1 Problems DE-1

Topics of this homework:

Complex Taylor Series; quadratic forms, complex numbers and functions (ordering and algebra), CauchyRiemann conditions, multivalued functions (branch cuts and Riemann sheets), Cauer synthesis

Complex Power Series

Problem \# 1: (6 pts) In each case derive the power series of $w(s)$ about $s=0$ and state the ROC of the series, and the residues. If the power series doesn't exist, state why! Hint: In some cases, you can derive the series by relating the function to another function for which you already know the power series at $s=0$.

$$
-1.1(1 p t): 1 /\left(1-s^{2}\right)
$$

$$
-1.2(1 p t): 1 /\left(1-|s|^{2}\right)
$$

- 1.3(2pt): Find the RoC for the Riemann zeta function $\zeta(s)$

Given the definition of the $\zeta(s)$ function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\cdots \quad \text { for } \Re s=\sigma>1 .,
$$

where $n \in \mathbb{N}$ and $s=\sigma+\jmath \omega$ (s is the Laplace frequency). As stated, the RoC is the RHP $\Re s=\sigma>1$.

- 1.4(2pt): Derive the first term of Euler's product formula by removing all the even terms (multiples of 2)
$\left(1-\frac{1}{2^{s}}\right) \zeta(s)=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{8^{s}}+\frac{1}{9^{s}}+\frac{1}{10^{s}}+\frac{1}{11^{s}}+\frac{1}{12^{s}}+\cdots \quad$ for $\Re s=\sigma>1$, results in the first term in Euler's product formula, for the zeta function.

$$
\left(1-\frac{1}{2^{s}}\right) \zeta(s)=\frac{1}{1^{s}}+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\frac{1}{10^{s}}+\frac{1}{11^{s}}+\cdots \quad \text { for } \Re s=\sigma>1
$$

Show how to modify the formula to remove all the multiples of 3 .
Problem \# 2(2pt): Consider the function $w(s)=1 / s$

- 2.1(lpt): Expand this function as a power series about $s=i$.

Problem \# 3(1 pt): Consider the function $w(s)=1 /(2-s)$
-3.1(1pt): Expand $w(s)$ as a power series in $s^{-1}=1 /$ s. State the ROC as a condition on $\left|s^{-1}\right|$. Hint: Multiply top and bottom by s^{-1}.

Problem \# 4(2 pt):Summing the series
Taylor series of functions have more than one region of convergence.

- 4.1(lpt): If $a=0.1$ what is the value of

$$
x=1+a+a^{2}+a^{3} \cdots ?
$$

Show your work.
-4.2(lpt): If $a=10$ what is the value of

$$
x=1+a+a^{2}+a^{3} \cdots ?
$$

Quadratic forms

A matrix that has positive eigenvalues is said to be positive-definite. The eigenvalues are real if the matrix is symmetric, so this is a necessary condition for the matrix to be positive-definite. This condition is related to conservation of energy, since the power is the voltage times the current. Given an impedance matrix

$$
\mathbf{V}=\mathbf{Z I}
$$

the power \mathcal{P} is

$$
\mathcal{P}=\mathbf{I} \cdot \mathbf{V}=\mathbf{I} \cdot \mathbf{Z I},
$$

which must be positive-definite for the system to obey conservation of energy.
Problem \# 5: In this problem, consider the 2×2 impedance matrix

$$
\mathbf{Z}=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

- 5.1: Solve for the power $\mathbb{P}\left(i_{1}, i_{2}\right)$ by multiplying out this matrix equation (which is in quadratic form $)\left(\mathbf{I} \equiv\left[\begin{array}{ll}i_{1} & i_{2}\end{array}\right]^{T}\right)$:

$$
\mathcal{P}\left(i_{1}, i_{2}\right)=\mathbf{I}^{T}\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right] \mathbf{I} .
$$

- 5.2: Is the impedance matrix positive-definite? Show your work by finding the eigenvalues of the matrix \mathbf{Z}.
- 5.3: Should an impedance matrix always be positive-definite? Explain.

Cauchy-Riemann Equations

For the following problem: $i=\sqrt{-1}, s=\sigma+i \omega$, and $F(s)=u(\sigma, \omega)+i v(\sigma, \omega)$.
Problem \# 6(2pt): According to the Fundamental theorem of complex calculus the integration of a complex analytic function is independent of the path.

If the integral is independent of the path, then the derivative must also be independent of direction

$$
\begin{equation*}
\frac{d F}{d s}=\frac{\partial F}{\partial \sigma}=\frac{\partial F}{\partial \jmath \omega} . \tag{DE-1.1}
\end{equation*}
$$

- 6.1: (2 pts) Apply the CR equations to the following functions. State for which values of $s=\sigma+i \omega$ the CR conditions do or do not hold (e.g. where the function $F(s)$ is or is not analytic).

1. (2pts) $F(s)=e^{s}$

Branch cuts and Riemann sheets

Problem \# 7: (4pts) Consider the function $w^{2}(z)=z$. This function can also be written as $w(z)=\sqrt{z_{ \pm}}$. Define $z_{+}=r e^{\phi_{J}}, z_{-}=r e^{\jmath(\phi+2 \pi)}$ and $w(z)=\rho e^{\theta_{了}}=\sqrt{r} e^{\jmath \phi}$.

- 7.1: (1pt) How many Riemann sheets do you need in the domain (z) and the range (w) to fully represent this function as single valued?
- 7.2: (2pt) Indicate (e.g. using a sketch) how the sheet(s) in the domain map to the sheet(s) in the range.
- 7.3: (lpt) Can a branch cut be moved?

Problem \# 8: (lpt) Consider the function $w(z)=\log (z)$. As before define $z=r e^{\phi \jmath}$ and $w(z)=\rho e^{\theta_{3}}$.

- 8.1: (1pt) What is the inverse function $z(w)$? Does this function have a branch cut (if so, where is it)?

A Cauer synthesis of any Brune impedance

Problem \# 9: One may synthesize a transmissison line (ladder network) from a Brune (positive real) impedance $Z(s)$ by using the continued fraction method. To obtain the series and shunt impedance values, one may use residue expansion.

- 9.1: Starting from the Brune impedance $Z(s)=\frac{1}{s+1}$, find the impedance network as a ladder network.
- 9.2: Use a residue expansion to mimic the CFA floor function for polynomial expansions. Find the residue expansion of $H(s)=s^{2} /(s+1)$ and express it as a ladder netwrok.

-9.3

Discuss how the series impedance $Z(s, x)$ and shunt admittance $Y(s, x)$ determine the wave velocity $\kappa(s, x)$ and the characteristic impedance $z_{o}(s, x)$ when

1. $Z(s)$ and $Y(s)$ are both independent of x
2. $Z(s, x)$ and $Y(s)(Y(s)$ is independent of $x, Z(s, x)$ depends on $x)$
3. $Z(s)$ and $Y(s, x)(Z(s)$ is independent of $x, Y(s, x)$ depends on $x)$
4. $Z(s, x)$ and $Y(s, x)$ (both $Y(s, x), Z(s, x)$ depend on x)

This shows that a Cauer synthesis may be implemented with the residue expansion replacing the floor function in the CFA. This seems to solve Burne's network synthesis problem.

