the analytic series representations, the relationship between e^{x}, and the $\sin (x)$ and $\cos (x)$, was precisely captured with the relation

$$
\begin{equation*}
e^{j \omega}=\cos (\omega)+\jmath \sin (\omega) \tag{4.1}
\end{equation*}
$$

and its analytic inverse (Greenberg, 1988, p. 1135)

$$
\begin{equation*}
\tan ^{-1}(z)=\frac{1}{2 \jmath} \ln \left(\frac{1 \jmath-z}{1 \jmath+z}\right) \tag{4.2}
\end{equation*}
$$

The phase is $\phi(\omega)=\angle z$, from which one may compute the group delay

$$
\tau_{g}(\omega)=-\frac{1}{2 \pi} \frac{\partial \phi(\omega)}{\partial \omega}
$$

Exercise: Starting from Eq. 4.1, derive Eq. 4.2. Solution: Solution: Let $z(\omega)=\tan \omega$, then

$$
\begin{equation*}
z(\omega)=\frac{\sin \omega}{\cos \omega}=\tan (\omega)=-\jmath \frac{e^{\omega_{\jmath}}-e^{-\omega_{\jmath}}}{e^{\omega \jmath}+e^{-\omega_{j}}}=-\jmath \frac{e^{2 \omega_{\jmath}}-1}{e^{2 \omega_{\jmath}}+1} . \tag{4.3}
\end{equation*}
$$

Solving this for $e^{2 \omega j}$ gives

$$
\begin{equation*}
e^{2 \omega \jmath}=\frac{1+z \jmath}{1-z \jmath} \tag{4.4}
\end{equation*}
$$

Taking the square root results in the analytic relationship between $e^{\omega \jmath}$ and $\jmath \tan \omega$

$$
e^{\omega_{j}}= \pm \sqrt{\frac{1+z_{j}}{1-z_{j}}} .
$$

Taking the \log, and using the definition of $\omega(z)=\tan ^{-1}(z)$, we obtain Eq. 4.2.
These equations are the basis of transmission lines (TL) and the Smith chart. Here $z(\omega)$ is the TL's input impedance and Eq. 4.4 is the reflectance.

Figure 4.2: Colorized plots of $\omega(z)=\tan ^{-1}(z)$ and $\omega(z)=\frac{i}{2} \ln (1-i z) /(1+i z)$, verifying they are the same complex analytic function.

While many high school students memorize Euler's relation, it seems unlikely they appreciate the significance of complex analytic functions (Eq. 3.39, p. 91).

A brief history of complex analytic functions: Newton famously ignored imaginary numbers, and called them imaginary in a disparaging (pejorative) way. Given Newton's prominence, his view certainly must have keenly attenuated interest in complex algebra, even though it had been previously quantified by Bombelli in 1525, likely based on his serendipitous finding of Diophantus's book Arithmetic in the Vatican library.

Euler derived his relationships using real power series (i.e., real analytic functions). While Euler was fluent with $\jmath=\sqrt{-1}$, he did not consider functions to be complex analytic. That concept was first explored by Cauchy almost a century later. The missing link to the concept of complex analytic is the definition of the derivative with respect to the complex argument

$$
\begin{equation*}
F^{\prime}(s)=\frac{d F(s)}{d s} \tag{4.5}
\end{equation*}
$$

where $s=\sigma+\omega \jmath$, without which the complex analytic Taylor coefficients may not be defined.
Euler did not appreciate the role of complex analytic functions because these were first discovered well after his death (1785) by Augustin-Louis Cauchy (1789-1857), and extended by Riemann in 1851 (p. 135).

4.2 Lec 23: Fundamental theorems of scalar calculus

History of the fundamental theorem of scalar calculus: It some sense, the story of calculus begins with the fundamental theorem of calculus (FTC), also known generically as Leibniz's formula. The simplest integral is the length of a line $L=\int_{0}^{L} d x$. If we label a point on a line as $x=0$ and wish to measure the distance to any other point x, we form the line integral between the two points. If the line is straight, this integral is simply the Euclidean length given by the difference between the two ends (Eq. 3.5, p. 106).

If $F(\chi) \in \mathbb{R}$ describes a height above the line $\chi \in \mathbb{R}$, then $f(x)$

$$
\begin{equation*}
f(x)-f(0)=\int_{x=0}^{x} F(\chi) d \chi \tag{4.6}
\end{equation*}
$$

may be viewed as the anti-derivative of $F(\chi)$. Here χ is a dummy variable of integration. Thus the area under $F(\chi)$ only depends on the difference of the area evaluated at the end points. It makes intuitive sense to view $f(x)$ as the anti-derivative of $F(\chi)$.

This property of the area as an integral over an interval, only depending on the end points, has important consequences in physics in terms of conservation of energy, allowing for important generalizations. For example, as long as $\chi \in \mathbb{R}$, one may let $F(\chi) \in \mathbb{C}$ with no loss of generality, due to the linear propriety ($\mathrm{P} 1, \mathrm{p} .130$) of the integral.

If $f(x)$ is analytic (Eq. 3.27, p. 85), then

$$
\begin{equation*}
F(x)=\frac{d}{d x} f(x) \tag{4.7}
\end{equation*}
$$

is an exact real differential. It follows that $F(x)$ is analytic. This is known as the fundamental theorem of (real) calculus (FTC). Thus Eq. 4.7 may be viewed as an exact real differential. This is easily shown by evaluating

$$
\frac{d}{d x} f(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}=F(x)
$$

starting from the anti-derivative Eq. 4.6. If $f(x)$ is not analytic then the limit may not exist, so this is a necessary condition.

There are many important variations on this very basic theorem (i.e., Sect. 4, p. 143). For example, the limits could depend on time. Also when taking Fourier transforms, the integrand depends on both time $t \in \mathbb{R}$ and frequency $\omega \in \mathbb{R}$ via a complex exponential "kernel" function $e^{ \pm \jmath \omega t} \in \mathbb{C}$, which is analytic in both t and ω.

4.2.1 The fundamental theorems of complex calculus:

The fundamental theorem of complex calculus (FTCC) states (Greenberg, 1988, p. 1197) that for any complex analytic function $F(s) \in \mathbb{C}$ with $s=\sigma+\omega \jmath \in \mathbb{C}$,

$$
\begin{equation*}
f(s)-f\left(s_{o}\right)=\int_{s_{o}}^{s} F(\zeta) d \zeta \tag{4.8}
\end{equation*}
$$

Equations 4.6 and 4.8 differ because the path of the integral is complex. Thus the line integral is over $s \in \mathbb{C}$ rather than a real integral over $\chi \in \mathbb{R}$. The fundamental theorem of complex calculus (FTCC) states that the integral only depends on the end points, since

$$
\begin{equation*}
F(s)=\frac{d}{d s} f(s) \tag{4.9}
\end{equation*}
$$

Comparing exact differentials Eq. 4.5 (FTCC) and Eq. 4.7 (FTC), we see that $f(s) \in \mathbb{C}$ must be complex analytic, and have a Taylor series in powers in $s \in \mathbb{C}$. It follows that $F(s)$ is also complex analytic.

Complex analytic functions: The definition of a complex analytic function $F(s)$ of $s \in \mathbb{C}$ is that the function may be expanded in a Taylor series (Eq. 3.38, p. 90) about an expansion point $s_{o} \in \mathbb{C}$. This definition follows the same logic as the FTC. Thus we need a definition for the coefficients $c_{n} \in \mathbb{C}$, which most naturally follow from Taylor's formula

$$
\begin{equation*}
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d s^{n}} F(s)\right|_{s=s_{o}} . \tag{4.10}
\end{equation*}
$$

The requirement that $F(s)$ have a Taylor series naturally follows by taking derivatives with respect to s at s_{o}. The problem is that both integration and differentiation of functions of complex Laplace frequency $s=\sigma+\omega \jmath$ have not yet been defined.

Thus the question is: What does it mean to take the derivative of a function $F(s) \in \mathbb{C}, s=\sigma+\omega_{\jmath} \in$ \mathbb{C}, with respect to s, where s defines a plane rather than a real line? We learned how to form the derivative on the real line. Can the same derivative concept be extended to the complex plane?

The answer is affirmative. The question may be resolved by applying the rules of the real derivative when defining the derivative in the complex plane. However, for the complex case, there is an issue regarding direction. Given any analytic function $F(s)$, is the partial derivative with respect to σ different from the partial derivative with respect to ωj ? For complex analytic functions, the FTCC states that the integral is independent of the path in the s plane. Based on the chain rule, the derivative must also be independent of direction at s_{o}. This directly follows from the FTCC. If the integral of a function of a complex variable is to be independent of the path, the derivative of a function with respect to a complex variable must be independent of the direction. This follows from Taylor's formula, Eq. 4.10, for the coefficients of the complex analytic formula.

The Cauchy-Riemann conditions: The FTC defines the area as an integral over a real differential $(d x \in \mathbb{R}$), while the FTCC relates an integral over a complex function $F(s) \in \mathbb{C}$, along a complex interval (i.e., path) $(d s \in \mathbb{C})$. For the FTC the area under the curve only depends on the end points of the anti-derivative $f(x)$. But what is the meaning of an "area" along a complex path? The Cauchy-Riemann conditions provide the answer.

Table 4.1: Summary of the fundamental theorems of integral calculus, each of which deals with integration. There are at least two main theorems related to scalar calculus, and three more for vector calculus.

Name	Mapping	p.	Description
Leibniz $(F T C)$	$\mathbb{R}^{1} \rightarrow \mathbb{R}^{0}$	146	Area under a real curve
Cauchy $($ FTCC $)$	$\mathbb{C}^{1} \rightarrow \mathbb{R}^{0}$	146	Area under a complex curve
Cauchy's theorem	$\mathbb{C}^{1} \rightarrow \mathbb{C}^{0}$	163	Close integral over analytic region is zero
Cauchy's integral formula	$\mathbb{C}^{1} \rightarrow \mathbb{C}^{0}$	164	Fundamental theorem of complex integral calculus
residue theorem	$\mathbb{C}^{1} \rightarrow \mathbb{C}^{0}$	164	Residue integration

4.2.2 Lec 24: Cauchy-Riemann conditions

For the integral of $Z(s)=R(\sigma, \omega)+X(\sigma, \omega) \jmath$ to be independent of the path, the derivative of $Z(s)$ must be independent of the direction of the derivative. As we show next, this leads to a pair of equations known as the Cauchy-Riemann conditions. This is an important generalization of Eq. 1.1 (p. 19), which goes from real integration $(x \in \mathbb{R})$ to complex integration $(s \in \mathbb{C})$ based on lengths, thus on area.

To define

$$
\frac{d}{d s} Z(s)=\frac{d}{d s}[R(\sigma, \omega)+\jmath X(\sigma, \omega)],
$$

take partial derivatives of $Z(s)$ with respect to σ and $\jmath \omega$, and equate them:

$$
\frac{\partial Z}{\partial \sigma}=\frac{\partial R}{\partial \sigma}+\jmath \frac{\partial X}{\partial \sigma} \quad \equiv \quad \frac{\partial Z}{\partial \jmath \omega}=\frac{\partial R}{\partial \jmath \omega}+\jmath \frac{\partial X}{\partial \jmath \omega} .
$$

This says that a horizontal derivative, with respect to σ, is equivalent to a vertical derivative, with respect to $\jmath \omega$. Taking the real and imaginary parts gives the two equations

$$
\begin{equation*}
C R-1: \frac{\partial R(\sigma, \omega)}{\partial \sigma}=\nmid \frac{\partial X(\sigma, \omega)}{\partial \omega \ngtr} \quad \text { and } \quad C R-2: \frac{\partial R(\sigma, \omega)}{\partial \omega \ngtr}=-\nmid \frac{\partial X(\sigma, \omega)}{\partial \sigma}, \tag{4.11}
\end{equation*}
$$

known as the Cauchy-Riemann (CR) conditions. The \jmath cancels in CR-1, but introduces a $\jmath^{2}=-1$ in CR-2. They may also be written in polar coordinates $\left(s=r e^{\theta \jmath}\right)$ as

$$
\frac{\partial R}{\partial r}=\frac{1}{r} \frac{\partial X}{\partial \theta} \quad \text { and } \quad \frac{\partial X}{\partial r}=-\frac{1}{r} \frac{\partial R}{\partial \theta}
$$

If you are wondering what would happen if we took a derivative at 45 degrees, then we only need to multiply the function by $e^{3 \pi / 4}$. But doing so will not change the derivative. Thus we may take the derivative in any direction by multiplying by $e^{\theta_{3}}$, and the CR conditions will not change.

The CR conditions are necessary conditions that the integral of $Z(s)$, and thus its derivative, be independent of the path, expressed in terms of conditions on the real and imaginary parts of Z. This is a very strong condition on $Z(s)$, which follows assuming that $Z(s)$ may be written as a Taylor series in s :

$$
\begin{equation*}
Z(s)=Z_{o}+Z_{1} s+\frac{1}{2} Z_{2} s^{2}+\cdots, \tag{4.12}
\end{equation*}
$$

where $Z_{n} \in \mathbb{C}$ are complex constants given by the Taylor series formula (Eq. 4.10, p. 147). As with the real Taylor series, there is the convergence condition, that $|s|<1$, called the radius of convergence (RoC). This is an important generalization of the region of convergence (R0C) for real $s=x$.

Every function that may be expressed as a Taylor series in $s-s_{o}$ about point $s_{o} \in \mathbb{C}$ is said to be complex analytic at s_{o}. This series, which must be single valued, is said to converge within a radius of convergence (RoC). This highly restrictive condition has significant physical consequences. For example, every impedance function $Z(s)$ obeys the CR conditions over large regions of the s plane, including the entire right half-plane (RHP) $(\sigma>0)$. This condition is summarized by the Brune condition $\Re\{Z(\sigma>0)\} \geq 0$ (Section 4.3, Eq. 4.26, p. 156). When the CR condition is generalized to volume integrals, it is called Green's theorem, used heavily in the solution of boundary value problems in engineering and physics (Kusse and Westwig, 2010). Sections 4 (p. 143) and 5 (p. 185) depend heavily on these concepts.

We may merge these equations into a pair of second-order equations by taking a second round of partials. Specifically, eliminating the real part $R(\sigma, \omega)$ of Eq. 4.11 gives

$$
\begin{equation*}
\frac{\partial^{2} R(\sigma, \omega)}{\partial \sigma \partial \omega}=\frac{\partial^{2} X(\sigma, \omega)}{\partial^{2} \omega}=-\frac{\partial^{2} X(\sigma, \omega)}{\partial^{2} \sigma}, \tag{4.13}
\end{equation*}
$$

which may be compactly written as $\nabla^{2} X(\sigma, \omega)=0$. Eliminating the imaginary part gives

$$
\begin{equation*}
\frac{\partial^{2} X(\sigma, \omega)}{\partial \omega \partial \sigma}=\frac{\partial^{2} R(\sigma, \omega)}{\partial^{2} \sigma}=-\frac{\partial^{2} R(\sigma, \omega)}{\partial^{2} \omega} \tag{4.14}
\end{equation*}
$$

which may be written as $\nabla^{2} R(\sigma, \omega)=0$.
In summary, for a function $Z(s)$ to be complex analytic, the derivative $d Z / d s$ must be independent of direction (path), which requires that the real and imaginary parts of the function obey Laplace's equation, i.e.,

$$
\begin{equation*}
\text { CR-3: } \nabla^{2} R(\sigma, \omega)=0 \quad \text { and } \quad \text { CR-4: } \nabla^{2} X(\sigma, \omega)=0 . \tag{4.15}
\end{equation*}
$$

The CR equations are easier to work with because they are first-order, but the physical intuition is best understood by noting two facts (1) the derivative of a complex analytic function is independent of its direction, and (2) the real and imaginary parts of the function both obey Laplace's equation. Such relationships are known as harmonic functions. ${ }^{2}$

[^46]As we shall see in the next few lectures, complex analytic functions must be smooth since every analytic function may be differentiated an infinite number of times, within the RoC. The magnitude must attain its maximum and minimum on the boundary. For example, when you stretch a rubber sheet over a jagged frame, the height of the rubber sheet obeys Laplace's equation. Nowhere can the height of the sheet rise above or below its value at the boundary.

Harmonic functions define conservative fields, which means that energy (like a volume or area) is conserved. The work done in moving a mass from a to b in such a field is conserved. If you return the mass from b back to a, the energy is retrieved, and zero net work has been done.

4.3 Lec 25: Complex Analytic functions and Brune Impedance

It is rarely stated that the variable that we are integrating over, either x (space) or t (time), is real $(x, t \in R)$, since that fact is implicit, due to the physical nature of the formulation of the integral. But this intuition must be refined once complex numbers are included with $s \in \mathbb{C}$, where $s=\sigma+\omega$ ر.

That time and space are real variables is more than an assumption: it is a requirement that follows from the real order property. Real numbers have order. For example, if $t=0$ is now (the present), then $t<0$ is the past and $t>0$ is the future. The order property of time and space allows one to order these along a real axis. To have time travel, time and space would need to be complex (they are not), since if the space axis were complex, as in frequency s, the order property would be invalid. It follows that if we require order, time and space must be real $(t, x \in \mathbb{R})$. Interestingly, it was shown by d'Alembert (1747) that time and space are related by the pure delay due to the wave speed c_{o}. To obtain a solution to the governing wave equation, which d'Alembert first proposed for sound waves, $x, t \in \mathbb{R}^{3}$ may be combined as functions of

$$
\zeta_{ \pm}=t \pm x / c_{o}
$$

where $c[\mathrm{~m} / \mathrm{s}]$ is the phase velocity of the waves. The d'Alembert solution to the wave equation, describing waves on a string under tension, is

$$
\begin{equation*}
u(x, t)=f\left(t-x / c_{o}\right)+g\left(t+x / c_{o}\right), \tag{4.22}
\end{equation*}
$$

which describes the transverse velocity (or displacement) of two independent waves $f\left(\zeta_{-}\right), g\left(\zeta_{+}\right)$on the string, which represent forward and backward traveling waves. ${ }^{3}$ For example, starting with a string at rest, if one displaces the left end, at $x=0$, by a step function $u(t)$, then that step displacement will propagate to the right as $u\left(t-x / c_{o}\right)$, arriving at location $x_{o}[\mathrm{~m}]$, at time x_{o} / c_{o} [s]. Before this time, the string will not move to the right of the wave-front, at $x_{o}[\mathrm{~m}]$, and after $t_{o}[\mathrm{~s}]$ it will have displacement 1. Since the wave equation obeys superposition (postulate P1, p. 130), it follows that the "plane-wave" eigen-functions of the wave equation for $\mathbf{x}, \mathbf{k} \in \mathbb{R}^{3}$ are given by

$$
\begin{equation*}
\psi_{ \pm}(\mathbf{x}, t)=\delta(t \mp \mathbf{k} \cdot \mathbf{x}) \leftrightarrow e^{s t \pm \jmath \mathbf{k} \cdot \mathbf{x}} \tag{4.23}
\end{equation*}
$$

where $|\mathbf{k}|=2 \pi /|\lambda|=\omega / c_{o}$ is the wave number, $|\lambda|$ is the wavelength, and $s=\sigma+\omega$, the Laplace frequency.

When propagation losses are considered, we must replace the wave number $\jmath \mathbf{k}$ with a complex analytic vector wave number $\boldsymbol{\kappa}(s)=\mathbf{k}_{r}(s)+\jmath \mathbf{k}(\mathbf{s})$, which is denoted as either the complex propagation function, propagation function, or the dispersion relation. The vector complex propagation function is a key generalization of the scalar wave number $k=2 \pi / \lambda$.

Forms of loss include viscosity and radiation. Important examples include acoustic plane waves, electromagnetic wave propagation, antenna theory, and the more complex case of 3D electron wave propagating in crystals (i.e., silicon), where electrons and EM waves are in a state of equilibrium.

Electrons and photons are simply different EM states, where $\boldsymbol{\kappa}(\boldsymbol{x}, s)$ describes the crystal's dispersion relations as functions of both frequency and direction, famously known as Brillouin zones. Dispersion is a property of the medium such that the wave velocity is a function of frequency and direction, as in silicon. ${ }^{4}$ Informed discussions on the history of this topic may be found in Brillouin (1953).

4.3.1 Complex impedance functions

Conservation of energy (or power) is a cornerstone of modern physics. It may first have been under consideration by Galileo Galilei (1564-1642) and Marin Mersenne (1588-1648). Today the question is not whether it is true, but why. Specifically, what is the physics behind conservation of energy?

[^47]Surprisingly, the answer is straightforward, based on its definition and the properties of impedance. Recall that the power is the product of the force and flow, and impedance is their ratio.

The power is given by the product of two variables, sometimes called conjugate variables, the force and the flow. In electrical terms, these are voltage (force) $(v(t) \leftrightarrow V(\omega))$ and current (flow) $(i(t) \leftrightarrow$ $I(\omega)$); thus, the electrical power at any instant of time is

$$
\begin{equation*}
\mathcal{P}(t)=v(t) i(t) . \tag{4.24}
\end{equation*}
$$

The total energy $E(t)$ is the integral of the power, since $\mathcal{P}(t)=d E / d t$. Thus if we start with all the elements at rest (no currents or voltages), then the energy as a function of time is always positive

$$
\begin{equation*}
E(t)=\int_{0}^{t} \mathcal{P}(t) d t \geq 0 \tag{4.25}
\end{equation*}
$$

and is simply the total energy applied to the network (Van Valkenburg, 1964a, p. 376). Since the voltage and current are related by either an impedance or an admittance, conservation of energy depends on the property of impedance. From Ohm's law and P1 (every impedance is causal)

$$
v(t)=z(t) \star i(t)=\int_{\tau=0}^{t} z(\tau) i(t-\tau) d \tau \leftrightarrow V(s)=Z(s) I(s) .
$$

Example: Let $i(t)=\delta(t)$. Then $|w|^{2}(\tau)=i(t) \star i(t)=\delta(\tau)$. Thus

$$
I_{x x}(t)=\int_{\tau=0}^{t} z(\tau)|w|^{2}(\tau) d \tau=\int_{\tau=0}^{t} z(\tau) \delta(\tau) d \tau=\int_{0}^{t} z(\tau) d \tau
$$

The Brune impedance always has the form $z(t)=r_{o} \delta(t)+\zeta(t)$. The surge impedance is defined as

$$
r_{o}=\int_{0^{-}}^{\infty} z(t) d t .
$$

The integral of the reactive part $(\zeta(t))$ is always zero, since the reactive part cannot not store energy.
Perhaps easier to visualize is when working in the frequency domain where the total energy, equal to the integral of the real part of the power, is

$$
\frac{1}{s} \Re V I=\frac{1}{2 s}\left(V^{*} I+V I^{*}\right)=\frac{1}{2 s}\left(Z^{*} I^{*} I+Z I I^{*}\right)=\frac{1}{s} \Re Z(s)|I|^{2} \geq 0 .
$$

Formally this is related to a positive definite operator where the positive resistance forces the definiteness, which is sandwiched between the current.

In conclusion, conservation of energy is totally dependent on the properties of the impedance. Thus one of the most important and obvious applications of complex functions of a complex variable is the impedance function. This seems to be the ultimate example of the FTC, applied to $z(t)$, in the name of conservation of energy.

