1 Exercises DE-3

Topic of assignment:

Brune impedance, lattice transmission line analysis.

Brune Impedance

Problem \# 1(4 pts): Residue form
A Brune impedance is defined as the ratio of the force $F(s)$ over the flow $V(s)$, and may be expressed in residue form as

$$
\begin{equation*}
Z(s)=c_{0}+\sum_{k=1}^{K} \frac{c_{k}}{s-s_{k}}=\frac{N(s)}{D(s)} \tag{1.1}
\end{equation*}
$$

with

$$
D(s)=\prod_{k=1}^{K}\left(s-s_{k}\right) \quad \text { and } \quad c_{k}=\lim _{s \rightarrow s_{k}}\left(s-s_{k}\right) D(s)=\prod_{n^{\prime}=1}^{K-1}\left(s-s_{n}\right) .
$$

The prime on index n^{\prime} means that $n=k$ is not included in the product.

- 1.1(1 pts): Take the Laplace transform (LI) of Eq. 1.2 and find the total impedance Z(s) of the mechanical circuit.

$$
\begin{equation*}
M \frac{d^{2}}{d t^{2}} x(t)+R \frac{d}{d t} x(t)+K x(t)=f(t) \leftrightarrow\left(M s^{2}+R s+K\right) X(s)=F(s) . \tag{1.2}
\end{equation*}
$$

- 1.2(1 pt): What are $N(s)$ and $D(s)$ (e.g. Eq. 1.1)?

Problem \# 2:(14 pts) Train-mission-line We wish to model the dynamics of a freight-train having N such cars, and study the velocity transfer function under various load conditions.

As shown in Fig. 1, the train model consists of masses connected by springs.

Physical description:

Use the ABCD method to find the matrix representation of the system of Fig. 1. Define the force on the nth train car $f_{n}(t) \leftrightarrow F_{n}(\omega)$, and velocity $v_{n}(t) \leftrightarrow V_{n}(\omega)$.

Break the model into cells consisting of three elements: a series inductor representing half the mass $(M / 2)$, a shunt capacitor representing the spring $(C=1 / K)$, and another series inductor representing half the mass $(L=M / 2)$, transforming the model into a cascade of symmetric $(\mathcal{A}=\mathcal{D})$ identical cell matrix $\mathcal{T}(s)$.

- 2.1(4 pt): Find the elements of the ABCD matrix \mathcal{T} for the single cell that relate the input node 1 to output node 2

$$
\left[\begin{array}{l}
F \tag{1.3}\\
V
\end{array}\right]_{1}=\mathcal{T}\left[\begin{array}{c}
F(\omega) \\
-V(\omega)
\end{array}\right]_{2} .
$$

Figure 1: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of stiffness K or compliance $C=1 / K$. Below it is the electrical equivalent circuit, for comparison. The mass is modeled as an inductor and the springs as capacitors to ground. The velocity is analogous to a current and the force $f_{n}(t)$ to the voltage $\phi_{n}(t)$. The length of each cell is $\Delta[\mathrm{m}]$. The train may be accurately modeled as a transmission line (TL), since the equivalent electrical circuit is a lumped model of a TL.

- 2.2(6 pts): Express each element of $\mathcal{T}(s)$ in terms of the complex Nyquist ratio $s / s_{c}<1$ ($s=2 \pi j f, s_{c}=2 \pi j f_{c}$). The Nyquist sampling cutoff frequency f_{c} is defined in terms the minimum number of cells (i.e., 2) of length Δ per wavelength:

The Nyquist sampling theorem says that there are at least two cars per wavelength (more than two time samples at the highest frequency). From the figure, the distance between cars $\Delta=c_{o} T_{o}[\mathrm{~m}]$ where

$$
c_{o}=\frac{1}{\sqrt{M C}} \cdot \quad[\mathrm{~m} / \mathrm{s}]
$$

The cutoff frequency obeys $f_{c} \lambda_{c}=c_{o}$ where the Nyquist wavelength is $\lambda_{c}=2 \Delta$. Therefore the Nyquist sampling condition is

$$
\begin{equation*}
\omega<\omega_{c}=2 \pi f_{c} \equiv \frac{2 \pi c_{o}}{\lambda_{c}}=\frac{2 \pi c_{o}}{2 \Delta}=\frac{\pi}{\Delta \sqrt{M C}} . \quad[\mathrm{Hz}] \tag{1.4}
\end{equation*}
$$

$-2.3(4 \mathrm{pt})$: Use the property of the Nyquist sampling frequency $f<f_{c}$ (Eq. 1.4) to remove higher order powers of frequency

$$
\begin{equation*}
1+\left(\frac{s}{s_{c}}\right)^{2^{0}} \approx 1 \tag{1.5}
\end{equation*}
$$

to determine a band-limited approximation of $\mathcal{T}(s)$.

