
ECE-298JA: Concepts in Engineering Math; Fall 2016

Instructors: Jont Allen, Steve Levinson, John DAngelo (Math) and others from ECE, Math, and Physics

Course Coordinator: Jont Allen

Prerequisites: Calculus I, II. (Concurrent registration in Calc. III or Differential Equations is encouraged)

Target Audience: Sophomores & precocious freshmen from Engineering, Physics and Mathematics

Text: Allen, Jont, (2017) An invitation to Mathematical Physics and its History

Outline: This course provides a “mathematical road map” to help students strengthen their understanding

of engineering mathematics, at the conceptual level. A broad review of the development of classical math-

ematical theories used in contemporary engineering is presented, by emphasizing the historical discovery

and development of the mathematics of number theory, nonlinear and linear algebra, complex analysis (e.g.,

frequency domain methods, impedance) and differential equations (both scalar and vector). This course is

not a substitute for Math 241, 286, 292, 406, 415, 448.

This course will emphasize engineering insight and intuition building, rather than proofs. Intuitive

insights into seven fundamental theorems of mathematics will be presented, to help the students expand

their natural creative skills. The specific mathematical contributions of Newton, Euler, Cauchy, Gauss,

Riemann, Helmholtz and Maxwell, will be discussed, in depth. Problem sets will be based on engineering

problems, and how they relate to classical mathematics. An extra hour of credit is given for a student project

(with approval of the instructor).

ECE-298JA is presented in four parts:

I. Number systems: Integers, rationals, real vs. complex numbers, vectors, matrices.

II. Algebraic equations: Topics will include time and frequency domains (e.g., Laplace transforms),

complex impedance (e.g., the impedance of a capacitor Z(s) = 1/sC is a function of the complex

variable s = σ + jω), how electrical, mechanical, acoustical and thermal networks, are described by

matrices, eigenvalues and impedance-based integral equations.

III. Scalar Differential equations: Ordinary differential equations for LRC circuits, Newton’s & Kirch-

hoffs laws, etc.

IV. Vector Differential equations: Gradient, divergence, curl, Laplacian and vector Laplacian. Partial

differential equations, i.e., Laplace, diffusion, wave and Maxwell’s Equations, including dispersive

wave propagation (e.g., Webster horn equation, Brillouin zones).

Final Grade: The final grade will be based on a weighted average of the three midterm exams, the final

exam (95%), and a 5% weight for the homeworks and class participation.

Course outline by topic:1

Part I. Number systems

L c. Description

1 (50) The discovery of Number systems

(3) Introduction: Integers, rationals, real vs. complex numbers, vectors, matrices.

Number systems, Geometry, Calculus (∞)

2 17 Taxonomy of Numbers, from Primes πk to Complex C; Floating point numbers (IEEE 754)

3 3 Math is a language, designed to do physics; Seven Fundamental theorems of Mathematics.

4 (5) Two Prime Number Theorems: 1) Fundamental Thm of Arith 2) Prime Number Theorem

5 (3) Euclidean Algorithm for the GCD; Coprimes.

6 (3) Continued Fraction algorithm (rational approximation).

7 (3) Euclid’s formula for Pythagorean triplets: l2 = m2 + n2 ([l,m, n] ∈ N).
8 (5) Pell’s equation: m2 −Nn2 = 1 (N ∈ N).
9 (5) Fibonacci Series: fn+1 = fn + fn−1 (n, fn ∈ N).

10 Exam I: Number Systems

1L: Lecture; c.: Century (BCE), CE; Page numbers are for Stillwell 2d edition.
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Part II. Algebraic Equations

L c. Description

11 7 Geometry as physics; The first “algebra” al-Khwarizmi (830CE).

12 18 Equations of physics, quadratic in several variables.

13 17 Polynomial root classification by convolution.

14 17 Analytic geometry; scalar and vector products.

15 (2) Gaussian Elimination.

16 Matrix composition; ABCD method; Commuting vs. Non-commuting operator.

17 Riemann Sphere and the extended plane (1851.

18 Complex analytic mapping (Domain coloring.

19 Fourier Transforms (Hilbert space) for signals vs. Laplace transforms for systems.

20 Laplace transforms and Causality.

21 20 The nine postulates of Systems: e.g., (P1) causality postulate

22 Exam II: Algebraic equations

Part III. Scalar Differential Equations

L c. Description

23 Integration in the complex plane; Complex Taylor series.

24 19 The Cauchy-Riemann conditions (Residue theorem); Green’s theorem in the plane

25 17 Complex analytic functions and Brune Impedance.

26 Multi-valued complex functions; Riemann sheets & Branch cuts.

27 17 Fundamental Thms of complex integration (Part I); Cauchy’s Integral theorem & Formula

28 17 Fundamental Thms of complex integration (Part II); Residue Theorem;

29 Inverse Laplace transform t ≤ 0; Case for causality

30 Inverse Laplace transform via the Residue theorem t > 0
31 Properties of the Laplace Transform: Modulation, convolution, etc.

32 Properties of Brune impedance.

33 18 Euler’s vs. Riemann’s Zeta Function (i.e., poles at the log-primes) & Euler’s Sieve.

34 Exam III: Scalar differential equations

Part IV Vector (Partial) Differential Equations

L c. Description

35 17 The acoustic wave equation: Newton’s and d’Alembert’s solution

36 Webster Horn equation.

37 Define gradient ∇, divergence ∇· and curl ∇×, and vector Laplacian ∇·∇

38 Stokes’ (curl) and Gauss’ (divergence) Theorems, Vector Laplacian

39 20 J.C. Maxwell unifies Electricity and Magnetism (1861); Heaviside’s role.

40 20 The Fundamental theorem of vector calculus & its many applications.

41 Quasi-static approximation: Newton’s laws, KCL/KVL, Telephone equation, . . . .

42 Guest lecture

Final Exam: All topics
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