Poles and zeros of PR functions must be first degree: We conjecture that this proof also requires that the poles and the zeros of the impedance function be simple (only first degree). Second degree poles would have a reactive "secular" response of the form $h(t)=t \sin \left(\omega_{k} t+\phi\right) u(t)$, and these terms would not average to zero, depending on the phase, as is required of an impedance. As a result, only single degree poles would be possible. ${ }^{5}$ Furthermore, when the impedance is the ratio of two polynomials, where the lower degree polynomial is the derivative of the higher degree one, then the poles and zeros must alternate. This is a well-known property of the Brune impedance that has never been adequately

[^48]explained except for very special cases (Van Valkenburg, 1964b, p. 104-107). I suspect that no one has ever reported an impedance having second degree poles and zeros as that would be rare impedance. Network analysis books never report 2nd degree poles and zeros in their impedance functions. Nor has there ever been any guidance as to where the poles and zeros might lie in the left-hand splane. Understanding the exact relationships between pairs of poles and zeros, to assure that the real part of the impedance is real, would resolve a longstanding unsolved problem (Van Valkenburg, 1964b).

Every impedance must obey conservation of energy (P3): The impedance function $Z(s)$ has resistance R and reactance X as a function of complex frequency $s=\sigma+\jmath \omega$. From the causality postulate (P1) of Sections 3.8.1 and $\mathrm{H}(\mathrm{p} .283), z(t<0)=0$. Every impedance is defined by a Laplace transform pair

$$
z(t) \leftrightarrow Z(s)=R(\sigma, \omega)+\jmath X(\sigma, \omega),
$$

with $R, X \in \mathbb{R}$.
According to Postulate P3 (Sect. 3.8.1, p. 130), a system is passive if it does not contain a power source. Drawing power from an impedance violates conservation of energy. This propriety is also called positive-real, which was defined by Brune (1931b,a)

$$
\begin{equation*}
\Re\{Z(s \geq 0)\} \geq 0 \tag{4.26}
\end{equation*}
$$

Positive-real systems cannot draw more power than is stored in the impedance. ${ }^{6}$ The region $\sigma \leq 0$ is called the left half s plane (LHP), and the complementary region $\sigma>0$ is called the right half s plane (RHP). According to the Brune condition the real part of every impedance must be non-negative in the RHP.

It is easy to construct examples of second-order poles or zeros in the RHP, such that P3 is violated. Thus P3 implies that the impedance may not have more than simple (first-order) poles and zeros, strictly in the LHP. But there is yet more: These poles and zero in the LHP must have order, to meet the minimum phase condition. This minimum phase condition is easily stated

$$
\angle Z(s)<\angle s,
$$

but difficult to prove. ${ }^{7}$ There seems to be no proof that second-order poles and zeros (e.g., second-order roots) are not allowed. However such roots must violate a requirement that the poles and zeros must alternate on the $\sigma=0$ axis, which follows from P3. In the complex plane the concept of 'alternate' is not defined (complex numbers cannot be ordered). What has been proved (i.e., Foster's reactance theorem ${ }^{8}$) is that if the poles are on the real or imaginary axis, they must alternate, leading to simple poles and zeros (Van Valkenburg, 1964a). The restriction on poles is sufficient, but not necessary, as $Z(s)=1 / \sqrt{s}$ is a physical realizable (PR) impedance, but is less than a first-degree pole (Kim and Allen, 2013). The corresponding condition in the LHP, and its proof, remains elusive (Van Valkenburg, 1964a).

As an example, a series resistor R_{o} and capacitor C_{o} have an impedance given by (Table C.2, p. 268)

$$
\begin{equation*}
Z(s)=R_{o}+1 / s C_{o} \leftrightarrow R_{o} \delta(t)+\frac{1}{C_{o}} u(t)=z(t), \tag{4.27}
\end{equation*}
$$

with constants $R_{o}, C_{o} \in \mathbb{R}>0$. In mechanics an impedance composed of a dash-pot (damper) and a spring has the same form. A resonant system has an inductor, resistor and a capacitor, with an impedance given by (Table C.1, p. 267)

$$
\begin{equation*}
Z(s)=\frac{s C_{o}}{1+s C_{o} R_{o}+s^{2} C_{o} M_{o}} \leftrightarrow C_{o} \frac{d}{d t}\left(c_{+} e^{s_{+} t}+c_{-} e^{s^{-} t}\right)=z(t), \tag{4.28}
\end{equation*}
$$

[^49]which is a second degree polynomial with two complex resonant frequencies $s_{ \pm}$. When $R_{o}>0$ these roots are in the left half s plane, with $z(t) \leftrightarrow Z(s)$.

Systems (networks) containing many elements, and transmission lines, can be much more complicated, yet still have a simple frequency domain representation. This is the key to understanding how these physical systems work, as will be described below.

Complex analytic functions: To solve a differential equation, or integrate a function, Newton used the Taylor series to integrate one term at a time. However, he only used real functions of a real variable, due to the fundamental lack of appreciation of the complex analytic function. This same method is how one finds solutions to scalar differential equations today, but using an approach that makes the solution method less obvious. Rather than working directly with the Taylor series, today we use the complex exponential, since the complex exponential is an eigen-function of the derivative

$$
\frac{d}{d t} e^{s t}=s e^{s t}
$$

Since $e^{s t}$ may be expressed as a Taylor series, having coefficients $c_{n}=1 / n!$, in some real sense the modern approach is a compact way of doing what Newton did. Thus every linear constant coefficient differential equation in time may be simply transformed into a polynomial in complex Laplace frequency s, by looking for solutions of the form $A(s) e^{s t}$, transforming the differential equation into a polynomial $A(s)$ in complex frequency. For example,

$$
\frac{d}{d t} f(t)+a f(t) \leftrightarrow(s+a) F(s)
$$

The root of $A\left(s_{r}\right)=s_{r}+a=0$ is the eigenvalue of the differential equation. A powerful tool for understanding the solutions of differential equations, both scalar and vector, is to work in the Laplace frequency domain. The Taylor series has been replaced by $e^{s t}$, transforming Newton's real Taylor series into the complex exponential eigen-function. In some sense, these are the same method, since

$$
\begin{equation*}
e^{s t}=\sum_{n=0}^{\infty} \frac{(s t)^{n}}{n!} \tag{4.29}
\end{equation*}
$$

Taking the derivative with respect to time gives

$$
\begin{equation*}
\frac{d}{d t} e^{s t}=s e^{s t}=s \sum_{n=0}^{\infty} \frac{(s t)^{n}}{n!} \tag{4.30}
\end{equation*}
$$

which is also complex analytic. Thus if the series for $F(s)$ is valid (i.e., it converges), then its derivative is also valid. This was a very powerful concept, exploited by Newton for real functions of a real variable, and later by Cauchy and Riemann for complex functions of a complex variable. The key question here is: Where does the series fail to converge? If it does not converge, the representation fails. This is the main message behind the FTCC (Eq. 4.8).

The FTCC (Eq. 4.5) is formally the same as the FTC (Eq. 4.7) (Leibniz formula), the key (and significant) difference being that the argument of the integrand $s \in \mathbb{C}$. Thus this integration is a line integral in the complex plane. One would naturally assume that the value of the integral depends on the path of integration.

But, according to FTCC, it does not. In fact they are clearly distinguishable from the FTC. And the reasoning is the same. If $F(s)=d f(s) / d s$ is complex analytic (i.e., has a power series $f(s)=\sum_{k} c_{k} s^{k}$, with $f(s), c_{k}, s \in \mathbb{C}$), then it may be integrated, and the integral does not depend on the path. At first blush, this is sort of amazing. The key is that $F(s)$ and $f(s)$ must be complex analytic, which means they are differentiable. This all follows from the Taylor series formula Eq. 4.10 (p. 147) for the coefficients of the complex analytic series. For Eq. 4.8 to hold, the derivatives must be independent of the direction, as discussed in Section 4.2.2. The concept of a complex analytic function therefore
has eminent consequences, in the form of several key theorems on complex integration discovered by Cauchy (c1820).

The use of the complex Taylor series generalizes the functions it describes, with unpredictable consequences, as nicely shown by the domain coloring diagrams presented in Section 3.9 (p. 132). Cauchy's tools of complex integration were first exploited in physics by Sommerfeld (1952) to explain the onset transients in waves, as explained in detail in Brillouin (1960, Chap. 3).

Up to 1910, when Sommerfeld first published his results using complex analytic signals and saddle point integration in the complex plane, there was a poor understanding of the implications of the causal wave-front. It would be reasonable to say that his insights changed our understanding of wave propagation, for both light and sound. Sadly this insight has not been fully appreciated, even to this day. If you question my summary, please read Brillouin (1960, Chap. 1).

The full power of the complex analytic function was first appreciated by Bernard Riemann (18261866) in his University of Göttingen PhD thesis of 1851 , under the tutelage of Carl Friedrich Gauss (1777-1855), and drawing heavily on the work of Cauchy.

The key definition of a complex analytic function is that it has a Taylor series representation over a region of the complex frequency plane $s=\sigma+j \omega$, that converges in a region of convergence (RoC) about the expansion point, with a radius determined by the nearest pole of the function. A further surprising feature of all analytic functions is that within the RoC , the inverse of that function also has a complex analytic expansion. Thus given $w(s)$, one may also determine $s(w)$ to any desired accuracy, critically depending on the RoC.

4.3.2 Lec 26: Multi-valued functions

In the field of mathematics there seems to have been a tug-of-war regarding the basic definition of the concept of a function. The accepted definition today seems to be a single-valued mapping from the domain to the codomain (or range). This makes the discussion of multi-valued functions somewhat tedious. In 1851 Riemann (working with Gauss) seems to have resolved this problem for the natural set of multi-valued functions by introducing the concept of single-valued sheets, delineated by branch-cuts.

Two simple yet important examples of multi-valued functions are the circle $z^{2}=x^{2}+y^{2}$ and $w=\log (z)$. For example, assuming z is the radius of the circle, solving for $y(x)$ gives the doublevalued function

$$
y(x)= \pm \sqrt{z^{2}-x^{2}}
$$

If we accept the modern definition of a function as the mapping from one set to a second, then $y(x)$ is not a function, or even two functions. For example, what if $x>z$? Or worse, what if $z=2 \jmath$ with $|x|<1$? Riemann's construction, using branch cuts for multivalued function, resolves all these difficulties (as best I know).

To proceed, we need definitions and classifications of the various types of complex singularities:

1. Poles of degree 1 are called simple poles. Their amplitude is called the residue (e.g. α / s has residue α). Simple poles are special (Eq. 4.35, p. 164) ${ }^{9}$ as they play a key role in mathematical physics, since their inverse Laplace transform defines a causal eigen-function.
2. When the numerator and denominator of a rational function (i.e., ratio of two polynomials) have a common root (i.e., factor), that root is said to be removable.
3. A singularity that is not (1) removable, (2) a pole or (3) a branch point is called essential.
4. A complex analytic function (except for isolated poles) is called meromorphic. ${ }^{10}$ Meromorphic functions can have any number of poles, even an infinite number. The poles need not be simple.

[^50]5. A complex analytic function (except for isolated poles), is called meromorphic. ${ }^{11}$ Meromorphic functions can have any number of poles, even an infinite number. The poles need not be simple.
6. When the first derivative of a function $Z(s)$ has a simple pole at a, then a is said to be a branch point of $Z(s)$. An important example is the logarithmic derivative
$$
d \ln (s-a)^{\alpha} / d s=\alpha /(s-a), \alpha \in \mathbb{I}
$$

However, the converse does not necessarily hold.
7. I am not clear about the interesting case of an irrational pole ($\alpha \in \mathbb{I}$). In some cases this may be simplified via the logarithmic derivative operation, as mentioned above.

More complex topologies are being researched today, and progress is expected to accelerate due to modern computing technology. ${ }^{12}$ It is helpful to identify the physical meaning of these more complex surfaces, to guide us in their interpretation and possible applications. ${ }^{13}$

Branch cuts: Up to this point we have only considered poles of degree $\alpha \in \mathbb{N}$ of the form $1 / s^{\alpha}$. The concept of a branch cut allows one to manipulate (and visualize) multi-valued functions, for which $\alpha \in \mathbb{F}$. This is done by breaking each region into single-valued sheets, as shown in Fig. 4.3 (right). The branch cut is a curve $\in \mathbb{C}$ that separates the various single-valued sheets of a multi-valued function. The concepts of branch cuts, sheets and the extended plane were first devised by Riemann, working with Gauss (1777-1855), as first described in his thesis of 1851. It was these three mathematical and geometrical constructions that provided the
 image (w) plane (a.k.a., the range). It is important to understand that the path of every branch cut is not unique, and may be moved. However branch points are unique thus not movable.

[^51]The multi-valued nature of $w(s)=$ \sqrt{s} is best understood by working with the function in polar coordinates. Let

$$
\begin{equation*}
s_{k}=r e^{\theta \jmath} e^{2 \pi k \jmath} \tag{4.31}
\end{equation*}
$$

where $r=|s|, \theta=\angle s, \in \mathbb{R}$ and $k \in \mathbb{Z}$ is the sheet-index. Furthermore let

$$
\begin{equation*}
w=\rho e^{\psi_{\jmath}}=\sqrt{r} e^{\jmath \theta / 2} e^{\jmath \pi k} \tag{4.32}
\end{equation*}
$$

where $\rho=|w|, \psi \angle w, \in \mathbb{R}$. The generic Cartesian coordinates are $s=$ $\sigma+\omega \jmath$ and $w(s)=u(\sigma, \omega)+v(\sigma, \omega) \jmath$. For single valued functions such as $w(s)=s^{2}$ (Left) there is no branch cut since $\psi=2 \theta$. Note how the red color $\left(\theta=0^{\circ}\right)$ appears twice in this mapping. For multi-valued functions a

Figure 4.4: Here we show the mapping for the square root function $z= \pm \sqrt{x}$ which has two single-valued sheets of the x plane corresponding to the two signs of the square root. The branch cut runs along the real axis, from $z=0$ to ∞. A more comprehensive explanation is presented in the text. Figure from: https://en.wikipedia.org/wiki/Riemann_surface branch-cut is required, typically along the negative $v(\sigma, \omega)$ axis (i.e, $\psi=\pi$) but may be freely distorted, as seen by comparing the right panel of Fig. 4.3 with the right panel of Fig. 4.5.

Hue: By studying the output of zviz.m (p. 133) we may understand domain-coloring. The domain angles $\angle s$ go from $-\pi<\theta<\pi$, with $\theta=0$ being red and $\pm \pi$ being green (between yellow and blue). The angle to hue map is shown in the left panel of Fig. 4.5. For the $w(s)=s^{2}$ the $\angle s$ is expanded by 2, since $\psi=2 \theta$. For $w(s)=\sqrt{s}$ the $\angle s$ is compressed by a factor of 2 , since $\psi=\theta / 2$. Thus the principle angle $\left.k=0,-180^{\circ}<\theta<180^{\circ}\right)$ maps to half the w plane $\left(-90^{\circ}<\psi<90^{\circ}\right)$ from purple to yellow, while the $k=1$ branch maps to $90^{\circ}<\psi<270^{\circ}$. Note how the panel on the right of Fig. 4.3 matches the right half of s (purple $=-90^{\circ}$, yellow/green $=+90^{\circ}$) while the middle panel above comes from the left side of s (green to purple). The center panel is green at -180°, and purple at $+180^{\circ}$, which matches the left panel at $\pm 180^{\circ}$, respectively (i.e., $e^{\pi \jmath} \sqrt{s}$).

The principle (i.e., first) Riemann sheet of \sqrt{s}, corresponding to $-\pi<\theta<\pi$ (i.e., $k=0$), is shown in the center of Fig. 4.5. This differs from the neighboring sheet $(k=1)$, shown on the right. Thus $w(s)=\sqrt{s}$ is a multi-valued function of s, having two single-valued sheets.

The location of the branch cut may be moved by rotating the z coordinate system. For example, $w(z)= \pm \jmath \sqrt{z}$ and $w(z)= \pm \sqrt{-z}$ have different branch cuts, as may be easily verified using the Matlab/Octave commands $j \star z v i z(z)$ and $z v i z(-z)$, as shown in Fig. 4.5. Since the cut may be moved, every function is analytic on the branch cut, if a Taylor series is formed on the branch cut, it will describe the function on the two different sheets. Thus the complex analytic series (i.e., the Taylor formula, Eq. 4.10) does not depend on the location of a branch cut, as it only describes the function uniquely (as a single-valued function), valid in its local region of convergence.

The second sheet ($k=1$) (Fig. 4.5) picks up at $\theta=\pi$ and continues on to $\pi+2 \pi=3 \pi$. The first sheet maps the angle of w (i.e., $\phi=\angle w=\theta / 2)$ from $-\pi / 2<\phi<\pi / 2\left(w=\sqrt{r} e^{\jmath \theta / 2}\right.$). This corresponds to $u=\Re\{w(s)\}>0$. The second sheet maps $\pi / 2<\psi<3 \pi / 2$ (i.e., 90° to 270°), which is $\Re\{w\}=u<0$. In summary, twice around the s plane is once around the $w(s)$ plane, because the angle is half due to the \sqrt{s}. This then describes the multi-valued nature of the square root function.

This concept of analytic inverses becomes important only when the function is multi-valued. For example, if $w(s)=s^{2}$ then $s(w)= \pm \sqrt{w}$ is multivalued. Riemann dealt with such extensions with the concept of a branch-cut with multiple sheets, labeled by a sheet number. Each sheet describes an analytic function (Taylor series) that converges within some RoC, having a radius out to the nearest pole. Thus Riemann's branch cuts and sheets explicitly deal with the need to define unique single-valued inverses

Figure 4.5: Colorized plots of $s_{k}=|s| e^{\theta_{j}} e^{2 \pi k J}$ and $w_{k}(s)=\sqrt{s_{k}}=\sqrt{|s|} e^{\theta_{J} / 2} e^{\pi k_{j}}$, as defined in polar coordinates by Eqs. 4.31 and 4.32. Left: Color map hue reference plane $s=|s| e^{\theta j} e^{2 \pi k J}$. Center: Sheet index $k=0, w(s)=\sqrt{|s|} e^{\theta \theta / 2}$ for $-\pi<\theta<+\pi$ and $\psi=\angle w(s)=\theta / 2$ between $\pm \pi / 2$ [rad]. Right: Sheet index $k=1, w(s)=e^{\jmath \theta / 2} e^{\jmath \pi} \sqrt{|s|}$ for $\pi<\theta<3 \pi$ and $\pi / 2<\psi<3 \pi / 2$ [rad]. The branch cut is at $\theta=\angle s= \pm 180^{\circ}$ (π [rad]) where the hue of w changes abruptly from green to purple (center) and from blue back to green (right). Note how the hue matches between the center and right panels at the branch cut: in the center panel purple runs along -180° and along $+180^{\circ}$ on the right. Likewise, green runs along $+180^{\circ}$ in the center and along -180° on the right. Thus $w(s)=\sqrt{s}$ is analytic on the branch cut connecting the two sheets ($k=0 \rightarrow k=1$).
of multi-valued functions. Since the square root function has two overlapping regions, corresponding to the \pm due to the radical, there must be two connected regions, sort of like mathematical Siamese twins: distinct, yet the same.

Figure 4.3 shows the single-valued function $w(z)=s^{2}$ (left), and Fig. 4.5 (right) its inverse, the double-valued mapping of $s(w)= \pm \sqrt{w}$.

Branch cuts emanate and terminate at branch points, defined as singularities (poles), that can even have fractional degree, as for example $1 / \sqrt{s}$, and terminate at one of the matching roots, which includes the possibility of $\infty .{ }^{14}$ For example, suppose that in the neighborhood of the pole, at s_{o} the function is

$$
f(s)=\frac{w(s)}{\left(s-s_{o}\right)^{k}}
$$

where $w, s, s_{o} \in \mathbb{C}$ and $k \in \mathbb{Q}$. When $k=1, s_{o}=\sigma_{o}+\omega_{o} \jmath$ is a first degree "simple pole", having degree 1 in the s plane, with residue $w\left(s_{o}\right) .{ }^{15}$ Typically the order and degree are positive integers, but fractional degrees and orders are not uncommon in modern engineering applications (Kirchhoff, 1868; Lighthill, 1978). Here we shall allow both the degree and order to be fractional $(\in \mathbb{F})$. When $k \in \mathbb{F} \subset \mathbb{R}$ ($k=n / m$ is a real reduced fraction. Namely when $\operatorname{GCD}(\mathrm{n}, \mathrm{m})=1, n \perp m$). This defines the degree of a fractional pole. In such cases there must be two sets of branch cuts of degree n and m. For example, if $k=1 / 2$, the singularity (branch cut) is of degree $1 / 2$, and there are two Riemann sheets, as shown in Fig. 4.3 (p. 159). The analytic inverse of this function is $s=w^{2}$, as shown in the same figure.

Fractional-order Bessel function: An important example is the Bessel function

$$
\delta(t)+\frac{1}{t} J_{1}(t) u(t) \leftrightarrow \sqrt{s^{2}+1}
$$

which is related to the solution to the wave equation in two-dimensional cylindrical coordinates (Table C.2, p. 268). Bessel functions are the solutions (i.e., eigen-functions) of guided acoustic waves in round pipes, or surface waves on the earth (seismic waves), or waves on the surface of a pond (Table 5.2, p. 205).

[^52]

Figure 4.6: Colorized plots of two $\mathcal{L T}$ pairs: Leff: $\sqrt{\pi / s} \leftrightarrow u(t) / \sqrt{t}$. Right: $\sqrt{s^{2}+1} \leftrightarrow \delta(t)+\frac{1}{t} J_{1}(t) u(t)$.
It is important to understand that the function is analytic on the branch cut, but not at the branch point. One is free to move the branch cut (at will). It does not need to be on a line: it could be cut in almost any connected manner, such as a spiral. The only rule is that it must start and stop at the matching branch points, or at ∞, which must have the same degree.

There are a limited number of possibilities for the degree, $k \in \mathbb{Z}$ or $\in \mathbb{F}$. If the degree is drawn from $\mathbb{R} \notin \mathbb{F}$, the pole cannot not have a residue. According to the definition of the residue, $k \in \mathbb{F}$ will not give a residue. But there remains open the possibility of generalizing the concept of the Riemann integral theorem, to include $k \in \mathbb{F}$. One way to do this is to use the logarithmic derivative which renders fractional poles to simple poles with fractional residues.

If the singularity has an irrational degree ($k \in \mathbb{I}$), the branch cut has the same "irrational degree." Accordingly there would be an infinite number of Riemann sheets, as in the case of the log function. An example is $k=\pi$, for which

$$
F(s)=\frac{1}{s^{\pi}}=e^{-\log \left(s^{\pi}\right)}=e^{-\pi \log (s)}=e^{-\pi \log (\rho)} e^{-\pi \theta \rho},
$$

where the domain is expressed in polar coordinates $s=\rho e^{\theta \jmath}$. When $k \in \mathbb{F}$ it may be maximally close (e.g., $k=\pi_{152} / \pi_{153}=\pi_{152} /\left(\pi_{152}+2\right)=881 / 883 \approx 0.99883$, or its reciprocal ≈ 1.0023). ${ }^{16}$ The branch cut could be very subtle (it could even go unnoticed), but it would have a significant impact on the function, and on its inverse Laplace transform.

Example: Find poles, zeros and residues of $F(s)$.
1.

$$
F(s)=\frac{d}{d s} \ln \frac{s+e}{s+\pi}
$$

Solution:

$$
F(s)=\frac{d}{d s}[\ln (s+e)-\ln (s+\pi)]=\left(\frac{1}{s+e}-\frac{1}{s+\pi}\right)
$$

The the poles are at $s_{1}=-e$ and $s_{2}=-\pi$ with respective residues of ± 1.
2.

$$
F(s)=\frac{d}{d s} \ln \frac{(s+3)^{e}}{(s+\jmath)^{-\pi}},
$$

Solution: There is a very important take-home message here regarding the utility of the logarithmic derivative.

