Appendix J

Figure J.1: Timeline from the early Asians to Bombelli (p. 3).

Figure J.2: Timeline from Descartes to Cauchy (p. 5).

282 APPENDIX J. TIME LINES

Chronological history: 16^{th} to 19^{th} centuries

Figure J.3: Timeline from Bombelli to Gauss (p. 9).

Figure J.4: Timeline from Newton to Brillouin (p. 54).

Appendix K

Figure K.1: Venn diagram showing relations between Engineering, Mathematics and Physics (p. viii).

Figure K.2: Fibonacci spiral (p. 46).

Figure K.3: Newtons method, applied to two polynomials: real roots (left); complex roots (right) (p. 59).

Figure K.4: Colorized plots: Left: trivial case w(s) = s; Right: Offset $w(s) = s - \sqrt{\jmath}$ (p. 130).

Figure K.5: $w(s) = \sin(0.5\pi(s-i))$ (p. 130).

Figure K.6: Colorized plots of $w(z)=e^z$ (left) and $w(z)=\ln(z)$ (right) (p. 131).

Figure K.7: Plots of $w(z)=\mathrm{atan}(z)$ (left) and $w(z)=\frac{\imath}{2}\ln\frac{1-\imath z}{1+\imath z}$ (right) (p. 138).

Figure K.8: Colorized plots of $w(s) = s^2$ (left) and $w(s) = -\sqrt{-s}$ (right) (p. 151).

Figure K.9: Plot of 3D version of $w(s)=\pm\sqrt{s}$ showing both \pm sheets and cut on x=0 (p. 150).

Figure K.10: Plots of $w(s)=s, w(s)=\sqrt{s}$ and $w(s)=e^{\pi\jmath}\sqrt{s}$ (p. 152).

Figure K.11: Plot of $w(s)=\sqrt{\pi/s}$ (left) and $w(s)=\sqrt{s^2+1}$ (right) (p. 153).

Figure K.12: Plot of $w(s) = \cos(\pi z)$ (right) and $w(z) = J_0(\pi z)$ (left) (p. 166).

Figure K.13: Plot of Bessel function $J_0(\pi z)$ and Hankel function $H_0^{(1)}(\pi z/2)$ (p. 167).

Figure K.14: Baffled conical horn (p. 185).

Figure K.15: Webster horn equation setup for derivation (p. 258).