[^53]3.
$$
F(s)=e^{\pi \ln s},
$$

Solution: Add solution.
4.

$$
F(s)=\pi^{-s} .
$$

Solution: Add solution.

Multivalued functions: The two basic functions we review, to answer the questions about multivalued functions and branch cuts, are $w(s)=\sqrt{s}$ and $w(s)=\log (s)$ along with their inverse functions $w(s)=$ s^{2} and $w(s)=e^{s}$. For uniformity we shall refer to the complex abscissa $(s=\sigma+\omega j)$ and the complex ordinate $w(s)=u+v \jmath$. When the complex abscissa and domain are swapped, by taking the inverse of a function, multi-valued functions are a common consequence. For example, $f(t)=\sin (t)$ is single valued, and analytic in t, thus has a Taylor series. The inverse function $t(f)$ is multivalued.

The modern terminology is the domain and range, or alternatively the co-domain. ${ }^{17}$

Log function: Next we discuss the multi-valued nature of the \log function. In this case there are an infinite number of Riemann sheets, not well captured by Fig. 3.6 (p. 134), which only displays the principal sheet. However, if we look at the formula for the log function, the nature is easily discerned. The abscissa s may be defined as multi-valued since

$$
s_{k}=r e^{2 \pi k j} e^{\theta_{j}} .
$$

Here we have extended the angle of s by $2 \pi k$, where k is the sheet index $\in \mathbb{Z}$. Taking the \log

$$
\log (s)=\log (r)+(\theta+2 \pi k) \jmath .
$$

When $k=0$ we have the principal value sheet, which is zero when $s=1$. For any other value of k, $w(s) \neq 0$, even when $r=1$, since the angle is not zero, except for the $k=0$ sheet.

4.4 Lec 27: Three Cauchy integral theorems

4.4.1 Cauchy's theorems for integration in the complex plane

There are three basic definitions related to Cauchy's integral formula. They are closely related, and can greatly simplify integration in the complex plane. The choice of names seems unfortunate, if not totally confusing.

1. Cauchy's (Integral) Theorem (CIT):

$$
\begin{equation*}
\oint_{\mathcal{C}} F(s) d s=0 \tag{4.33}
\end{equation*}
$$

if and only if $F(s)$ is complex analytic inside of a simple closed curve \mathcal{C} (Boas, 1987, p. 45); (Stillwell, 2010, 319). The FTCC (Eq. 4.8) says that the integral only depends on the end points if $F(s)$ is complex analytic. By closing the path (contour \mathcal{C}) the end points are the same, thus the integral must be zero, as long as $F(s)$ is complex analytic.

[^54]
2. Cauchy's Integral Formula (CIF):

$$
\frac{1}{2 \pi j} \oint_{\mathcal{B}} \frac{F(s)}{s-s_{o}} d s=\left\{\begin{array}{l}
F\left(s_{o}\right), s_{o} \in \mathbb{C}<\mathcal{B} \text { (inside) } \tag{4.34}\\
0, s_{o} \notin \mathbb{C}>\mathcal{B} \text { (outside) }
\end{array}\right.
$$

Here $F(s)$ is required to be analytic everywhere within (and on) the boundary \mathcal{B} of integration (Greenberg, 1988, p. 1200); (Boas, 1987, p. 51); (Stillwell, 2010, p. 220). When the point $s_{o} \in \mathbb{C}$ is within the boundary the value $F\left(s_{o}\right) \in \mathbb{C}$ is the residue of the pole s_{o} of $F(s) /\left(s-s_{o}\right)$. When the point s_{o} lies outside the boundary, the integral is zero.
3. The (Cauchy) Residue Theorem (CRT): (Greenberg, 1988, p. 1241), (Boas, 1987, p. 73)

$$
\begin{equation*}
\oint_{\mathcal{C}} F(s) d s=2 \pi j \sum_{k=1}^{K} c_{k}=\sum_{k=1}^{K} \oint \frac{F(s)}{s-s_{k}} d s \tag{4.35}
\end{equation*}
$$

where the residues $c_{k} \in \mathbb{C}$ corresponds to the k th pole of $f(s)$ enclosed by the contour \mathcal{C}. By the use of Cauchy's integral formula, the right-most form of the residue theorem is equivalent to the CIF. ${ }^{18}$

How to calculate the residue: The case of first degree poles has special significance, because the Brune impedance only allows simple poles and zeros, increasing its utility. The residues for simple poles are $F\left(s_{k}\right)$, which is complex analytic in the neighborhood of the pole, but not at the pole.

Consider the function $f(s)=F(s) /\left(s-s_{k}\right)$, where we have factored $f(s)$ to isolate the first-order pole at $s=s_{k}$, with $F(s)$ analytic at s_{k}. Then the residue of the poles at $c_{k}=F\left(s_{k}\right)$. This coefficient is computed by removing the singularity, by placing a zero at the pole frequency, and taking the limit as $s \rightarrow s_{k}$, namely

$$
\begin{equation*}
c_{k}=\lim _{s \rightarrow s_{k}}\left[\left(s-s_{k}\right) F(s)\right] \tag{4.36}
\end{equation*}
$$

(Greenberg, 1988, p. 1242), (Boas, 1987, p. 72).
When the pole is an $N^{t h}$ degree, the procedure is much more complicated, and requires taking $N-1$ order derivatives of $f(s)$, followed by the limit process (Greenberg, 1988, p. 1242). Higher degree poles are rarely encountered; thus, it is good to know that this formula exists, but perhaps it is not worth the effort to memorize it.

Summary and examples: These three theorems, all attributed to Cauchy, collectively are related to the fundamental theorems of calculus. Because the names of the three theorems are so similar, they are easily confused.

1. In general it makes no sense (nor is there any need) to integrate through a pole, thus the poles (or other singularities) must not lie on \mathcal{C}.
2. The Cauchy integral theorem (Eq. 4.33) follows trivially from the fundamental theorem of complex calculus (Eq. 4.8, p. 146), since if the integral is independent of the path, and the path returns to the starting point, the closed integral must be zero. Thus Eq. 4.33 holds when $F(s)$ is complex analytic within C.
3. Since the real and imaginary parts of every complex analytic function obey Laplace's equation (Eq. 4.15, p. 148), it follows that every closed integral over a Laplace field, i.e., one defined by Laplace's equation, must be zero. In fact this is the property of a conservative system, corresponding to many physical systems. If a closed box has fixed potentials on the walls, with any distribution whatsoever, and a point charge (i.e., an electron) is placed in the box, then a force equal to $F=q E$ is required to move that charge, and thus work is done. However, if the point is returned to its starting location, the net work done is zero.

[^55]4. Work is done in charging a capacitor, and energy is stored. However, when the capacitor is discharged, all of the energy is returned to the load.
5. Soap bubbles and rubber sheets on a wire frame obey Laplace's equation.
6. These are all cases where the fields are Laplacian, thus closed line integrals must be zero. Laplacian fields are commonly observed because they are so basic.
7. We have presented the impedance as the primary example of a complex analytic function. Physically, every impedance has an associated stored energy, and every system having stored energy has an associated impedance. This impedance is usually defined in the frequency s domain, as a force over a flow (i.e., voltage over current). The power $\mathcal{P}(t)$ is defined as the force times the flow and the energy $\mathcal{E}(t)$ as the time integral of the power
\[

$$
\begin{equation*}
\mathcal{E}(t)=\int_{-\infty}^{t} \mathcal{P}(t) d t \tag{4.37}
\end{equation*}
$$

\]

which is similar to Eq. 4.6 (p. 146) [see Section 3.6.3, Eq. 3.40 (p. 122)]. In summary, impedance and power and energy are all fundamentally related.

4.4.3 Lec 28: Cauchy Integral Formula \& Residue Theorem

The Cauchy integral formula (Eq. 4.34) is an important extension of the Cauchy integral theorem (Eq. 4.33) in that a pole has been explicitly injected into the integrand at $s=s_{o}$. If the pole location is outside of the curve \mathcal{C}, the result of the integral is zero, in keeping with Eq. 4.33. When the pole is inside of \mathcal{C}, the integrand is no longer complex analytic at the enclosed pole. When this pole is simple, the residue theorem applies. By a manipulation of the contour in Eq. 4.34, the pole can be isolated with a circle around the pole, and then taking the limit, the radius may be taken to zero, in the limit, isolating the pole.

For the related Cauchy residue theorem (Eq. 4.35) the same result holds, except it is assumed that there are K simple poles in the function $F(s)$. This requires the repeated application of Eq. 4.34, K times, so it represents a minor extension of Eq. 4.34. The function $F(s)$ may be written as $f(s) / P_{K}(s)$, where $f(s)$ is analytic in \mathcal{C} and $P_{K}(s)$ is a polynomial of degree K, with all of its roots $s_{k} \in \mathcal{C}$.

Non-integral degree singularities: The key point is that this theorem applies when $n \in \mathbb{I}$, including fractionals $n \in \mathbb{F}$, but for these cases the residue is always zero, since by definition, the residue is the amplitude of the $1 / s$ term (Boas, 1987, p. 73).

Examples:

1. When $n \in \mathbb{F}$ (e.g., $n=2 / 3$), the residue is, by definition, zero.
2. The function $1 / \sqrt{s}$ has a zero residue (apply the definition of the residue Eq. 4.36).
3. When $n \neq 1 \in \mathbb{I}$, the residue is, by definition, zero.
4. When $n=1$, the residue is given by Eq. 4.36.
5. This method is necessary when computing the inverse Laplace transform.

4.5 Lec 29: Inverse Laplace transform $(t<0)$: Cauchy residue theorem

The inverse Laplace transform Eq. 3.47 transforms a function of complex frequency $F(s)$ and returns a causal function of time $f(t)$

$$
f(t) \leftrightarrow F(s),
$$

where $f(t)=0$ for $t<0$. Examples are provided in Table C. 2 (p. 268). We next discuss the details of finding the inverse transform by use of the Cauchy residue theorem, and how the causal requirement $f(t<0)=0$ comes about.

The integrand of the inverse transform is $F(s) e^{s t}$ and the limits of integration are $-\sigma_{o} \mp \omega j$. To find the inverse we must close the curve, at infinity, and show that the integral at $\omega \jmath \rightarrow \infty$. There are two ways to close these limits - to the right $\sigma>0$ (RHP), and to the left $\sigma<0$ (LHP) - but there needs to be some logical reason for this choice. That logic is the sign of t. For the integral to converge, the term $e^{s t}$ must go to zero as $\omega \rightarrow \infty$. In terms of the real and imaginary parts of $s=\sigma+\omega \jmath$, the exponential may be rewritten as $e^{\sigma t} e^{j \omega t}$. Note that both t and ω go to ∞. So it is the interaction between these two limits that determines how we pick the closure, RHP vs. LHP.

Case for causality $(t<0)$: Let us first consider negative time, including $t \rightarrow-\infty$. If we were to close \mathcal{C} in the left half-plane ($\sigma<0$), then the product σt is positive ($\sigma<0, t<0$, thus $\sigma t>0$). In this case as $\omega \rightarrow \infty$, the closure integral $|s| \rightarrow \infty$ will diverge. Thus we may not close in the LHP for This then justifies closing the contour, allowing for the use of the Cauchy theorems.

If $F(s)$ is analytic in the RHP, the FTCC applies, and the resulting $f(t)$ must be zero, and the inverse Laplace transform must be causal. This argument holds for any $F(s)$ that is analytic in the RHP $(\sigma>0)$.

Case of unstable poles: An important but subtle point arises: If $F(s)$ has a pole in the RHP, then the above argument still applies if we pick σ_{o} to be to the right of the RHP pole. This means that the inverse transform may still be applied to unstable poles (those in the RHP). This explains the need for the σ_{o} in the limits. If $F(s)$ has no RHP poles, then $\sigma_{o}=0$ is adequate, and this factor may be ignored.

Case of $t>0$: Next we investigate the convergence of the integral for positive time $t>0$. In this case we must close the integral in the LHP $(\sigma<0)$ for convergence, so that st<0 ($\sigma \leq 0$ and $t>0$). When there are poles on the $\omega j=0$ axis, $\sigma_{o}>0$ assures convergence by keeping the on-axis poles inside the contour. At this point the Cauchy residue theorem (Eq. 4.35) is relevant. If we restrict ourselves to simple poles (as required for a Brune impedance), the residue theorem may be directly applied.

The most simple example is the step function, for which $F(s)=1 / s$ and thus

$$
u(t)=\oint_{\mathrm{LHP}} \frac{e^{s t}}{s} \frac{d s}{2 \pi \jmath} \leftrightarrow \frac{1}{s}
$$

which is a direct application of the Cauchy residue theorem, Eq. 4.35 (p. 164). The forward transform of $u(t)$ is straightforward, as discussed in Section 3.8 (p. 128). This is true of most if not all of the elementary forward Laplace transforms. In these cases, causality is built into the integral by the limits, so it is not a result, as it must be in the inverse transform. An interesting problem is to prove that $u(t)$ is not defined at $t=0$.

Figure 4.9: Left: Colorized plot of $w(z)=J_{o}(\pi z)$. Right: Colorized plot of $w(z)=\sin (z)$. Note the similarity of the two functions. The first Bessel zero is at 2.405 , and thus appears at $0.7655=2.405 / \pi$, about 1.53 times larger than the root of $\cos (\pi z)$ at $1 / 2$. Other than this minor distortion of the first few roots, the two functions are basically identical. It follows that their $\mathcal{L} \mathcal{T}$'s must have similar characteristics, as documented in Table C. 2 (p. 268).

The inverse Laplace transform of $F(s)=1 /(s+1)$ has a residue of 1 at $s=-1$, thus that is the
only contribution to the integral. More demanding cases are Laplace transform pairs

$$
\frac{1}{\sqrt{t}} u(t) \leftrightarrow \sqrt{\frac{\pi}{s}} \quad \text { and } \quad J_{o}(t) u(t) \leftrightarrow \frac{1}{\sqrt{s^{2}+1}}
$$

and more on p. 268. Many of these are easily proved in the forward direction, but are much more difficult in the inverse direction, due to the properties at $t=0$, unless of course the residue theorem (Eq. 4.35, p. 164) is invoked. The last $\mathcal{L T}$-pair helps us understand the basic nature of the Bessel functions $J_{0}(z)$ and $H_{0}^{(1)}\left(z^{2}\right)$, with a branch cut along the negative axis.

The form \sqrt{s} is called a semi-inductor (Kim and Allen, 2013), also know as the skin effect in EM theory. The form $1 / \sqrt{s}$ is a semi-capacitor.

Some open questions: Without the use of the CRT (Eq. 4.35) it is difficult to see how to evaluate the inverse Laplace transform of $1 / s$ directly. For example, how does one show that the above integral is zero for negative time (or that it is 1 for positive time)? The CRT neatly solves this difficult problem by the convergence of the integral for negative and positive time. Clearly the continuity of the integral at $\omega \rightarrow \infty$ plays an important role. Perhaps the Riemann sphere plays a role in this that has not yet been explored.

4.5.2 Lec 31: Properties of the LT (e.g., Linearity, convolution, time-shift, modulation, etc.)

As shown in the table of Laplace transforms, there are integral (i.e., integration, not integer) relationships, or properties, that are helpful to identify. The first of these is a definition, not a property:

$$
f(t) \leftrightarrow F(s)
$$

When taking the LT, the time response is given in lower case (e.g., $f(t)$) and the frequency domain transform is denoted in upper case (e.g., $F(s)$). It is required, but not always explicitly specified, that $f(t<0)=0$, that is, the time function must be causal (P 1 : Section 3.8.1).

Linearity: A key property so basic that it is almost forgotten, is the linearity property of the LT, summarized in P2 of Section 3.8.1 (p. 131).

Convolution property: One of the most basic and useful properties is that the product of two LTs in frequency results in convolution in time

$$
f(t) \star g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \leftrightarrow F(s) G(s)
$$

where we use the \star operator as a shorthand for the convolution of two time functions.
A key application of convolution is filtering, which takes many forms. The most basic filter is the moving average, the moving sum of data samples, normalized by the number of samples. Such a filter has very poor performance. It also introduces a delay of half the length of the average, which may or may not constitute a problem, depending on the application. Another important example is a low-pass filter that removes high-frequency noise, or a notch filter that removes line-noise (i.e., 60 [Hz] in the US, and its 2 nd and 3 d harmonics, 120 and $180[\mathrm{~Hz}])$. Such noise is typically a result of poor grounding and ground loops. It is better to solve the problem at its root than to remove it with a notch filter. Still, filters are very important in engineering.

By taking the LT of the convolution we can derive this relationship:

$$
\begin{aligned}
\int_{0}^{\infty}[f(t) \star g(t)] e^{-s t} d t & =\int_{t=0}^{\infty}\left[\int_{0}^{t} f(\tau) g(t-\tau) d \tau\right] e^{-s t} d t \\
& =\int_{0}^{t} f(\tau)\left(\int_{t=0}^{\infty} g(t-\tau) e^{-s t} d t\right) d \tau \\
& =\int_{0}^{t} f(\tau)\left(e^{-s \tau} \int_{t^{\prime}=0}^{\infty} g\left(t^{\prime}\right) e^{-s t^{\prime}} d t^{\prime}\right) d \tau \\
& =G(s) \int_{0}^{t} f(\tau) e^{-s \tau} d \tau \\
& =G(s) F(s)
\end{aligned}
$$

We first encountered this relationship in Section 3.4 (p. 100) in the context of multiplying polynomials, which was the same as convolving their coefficients. Hopefully the parallel is obvious. In the case of polynomials, the convolution was discrete in the coefficients, and here it is continuous in time. But the relationships are the same.

Time-shift property: When a function is time-shifted by time T_{o}, the LT is modified by $e^{s T_{o}}$, leading to the property

$$
f\left(t-T_{o}\right) \leftrightarrow e^{-s T_{o}} F(s)
$$

This is easily shown by applying the definition of the LT to a delayed time function.

Time derivative: The key to the eigen-function analysis provided by the LT is the transformation of a time derivative on a time function, that is,

$$
\frac{d}{d t} f(t) \leftrightarrow s F(s)
$$

Here s is the eigenvalue corresponding to the time derivative of $e^{s t}$. Given the definition of the derivative of $e^{s t}$ with respect to time, this definition seems trivial. Yet that definition was not obvious to Euler. It needed to be extended to the space of complex analytic function $e^{s t}$, which did not happen until at least Riemann (1851).

Given a differential equation of order K, the LT results in a polynomial in s, of degree K. It follows that this LT property is the corner-stone of why the LT is so important to scalar differential equations, as it was to the early analysis of Pell's equation and the Fibonacci sequence, as presented in earlier chapters. This property was first uncovered by Euler. It is not clear if he fully appreciated its significance, but by the time of his death, it certainly would have been clear to him. Who first coined the terms eigenvalue and eigen-function? The word eigen is a German word meaning of one.

Initial and final value theorems: There are much more subtle relations between $f(t)$ and $F(s)$ that characterize $f\left(0^{+}\right)$and $f(t \rightarrow \infty)$. While these properties can be very important in certain applications, they are beyond the scope of the present treatment. These relate to so-called initial value theorems. If the system under investigation has potential energy at $t=0$, then the voltage (velocity) need not be zero for negative time. An example is a charged capacitor or a moving mass. These are important situations, but better explored in a more in-depth treatment.

4.5.3 Solving differential equations: Method of Frobenius

Many differential equations may be solved by assuming a power series (i.e., Taylor series) solution of the form

$$
\begin{equation*}
y(x)=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n} \tag{4.49}
\end{equation*}
$$

with coefficients $c_{n} \in \mathbb{C}$. The method of Frobenius is quite general (Greenberg, 1988, p. 193).

Example: When a solution of this form is substituted into the differential equation, a recursion relation in the coefficients results. For example, if the equation is

$$
y^{\prime \prime}(x)=\lambda^{2} y(x)
$$

the recursion is $c_{n}=c_{n-1} / n$. The resulting equation is

$$
y(x)=e^{\lambda x}=x^{0} \sum_{n=0}^{\infty} \frac{1}{n!} x^{n},
$$

namely $c_{n}=1 / n!$, thus $n c_{n}=1 /(n-1)!=c_{n-1}$.
Exercise: Find the recursion relation for Bessel's equation of order ν

$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-\nu^{2}\right) y(x)=0 .
$$

Solution: If we assume a complex analytic solution of the form Eq. 4.49, we find the Bessel recursion relation for coefficients c_{k} to be

$$
c_{k}=-\frac{1}{k(k+2 \nu)} c_{k-2}
$$

(Greenberg, 1988, p. 231).

Appendix A

Notation

A. 1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed. ${ }^{1}$ Where the definition is sketchy, page numbers are provided where these concepts are fully explained, along with many other important and useful definitions. For example a discussion of \mathbb{N} may be found on page 32. Math symbols such as \mathbb{N} may be found at the top of the index, since they are difficult to alphabetize.

A. 2 Units

Strangely, or not, classical mathematics, as taught today in schools, does not seem to acknowledge the concept of physical units. Units seem to have been abstracted away. This makes mathematics distinct from physics, where almost everything has units. Presumably this makes mathematics more general (i.e., abstract). But for the engineering mind, this is not ideal, or worse, as it necessarily means that important physical meaning, by design, has been surgically removed. We shall use SI units whenever possible, which means this book is not not a typical book on mathematics. Spatial coordinates are quoted in meters [m], and time in seconds [s]. Angles in degrees have no units, whereas radians have units of inverse-seconds [s ${ }^{-1}$]. For a complete list of SI units, refer to https://physics.nist.gov/cuu/ pdf/sp811.pdf.

A. 3 Symbols and functions

For more on basic math notation, see to Graham et al. (1994).
We use \ln as the \log function base e, \log as base 2 , and π_{k} to indicate the k th prime (e.g., $\pi_{1}=$

When working with Fourier $\mathcal{F} \mathcal{T}$ and Laplace $\mathcal{L \mathcal { T }}$ transforms, lower case symbols are in the time domain while upper case indicates the frequency domain, as $f(t) \leftrightarrow F(\omega)$. An important exception is Maxwell's equations because they are so widely used as upper-case bold letters (e.g., $\boldsymbol{E}(\boldsymbol{x}, \omega)$). It seems logical to change this to conform to lower case, with $\boldsymbol{e}(\boldsymbol{x}, t) \leftrightarrow \boldsymbol{E}(\boldsymbol{x}, \omega)$ as the preferred notation.

A. 4 Common mathematical symbols:

There are many pre-defined symbols in mathematics, too many to summarize here. We shall only use a small subset, defined here.

[^56]- A set is a collection of objects that have a common property. A set is defined using braces. For example, if set $P=\{a, b, c\}$ such that $a^{2}+b^{2}=c^{2}$, then members of P obey the Pythagorean theorem. Thus we could say that $\{1,1, \sqrt{2}\} \in P$.
- Number sets: $\mathbb{N}, \mathbb{P}, \mathbb{Z}, \mathbb{Q}, \mathbb{F}, \mathbb{I}, \mathbb{R}, \mathbb{C}$ are briefly discussed below, and in greater detail in Section 2.1

A. 5 Greek letters

 (pp. 32-33).- Define a vector as an n-tuple. of \perp from its context. these common terms (and define them).
- One can define sets of sets and subsets of sets, and this is prone (in my experience) to error. For example, what is the difference between the number 0 and the null set $\varnothing=\{0\}$? Is $0 \in \varnothing$? Ask a mathematician. This seems a lackluster construction in the world of engineering.
- The symbol \perp is used in many different ways to indicate two things are perpendicular, orthogonal, or in disjoint sets. In set theory $A \perp B$ is equivalent to $A \cap B=\varnothing$. If two vectors $\boldsymbol{E}, \boldsymbol{H}$ are perpendicular $\boldsymbol{E} \perp \boldsymbol{H}$, then their inner product $\boldsymbol{E} \cdot \boldsymbol{H}=0$ is zero. One must infer the meaning

Table A.1: List of all upper and lower case Greek letters used in the text.

A	A	α	α	alpha	N	N	ν	v	nu
B	B	β	β	beta	河	Ξ	ξ	ξ	xi
Γ	「	γ	$\boldsymbol{\gamma}$	gamma	O	O	o	0	omicron
Δ	Δ	δ	δ	delta	Π	II	π	π	pi
E	E	ε	ε	epsilon	P	P	ρ	p	rho
Z	Z	ζ	ζ	zeta	Σ	$\mathbf{\Sigma}$	σ	$\boldsymbol{\sigma}$	sigma
H	H	η	η	eta	T	T	τ	τ	tau
Θ	Θ	θ	θ	theta	Y	Y	v	v	upsilon
I	I	ι	t	iota	Φ	$\boldsymbol{\Phi}$	ϕ	ϕ	phi
K	K	κ	к	kappa	X	X	χ	X	chi
Λ	$\boldsymbol{\Lambda}$	λ	$\boldsymbol{\lambda}$	lambda	Ψ	Ψ	ψ	ψ	psi
M	M	μ	μ	mu	Ω	$\boldsymbol{\Omega}$	ω	ω	omega

Frequently Greek letters, as provided in Fig. A.1, are associated in engineering and physics with a specific physical meaning. For example, $\omega[\mathrm{rad}]$ is the radian frequency $2 \pi f, \rho\left[\mathrm{kgm} / \mathrm{m}^{3}\right]$ is commonly the density. ϕ, ψ are commonly used to indicate angles of a triangle, and $\zeta(s)$ is the Riemann zeta function. Many of these are so well established it makes no sense to define new terms, so we will adopt

Likely you do not know all of these Greek letters, commonly used in mathematics. Some of them are pronounced in strange ways. The symbol ξ is pronounced "see," ζ is "zeta," β is "beta," and χ is "kie" (rhymes with pie and sky). I will assume you know how to pronounce the others, which are more phonetic in English. One advantage of learning $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is that all of these math symbols are built in, and thus more easily learned, once you have adopted this powerful open-source math-oriented wordprocessing system (e.g., used to write this book).

A. 6 Double-Bold notation

Table A. 2 indicates the symbol followed by a page number indication where it is discussed, and the Genus (class) of the number type. For example, $\mathbb{N}>0$ indicates the infinite set of counting numbers $\{1$,

Table A.2: Double-bold notation for the types of numbers. (\#) is a page number. Symbol with an exponent denote the dimensionality. Thus \mathbb{R}^{2} represents the real plane. An exponent of 0 denotes point, e.g., $\jmath \in \mathbb{C}^{0}$.

Symbol (p. \#)	Genus	Examples	Counter Examples
$\mathbb{N}(32)$	Counting	$1,2,17,3,10^{20}$	$-5,0, \pi,-10,5 \mathrm{j}$
$\mathbb{P}(32)$	Prime	$2,17,3,10^{20}$	$0,1,4,3^{2}, 12,-5$
$\mathbb{Z}(32)$	Integer	$-1,0,17,5 \mathrm{j},-10^{20}$	$1 / 2, \pi, \sqrt{5}$
$\mathbb{Q}(33)$	Rational	$2 / 1,3 / 2,1.5,1.14$	$\sqrt{2}, 3^{-1 / 3}, \pi$
$\mathbb{F}(33)$	Fractional	$1 / 2,7 / 22$	$1 / \sqrt{2}$
$\mathbb{I}(33)$	Irrational	$\sqrt{2}, 3^{-1 / 3}, \pi, e$	Vectors
$\mathbb{R}(33)$	Reals	$\sqrt{2}, 3^{-1 / 3}, \pi$	$2 \pi j$
$\mathbb{C}(33)$	Complex	$1, \sqrt{2} j, 3^{-j / 3}, \pi^{j}$	Vectors
\mathbb{G}	Gaussian integers	$3-2 \jmath \in \mathbb{Z} \cup \mathbb{C}$	complex integers

$2,3, \cdots\}$, not including zero. Starting from any counting number, you get the next one by adding 1 . Counting numbers are also known as the cardinal numbers.

We say that a number is in the set with the notation $3 \in \mathbb{N} \subset \mathbb{R}$, which is read as " 3 is in the set of counting numbers, which in turn is in the set of real numbers," or in vernacular language " 3 is a real counting number."

Prime numbers $(\mathbb{P} \subset \mathbb{N})$ are taken from the counting numbers, but do not include 1.
The signed integers \mathbb{Z} include 0 and negative integers. Rational numbers \mathbb{Q} are historically defined to include \mathbb{Z}, a somewhat inconvenient definition, since the more interesting class are the fractionals \mathbb{F}, a subset of rationals $\mathbb{F} \in \mathbb{Q}$ that exclude the integers (i.e., $\mathbb{F} \perp \mathbb{Z}$). This is a useful definition because the rationals $\mathbb{Q}=\mathbb{Z} \cup \mathbb{F}$ are formed from the union of integers and fractionals.

The rationals may be defined, using set notation (a very sloppy notation with an incomprehensible syntax), as

$$
\mathbb{Q}=\{p / q: q \neq 0 \& p, q \in \mathbb{Z}\}
$$

which may be read as 'the set ' $\{\cdots\}$ ' of all p / q such that ' $:$ ' $q \neq 0$, 'and' $p, q \subset \mathbb{Z}$. The translation of the symbols is in single ($\cdot \ldots$ ') quotes.

Irrational numbers \mathbb{I} are very special: They are formed by taking a limit of fractionals, as the numerator and denominator $\rightarrow \infty$, and approach a limit point. It follows that irrational numbers must be approximated by fractionals.

The reals (\mathbb{R}) include complex numbers (\mathbb{C}) having a zero imaginary part (i.e., $\mathbb{R} \subset \mathbb{C}$).
The size of a set is denoted by taking the absolute value (e.g., $|\mathbb{N}|$). Normally in mathematics this symbol indicates the cardinality, so we are defining it differently from the standard notation.

Classification of numbers: From the above definitions there exists a natural hierarchical structure of numbers:

$$
\mathbb{P} \in \mathbb{N}, \quad \mathbb{Z}:\{\mathbb{N}, 0,-\mathbb{N}\}, \quad \mathbb{F} \perp \mathbb{Z}, \quad \mathbb{Q}: \mathbb{Z} \cup \mathbb{F}, \quad \mathbb{R}: \mathbb{Q} \cup \mathbb{I} \subset \mathbb{C}
$$

1. The primes are a subset of the counting numbers: $\mathbb{P} \subset \mathbb{N}$.
2. The signed integers \mathbb{Z} are composed of $\pm \mathbb{N}$ and 0 , thus $\mathbb{N} \subset \mathbb{Z}$.
3. The fractionals \mathbb{F} do not include of the signed integers \mathbb{Z}.
4. The rationals $\mathbb{Q}=\mathbb{Z} \cup \mathbb{F}$ are the union of the signed integers and fractionals.
5. Irrational numbers \mathbb{I} have the special properties $\mathbb{I} \perp \mathbb{Q}$.
6. The reals $\mathbb{R}: \mathbb{Q}, \mathbb{I}$ are the union of rationals and irrationals \mathbb{I}.
7. Reals \mathbb{R} may be defined as a subset of those complex numbers \mathbb{C} having zero imaginary part.

Rounding schemes

In Matlab/Octave there are five different rounding schemes (i.e., mappings): round (x), fix(x), floor(x), ceil(x), roundb(x), with $x \in \mathbb{R}$. Function round $(\pi)=3$ (e.g. $3=\lfloor\pi\rceil$) rounds to the nearest integer, whereas $f \operatorname{loor}(\pi)$ (i.e., $3=\lfloor\pi\rfloor$) rounds down and ceil (π) rounds up (i.e., $4=\lceil\pi\rceil$).

Note round () $\equiv\lfloor\pi\rceil$ introduces negative remainders, when ever a number rounds up. The expressions in brackets is the notation for the continued fraction expansion (p. 54).

Periodic functions

A periodic function may be conveniently indicated using double-parentheses notation. This is sometimes known as modular arithmetic. For example,

$$
f((t))_{T}=f(t)=f(t \pm k T)
$$

is periodic on $t, T \in \mathbb{R}$ with a period of T and $k \in \mathbb{Z}$. This notation is useful when dealing with Fourier series of periodic functions.

When a discrete valued (e.g., time $t \in \mathbb{N}$) sequence is periodic with period $N \in \mathbb{Z}$, we use square brackets

$$
f[[n]]_{N}=f[n]=f[n \pm k N],
$$

with $k \in \mathbb{Z}$. This notation will be used with discrete-time signals that are periodic, such as the case of the DFT.

Differential equations vs. polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2 , and a cubic has degree 3 . We shall indicate a polynomial by the notation

$$
P_{N}(z)=z^{N}+a_{N-1} z^{N-1} \cdots a_{0} .
$$

It is a good practice to normalize the polynomial so that $a_{N}=1$. This will not change the roots, defined by Eq. 3.7 (p. 72). The coefficient on z^{N-1} is always the sum of the roots $z_{n}\left(a_{N-1}=\sum_{n}^{N} z_{n}\right)$, and a_{0} is always their product $\left(a_{0}=\prod_{n}^{N} z_{n}\right)$.

Differential equations have order (polynomials have degree). If a second-order differential equation is Laplace transformed (Lec. 3.8, p. 128), one is left with a degree 2 polynomial.

Example:

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} y(t)+b \frac{d}{d t} y(t)+c y(t) & =\alpha\left(\frac{d}{d t} x(t)+\beta x(t)\right) \leftrightarrow \tag{A.1}\\
\left(s^{2}+b s+c\right) Y(s) & =\alpha(s+\beta) X(s) . \tag{A.2}\\
\frac{Y(s)}{X(s)} & =\alpha \frac{s+\beta}{s^{2}+b s+c} \equiv H(s) \leftrightarrow h(t) . \tag{A.3}
\end{align*}
$$

Using the same argument as for polynomials, the lead coefficient must always be 1. The coefficient $\alpha \in \mathbb{R}$ is called the gain. The complex variable s is the Laplace frequency.

The ratio of the output $Y(s)$ over the input $X(s)$ is called the system transfer function $H(s)$. When $H(s)$ is the ratio of two polynomials in s, the transfer function is said to be bilinear, since it is linear in both the input and output. The roots of the numerator are called the zeros and those of the denominator, the poles. The inverse Laplace transform of the transfer function is called the system impulse response, which describes the system's output signal $y(t)$ for any given input signal $x(t)$, via convolution (i.e., $y(t)=h(t) \star x(t))$.

A. 7 Matrix algebra: Systems

A.7.1 Vectors

Vectors as columns of ordered sets of scalars $\in \mathbb{C}$. When we write them out in text, we typically use row notation, with the transpose symbol:

$$
[a, b, c]^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

This is strictly to save space on the page. The notation for conjugate transpose is \dagger, for example

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]^{\dagger}=\left[\begin{array}{lll}
a^{*} & b^{*} & c^{*}
\end{array}\right]
$$

The above example is said to be a 3-dimensional vector because it has three components.

Row vs. column vectors: With rare exceptions, vectors are columns, denoted column-major. ${ }^{2}$ To avoid confusion, it is a good rule to make your mental default column-major, in keeping with most signal processing (vectorized) software. ${ }^{3}$ Column vectors are the unstated default of Matlab/Octave, only revealed when matrix operations are performed. The need for the column (or row) major is revealed as a consequence of efficiency when accessing long sequences of numbers from computer memory. For example, when forming the sum of many numbers using the Matlab/Octave command sum (A), where A is a matrix, by default Matlab/Octave operates on the columns, returning a row vector of column sums. Specifically,

$$
\operatorname{sum}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=[4,6]
$$

If the data were stored in "row-major" order, the answer would have been the column vector $\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
Scalar products: A vector dot product is defined to weight vector elements before summing them, resulting in a scalar. The transpose of a vector (a row-vector) is typically used as a scale factor (i.e., weights) on the elements of a vector. Scalar products (aka dot products) play an important role in vector algebra and calculus. For example,

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]^{T}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1+2 \cdot 2-3=2
$$

[^57]A more interesting example is

$$
\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
s \\
s^{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]^{T}\left[\begin{array}{l}
1 \\
s \\
s^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
s \\
s^{2}
\end{array}\right]=1+2 s+4 s^{2} .
$$

Scalar product: The scalar product in polar coordinates is

$$
\boldsymbol{B} \cdot \boldsymbol{C}=\|\boldsymbol{B}\|\|\boldsymbol{C}\| \cos (\theta),
$$

where $\cos (\theta)$ is called the direction cosine between \boldsymbol{B} and \boldsymbol{C}.
Norm of a vector: The norm of a vector is the dot product of it with itself

$$
\|\boldsymbol{A}\|=\sqrt{\boldsymbol{A} \cdot \boldsymbol{A}} \geq 0
$$

forming the Euclidean length of the vector.
Euclidean distance between two points in \mathbb{R}^{3} : The dot product of the difference between two vectors $(\boldsymbol{A}-\boldsymbol{B}) \cdot(\boldsymbol{A}-\boldsymbol{B})$ is the Euclidean distance between the points they define

$$
\|\boldsymbol{A}-\boldsymbol{B}\|=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}} .
$$

Triangle inequality

$$
\|\boldsymbol{A}+\boldsymbol{B}\|=\sqrt{\left(a_{1}+b_{1}\right)^{2}+\left(a_{2}+b_{2}\right)^{2}+\left(a_{3}+b_{3}\right)^{2}} \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\| .
$$

Vector product: The vector product (aka cross product) $\boldsymbol{A} \times \boldsymbol{B}=\|\boldsymbol{A}\|\|\boldsymbol{B}\| \sin (\theta)$ is defined between the two vectors \boldsymbol{A} and \boldsymbol{B}. In Cartesian coordinates

$$
\boldsymbol{A} \times \boldsymbol{B}=\operatorname{det}\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

The triple product: This is defined between three vectors as

$$
\boldsymbol{A} \cdot(\boldsymbol{B} \times \boldsymbol{C})=\operatorname{det}\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|,
$$

also defined in Fig. 5.5. This may be indicated without the use of parentheses, since there can be no other meaningful interpretation. However for rigor, parentheses should be used. The triple product is the volume of the parallelepiped (3D-crystal shape) outlined by the three vectors, shown in Fig. 5.5, p. 209.

Dialects of vector notation: Physical fields are, by definition, functions of space $\boldsymbol{x}[\mathrm{m}]$, and in the most general case, time $t[\mathrm{~s}]$. When Laplace transformed, the fields become functions of space and complex frequency (e.g., $\boldsymbol{E}(\boldsymbol{x}, t) \leftrightarrow \boldsymbol{E}(\boldsymbol{x}, s)$). As before, there are several equivalent vector notations. For example, $\boldsymbol{E}(\boldsymbol{x}, t)=\left[\begin{array}{lll}E_{x}, & E_{y}, & E_{z}\end{array}\right]^{T}=E_{x}(\boldsymbol{x}, t) \hat{\mathbf{x}}+E_{y}(\boldsymbol{x}, t) \hat{\mathbf{y}}+E_{z}(\boldsymbol{x}, t) \hat{\mathbf{z}}$ is "in-line," to save space. The same equation may written in "displayed" notation as:

$$
\boldsymbol{E}(\boldsymbol{x}, t)=\left[\begin{array}{l}
E_{x}(\boldsymbol{x}, t) \\
E_{y}(\boldsymbol{x}, t) \\
E_{z}(\boldsymbol{x}, t)
\end{array}\right]=\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right](\boldsymbol{x}, t)=\left[\begin{array}{ll}
E_{x}, & E_{y}, \\
E_{z}
\end{array}\right]^{T} \equiv E_{x} \hat{\mathbf{x}}+E_{y} \hat{\mathbf{y}}+E_{z} \hat{\mathbf{z}} .
$$

Note the three notations for vectors, bold font, element-wise columns, element-wise transposed rows and dyadic format. These are all shorthand notations for expressing the vector. Such usage is similar to a dialect in a language.

Complex elements: When the elements are complex $(\in \mathbb{C})$, the transpose is defined as the complex conjugate of the elements. In such complex cases the transpose conjugate may be denoted with a \dagger rather than T

$$
\left[\begin{array}{c}
-2 \jmath \\
3 \jmath \\
1
\end{array}\right]^{\dagger}=\left[\begin{array}{lll}
2 \jmath & -3 \jmath & 1
\end{array}\right] \in \mathbb{C}
$$

For this case when the elements are complex, the dot product is a real number

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}^{\dagger} \boldsymbol{b}=\left[\begin{array}{lll}
a_{1}^{*} & a_{2}^{*} & a_{3}^{*}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+a_{3}^{*} b_{3} \in \mathbb{R}
$$

Norm of a vector: The dot product of a vector with itself is called the norm of \boldsymbol{a}

$$
\|\boldsymbol{a}\|=\sqrt{\boldsymbol{a}^{\dagger} \boldsymbol{a}} \geq 0
$$

which is always non-negative.
Such a construction is useful when \boldsymbol{a} and \boldsymbol{b} are related by an impedance matrix

$$
\boldsymbol{V}(s)=\boldsymbol{Z}(s) \boldsymbol{I}(s)
$$

and we wish to compute the power. For example, the impedance of a mass is $m s$ and a capacitor is $1 / s C$. When given a system of equations (a mechanical or electrical circuit) one may define an impedance matrix.

Complex power: In this special case, the complex power $\mathcal{P}(s) \in \mathbb{R}(s)$ is defined, in the complex frequency domain (s), as

$$
\mathcal{P}(s)=\boldsymbol{I}^{\dagger}(s) \boldsymbol{V}(s)=\boldsymbol{I}^{\dagger}(s) \boldsymbol{Z}(s) \boldsymbol{I}(s) \leftrightarrow p(t) \quad[\mathrm{W}] .
$$

The real part of the complex power must be positive. The imaginary part corresponds to available stored energy.

The case of three-dimensions is special, allowing definitions that are not easily defined in more than three dimensions. A vector in \mathbb{R}^{3} labels the point having the coordinates of that vector.

A.7.2 Matrices

When working with matrices, the role of the weights and vectors can change, depending on the context. A useful way to view a matrix is as a set of column vectors, weighted by the elements of the columnvector of weights multiplied from the right. For example

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 M} \\
a_{21} & a_{22} & a_{32} & \cdots & a_{3 M} \\
& & \ddots & & \\
a_{N 1} & a_{N 2} & a_{N 3} & \cdots & a_{N M}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\cdots \\
w_{M}
\end{array}\right]=w_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
a_{21} \\
\cdots \\
a_{N 1}
\end{array}\right]+w_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
a_{32} \\
\cdots \\
a_{N 2}
\end{array}\right] \ldots w_{M}\left[\begin{array}{c}
a_{1 M} \\
a_{2 M} \\
a_{3 M} \\
\cdots \\
a_{N M}
\end{array}\right]
$$

where the weights are $\left[w_{1}, w_{2}, \ldots, w_{M}\right]^{T}$. Alternatively, the matrix is a set of row vectors of weights, each of which is applied to the column vector on the right $\left(\left[w_{1}, w_{2}, \cdots, W_{M}\right]^{T}\right)$.

The determinant of a matrix is denoted either as $\operatorname{det} \boldsymbol{A}$ or simply $|\boldsymbol{A}|$ (as in the absolute value). The inverse of a square matrix is \boldsymbol{A}^{-1} or $\operatorname{inv} \boldsymbol{A}$. If $|\boldsymbol{A}|=0$, the inverse does not exist. $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}$.

Matlab/Octave's notional convention for a row-vector is $[a, b, c]$ and a column-vector is $[a ; b ; c]$. A prime on a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the prime. The : argument converts the array into a column vector, without conjugation. A tacit notation in Matlab is that vectors are columns and the index to a vector is a row vector. Matlab defines the notation $1: 4$ as the "row-vector" $[1,2,3,4]$, which is unfortunate as it leads users to assume that the default vector is a row. This can lead to serious confusion later, as Matlab's default vector is a column. I have not found the above convention explicitly stated, and it took me years to figure this out for myself.

When writing a complex number we shall adopt $1 \jmath$ to indicate $\sqrt{-1}$. Matlab/Octave allows either $1 \imath$ and 1 f .

Units are SI; angles in degrees [deg] unless otherwise noted. The units for π are always in radians [rad]. Ex: $\sin (\pi), e^{\jmath 90^{\circ}}=e^{3 \pi / 2}$.

A.7.3 2x2 matrices

Definitions:

1. Scalar: A number, e.g. $\{a, b, c, \alpha, \beta, \cdots\} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}\}$
2. Vector: A quantity having direction as well as magnitude, often denoted by a bold-face letter with an arrow, \mathbf{x}. In matrix notation, this is typically represented as a single row $\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ or single column $\left[x_{1}, x_{2}, x_{3} \ldots\right]^{T}$ (where T indicates the transpose). In this class we will typically use column vectors. The vector may also be written out using unit vector notation to indicate direction. For example: $\mathbf{x}_{3 \times 1}=x_{1} \hat{\mathbf{x}}+x_{2} \hat{\mathbf{y}}+x_{3} \hat{\mathbf{z}}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$, where $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ are unit vectors in the x, y, z Cartesian directions (here the vector's subscript 3×1 indicates its dimensions). The type of notation used may depend on the engineering problem you are solving.
3. Matrix: $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \cdots, \mathbf{a}_{M}\right]_{N \times M}=\left\{a_{n, m}\right\}_{N \times M}$ can be a non-square matrix if the number of elements in each of the vectors (N) is not equal to the number of vectors (M). When $M=N$, the matrix is square. It may be inverted if its determinant $|A|=\Pi \lambda_{k} \neq 0$ (where λ_{k} are the eigenvalues).
We shall only work with 2×2 and 3×3 square matrices throughout this course.
4. Linear system of equations: $A \mathbf{x}=\mathbf{b}$ where \mathbf{x} and \mathbf{b} are vectors and matrix A is a square.
(a) Inverse: The solution of this system of equations may be found by finding the inverse $\mathrm{x}=$ $A^{-1} \mathbf{b}$.
(b) Equivalence: If two systems of equations $A_{0} \mathbf{x}=\mathbf{b}_{0}$ and $A_{1} \mathbf{x}=\mathbf{b}_{1}$ have the same solution (i.e., $\mathbf{x}=A_{0}^{-1} \mathbf{b}_{0}=A_{1}^{-1} \mathbf{b}_{1}$), they are said to be equivalent.
(c) Augmented matrix: The first type of augmented matrix is defined by combining the matrix with the right-hand side. For example, given the linear system of equations of the form $A \mathrm{x}=\mathrm{y}$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right],
$$

the augmented matrix is

$$
[A \mid y]=\left[\begin{array}{ll|l}
a & b & y_{1} \\
c & d & y_{2}
\end{array}\right]
$$

A second type of augmented matrix may be used for finding the inverse of a matrix (rather than solving a specific instance of linear equations $A x=b$). In this case the augmented
matrix is

$$
[A \mid I]=\left[\begin{array}{ll|ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

Performing Gaussian elimination on this matrix, until the left side becomes the identity matrix, yields A^{-1}. This is because multiplying both sides by A^{-1} gives $A^{-1} A \mid A^{-1} I=$ $I \mid A^{-1}$.
5. Permutation matrix (P) : A matrix that is equivalent to the identity matrix, but with scrambled rows (or columns). Such a matrix has the properties $\operatorname{det}(P)= \pm 1$ and $P^{2}=I$. For the 2 x 2 case, there is only one permutation matrix:

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad P^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A permutation matrix P swaps rows or columns of the matrix it operates on. For example, in the 2×2 case, pre-multiplication swaps the rows

$$
P A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
\alpha & \beta
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \beta \\
a & b
\end{array}\right]
$$

whereas post-multiplication swaps the columns

$$
A P=\left[\begin{array}{ll}
a & b \\
\alpha & \beta
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
b & a \\
\beta & \alpha
\end{array}\right]
$$

For the 3×3 case there are $3 \cdot 2=6$ such matrices, including the original 3×3 identity matrix (swap a row with the other 2 , then swap the remaining two rows).
6. Gaussian elimination $(G E)$ operations G_{k} : There are three types of elementary row operations, which may be performed without fundamentally altering a system of equations (e.g. the resulting system of equations is equivalent). These operations are (1) swap rows (e.g. using a permutation matrix), (2) scale rows, or (3) perform addition/subtraction of two scaled rows. All such operations can be performed using matrices.
For lack of a better term, we'll describe these as 'Gaussian elimination' or 'GE' matrices. ${ }^{4}$ We will categorize any matrix that performs only elementary row operations (but any number of them) as a 'GE' matrix. Therefore, a cascade of GE matrices is also a GE matrix.
Consider the GE matrix

$$
G=\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]
$$

(a) This pre-multiplication scales and subtracts row (1) from (2) and returns it to row (2).

$$
G A=\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
a & b \\
\alpha & \beta
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
a-\alpha & b-\beta
\end{array}\right]
$$

The shorthand for this Gaussian elimination operation is $(1) \leftarrow(1)$ and $(2) \leftarrow(1)-(2)$.
(b) Post-multiplication adds and scales columns.

$$
A G=\left[\begin{array}{ll}
a & b \\
\alpha & \beta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
a-b & b \\
\alpha-\beta & \beta
\end{array}\right]
$$

[^58]Here the second column is subtracted from the first, and placed in the first. The second column is untouched. This operation is not a Gaussian elimination. Therefore, to put Gaussian elimination operations in matrix form, we form a cascade of pre-multiply matrices.
Here $\operatorname{det}(G)=1, G^{2}=I$, which won't always be true if we scale by a number greater than 1. For instance, if $G=\left[\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right]$ (scale and add), then we have $\operatorname{det}(G)=1, G^{n}=$ $\left[\begin{array}{cc}1 & 0 \\ n \cdot m & 1\end{array}\right]$.

Exercise: Find the solution to the following 3×3 matrix equation $A x=b$ by Gaussian elimination. Show your intermediate steps. You can check your work at each step using Matlab.

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
3 & 1 & 1 \\
1 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
9 \\
8
\end{array}\right] .
$$

1. Show (i.e., verify) that the first GE matrix G_{1}, which zeros out all entries in the first column, is given by

$$
G_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

Identify the elementary row operations that this matrix performs. Solution: Operate with GE matrix on A

$$
G_{1}[A \mid b]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
3 & 1 & 1 & 9 \\
1 & -1 & 4 & 8
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & -2 & 4 & 6 \\
0 & -2 & 5 & 7
\end{array}\right] .
$$

The second row of G_{1} scales the first row by -3 and adds it to the second row

$$
(2) \Leftarrow-3(1)+(2) .
$$

The third row of $G 1$ scales the first row by -1 and adds it to the third row $[(3) \Leftarrow-(1)+(3)]$.
2. Find a second GE matrix, G_{2}, to put $G_{1} A$ in upper triangular form. Identify the elementary row operations that this matrix performs. Solution:

$$
G_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right],
$$

or $[(2) \Leftarrow-(2)+(3)]$. Thus we have

$$
G_{2} G_{1}[A \mid b]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
3 & 1 & 1 & 9 \\
1 & -1 & 4 & 8
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & -2 & 4 & 6 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

3. Find a third GE matrix, G_{3}, which scales each row so that its leading term is 1 . Identify the elementary row operations that this matrix performs. Solution:

$$
G_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

which scales the second row by $-1 / 2$. Thus we have

$$
G_{3} G_{2} G_{1}[A \mid b]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & -2 & 4 & 6 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & -2 & -3 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

4. Finally, find the last GE matrix, G_{4}, that subtracts a scaled version of row 3 from row 2 , and scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix $\left(G_{4} G_{3} G_{2} G_{1} A=I\right)$. Solution:

$$
G_{4}=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Thus we have

$$
G_{4} G_{3} G_{2} G_{1}[A \mid b]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & -2 & -3 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

5. Solve for $\left[x_{1}, x_{2}, x_{3}\right]^{T}$ using the augmented matrix format $G_{4} G_{3} G_{2} G_{1}[A \mid b]$ (where $[A \mid b]$ is the augmented matrix). Note that if you've performed the preceding steps correctly, $x=G_{4} G_{3} G_{2} G_{1} b$. Solution: From the preceding problems, we see that $\left[x_{1}, x_{2}, x_{3}\right]^{T}=[3,-1,1]^{T}$.

Inverse of the $\mathbf{2 x} \mathbf{2}$ matrix

We shall now apply Gaussian elimination to find the solution $\left[x_{1}, x_{2}\right]$ for the 2 x 2 matrix equation $A x=y$ (Eq. 3.21, left). We assume to know $[a, b, c, d]$ and $\left[y_{1}, y_{2}\right]$. We wish to show that the intersection (solution) is given by the equation on the right.

Here we wish to prove that the left equation (i) has an inverse given by the right equation (ii):

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \quad(i) ; \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \quad(i i)
$$

How to take inverse:

1) Swap the diagonal, 2) change the signs of the off-diagonal, and 3) divide by Δ.

Derivation of the inverse of a $\mathbf{2 x} \mathbf{2}$ matrix

1. Step 1: To derive (ii) starting from (i), normalize the first column to 1.

$$
\left[\begin{array}{ll}
1 & \frac{b}{a} \\
1 & \frac{d}{c}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
0 & \frac{1}{c}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

2. Step 2: Subtract row (1) from row (2): (2) $\leftarrow(2)-(1)$

$$
\left[\begin{array}{lc}
1 & \frac{b}{a} \\
0 & \frac{d}{c}-\frac{b}{a}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
-\frac{1}{a} & \frac{1}{c}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
$$

3. Step 3: Multiply row (2) by $c a$ and express result in terms of the determinate $\Delta=a d-b c$.

$$
\left[\begin{array}{ll}
1 & \frac{b}{a} \\
0 & \Delta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

4. Step 4: Solve row (2) for x_{2} : $x_{2}=-\frac{c}{\Delta} y_{1}+\frac{a}{\Delta} y_{2}$.
5. Step 5: Solve row (1) for x_{1} :

$$
x_{1}=\frac{1}{a} y_{1}-\frac{b}{a} x_{2}=\left[\frac{1}{a}+\frac{b}{a} \frac{c}{\Delta}\right] y_{1}-\frac{b}{a} \frac{a}{\Delta} y_{2} .
$$

Rewriting in matrix format, in terms of $\Delta=a d-b c$, gives:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a}+\frac{b c}{a \Delta} & -\frac{b}{\Delta} \\
-\frac{c}{\Delta} & \frac{a}{\Delta}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\frac{\Delta+b c}{a} & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right],
$$

since $d=(\Delta+b c) / a$.
Summary: This is a lot of messy algebra, so this is why it is essential you memorize the final result:

1) Swap diagonal, 2) change off-diagonal signs, 3) normalize by Δ.

Appendix B

Eigenanalysis

Eigenanalysis is critical in engineering applications. It is useful in solving differential and difference equations, data-science applications, numerical approximation and computing, and linear algebra applications. Typically one must take a course in linear algebra to become knowledgeable in the inner workings of this method. In this appendix we provide sufficient basics to allow one to understand the fundamental, as needed in the text.

B. 1 The eigenvalue matrix (Λ):

Given 2×2 matrix \boldsymbol{A}, the related matrix eigen-equation is

$$
\begin{equation*}
\boldsymbol{A E}=\boldsymbol{E} \Lambda \tag{B.1}
\end{equation*}
$$

Pre-multiplying by \boldsymbol{E}^{-1} diagonalizes \boldsymbol{A}, resulting in the eigenvalue matrix

$$
\begin{align*}
\Lambda & =\boldsymbol{E}^{-1} \boldsymbol{A} \boldsymbol{E} \tag{B.2}\\
& =\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] . \tag{B.3}
\end{align*}
$$

Post-multiplying by \boldsymbol{E}^{-1} recovers \boldsymbol{A}

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \tag{B.4}\\
a_{21} & a_{22}
\end{array}\right]=\boldsymbol{E} \Lambda \boldsymbol{E}^{-1}
$$

Matrix product formula:

This last relation is the entire point of the eigenvector analysis, since it shows that any power of \boldsymbol{A} may be computed from powers of the eigenvalues. Specifically,

$$
\begin{equation*}
\boldsymbol{A}^{n}=\boldsymbol{E} \Lambda^{n} \boldsymbol{E}^{-1} \tag{B.5}
\end{equation*}
$$

For example, $\boldsymbol{A}^{2}=\boldsymbol{A} \boldsymbol{A}=\boldsymbol{E} \Lambda\left(\boldsymbol{E}^{-1} \boldsymbol{E}\right) \Lambda \boldsymbol{E}^{-1}=\boldsymbol{E} \Lambda^{2} \boldsymbol{E}^{-1}$.
Equations B.1, B. 3 and B. 4 are the key to eigenvector analysis, and you need to memorize them. You will use them repeatedly throughout this course, and possibly for a long time after it is over.

Showing that $\boldsymbol{A}-\lambda_{ \pm} \boldsymbol{I}_{2}$ is singular:

If we restrict Eq. B. 1 to a single eigenvector (one of $\boldsymbol{e}_{ \pm}$), along with the corresponding eigenvalue $\lambda_{ \pm}$, we obtain a matrix equations

$$
\boldsymbol{A} \boldsymbol{e}_{ \pm}=\boldsymbol{e}_{ \pm} \lambda_{ \pm}=\lambda_{ \pm} \boldsymbol{e}_{ \pm}
$$

Note the swap in the order of $\boldsymbol{E}_{ \pm}$and $\lambda_{ \pm}$. Since $\lambda_{ \pm}$is a scalar, this is legal (and critically important), since this allows us to factor out $\boldsymbol{e}_{ \pm}$

$$
\begin{equation*}
\left(\boldsymbol{A}-\lambda_{ \pm} \boldsymbol{I}_{2}\right) \boldsymbol{e}_{ \pm}=0 \tag{B.6}
\end{equation*}
$$

The matrix $\boldsymbol{A}-\lambda_{ \pm} \boldsymbol{I}_{2}$ must be singular because when it operates on $\boldsymbol{e}_{ \pm}$, having nonzero norm, it must be zero.

It follows that its determinant (i.e., $\left|\left(\boldsymbol{A}-\lambda_{ \pm} \boldsymbol{I}_{2}\right)\right|=0$) must be zero. This equation uniquely determines the eigenvalues $\lambda_{ \pm}$.

B.1. 1 Calculating the eigenvalues $\lambda_{ \pm}$:

The eigenvalues $\lambda_{ \pm}$of \boldsymbol{A} may be determined from $\left|\left(\boldsymbol{A}-\lambda_{ \pm} \boldsymbol{I}_{2}\right)\right|=0$. As an example we let \boldsymbol{A} be Pell's equation (Eq. 2.13, p. 59). In this case the eigenvalues may be found from

$$
\left|\begin{array}{cc}
1-\lambda_{ \pm} & N \\
1 & 1-\lambda_{ \pm}
\end{array}\right|=\left(1-\lambda_{ \pm}\right)^{2}-N^{2}=0
$$

For our case of $N=2, \lambda_{ \pm}=(1 \pm \sqrt{2}) .{ }^{1}$

B.1.2 Calculating the eigenvectors $e_{ \pm}$:

Once the eigenvalues have been determined, they are substituted into Eq. B.6, which determines the eigenvectors $\boldsymbol{E}=\left[\boldsymbol{e}_{+}, \boldsymbol{e}_{-}\right]$, by solving

$$
\left(\boldsymbol{A}-\lambda_{ \pm}\right) \mathbf{e}_{ \pm}=\left[\begin{array}{cc}
1-\lambda_{ \pm} & 2 \tag{B.7}\\
1 & 1-\lambda_{ \pm}
\end{array}\right] \boldsymbol{e}_{ \pm}=0
$$

where $1-\lambda_{ \pm}=1-(1 \pm \sqrt{2})=\mp \sqrt{2}$.
Recall that Eq. B. 6 is singular because we are using an eigenvalue, and each eigenvector is pointing in a unique direction (this is why it is singular). You might expect that this equation has no solution. In some sense you would be correct. When we solve for $e_{ \pm}$, the two equations defined by Eq. B. 6 are co-linear (the two equations describe parallel lines). This follows from the fact that there is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for $\boldsymbol{e}_{+}=\left[e_{1}^{+}, e_{2}^{+}\right]^{T}$,

$$
\left[\begin{array}{cc}
-\sqrt{2} & 2 \\
1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{l}
e_{1}^{+} \\
e_{2}^{+}
\end{array}\right]=0
$$

This gives two identical equations $-\sqrt{2} e_{1}^{+}+2 e_{2}^{+}=0$ and $e_{1}^{+}-\sqrt{2} e_{2}^{+}=0$. This is the price of an overspecified equation (the singular matrix is degenerate). The most we can determine is $\mathbf{e}_{+}=c[-\sqrt{2}, 1]^{T}$, where c is a constant. We can determine eigenvector direction, but not its magnitude.

Following exactly the same procedure for λ_{-}, the equation for e_{-}is

$$
\left[\begin{array}{cc}
\sqrt{2} & 2 \\
1 & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
e_{1}^{-} \\
e_{2}^{-}
\end{array}\right]=0
$$

In this case the relation becomes $e_{1}^{-}+\sqrt{2} e_{2}^{-}=0$, thus $\boldsymbol{E}_{-}=c[\sqrt{2}, 1]^{T}$ where c is a constant.

Normalization of the eigenvectors:

The constant c may be determined by normalizing the eigenvectors to have unit length. Since we cannot determine the length, we set it to 1 . In some sense the degeneracy is resolved by this normalization. Thus $c=1 / \sqrt{3}$, since

$$
(\pm \sqrt{2})^{2}+1^{2}=3=1 / c^{2}
$$

[^59]
Summary:

Thus far we have shown

$$
\boldsymbol{E}=\left[\boldsymbol{e}_{+}, \boldsymbol{e}_{-}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
1 & 1
\end{array}\right]
$$

and

$$
\Lambda=\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]=\left[\begin{array}{cc}
1+\sqrt{2} & 0 \\
0 & 1-\sqrt{2}
\end{array}\right]
$$

Exercise: Verify that $\Lambda=\boldsymbol{E}^{-1} \boldsymbol{A} \boldsymbol{E}$. Solution: To find the inverse of $\boldsymbol{E}, 1$) swap the diagonal values, 2) change the sign of the off diagonals, and 3) divide by the determinant $\Delta=2 \sqrt{2} / \sqrt{3}$ (see Appendix A.7)

$$
\boldsymbol{E}^{-1}=\frac{\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & \sqrt{2} \\
-1 & \sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
0.6124 & 0.866 \\
-0.6124 & 0.866
\end{array}\right]
$$

By definition for any matrix $\boldsymbol{E}^{-1} \boldsymbol{E}=\boldsymbol{E} \boldsymbol{E}^{-1}=\boldsymbol{I}_{2}$. Taking the product gives

$$
\boldsymbol{E}^{-1} \boldsymbol{E}=\frac{\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & \sqrt{2} \\
-1 & \sqrt{2}
\end{array}\right] \cdot \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\boldsymbol{I}_{2}
$$

We wish to show that $\Lambda=\boldsymbol{E}^{-1} \boldsymbol{A} \boldsymbol{E}$

$$
\left[\begin{array}{cc}
1+\sqrt{2} & 0 \\
0 & 1-\sqrt{2}
\end{array}\right] \cdot=\frac{\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & \sqrt{2} \\
-1 & \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \cdot \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
1 & 1
\end{array}\right]
$$

which is best verified with Matlab.

Exercise: Verify that $\boldsymbol{A}=\boldsymbol{E} \Lambda \boldsymbol{E}^{-1}$. Solution: We wish to show that

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1+\sqrt{2} & 0 \\
0 & 1-\sqrt{2}
\end{array}\right] \cdot \frac{\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & \sqrt{2} \\
-1 & \sqrt{2}
\end{array}\right]
$$

All the above equations have been verified with Octave.
Eigenmatrix diagonalization is helpful in generating solutions for finding the solutions of Pell's and Fibonacci's equations using transmission matrices.

Example: If the matrix corresponds to the delay on a transmission line, the eigenvalues are delays

$$
\left[\begin{array}{l}
V^{+} \tag{B.8}\\
V^{-}
\end{array}\right]_{n}=\left[\begin{array}{cc}
e^{-s T_{o}} & 0 \\
0 & e^{s T_{o}}
\end{array}\right]\left[\begin{array}{l}
V^{+} \\
V^{-}
\end{array}\right]_{n+1}
$$

In the time domain the forward traveling wave $v_{n+1}^{+}\left(t-(n+1) T_{o}\right)=v_{n}^{+}\left(t-n T_{o}\right)$ is delayed by T_{o}. Two applications of the matrix delays the signal by $2 T_{o}$. See discussion in Sect. 5.6, p. 220.

B. 2 Symbolic analysis of $\boldsymbol{T E}=E \Lambda$

B.2.1 The $2 x 2$ Transmission matrix:

Here we assume

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & \mathcal{D}
\end{array}\right]
$$

with $\Delta_{T}=1$.

The eigenvectors $\boldsymbol{e}_{ \pm}$of \boldsymbol{T} are

$$
\begin{equation*}
e_{ \pm}=\binom{\frac{1}{2 \mathcal{C}}\left[(\mathcal{A}-\mathcal{D}) \mp \sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B C}}\right]}{1} \tag{B.9}
\end{equation*}
$$

and eigenvalues are

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}\binom{(\mathcal{A}+\mathcal{D})-\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B C}}}{(\mathcal{A}+\mathcal{D})+\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B C}}} . \tag{B.10}
\end{equation*}
$$

The term under the radical (i.e., the discriminant) may be rewritten in terms of the determinant of \boldsymbol{T} (i.e., $\Delta_{T}=\mathcal{A D}-\mathcal{B C}$), since

$$
(\mathcal{A}-\mathcal{D})^{2}-(\mathcal{A}+\mathcal{D})^{2}=-4 \mathcal{A D}
$$

The for the ABCD matrix the expression under the radical becomes

$$
\begin{aligned}
(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B C} & =\mathcal{A}^{2}+\mathcal{D}^{2}-4 \mathcal{A D}+4 \mathcal{B C} \\
& =\mathcal{A}^{2}+\mathcal{D}^{2}-4 \Delta_{T}
\end{aligned}
$$

Rewriting the eigenvectors and eigenvalues in terms of Δ_{T} we find

$$
\begin{equation*}
e_{ \pm}=\binom{\frac{1}{2 \mathcal{C}}\left[(\mathcal{A}-\mathcal{D}) \mp \sqrt{(\mathcal{A}+\mathcal{D})^{2}-4 \Delta_{T}}\right]}{1} \tag{B.11}
\end{equation*}
$$

and eigenvalues are

$$
\begin{equation*}
\lambda_{ \pm}=\frac{1}{2}\binom{(\mathcal{A}+\mathcal{D})-\sqrt{(\mathcal{A}+\mathcal{D})^{2}-4 \Delta_{T}}}{(\mathcal{A}+\mathcal{D})+\sqrt{(\mathcal{A}+\mathcal{D})^{2}-4 \Delta_{T}}} \tag{B.12}
\end{equation*}
$$

B.2.2 Special cases having symmetry

For the case of the ABCD matrix the eigenvalues depend on reciprocity, since $\Delta_{\boldsymbol{T}}=1$ if $\boldsymbol{T}(s)$ is reciprocal, and $\Delta_{T}=-1$ if it is anti-reciprocal. Thus it is helpful to display the eigenfunctions and values in terms of Δ_{T} so this distinction is explicit.

Reversible systems

When $\mathcal{A}=\mathcal{D}$

$$
\boldsymbol{E}=\left[\begin{array}{cc}
-\sqrt{\frac{\mathcal{B}}{\mathcal{C}}} & +\sqrt{\frac{\mathcal{B}}{\mathcal{C}}} \tag{B.13}\\
1 & 1
\end{array}\right] \quad \Lambda=\left[\begin{array}{cc}
\mathcal{A}-\sqrt{\mathcal{B C}} & 0 \\
0 & \boldsymbol{A}+\sqrt{\mathcal{B C}}
\end{array}\right]
$$

the transmission matrix is said to be reversible.

Example: An important application of the above symmetry may be found in the Train problem (p. 181).
Each 2×2 matrix has four entries, each of which can be complex. This leads to $4 \times 2=8$ possible special symmetries (eight-fold way with 8! possibilities), so this topic can become complex. Fortunately many case can be ruled out by the physics which can reduce the many combinations.

Each symmetry is related to properties of \boldsymbol{T}. For example if $\boldsymbol{T}=\boldsymbol{T}^{\dagger}$, the matrix is said to have Hermitian symmetry. When $\boldsymbol{T}=\boldsymbol{T}^{T}$ the matrix is symmetric, and when $\boldsymbol{T}=-\boldsymbol{T}^{T}$ is is said to be skew-symmetric. Each of these eight-fold symmetries corresponds to some sort of physical constraint.

Reversibility (P7) is a common symmetry. Its utility is in describing transmission lines as discussed in Sections 3.6 (p. 120) and 4.5 .4 (p. 180).

Reciprocal systems

When the matrix is symmetric $(\mathcal{B}=\mathcal{C})$, the corresponding system is said to be reciprocal. Most physical systems are reciprocal. The determinant of the transmission matrix of a reciprocal network $\Delta_{\boldsymbol{T}}=$ $\mathcal{A D}-\mathcal{B C}=1$. For example, electrical networks composed of inductors, capacitors and resistors are
always reciprocal. It follows that the complex impedance matrix is symmetric (Van Valkenburg, 1964a).

Magnetic systems such as dynamic loudspeakers are anti-reciprocal, and correspondingly $\Delta_{\boldsymbol{T}}=-1$. The impedance matrix of a loudspeaker is skew symmetric (Kim and Allen, 2013). All impedance matrices are either symmetric or anti-symmetric, depending on whether they are reciprocal (LRC networks) or anti-reciprocal (magnetic networks). These systems have complex eigenvalues with negative real parts, corresponding to lossy systems. In some sense, all of this follows from conservation of energy, but the precise general case is waiting for enlightenment. The impedance matrix is never Hermitian. It is easily proved that Hermitian matrices have real eigenvalues, which correspond to lossless networks. Any physical system of equations that has any type of loss cannot be Hermitian.

In summary, given a reciprocal system, the \boldsymbol{T} matrix has $\Delta_{\boldsymbol{T}}=1$, and the corresponding impedance matrix is symmetric (not Hermitian).

B.2.3 Impedance matrix

As previously discussed in Section 3.6 (p. 120), the \boldsymbol{T} matrix corresponding to an impedance matrix is

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\boldsymbol{Z}(s)\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\frac{1}{\mathcal{C}}\left[\begin{array}{cc}
\mathcal{A} & \Delta_{\boldsymbol{T}} \\
1 & \mathcal{D}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

Reciprocal systems have skew-symmetric impedance matrices, namely $z_{12}=z_{21}$. When the system is both reversible $\mathcal{A}=\mathcal{D}$ and reciprocal, the impedance matrix simplifies to

$$
\boldsymbol{Z}(s)=\frac{1}{\mathcal{C}}\left[\begin{array}{cc}
\mathcal{A} & 1 \\
1 & \mathcal{A}
\end{array}\right]
$$

For such systems there are only two degrees of freedom, \mathcal{A} and \mathcal{C}. As discussed previously in Sect. 3.6 (p. 120), each of these has a physical meaning: $1 / \mathcal{A}$ is the Thévenin source voltage given a voltage drive and $\mathcal{B} / \mathcal{C}$ is the Thévenin impedance.

Transmission matrices and symmetry

The transmission matrix fully characterizes a two-port network (Sect. 3.6, p. 120).

Impedance is not Hermitian

When a system is Hermitian its matrix is conjugate symmetric

$$
Z(s)=Z^{\dagger}(s)
$$

a stronger condition than reciprocal, but not the symmetry of the Brune impedance matrix. Impedance is not Hermitian unless the diagonal elements are real, in which becomes degenerate.

In the case of a Hermitian matrix, the eigenvalues are always real. To show this start from the definition of an impedance eigen-equation (\mathbf{V} is a vector of voltages, \mathbf{I} a current vector and \mathbf{Z} an impedance matrix)

$$
\mathbf{V}=\mathbf{Z I}=\mathbf{I} \mathbf{\Lambda} ; \quad \mathcal{P}=\mathbf{V}^{\prime} \mathbf{I}=\mathbf{I}^{\prime} \mathbf{\Lambda} \mathbf{I}
$$

where $\mathbf{Z}, \mathbf{I}, \mathbf{V}, \boldsymbol{\Lambda} \in \mathbb{C}, A=A^{\dagger}$ is a square conjugate-symmetric matrix, and \mathbf{I}, \mathbf{V} are vectors of the size of \mathbf{Z} and \mathcal{P} is the power. Here \mathbf{Z}^{\dagger} is the complex transpose (see Appendix A, p. 253).

Double roots not allowed

For the 2×2 case of double roots the matrix has Jordan form

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]
$$

Then

$$
\boldsymbol{T}^{n}=\left[\begin{array}{cc}
\lambda^{n} & n \lambda^{n-1} \\
0 & \lambda^{n}
\end{array}\right] .
$$

This generalizes to $n \times n$ matrices having arbitrary combinations of degeneracies (multiple roots), as in symmetric (square) drums, for example

Octave vs. Matlab seeming conflict

Using Octave (version 4.2.2, June 21, 2018):

$$
e_{1,1}=\frac{-b}{\frac{a}{2}-\frac{d}{2}+\frac{1}{2} \sqrt{a^{2}-2 a d+4 b c+d^{2}}}=\frac{-2 b}{(a-d)+\sqrt{(a-d)^{2}+4 b c}} .
$$

5 This looks very different from the Matlab output (above).
Here is what I get with the same command, from Matlab (June 21, 2018):

$$
e_{1,1}=\frac{\frac{a}{2}+\frac{d}{2}-\frac{\sqrt{a^{2}-2 a d+d^{2}+4 b c}}{2}}{c}-\frac{d}{c}=\frac{1}{2 c}\left[(a-d)-\sqrt{(a-d)^{2}+4 b c}\right] .
$$

Here we derive the eigenmatrix \boldsymbol{E}, and eigenvalue matrix Λ given a 2×2 transmission matrix

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & \mathcal{D}
\end{array}\right]
$$

such that $\boldsymbol{T} \boldsymbol{E}=\boldsymbol{E} \Lambda$, using symbolic algebra methods, given by the Matlab/Octave's script

```
syms A B C D T E L %Use symbolic Matlab/Octave
    T=[A B;C D] %Given matrix T
    [E,L]=eig(T) %Find eigenvector matrix E and
    %eigenvalue matrix L
```

These results have been numerically verified to be the same using CkEig.m. Conclusions from the numerical experiment with $(A=[1,2 ; 3,5])$ are:

1. The Octave and Matlab symbolic formulas give the same numeric results for eigenmatrix and eigenvalues.
2. The symbolic and numeric results correctly diagonalize the matrix, that is $\Gamma=E^{-1} A E$.
3. The numeric equations are normalized to 1 : $\operatorname{norm}\left(e_{ \pm}\right)=1$.
4. The symbolic Eigenvectors are not normalized to 1 , rather $E(2,:)=1$.
5. When the numeric result is normalized by the lower element (making it 1) all results agree.

Appendix C

Laplace Transforms

C. 1 Properties of the Laplace Transform

1. Time $t \in \mathbb{R}[\mathrm{~s}]$ and Laplace frequency $[\mathrm{rad}]$ are defined as $s=\sigma+\omega \jmath \in \mathbb{C}$.
2. Given a Laplace transform $(\mathcal{L T})$ pair $f(t) \leftrightarrow F(s)$, in the engineering literature, the time domain is always lower case $[f(t)]$ and causal (i.e., $f(t<0)=0$) and the frequency domain is uppercase [e.g. $F(s)$]. Maxwell's venerable equations are the unfortunate exception to this otherwise universal rule.
3. The target time function $f(t<0)=0$ (i.e., it must be causal). The time limits are $0^{-}<t<\infty$. Thus the integral must start from slightly below $t=0$ to integrate over a delta function at $t=0$. For example if $f(t)=\delta(t)$, the integral must include both sides of the impulse. If you wish to include non-causal functions such as $\delta(t+1)$, it is necessary to extend the lower time limit. In such cases simply set the lower limit of the integral to $-\infty$, and let the integrand $(f(t))$ determine the limits.
4. When taking the forward transform $(t \rightarrow s)$, the sign of the exponential is negative. This is necessary to assure that the integral converges when the integrand $f(t) \rightarrow \infty$ as $t \rightarrow \infty$. For example, if $f(t)=e^{t} u(t)$ (i.e., without the negative σ exponent), the integral does not converge.
5. The limits on the integrals of the forward transform are $t:\left(0^{-}, \infty\right) \in \mathbb{R}$, and the reverse LTs are $\left[\sigma_{o}-\infty \jmath, \sigma_{o}+\infty \jmath\right] \in \mathbb{C}$. These limits will be further discussed in Section 4.5 .2 (p. 177).
6. When taking the inverse Laplace transform, the normalization factor of $1 / 2 \pi \jmath$ is required to cancel the $2 \pi \jmath$ in the differential $d s$ of the integral.
7. The frequency for the LT must be complex, and in general $F(s)$ is complex analytic for $\sigma>\sigma_{o}$. It follows that the real and imaginary parts of $F(s)$ are related. Given $\Re\{F(s)\}$ it is possible to find $\Im\{F(s)\}$ (Boas, 1987). More on this in Section 3.8 (p. 128).
8. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane. This will be explained in Sections 4.4-4.5.2 (p. 163-177).
9. The Laplace step function is defined as

$$
u(t)=\int_{-\infty}^{t} \delta(t) d t= \begin{cases}1 & \text { if } t>0 \\ \mathrm{NaN} & t=0 \\ 0 & \text { if } t<0\end{cases}
$$

Alternatively one could define $\delta(t)=d u(t) / d t$.
10. It is easily shown that $u(t) \leftrightarrow 1 / s$ by direct integration

$$
F(s)=\int_{0}^{\infty} u(t) e^{-s t} d t=-\left.\frac{e^{-s t}}{s}\right|_{o} ^{\infty}=\frac{1}{s}
$$

With the LT step $(u(t))$ there is no Gibbs ringing effect.
11. In many physical applications, the Laplace transform takes the form of a ratio of two polynomials. In such case the roots of the numerator polynomial are called the zeros while the roots of the denominator polynomial are called the poles. For example the LT of $u(t) \leftrightarrow 1 / s$ has a pole at $s=0$, which represents integration, since

$$
u(t) \star f(t)=\int_{-\infty}^{r} f(\tau) d \tau \leftrightarrow \frac{F(s)}{s}
$$

12. The LT is quite different from the FT in terms of its analytic properties. For example, the step function $u(t) \leftrightarrow 1 / s$ is complex analytic everywhere, except at $s=0$. The FT of $1 \leftrightarrow 2 \pi \widetilde{\delta}(\omega)$ is not analytic anywhere.
13. Dilated step function $(a \in \mathbb{R})$

$$
u(a t) \leftrightarrow \int_{-\infty}^{\infty} u(a t) e^{-s t} d t=\frac{1}{a} \int_{-\infty}^{\infty} u(\tau) e^{-(s / a) \tau} d \tau=\frac{a}{|a|} \frac{1}{s}= \pm \frac{1}{s}
$$

where we have made the change of variables $\tau=a t$. The only effect that a has on $u(a t)$ is the sign of t, since $u(t)=u(2 t)$. However $u(-t) \neq u(t)$, since $u(t) \cdot u(-t)=0$, and $u(t)+u(-t)=1$, except at $t=0$, where it is not defined.
Once complex integration in the complex plane has been defined (Section 4.2.2, p. 147), we can justify the definition of the inverse LT (Eq. 3.46). ${ }^{1}$

C. 2 Tables of Laplace transforms

[^60]Table C.1: Functional relationships between Laplace transforms.

$$
\mathcal{L T} \text { functional properties }
$$

$$
\begin{array}{rlr}
f(t) \star g(t)=\int_{t=0}^{t} f(t-\tau) g(\tau) d \tau & \leftrightarrow F(s) G(s) & \\
u(t) \star f(t)=\int_{0^{-}}^{t} f(t) d t & \leftrightarrow \frac{F(s)}{s} & \text { convolution } \\
f(a t) u(a t) & \leftrightarrow \frac{1}{a} F\left(\frac{s}{a}\right) \\
f(t) e^{-a t} u(t) & \leftrightarrow F(s+a) & \text { convolution } \\
f(t-T) e^{-a(t-T)} u(t-T) & \leftrightarrow e^{-s T} F(s+a) & \text { scaling } \\
f(-t) u(-t) & \leftrightarrow F(-s) & \text { damped } \\
f(-t) e^{-a t} u(-t) & \leftrightarrow F(a-s) & \\
\frac{d}{d t} f(t)=\delta^{\prime}(t) \star f(t) & \leftrightarrow s F(s) & \text { damped and delayed } \\
\text { time-reversed \& damped }
\end{array}
$$

Additional transforms

$$
\frac{\sin (t) u(t)}{t} \leftrightarrow \tan ^{-1}(1 / s)
$$

half-sync

Table C.2: Laplace transforms of $f(t), \delta(t), u(t), \operatorname{rect}(t), T_{o}, p, e, \in \mathbb{R}$ and $F(s), G(s), s, a \in \mathbb{C}$. Given a Laplace transform ($\mathcal{L T}$) pair $f(t) \leftrightarrow F(s)$, the frequency domain will always be upper-case [e.g. $F(s)$] and the time domain lower case $[f(t)]$ and causal (i.e., $f(t<0)=0$). An extended table of transforms is given in Table C. 1 on page 267.

$$
f(t) \leftrightarrow F(s) \quad t \in \mathbb{R} ; s, F(s) \in \mathbb{C} \quad \text { Name }
$$

$$
\begin{array}{rlr}
\delta(t) & \leftrightarrow 1 & \text { Dirac } \\
\delta(|a| t) & \leftrightarrow \frac{1}{|a|} & a \neq 0 \\
\delta\left(t-T_{o}\right) & \leftrightarrow e^{-s T_{o}} & \text { time-scaled Dirac } \\
\delta\left(t-T_{o}\right) \star f(t) & \leftrightarrow F(s) e^{-s T_{o}} & \text { delayed Dirac } \\
\sum_{n=0}^{\infty} \delta\left(t-n T_{o}\right)=\frac{1}{1-\delta\left(t-T_{o}\right)} & \leftrightarrow \frac{1}{1-e^{-s T_{o}}}=\sum_{n=0}^{\infty} e^{-s n T_{o}} & \text { one-sided impulse train }
\end{array}
$$

$$
\begin{aligned}
& u(t) \leftrightarrow \frac{1}{s} \\
& u(-t) \leftrightarrow-\frac{1}{s} \\
& u(a t) \leftrightarrow \frac{a}{s} \quad a \neq 0 \in \mathbb{R} \quad \text { dilated or reversed step } \\
& e^{-a t} u(t) \leftrightarrow \frac{1}{s+a} \quad a>0 \in \mathbb{R} \quad \text { damped step } \\
& \cos (a t) u(t) \leftrightarrow \frac{1}{2}\left(\frac{1}{s-a}+\frac{1}{s+a}\right) \quad a \in \mathbb{R} \quad \cos \\
& \sin (a t) u(t) \leftrightarrow \frac{1}{2 \jmath}\left(\frac{1}{s-a}-\frac{1}{s+a}\right) \quad a \in \mathbb{C} \quad \text { "damped" } \sin \\
& u\left(t-T_{o}\right) \leftrightarrow \frac{1}{s} e^{-s T_{o}} \quad T_{0}>0 \in \mathbb{R} \quad \text { time delay } \\
& \operatorname{rect}(t)=\frac{1}{T_{o}}\left[u(t)-u\left(t-T_{o}\right)\right] \leftrightarrow \frac{1}{T_{o}}\left(1-e^{-s T_{o}}\right) \quad \text { rect-pulse } \\
& \text { anti-causal step } \\
& \text { damped step } \\
& \cos
\end{aligned}
$$

$$
\begin{aligned}
u(t) \star u(t)=t u(t) & \leftrightarrow 1 / s^{2} \\
u(t) \star u(t) \star u(t)=\frac{1}{2} t^{2} u(t) & \leftrightarrow 1 / s^{3} \\
\frac{1}{\sqrt{t}} u(t) & \leftrightarrow \sqrt{\frac{\pi}{s}} \\
t^{p} u(t) & \leftrightarrow \frac{\Gamma(p+1)}{s^{p+1}} \\
J_{n}\left(\omega_{o} t\right) u(t) & \leftrightarrow \frac{\left(\sqrt{s^{2}+\omega_{o}^{2}}-s\right)^{n}}{\omega_{o}^{n} \sqrt{s^{2}+\omega_{o}^{2}}}
\end{aligned}
$$ I

Table C.3: The following table provides an extended table of Laplace Transforms. J_{0}, K_{1} are Bessel functions of the first and second kind.

$(t) \leftrightarrow F(s)$

$$
\begin{aligned}
\delta(a t) & \leftrightarrow \frac{1}{a} & a \neq 0 ; \text { Time-scaled Dirac } \\
\delta\left(t+T_{o}\right) & \leftrightarrow e^{s T_{o}} & \text { negative delay } \\
u(a t) & \leftrightarrow \frac{a}{s} & a \neq 0 ; \text { dilate } \\
u(-t) & \leftrightarrow-\frac{1}{s} & \text { anti-causal step } \\
e^{a t} u(-t) & \leftrightarrow \frac{1}{-s+a} & \text { anticausal damped step }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{1 / 2}}{d t^{1 / 2}} f(t) u(t) & \leftrightarrow \sqrt{s} F(s) & & \text { "half" derivative } \\
\frac{d^{1 / 2}}{d t^{1 / 2}} u(t) & \leftrightarrow \sqrt{s} & & \text { "half" derivative } \\
\frac{1}{\sqrt{\pi t}} u(t) & \leftrightarrow \frac{1}{\sqrt{s}} & & \text { "half" integration } \\
\operatorname{erfc}(\alpha \sqrt{t}) & \leftrightarrow \frac{1}{s} e^{-2 \alpha \sqrt{s}} & \text { (Morse-Feshbach-II, p. 1582) } & \alpha>0 ; \text { erfc }
\end{aligned}
$$

$$
\begin{aligned}
J_{o}(a t) u(t) & \leftrightarrow \frac{1}{s^{2}+a^{2}} \\
J_{1}(t) u(t) / t & \leftrightarrow \sqrt{s^{2}+1}-s \\
J_{1}(t) u(t) / t+2 u(t) & \leftrightarrow \sqrt{s^{2}+1}+s=e^{\sinh ^{-1}(s)} \\
\delta(t)+J_{1}(t) u(t) / t & \leftrightarrow \sqrt{s^{2}+1} \\
I_{o}(t) u(t) & \leftrightarrow 1 / \sqrt{s^{2}-1} \\
u(t) / \sqrt{t+1} & \leftrightarrow e^{s} \sqrt{\frac{\pi}{s}} \operatorname{erfc}(\sqrt{s}) \\
\sqrt{t} u(t) * \sqrt{1+t} u(t) & \leftrightarrow e^{s / 2} K_{1}(s / 2) / 2 s
\end{aligned}
$$

Appendix I

| 1500BCE | | IOCE | \|500 | \|1000 | \|1400|1650 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Chinese | Pythagoreans | | Brahmagupta | | Leonardo |
| Babylonia | | | Diophantus | Bhas | ara Bombelli |
| | Archimedes | | | al-Khawarizmi Copernicus | |
| | - Christ | | | 7830 | arco Polo |

Figure I.1: Timeline from the early asians to Bombelli (p. 19).

Chronological history: $16^{\text {th }}$ to $19{ }^{\text {th }}$ centuries									
\|1525		$\mid 1600$	\|1643	\|1700	$\mid 1750$	\|1800	1855		
$\frac{\text { Bombell }}{11526}$	Newton				Gauss				
	Galileo		Jacob Bernoulli 11655 Euler		$\frac{\text { Mozart }}{11756}$				
	11564	Fermat							
		1601	Euler Johann Bernoulli				Beethoven		
	$\frac{\text { Descartes }}{\mid 1596}$		\|1667 ${ }_{\text {Daniel }}^{\text {Dernoulli }}$						

Figure I.2: Timeline from Bombelli to Gauss (p. 22).

Figure I.3: Timeline from Newton to Brillouin (p. 69).

1596	$\mid 1650$	$\mid 1700$	$\mid 1750$	$\mid 1800$

Figure I.4: Timeline from Descartes to Cauchy (p. 104).

Figure I.5: Timeline from Bombelli to Einstein (p. 144).

Appendix J

Figure J.1: Venn diagram showning relations between Engineering, Mathematics and Physics (p. 9).

Figure J.2: Fibinocci sprial (p. 61).

Figure J.3: Newtons method, applied to two polynomials: real roots (left); complex roots (right) (p. 75).

Figure J.4: Colorized plots: Left: trivial case $w(s)=s$; Right: $w(s)=s-\jmath$ (p. 133).

Figure J.5: $w(s)=\sin (0.5 \pi(s-i))(p .134)$.

Figure J.6: Colorized plots of $w(z)=e^{z}$ (left) and $w(z)=\ln (z)$ (right) (p. 134).

Figure J.7: Plots of $w(z)=\operatorname{atan}(z)($ left $)$ and $w(z)=\frac{\imath}{2} \ln \frac{1-\imath z}{1+\imath z}($ right $)($ p. 145).

Figure J.8: Colorized plots of $w(s)=s^{2}$ (left) and $w(s)=-\sqrt{s}$ (right) (p. 159).

Figure J.9: Plot of $3 D$ version of $w(s)= \pm \sqrt{s}$ showing both \pm sheets and cut on $x=0(p .160)$.

Figure J.10: Plots of $w(s)=s, w(s)=\sqrt{(s)}$ and $w(s)=e^{\pi J} \sqrt{s}(p .161)$.

Figure J.11: Plot of $w(s)=\sqrt{(} \pi / s$ (left) and $w(s)=\sqrt{s^{2}+1}$ (right) (p.162).

Figure J.12: Plot of $w(z)=J_{0}(\pi z)$ (left) and $w(s)=\cos (\pi z)$ (right) (p. 176).

Figure J.13: Baffled conical horn (p. 200).

Figure J.14: Webster horn equation setup for derivation (p. 202).

Bibliography

Allen, J. B. (2014), "The relation between tympanic membrane higher order modes and standing waves." in Proceedings of the 12th International Mechanics of Hearing Workshop, edited by K. K. Corey DP (AIP, American Institute of Physics, Melville, NY), p. In Press.

Batchelor, G. (1967), An introduction to fluid dynamics (Cambridge University Press, Cambridge, United Kingdom).

Beranek, L. L. (1954), Acoustics (McGraw-Hill Book Company, Inc., 451 pages, New York).
Beranek, L. L. and Mellow, T. J. (2012), Acoustics: Sound Fields and Transducers (Academic Press Elsevier Inc., Waltham, MA).

Boas, R. (1987), An invitation to Complex Analysis (Random House, Birkhäuser Mathematics Series).
Bode, H. (1945), Network Analysis and Feedback Amplifier Design (Van Nostrand, New York).
Boyer, C. and Merzbach, U. (2011), A History of Mathematics (Wiley), URL https://books. google.com/books?id=BokVHiuIk9UC.

Brillouin, L. (1953), Wave propagation in periodic structures (Dover, London), updated 1946 edition with corrections and added appendix.

Brillouin, L. (1960), Wave propagation and group velocity (Academic Press), pure and Applied Physics, v. 8,154 pages.

Brune, O. (1931a), "Synthesis of a finite two-terminal network whose driving point impedance is a prescribed function of frequency," J. Math and Phys. 10, 191-236.

Brune, O. (1931b), "Synthesis of a finite two-terminal network whose driving point impedance is a prescribed function of frequency," Ph.D. thesis, MIT,
https://dspace.mit.edu/handle/1721.1/10661.
Calinger, R. S. (2015), Leonhard Euler: Mathematical Genius in the Enlightenment (Princeton University Press, Princeton, NJ, USA).

Campbell, G. (1903a), "On Loaded Lines in Telephonic Transmission," Phil. Mag. 5, 313-331, see Campbell22a (footnote 2): In that discussion, ... it is tacitly assumed that the line is either an actual line with resistance, or of the limit such with $\mathrm{R}=0$.

Campbell, G. (1922), "Physical Theory of the Electric Wave Filter," Bell System Tech. Jol. 1(2), 1-32.
Campbell, G. (1937), The collected papers of George Ashley Campbell (AT\&T, Archives, 5 Reiman Rd, Warren, NJ), forward by Vannevar Bush; Introduction by E.H. Colpitts.

Campbell, G. A. (mar 1903b), "On loaded lines in telephonic transmission," Philosophical Magazine Series 6 5(27), 313-330.

Campbell, G. A. (1910), "Telephonic Intelligibility," Phil. Mag. 19(6), 152-9.
Carlin, H. J. and Giordano, A. B. (1964), Network Theory, An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, Englewood Cliffs NJ).

Cauer, E. and Mathis, W. (1995), "Wilhelm Cauer (1900-1945)," Archiv fur Elektronik und Ubertragungstechnik 49(5), 244-251.

Cauer, E., Mathis, W., and Pauli, R. (2000), "Life and work of Wilhelm Cauer (1900-1945)," in Proceedings of the 14-th International Symposium on Mathematical Theory of Networks and Systems, Perpignan, France.

Cauer, W. (1958), Synthesis of Linear Communication Networks: Vols. 1 and 2 (McGraw-Hill).
Cauer, W., Klein, W., Pelz, F., Knausenberger, G., and Warfield, J. (1958), Synthesis of linear communication networks (McGraw-Hill New York).

Condon, E. and Morse, P. (1929), Quantum Mechanics (McGraw-Hill, New York).
Crandall, I. B. (1926), Theory of Vibrating Systems and Sound (D. Van Nostrand Company, Inc., 272 pages, New York), book contains extensive Bibliographic information about applied acoustics and speech and hearing. Crandall was the first to analyze speech sounds in a quantitative way.

D’Angelo, J. P. (2017), Linear and complex analysis for applications (CRC Press, Taylor \& Francis Group).

Einstein, A. (1905), "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen," Annalen der physik 322(8), 549-560.

Fagen, M. (Ed.) (1975), A history of engineering and science in the Bell System - The early years (1875-1925) (AT\&T Bell Laboratories).

Feynman, R. (1970a), Feynman Lectures On Physics (Addison-Wesley Pub. Co.).
Feynman, R. (1970b), Feynman Lectures On Physics: Vol. I (Addison-Wesley Pub. Co.).
Feynman, R. (1970c), Feynman Lectures On Physics: Vol. II (Addison-Wesley Pub. Co.).
Feynman, R. (1970d), Feynman Lectures On Physics: Vol. III (Addison-Wesley Pub. Co.).
Flanders, H. (June-July 1973), "Differentiation under the integral sign," American Mathematical Monthly 80(6), 615-627.

Fletcher, N. and Rossing, T. (2008), The Physics of Musical Instruments (Springer New York), URL https://books.google.com/books?id=9CRSRYQlRLkC.

Fry, T. (1928), Probability and its engineering uses (D. Van Nostrand Co. INC., Princeton NJ).
Galileo (1638), Two new sciences (1914, Macmillan \& Co, New York,Toronto, http://files.libertyfund.org/files/753/0416_Bk.pdf).

Goldsmith, A. N. and Minton, J. (1924), "The Performance and Theory of Loud Speaker Horns," Radio Engineers, Proceedings of the Institute of 12(4), 423-478.

Goldstein, L. (Jun-Jul 1973), "A History of the Prime Number Theorem," The American Mathematical Monthly 80(6), 599-615.

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994), Concrete Mathematics: A Foundation for Computer Science (Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA), 2nd ed.

Greenberg, M. D. (1988), Advanced Engineering Mathematics (Prentice Hall, Upper Saddle River, NJ, 07458), URL http://jontalle.web.engr.illinois.edu/uploads/493/ Greenberg.pdf.

Grosswiler, P. (2004), "Dispelling the Alphabet Effect," Canadian Journal of Communication 29(2).
Gustavsen, B. and Semlyen, A. (1999), "Rational approximation of frequency domain responses by vector fitting," Power Delivery, IEEE Transactions on 14(3), 1052-1061.

Hahn, W. (1941), "A new method for the calculation of cavity resonators," JAP 12, 62-68.
Hamming, R. (Mar 1986), "You and your research," Unpublished talk at Bell Communication Research Colloquim Seminar https://en.wikiquote.org/wiki/Richard_Hamming(1), 1-25, URL \url\{http://www.csee.usf.edu/~zheng/hamming-research.pdf\}, Jim F. Kaiser.

Hanna, C. R. and Slepian, J. (1924), "The Function and Design of Horns for Loud Speakers," American Institute of Electrical Engineers, Transactions of the XLIII, 393-411.

Heaviside, O. (1892), "On resistance and conductance operators, and their derivatives inductance and pe rmittance, especially in connection with electric and magnetic energy," Electrical Papers 2, 355-374.

Helmholtz, H. (Jan 1858), "Ueber Integrale der hydrodynamichen Gleichungen welche den Wirelbewegungen entsprechen (On integrals of the Hydrodynamic Equations that correspond to Vortex Motions)," Journal fur die reine und angewandte Mathematik 55, 25-55.

Helmholtz, H. (1863a), On the sensations of tone (Dover (1954), 300 pages, New York), dover edition of 1954.

Helmholtz, H. (Feb 1863b), "Ueber den Einfluss der Reibung in der Luft auf die Schallbewegung (On the influence of friction in the air on the sound movement)," Verhandlungen des naturhistoischmedicinischen Vereins zu Heildelberg III(17), 16-20, sitzung vom 27.

Helmholtz, H. (1978), "On Integrals of the Hydrodynamic Equations that Correspond to Vortex Motions," International Journal of Fusion Energy 1(3-4), 41-68, URL http://www.wlym.com/ archive/fusion/fusionarchive_ijfe.html, English translation of Helmholtz's 1858 paper, translated by Uwe Parpart (1978). The image is on page 41.

Heras, R. (2016), "The Helmholtz theorem and retarded fields," European Journal of Physics 37(6), 065204, URL http://stacks.iop.org/0143-0807/37/i=6/a=065204.

Horn, R. and Johnson, C. (1988), Matrix Analysis (Cambridge Univ. Press, Cambridge, England).
Hunt, F. V. (1952), Electroacoustics, The analysis of transduction, and its historical background (The Acoustical Society of America, 260 pages, Woodbury, NY 11797).

Johnson, D. H. (2003), "Origins of the equivalent circuit concept: the voltage-source equivalent," Proceedings of the IEEE 91(4), 636-640, URL http://www.ece.rice.edu/~dhj/paper1. pdf.

Karal, F. C. (1953), "The analogous acoustical impedance for discontinuities and constrictions of circular cross section," J. Acoust. Soc. Am. 25(2), 327-334.

Kennelly, A. E. (1893), "Impedance," Transactions of the American Institute of Electrical Engineers 10, 172-232.

Kim, N. and Allen, J. B. (2013), "Two-port network Analysis and Modeling of a Balanced Armature Receiver," Hearing Research 301, 156-167.

Kim, N., Yoon, Y.-J., and Allen, J. B. (2016), "Generalized metamaterials: Definitions and taxonomy," J. Acoust. Soc. Am. 139, 3412-3418.

Kirchhoff, G. (1868), "On the influence of heat conduction in a gas on sound propagation," Ann. Phys. Chem. 134, 177-193.

Kirchhoff, G. (1974), "On the influence of heat conduction in a gas on sound propagation (English)," in Physical Acoustics, Benchmark Papers in Acoustics Volume 4, edited by B. Lindsay (Dowden, Hutchinson \& Ross, Inc., Stroudsburg, Pennsylvania), pp. 7-19.

Kleiner, M. (2013), Electroacoustics (CRC Press, Taylor \& Francis Group, Boca Raton, FL, USA), https://www.crcpress.com/authors/i546-mendel-kleiner.

Kusse, B. R. and Westwig, E. A. (2010), Mathematical physics: applied mathematics for scientists and engineers (John Wiley \& Sons).

Lamb, H. (1932), Hydrodynamics (Dover Publications, New York).
Lighthill, S. M. J. (1978), Waves in fluids (Cambridge University Press, England).
Lin, J. (jan 1995), "The Needham Puzzle: Why the Industrial Revolution did not originate in China," in Economic Behavior, Game Theory, and Technology in Emerging Markets, edited by B. Christiansen (PNAS and IGI Global, 701 E Chocolate Ave., Hershey, PA), vol. 43(2), chap. Economic Development and Cultural Change, pp. 269-292, DOI:10.1073/pnas. 0900943106 PMID:19131517, DOI:10.1086/452150.

Mason, W. (Apr 1927), "A Study of the Regular Combination of Acoustic Elements with Applications to Recurrent Acoustic Filters, Tapered Acoustic Filters, and Horns,"" Bell System Tech. Jol. 6(2), 258-294.

Mason, W. (Feb 1928), "The propagation characteristics of sound tubes and acoustic filters," Phy. Rev. 31, 283-295.

Mawardi, O. K. (jul 1949), "Generalized Solutions of Webster’s Horn Theory," J. Acoust. Soc. Am. 21(4), 323-30.

Mazur, J. (2014), Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers (Princeton University Press, Princeton, NJ).

McMillan, E. M. (1946), "Violation of the reciprocity theorem in linear passive electromechanical systems," Journal of the Acoustical Society of America 18, 344-347.

Menzies, G. (2004), 1421: The Year China Discovered America (HarperCollins, NYC).
Menzies, G. (2008), 1434: The year a Magnificent Chinese fleet sailed to Italy and ignited the renaissance (HarperCollins, NYC).

Miles, J. W. (sept 1948), "The coupling of a cylindrical tube to a half-infinite space," J. Acoust. Soc. Am. 20(5), 652-664.

Miller, D. A. (Sep 1991), "Huygens's wave propagation principle corrected," Optics Letters 16(18), 1370-2.

Montgomery, C., Dicke, R., and Purcell, E. (1948), Principles of Microwave Circuits (McGraw-Hill, Inc., New York).

Morse, P. and Feshbach, H. (1953), Methods of theoretical physics. Vol. I. II (McGraw-Hill, Inc., New York).

Morse, P. M. (1948), Vibration and sound (McGraw Hill, 468 pages, NYC, NY).
Newton, I. (1687), Philosophiae Naturalis Principia Mathematica (Reg. Soc. Press).
Olson, H. F. (1947), Elements of Acoustical Engineering (2 ${ }^{n}$ Edition) (D. Van Nostrand Company, 539 pages).

Palmerino, C. (1999), "Infinite degrees of speed: Marin Mersenne and the debate over Galileo's Law of free fall," Early Science and Medicine 4(4), 269-328, 'www.jstor/stable/4130144'.

Papasimakis, N., Raybould, T., Fedotov, V. A., Tsai, D. P., Youngs, I., and Zheludev, N. I. (May 2018), "Pulse generation scheme for flying electromagnetic doughnuts," Phys. Rev. B 97, 201409, URL https://link.aps.org/doi/10.1103/PhysRevB.97.201409.

Papoulis, A. (1962), The Fourier integral and its applications (McGraw-Hill Book Co., New York).
Parent, P. and Allen, J. B. (2010), "Wave model of the human tympanic membrane," Hearing Research 263, 152-167.

Pierce, A. D. (1981), Acoustics: An Introduction to its Physical Principles and Applications (McGrawHill, 678 pages, New York).

Pipes, L. A. (1958), Applied Mathematics for Engineers and Physicists (McGraw Hill, NYC, NY).
Ramo, S., Whinnery, J. R., and Van Duzer, T. (1965), Fields and waves in communication electronics (John Wiley \& Sons, Inc., New York).

Rayleigh, J. W. (1896), Theory of Sound, Vol. I 480 pages, Vol. II 504 pages (Dover, New York).
Riemann, B. (1851), "Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse [An alternative basis for a general theory of the functions of complex variables]," Ph.D. thesis, University of GÖttingen.

Robinson, S. R. (2017), "Effects of ear-canal geometry and middle-ear pressure on wideband acoustic reflectance," Ph.D. thesis, Univ. of IL, Urbana IL, Maryland.

Salmon, V. (1946), "Generalized plane wave horn theory," J. Acoust. Soc. Am. 17(3), 199-211.
Schelkunoff, S. (1943), Electromagnetic waves (Van Nostrand Co., Inc., Toronto, New York and London), 6th edition.

Schwinger, J. S. and Saxon, D. S. (1968), Discontinuities in waveguides : notes on lectures by Julian Schwinger (Gordon and Breach, New York, United States).

Shaw, E. (1970), "Acoustic Horns with Spatially varying density or elasticity," J. Acoust. Soc. Am. 50(3), 830-840.

Sommerfeld, A. (1949), Partial differential equations in Physics, Lectures on Theoretical Physics, Vol. I (Academic Press INC., New York).

Sommerfeld, A. (1952), Electrodynamics, Lectures on Theoretical Physics, Vol. III (Academic Press INC., New York).

Stewart, J. (2012), Essential Calculus: Early Transcendentals (Cengage Learning, Boston, MA), https:

Stillwell, J. (2002), Mathematics and its history; Undergraduate texts in Mathematics; $2 d$ edition (Springer, New York).

Stillwell, J. (2010), Mathematics and its history; Undergraduate texts in Mathematics; 3d edition (Springer, New York).

Van Valkenburg, M. (1960), Introduction to Modern Network Synthesis (John Wiley and Sons, Inc., New York).

Van Valkenburg, M. (1964a), Network Analysis second edition (Prentice-Hall, Englewood Cliffs, N.J.).
Van Valkenburg, M. E. (1964b), Modern Network Synthesis (John Wiley \& Sons, Inc., New York, NY).
Vanderkooy, J. (1989), "A model of loudspeaker driver impedance incorporating eddy currents in the pole structure," JAES 37(3), 119-128.

Webster, A. G. (1919), "Acoustical impedance, and the theory of horns and of the phonograph," Proc. Nat. Acad. Sci. 5, 275-282.

Index

$\nabla \times()$: see curl, 187
$\nabla \cdot()$: see divergence, 187
\mathbb{F} : see fractional numbers, 33
$\Gamma(s)$: reflectance, 206
$5 \nabla()$: see gradient, 187,198
$\nabla^{2}()$: see Laplacian, 42, 187
\mathbb{N} : see counting numbers, 32,247
\mathbb{P} : see primes, 32
\mathbb{Q} : see rational numbers, 33
$10 \boldsymbol{T}(s)$: see transmission matrix, 124
$\nabla^{2}()$: see vector Laplacian, 187
\mathcal{Y} : see characteristic admittance, 216
\mathbb{Z} : see integers, 32
\mathcal{Z} : see characteristic impedance, 216
$\boldsymbol{A}_{\|}, \boldsymbol{A}_{\perp}, 210$
$\delta(t)$: Dirac impulse, 269
$\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{H}, \boldsymbol{B}:$ Definitions, 228
$\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{H}, \boldsymbol{B}:$ Units, 229
κ, propagation function, 71
\perp : see perp p. 248, 32
$\tan (s)$, inverse, 144
$\tan ^{-1}(s), 144$
$\tau_{g}(\omega)$: group delay, 144
$\zeta(s)$, Riemann, 48
$\zeta(x)$, Euler, 48
$k a<1,234$
$u(t)$ Heaviside step, 269
$u(t)$ step function, 265
ceil(x), 250
compan, 81
conv (A, B) , 81, 102
deconv (A, B), 81
fix(x), 250
floor(x), 53, 250
$\bmod (x, y), 56$
poly(R), 81
polyder(), 81
polyval(), 80, 102
rem (x,y), 56
residue (), 102
residue (N, D), 81
root(), 100, 102
round (x), 250
roundb (x), 250
1-port, 132
2-port, 132
abacus, 31, 236
ABCD: see transmission matrix, 124
abscissa, see domain, 163
active/passive, 285
admittance, poles and zeros, 206
admittance: see impedance, 124
algebraic network, see Transmission matrix, 129
analytic continuation, 86
analytic functions, 38, 90, 144
analytic geometry, 104, 108
analytic, complex, 72, 91, 130
analytic, evolution operator, 71
anti-reciprocal, see reciprocity, 131
Assignments: AE-1, 93
Assignments: AE-2, 114
Assignments: AE-3, 138
Assignments: DE-1, 150
Assignments: DE-2, 166
Assignments: DE-3, 180
Assignments: NS-1, 28
Assignments: NS-2, 43
Assignments: NS-3, 62
Assignments: VC-1, 209
Assignments: VC-2, 238
Bach, J. S., 26
Bardeen, John, 92
Beranek, Leo, 243
Bernoulli, Daniel, 69
Bernoulli, Jakob, 25
Bernoulli, Johann, 25
Bessel function, 161, 176, 177, 179
Bessel function, roots, 201
Bethe, 92
Bhāskara II, early calculus, 10
Bhâskara II, 59
bi-harmonic, 148
bilinear transformation, 102, 136, 251, 285
Boas, 243
Bode, 243

Bombelli, 19, 22, 35, 145
Brahmagupta, 19, 31, 59, 85, 237
branch cut, 134, 158-160
branch index, 134
branch points, 159
Brillouin zones, 154
Brillouin, Léon, 69, 71, 92, 201, 220, 243
Brune Condition, 156
Brune condition, 89

Campbell, George Ashley, 201, 203, 220
Cantor, 33
Cardano, 72
Cauchy, 42, 69, 91, 135, 158
15 Cauchy integral formula, 175
Cauchy integral theorem, 42, 163, 175
Cauchy residue formula, 193
Cauchy residue theorem, 83, 175, 220
Cauchy-Riemann conditions, 147
识
causality, 125, 283, 284
CFA, 51
CFA matrix, 276
CFA: see continued fractions, 54
5 characteristic admittance, 216
characteristic impedance, 183
Chebyshev, 41
Chinese four stone problem: see puzzles, 39
chord-tangent methods, 135, 136
CoC, 225
codomain, 91
CoG, 225
colorized plots: see plots, colorized , 133
companion matrix, 79, 81, 270
completing the square, 73
complex analytic, $144,157,158,160$
complex analytic function, 71, 72, 90, 91, 128, 131, 133, 135, 136, 145-148, 154-159, 161, 163-165, 175-178, 194, 196, 199, 220
complex analytic functions, 90
complex analytic: see analytic, 90
complex analytic: see causal, 131
complex frequency, 154
complex frequency plane, 156
complex frequency, see Laplace frequency, 175
complex numbers, 33
complex numbers, Newton's view, 145
complex numbers: history, 35
complex numbers: polar representation, 34
complex propagation function, see propagation function, 71, 154
composition, 41, 59, 102, 104, 105, 108, 120, 124, 135, 136
composition: line and sphere, 135
compressible, 227
conjugate of a complex number, 35
conjugate variables, 122,165
conservation of energy, $22,70,88,103,122,146$, 155, 156
conservative field, $149,195,227$
continued fractions, 46, 50, 54, 56, 57, 60
continued fractions, circuit theory, 279
convex hull, 77, 86
convolution, 100, 101, 126, 177
coprimes, $32,33,50,51,53$
counting numbers, 32
cryptography, 38
cubic, 72
curl, 187
curl $\nabla \times(), 42,190,198,225$
d'Alembert, 23, 25, 26, 69, 71, 100, 144, 154, 191, 206, 216, 220, 230
d'Alembert's superposition principle, 206
day: seconds in, 22
deconv(), 102
deconvolution, 81, 102
degree vs. order, 161
degree, fractional, 251
degree, polynomials, $72,100,161,250$
degrees of freedom, 80, 227
delay, see group delay, 144
derivative, fractional, 161
derivative, half, 269
derivative, order, 161
Descartes, 22, 24, 100, 144
determinant, 109, 113, 189, 252, 254
DFT, 125
diffusion equation, 196-198, 220
Diophantus, 17, 19, 58
dispersion relation, 154
dispersion relation, see propagation function, 154
dispersive wave propagation, 71
divergence, 187
divergence $\nabla \cdot(), 42,190,198,225$
division with rounding, 53
DoC, 225
DoF: see degrees of freedom, 80
DoG, 225
domain, 91
domain-coloring: see plots, colorized, 133
driving-point impedance, 284
DTFT, 125
dynamic stiffness of air, 71
eardrum standing waves, 234
eigen-function of $d / d t, 178$
eigen-space, see vector space, 201
eigenanalysis, 20
eigenanalysis: 2×2 matrix, 83,262
eigenanalysis: Fibonacci, 84
eigenanalysis: Pell's equation, 60
eigenfunction, 206
eigenmodes, 39
eigenmodes: physical explanation, 193
eigenvalues, 61, 80-83
eigenvalues, Fibonacci sequence, 83
eigenvalues, Pell's equation, 83, 260
Einstein, 72, 271
Einstein, Albert, 69
elimination, 104, 105
elliptic differential equation, 196
energy, 22, 23, 70, 122, 165, 285, 286
entire function, 90,205
entire functions, 88,206
entropy, 50
epicycle, 70
equations, linear, 85
equi-partition theorem, 72
Eratosthenes, 48
error function, 269
essential singularity, 158, 159
Euclid, 33
Euclid's formula, 19, 58, 97
Euclidean algorithm, 50, 51
Euclidean length, 106
Euler, 24-26, 69, 135
Euler product formula, 78
Euler product formula: see Riemann ζ function, 78
Euler's equation, 200
evanescent modes, 219
evolution, 197
evolution operator $\kappa(s), 71$
Ewald, 92
extended complex plane, 135, 136
factoring, 72
Fermat, 22, 24, 59, 100, 144
Feshbach, 243
Feynman, 186, 243
FFT, 125
Fibonacci recursion formula, 31
Fibonacci sequence, 61, 66, 80, 84, 110, 120

Fibonacci sequence eigenanalysis, 84
Fibonocci sequence eigen-decomposition, 66
Fletcher, Harvey, 69
Fourier Series, 125
Fourier transform, 125
Fourier transform properties, 127
Fourier transform table, 126
fractional numbers, 33
fractional, degree, 161
fractional-order, 161
frequency domain, 71, 125, 157
frequency, complex, 175
frequency, complex: Laplace frequency, 71
Fry, 243
FTC, 147
FTCC, 146
FTVC, 195
function, circular, 91
function, inverse, 91
function, periodic, 91
functions, causal, 130
functions, periodic, 130
functions: see complex analytic, 90
fundamental theorems: algebra, 41, 42, 100, 102
fundamental theorems: arithmetic, 33, 36, 41, 42
fundamental theorems: calculus, 42, 146
fundamental theorems: complex calculus, 42, 135, 143, 146
fundamental theorems: complex calculus (Cauchy), 151
fundamental theorems: prime number, 41
fundamental theorems: real calculus (Leibniz), 151
fundamental theorems: scalar vs. vector, 143
fundamental theorems: table of, 147
fundamental theorems: vector calculus, $24,42,187,85$ 195, 226

Galileo, 7, 22, 70, 92, 144, 193, 196
Gauss, 42, 69, 158
Gauss's law, 229
Gauss, CFA vs. GCD, $54 \quad 90$
Gauss, GCD vs. CFA, 277
Gauss-Lucas theorem, 77
Gauss-Lucas theorem: inverse, 86
Gaussian elimination, 112
GCD, 51
GCD: see greatest common divisor, 39
generalized flow, 122
generalized force, 122
generalized impedance, 122, 123, 199
geometric series, 87
Gibbs phenomenon, 126, 266

GoD, 225
gOd, 225
gOd: Little-god, 226
gradient, 187
gradient $\nabla(), 42,190,198,225$
gravity, 23, 70, 72, 108, 188, 196
gravity waves, 72
greatest common divisor, 39, 50-52, 54, 275
Green, 243
Greens Theorem, 148
group delay, 144
gyrator, 121, 131, 132, 283
gyro-scope, 189
Halley, 9, 10
Hamming, 13
Hankel function, 205
Heaviside, 69
Heaviside step function, 265
Heisenberg, 92
Heisenberg, Werner, 59, 83
Helmholtz, 69, 144, 226, 243, 271
Helmholtz portrait, 226
Helmholtz Theorem, 24
Helmholtz's decomposition theorem, 187
Helmholtz's decomposition, see fundamental theorem of vector calculus, 226
Hilbert space, see vector space, 201
Hilbert transform, 125
Homework, see Assignments, 28
horn equation, 191, 201, 203, 216, 222
horn, conical, 218
horn, exponential, 218
horn, uniform, 216
Hunt, 243
Huygens, 144, 200
hyperbolic differential equation, 196
IEEE-754, 33, 37, 72, 81
impedance, 103, 124, 129, 132, 148, 154, 155, 165, 175, 176
impedance, Brune, 103
impedance, generalized, 199
impedance, poles and zeros, 206
impulse function, 269
impulse response, 251
incompressible, 227
inner product: see scalar product, 106
integers, 32
integers, utility of, 36
integration by parts, 204
integration, half, 269
intensity, 154
internet security, 38, 39
intersection, 104
intersection of curves, 104, 109, 112
intersection of sets, 104
intersection point, 109
irrational poles, 159
irrotational, 189, 227, 228
Kelvin, Lord: William Thompson, 69
Kepler, 70
Kirchhoff, 42, 69, 271
Kirchhoff's laws, 123, 199
Kirchhoff's portrait, 226
Klein, Felix, 8
Kleppler, Daniel, $236 \quad 65$
Lagrange, 59
Lamb, 243
Laplace and the speed of sound, 24
Laplace frequency, $71,124,125,156,157,175$, 265
Laplace frequency plane, 156
Laplace transform, 129, 266
Laplace transform, impedance, 156
Laplace transforms: Properties I, 265, 267
Laplace transforms: Table II, 268
Laplace transforms: Table III, 269
Laplacian, 187
Laplacian $\nabla^{2}, 165,189,196,198,201,225$
Laplacian N dimensions, 191
Laplacian, scalar $\nabla^{2}, 42 \quad 80$
Laplacian, vector $\boldsymbol{\nabla}^{2}, 42,226$
laws of gravity, 70
Leibniz, 10
length, Euclidean, 106
Leonardo da Vinci, 22
light, speed of, 228, 233
Lighthill, 243
linear equations, 100
linearity, 283, 284
logarithmic derivative, $75,77,159,162$
logarithmic derivative: definition, 75
Lord Kelvin, 69
Lord Rayleigh, 69
Möbius transformation, see bilinear, 103
Mason, Warren, 185
Mason, Warren P., 271
matrix algebra, 104
Maxwell, 42, 69
Maxwell's equation: matrix form, 229

Maxwell's equations, 27, 42, 143, 228, 234
Maxwell's equations: d'Alembert solution, 230
Maxwell's equations: names, 228
Maxwell's equations: units, 229
5 Maxwell's matrix wave equation, 230
meromorphic, 159
meromorphic function, 159
Mersenne, 22, 144, 154, 193
Mersenne and the speed of sound, 71
ation, 183
Nyquist, H., 69, 132
Oakley, Barbra, 13
octave, 41
Ohm's law, 122-124, 132, 199

45 parabolic differential equation, 196
partial fraction expansion, $89,161,164$
passive, 283, 285
passwords, 39
Pauli, 92

Pell's equation, 59
Pell's equation, Heisenberg's view, 31, 59
Pipes, 243
Plimpton-322, 58
plots, colorized: $e^{\pi J} \sqrt{s}, 161$
plots, colorized: $\operatorname{atan}(z), 145$
plots, colorized: $\pm \sqrt{s}, 161$
plots, colorized: $\log (), 134$
plots, colorized: $\log \frac{1-z_{j}}{1+z_{j}}, 145$
plots, colorized: $\sqrt{s^{2}+1}, 162$
plots, colorized: $J_{o}(\pi z)$ vs. $\cos (\pi z), 176$
plots, colorized: $s^{2}, \sqrt{s}, 159$
plots, colorized: $w(z)=\log z, 134$
plots, colorized: $w(z)=e^{z}, 134$
plots, colorized: reference condition, 133
PNT: see prime number theorem, 32
Poincare, 69
point at infinity, 135-137
Poisson, 196, 197
poles, 251, 266
poles, degree, 16170
poles, fractional, 161, 251
poles, simple, 164
poly(), 102
polynomial, 72
polynomial, long division, 102
polynomials, 20
positive-definite, 285
positive-real, $89,156,205,285$
postulates, 130, 283
postulates, Feynman's view, 12980
postulates, of horns, 204
postulates, of systems, 71, 129, 130
potential, 187, 194, 222
power, 122, 154, 155, 165, 285
Poynting vector, 230
prime number theorem, 32, 40, 41, 50
prime sieve, 48,49
primes, 32, 38, 41, 237
primes, Eratosthenes, 49
primes, Mersenne, 23
Principia, 10, 24, 71, 144
probability: average, 140
probability: event, 140
probability: expected value, 140
probability: experiment, 140
probability: observable, 140
probability: random variable, 140
probability: sampling noise, 141
probability: the mean of many trials, 140
probability: the number of events, 140
probability: trial, 140
probability: uncertainty, 140
propagation function, $71,124,154$
propagation function, conical horn, 218
propagation function, exponential horn, 218
propagation function, uniform horn, 216
propagation function, with losses, 271, 273
public-key security, 39
public-key, see cryptography, 38
puzzles, 39, 117
Pythagoras, 17
Pythagorean comma, 237
Pythagorean triplets, 19, 31
Pythagoreans, 17, 22, 33, 36, 38, 58, 59, 85
Pythagoreans, fate, 21
quadratic, 100
quadratic equation, solution, 73
quadratic, solution, 73
quantum mechanics, 39, 83, 189, 205, 235, 236
quartic, 72
quasi-statics, 132, 233, 234, 271, 283, 287
quintic, 72
Ramo, 243
rational function, 102, 103, 158, 206
rational numbers, 33
Rayleigh, 243, 271
Rayleigh reciprocity, see reciprocity, 131
Rayleigh, Lord: John William Strutt, 69
reciprocal, see reciprocity, 131
reciprocity, 121, 131, 283, 286
reflectance, 103, 206, 207, 215, 216
region of convergence: see $\mathrm{RoC}, 88,130$
relatively prime, 32
removable singularity, 158
residue, $81,89,159,161,164,175$
residue Theorem, 176
residue, impedance, 164
residue-expanded, 57, 80
reversibility, 283, 287
reversible system, eigenanalysis, 262
reversible systems, 131
RHP, 148
Riemann, 69, 158, 178
Riemann $\zeta(s)$: definition, 98
45
ann sheet, 158, 160
Riemann sphere, 135
right half-plane, see RHP, 148
RoC, 38, 86, 88, 90, 128, 144, 148, 158
RoC: definition, 87, 130
so RoD: definition, 87, 130
roots, 72
roots, Bessel function, 201
Rydberg atom, 82, 193
Rømer, Ole, 24, 59

Sagan, Carl, 233

Salmon, Vince, 39
sampling theorem, 132
scalar field, 187
scalar product, 101, 106, 107, 128, 233
scalar product, see norm, 106
Schrödinger's equation, 39
Schrödinger, Erwin, 39, 83
Schwarz inequality, 107, 110, 111
seconds in a day, 22
semitone, 17, 237
separation of variables, 219
set theory, 33
set theory symbols defined, 248
Shannon entropy, 50
sheet-index, 159
sieve, 49
signal processing, digital, 62
signals, 125
simple pole, 77
singular circular: see RoC definition, 130
Singular value decomposition, 85
singularity, 158
Slater, J.C., 243
Smith chart, 145
solenoidal, see incompressible, 226
solenoidal, see irrotational, 228
Sommerfeld, 69, 92, 158, 233, 243
Sommerfeld, Arnold, 69
spatial invariant, 283, 287
spectrum: see eigenvalues, 193
speed of light, 24, 59, 72, 228
speed of light, Einstein's view, 233
speed of light, first measurements, 24
speed of sound: higher order modes, 234
speed of sound: Mersenne measures of, 71
speed of sound: Newton first calculates it, 71
spiral of Fibonacci, 61, 291
spiral of Theodorus, 38
step function, 269
step function, Heaviside, 265
Stokes, 42, 243
Stokes theorem, 229
Stokes's law, 229
stream 1, 27, 31, 40, 41
stream 2, 27, 40-42, 69, 70
stream 3, 27, 40-42, 62
stream 3a, 143
stream 3b, 185
Sturm-Liouville, 204, 219
SVD, 85
symmetry, 125, 132
systems, 125
Taylor series, 85, 88, 90, 157, 158
Taylor series formula, 147
telegraph equation, 201
telephone equation, 201
teslas, 228
Thévenin parameters, 120, 121, 207, 229, 284
thermal conductivity, 198
time domain, 125
Time Line: 16 BCE-17 CE, 19
Time Line: $16-20$ CE, 144
Time Line: 16-18 CE, 22
Time Line: 17-20 CE, 69
Time Line: 17-19 CE, 104
time-invariant, 283, 286
top, 189
train problem, 181, 183
transmission line, 103, 124, 145
transmission line, generalization, 200
transmission lines, 201
transmission lines, CFA, 280
transmission matrix, 120, 124, 131, 216, 283, 284, 288
trap-door function, 39
triangle inequality, 107
triple product, 106
triple product, see vector triple product, 108
Units: $\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{H}, \boldsymbol{B}, 229$
vector cross product, 107
vector cross product: see vector product, 108
vector identity mnemonics: DoG, GoD, DoC, CoG, CoC, 225
vector identity: CoC, 233
vector identity: CoG, 232
vector identity: DoC, 232
vector identity: DoG, 188
vector identity: GoD, 188
vector identity: gOd, 226
vector identity: Laplacian, 233
vector inner product: see scalar product, 108
vector Laplacian, 187
vector product, 106, 107, 233
vector space, 105, 106, 233
vector space, Fourier transform, 111
vector triple product, 108
vector wedge product, 107
vector, three, 108
vector, unit, 108
vectors, 104
visco-thermal loss, 71, 185, 271, 273
wave equation, 70, 200
wave number: see propagation function, 71
wavelength, 71, 154
Webers, 228
Webster horn equation, see horn equation, 201, 20260
Webster Laplacian, 201
wedge product: see vector wedge product, 107
year: days in, 22
year: improved definition, 23
z-transform, 61, 125
Zeno's paradox, 143
zeros, 251, 266
zeta function RoC, 99
zeta function, Euler, 48
zeta function, poles, 99
zeta function, product formula, 99
zeta function, Riemann, 48, 98
Zhang, Yiming, 276
zviz.m, see plots, colorized, 133

[^0]: ${ }^{1}$ See Fig. 2.2, p. 59.
 ${ }^{2}$ One might reasonably view Euclid's role as that of a mathematical messenger.

[^1]: ${ }^{3}$ https://en.wikipedia.org/wiki/Joseph_Needham
\#cite_note-11

[^2]: ${ }^{4}$ It would be interesting to search the archives of the monasteries, where the records were kept, to determine exactly what happened during this religious blackout.
 "'It looks like Greek to me."

[^3]: ${ }^{6}$ https://en.oxforddictionaries.com/usage/that-or-which
 ${ }^{7}$ It seems likely that the Chinese and Egyptians also did this, but it is more difficult to document.

[^4]: ${ }^{8}$ http://muse.tau.ac.il/museum/galileo/pendulum.html

[^5]: ${ }^{9}$ For example, if the year were $364=2^{2} \cdot 7 \cdot 13$ days, it would would make for shorter years (by 1 day), 13 months per year (e.g., $28=2 \cdot 2 \cdot 7$ day vacation per year?), perfect quarters, and exactly 52 week. Every holiday would always fall on the same day, every year.
 ${ }^{10}$ http://mathworld.wolfram.com/MersennePrime.html

[^6]: ${ }^{11}$ The square root of the ratio of the specific heat capacity at constant pressure c_{p} to that at constant volume c_{v}.
 ${ }^{12}$ https://en.wikipedia.org/wiki/Pierre-Simon_Laplace\#Speed_of_sound
 ${ }^{13}$ https://www.youtube.com/watch?v=b9F8Wn4vf5Y
 ${ }^{14}$ https://www.youtube.com/watch?v=rZ0wx3uD2wo
 ${ }^{15}$ https://en.wikipedia.org/wiki/Speed_of_light
 ${ }^{16}$ The \log and tan functions are related by Eq. 4.2 p. 144.
 ${ }^{17}$ https://en.wikipedia.org/wiki/Early_life_of_Isaac_Newton

[^7]: ${ }^{18}$ It seems clear that Descartes was also a teacher.
 ${ }^{19}$ https://www.youtube.com/watch?v=6b5MM4x-3aQ, https://www.uchicago.edu/features/combining_math_and_music/
 ${ }^{20}$ There are at least three useful exponential scales: Factors of 2 , factors of $e \approx 2.7$, and factors of 10 . The decibel uses factors of $2(6[\mathrm{~dB}])$ and factors of $10(20[\mathrm{~dB}])$. Information theory uses powers of $2(1[\mathrm{bit}]), 4(2[\mathrm{bits}])$. Circuit theory uses factors of both e and 10 .
 ${ }^{21}$ http://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html.
 ${ }^{22}$ https://www.youtube.com/watch?v=gHSv94aTTnk

[^8]: ${ }^{1}$ Heisenberg, an inventor of the matrix algebra form of quantum mechanics, learned mathematics by studying Pell's equation (p. 59) https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-1 by eigenvector and recursive analysis methods.
 ${ }^{2}$ http://news.nationalgeographic.com/2017/09/origin-zero-bakhshali-manuscript-video-spd/
 ${ }^{3}$ The fall of the Roman Empire has been established as Sept. 4, 476 CE.
 ${ }^{4}$ https://www.nytimes.com/2017/10/07/opinion/sunday/who-invented-zero.html

[^9]: ${ }^{5}$ As best I know.
 ${ }^{6}$ A polynomial $a+b x$ and a 2-vector $[a, b]^{T}=\left[\begin{array}{l}a \\ b\end{array}\right]$ are also examples of ordered pairs.

[^10]: ${ }^{7}$ Sometimes we let the computer do the final algebra, numerically, as 2×2 matrix multiplications.

[^11]: ${ }^{8}$ One can usefully define $\xi=x+1 j c t$ to be complex ($x, t \in \mathbb{R}$), with x in meters [m$], t$ is in seconds [s], and the speed of light $c_{o}[\mathrm{~m} / \mathrm{s}]$.
 ${ }^{9}$ IEEE 754: http: //www.h-schmidt.net/FloatConverter/IEEE754.html.

[^12]: ${ }^{10}$ Base 10 is the natural world wide standard simply because we have 10 fingers, that we count with.
 ${ }^{11}$ http://www.h-schmidt.net/FloatConverter/IEEE754.html

[^13]: ${ }^{12}$ It would seem that public-key encryption could work by having two numbers with a common prime, and then using the Euclidean algorithm, the greatest common divisor (GCD) could be worked out. One of the integers could be the public-key and the second could be the private key.
 ${ }^{13}$ https://fas.org/irp/agency/dod/jason/cyber.pdf
 ${ }^{14}$ Whenever someone tells you something is "easy," you should immediately appreciate that it is very hard, but once you learn a concept, the difficulty evaporates.
 ${ }^{15}$ See Appendix A (p. 247) for a review of mathematical notation.
 ${ }^{16}$ Check out the history of $1729=1^{3}+12^{3}=9^{3}+10^{3}$.

[^14]: ${ }^{17}$ It is not clear what it takes to reach this more official sounding category.

[^15]: ${ }^{18}$ Nice discussion of primes: https://www.quantamagazine.org/mathematicians-discover-prime-conspiracy-20160313/

[^16]: ${ }^{19}$ https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
\#Euler.27s_Sieve
 ${ }^{20}$ If you wish to be a mathematician, you need to learn how to prove theorems. If you're a physicist, you are happy that someone else has already proved them, so that you can use the result.
 ${ }^{21}$ https://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/

[^17]: ${ }^{22}$ In some sense, to be explored, the GCD and CFA are inverses.
 ${ }^{23}$ Unfortunately Matlab/Octave does not support the bracket notation.

[^18]: ${ }^{24}$ Taking the Fourier transform of the target number, represented as a sequence, could help to identify an underlying periodic component. The number $1 / 7 \leftrightarrow[[1,4,2,8,5,7]]_{6}$ has a $50[\mathrm{~dB}]$ notch at 0.8π [rad] due to its 6 digit periodicity, carried to 15 digits (Matlab/Octave maximum precision), Hamming windowed, and zero padded to 1024 samples.

[^19]: ${ }^{25}$ http://www.nytimes.com/2010/11/27/arts/design/27tablets.html
 ${ }^{26}$ https://en.wikipedia.org/wiki/Plimpton_322

[^20]: ${ }^{27}$ http://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy-jupiter. html

[^21]: ${ }^{1} \eta_{o}=C_{p} / C_{v}=1.4$ is the ratio of two thermodynamic constants and $P_{o}=10^{5}[\mathrm{~Pa}]$ is the barometric pressure of air.
 ${ }^{2}$ There were other physical enigmas, such as the observation that sound disappears in a vacuum or that a vacuum cannot draw water up a column by more than 34 feet.

[^22]: ${ }^{3}$ Gravity waves were experimentally measured for the first time while I was formulating Section ??.

[^23]: ${ }^{4}$ This is the case for mechanical and electrical circuits having small damping. Physically $b>0$ is the damping coefficient and $\sqrt{c}>0$ is the resonant frequency. One may then simplify the form as $x^{2}+2 b x+c^{2}=(x+b+\jmath c)(x+b-\jmath c)$.

[^24]: ${ }^{5}$ E.g.: $9 \cdot 7=(7-1) \cdot 10+(10-7)=60+3$ and $9 \cdot 3=(3-1) \cdot 10+(9-3)=20+7$. By expanding the above, one can see why it works: $9 n=n 10-10+10-n=n(10-1)$.
 ${ }^{6}$ https://en.wikipedia.org/wiki/Newton's_method

[^25]: ${ }^{7}$ This seems like an obvious way toward understanding fractional, even irrational, roots.
 ${ }^{8}$ https://en.wikipedia.org/wiki/Argument_principle

[^26]: ${ }^{9}$ https://en.wikipedia.org/wiki/Newton's_method\#Complex_functions

[^27]: ${ }^{10}$ https://en.wikipedia.org/wiki/Mandelbrot_set

[^28]: ${ }^{11} \mathrm{~A}$ Matlab/Octave program that does this may be downloaded from http://jontalle.web.engr.illinois.edu/ uploads/493/M/NewtonJPD.m.
 ${ }^{12}$ https://en.wikipedia.org/wiki/Lyman_series
 ${ }^{13}$ Appendix B (p. 259) is an introduction to the topics of eigenanalysis for 2×2 matrices.

[^29]: ${ }^{14}$ During the discovery or creation of quantum mechanics, two alternatives were developed: Schrödinger's differential equation method and Heisenberg's matrix method. Eventually it was realized the two were equivalent.

[^30]: ${ }^{15}$ http://muse.tau.ac.il/museum/galileo/galileo_low_of_fall.html

[^31]: ${ }^{19}$ By working with the negative roots we may avoid an unnecessary and messy alternating sign problem.

[^32]: ${ }^{20}$ Note that the relationship between the impedance and the residues K_{k} is a linear one, best solved by setting up a linear system of equations in the unknown residues. Methods for doing this will be discussed in Appendix C. 3 (p. 270).

[^33]: ${ }^{21}$ When writing the equation $A x=y$ in matrix format, the two equations are $a x_{1}+b x_{2}=y_{1}$ and $d x_{1}+e x_{2}=y_{2}$ with unknowns $\left(x_{1}, x_{2}\right)$, whereas in the original equations $a y+b x=c$ and $d y+e x=f$, they were y, x. Thus in matrix format, the names are changed. The first time you see this scrambling of variables, it can be confusing.

[^34]: ${ }^{22} \mathrm{~A}$ simplified derivation is provided in Sect. 3.5 (p. 104).

[^35]: ${ }^{23}$ https://en.wikipedia.org/wiki/System_of_linear_equations.

[^36]: ${ }^{25}$ https://en.wikipedia.org/wiki/Leon_Charles_Thevenin

[^37]: ${ }^{26}$ In acoustics the pressure is a potential, like voltage. The force per unit area is given by $f=-\nabla p$, thus $F=-\int \nabla p d S$. Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is $v=-\nabla \phi$.
 ${ }^{27}$ https://en.wikipedia.org/wiki/Impedance_analogy

[^38]: ${ }^{28}$ https://en.wikipedia.org/wiki/Gibbs_phenomenon

[^39]: ${ }^{29}$ https://www.youtube.com/watch?v=JXAfEBbaz_4
 ${ }^{30}$ https://www.youtube.com/watch?v=YaUlqXRPMmY

[^40]: ${ }^{31}$ It must be noted that University of Illinois Prof. 'Mac' Van Valkenburg was arguably more influential in circuit theory during the same period. Mac's books are certainly more accessible, but perhaps less widely cited.

[^41]: ${ }^{32}$ https://www.sciencedaily.com/releases/2017/09/170926085958.htm

[^42]: ${ }^{33}$ http://jontalle.web.engr.illinois.edu/uploads/298/zviz.zip
 ${ }^{34}$ https://en.wikipedia.org/wiki/Domain_coloring
 ${ }^{35}$ Colors vary depending on both the display medium and the eye.

[^43]: ${ }^{36}$ "Gauss did lecture to Riemann but he was only giving elementary courses and there is no evidence that at this time he recognized Riemann's genius." Then "In 1849 he [Riemann] returned to Göttingen and his Ph.D. thesis, supervised by Gauss, was submitted in 1851." http://www-groups.des.st-and.ac.uk/~history/Biographies/Riemann.html

[^44]: ${ }^{37}$ https://www.youtube.com/watch?v=0z1fIsUNho4

[^45]: ${ }^{1}$ https://en.wikipedia.org/wiki/History_of_Maxwell\} \% 2 7 s _ e q u a t i o n s

[^46]: ${ }^{2}$ When the function is the ratio of two polynomials, as in the cases of the Brune impedance, they are also related to Möbius transformations, also know as bi-harmonic operators.

[^47]: ${ }^{3} \mathrm{~d}$ 'Alembert's solution is valid for functions that are not differentiable, such as $\delta\left(t-c_{o} x\right)$.
 ${ }^{4}$ In case you missed it, I'm suggesting is that photons (propagating waves) and electrons (evanescent waves) are different wave "states." The difference is the medium, which determines the dispersion relation (Papasimakis et al., 2018).

[^48]: ${ }^{5}$ Secular terms result from second degree poles since $u(t) \star u(t)=t u(t) \leftrightarrow 1 / s^{2}$.

[^49]: ${ }^{6}$ Does this condition hold for the LHP $\sigma<0$? It does for Eq. 4.28.
 ${ }^{7}$ As best I know, this is an open problem in network theory (Brune, 1931a; Van Valkenburg, 1964a).
 ${ }^{8}$ https://en.wikipedia.org/wiki/Foster $\ \circ 27$ s_reactance_theorem

[^50]: ${ }^{9}$ https://en.wikipedia.org/wiki/Pole_(complex_analysis)
 ${ }^{10}$ https://en.wikipedia.org/wiki/Meromorphic_function

[^51]: ${ }^{11}$ https://en.wikipedia.org/wiki/Meromorphic_function
 ${ }^{12}$ https://www.maths.ox.ac.uk/about-us/departmental-art/theory
 ${ }^{13}$ https://www.quantamagazine.org/secret-link-uncovered-between-pure-math-and-physics-20171201

[^52]: ${ }^{14}$ This presumes that poles appear in pairs, one of which may be at ∞.
 ${ }^{15}$ We shall refer to the order of a derivative, or differential equation, and the degree of a polynomial, as commonly used in engineering applications (https://en.wikipedia.org/wiki/Differential_equation\#Equation_order).

[^53]: ${ }^{16}$ Since there are no even primes other than $\pi_{1}=2$, the minimum difference is 2 . Out of 10^{6} primes, only 5 have a minimum difference of more than $e 80$, with these 5 having a uniform distribution on a \log scale. verify 80

[^54]: ${ }^{17}$ The best way to create confusion is to rename something. The confusion grows geometrically with each renaming. I suspect that everyone who cares knows the terms abscissa and ordinate, and some fraction know the equivalent terms domain and range.

[^55]: ${ }^{18}$ This theorem is the same as a 2D version of Stokes's theorem (Boas, 1987).

[^56]: ${ }^{1}$ https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject\#Definition_symbols

[^57]: ${ }^{2}$ https://en.wikipedia.org/wiki/Row-_and_column-major_order
 ${ }^{3}$ In contrast, reading words in English is 'row-major.'

[^58]: ${ }^{4}$ The term 'elementary matrix' may also be used to refer to a matrix that performs an elementary row operation. Typically, each elementary matrix differs from the identity matrix by one single row operation. A cascade of elementary matrices could be used to perform Gaussian elimination.

[^59]: ${ }^{1}$ It is a convention to order the eigenvalues from largest to smallest.

[^60]: ${ }^{1}$ https://en.wikipedia.org/wiki/Laplace_transform\#Table_of_selected_Laplace_transforms

