
Chapter 2

Algebraic Equations

2.1 Problems AE-1

Topics of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolu-
tion, Newton’s root finding method, Riemann zeta function. Deliverables: Answers to problems

Note: The term analytic is used in two different ways. (1) An analytic function is a function that may be expressed as a
locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Polynomials and the fundamental theorem of algebra (FTA)
Problem # 1: A polynomial of degree N is defined as

PN (x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N .

– 1.1: How many coefficients an does a polynomial of degree N have?
Sol: N + 1 �

– 1.2: How many roots does PN(x) have?
Sol: N �

Problem # 2: The fundamental theorem of algebra (FTA)

– 2.1: State and then explain the FTA.

Sol: The FTA says that every polynomial has at least one root x = xr. �

– 2.2: Using the FTA, prove your answer to question 1.2. Hint: Apply the FTA to prove how many
roots a polynomial PN(x) of order N has.
Sol: When a root is determined, it may be factored out, leaving a new polynomial of degree one less than the first. Specifi-
cally,

PN−1(x) = PN (x)
x− xr

.

Thus it follows that by a recursive application of this theorem, a polynomial has a number of roots equal to its degree. All
the roots must be counted, including repeated and complex roots and roots at∞. �

Problem # 3: Consider the polynomial function P2(x) = 1 + x2 of degree N = 2 and the related
function F (x) = 1/P2(x). What are the roots (e.g., zeros) x± of P2(x)? Hint: Complete the square on
the polynomial P2(x) = 1 + x2 of degree 2, and find the roots.
Sol: Solving for the roots by setting P2(x) = 0 gives x2

± = −1, leading to x± = ±1j. �

Problem # 4: F (x) may be expressed as (A,B, x± ∈ C)

F (x) = A

x− x+
+ B

x− x−
, (AE-1.1)
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where x± are the roots (zeros) of P2(x), which become the poles of F (x); A and B are the residues. The expression for
F (x) is sometimes called a partial fraction expansion or residue expansion, and it appears in many engineering applica-
tions.

– 4.1:Find A,B ∈ C in terms of the roots x± of P2(x).
Sol: The fastest (i.e., easiest) way to find the constants A,B is to cross-multiply

1
1 + x2 = A(x− x−) +B(x− x+)

(x− x+)(x− x−) = (A+B)x− (Ax− +Bx+)
(x− x+)(x− x−)

Since the numerator must equal 1, B = −A and A = 1/(x+ − x1).
In summary , in terms of the roots of Eq. AE-1.1

A = −B = 1
(x+ − x−) , thus F (x) = 1

1 + x2 = 1
2

(
1

x− 1 −
1

x+ 1

)
.

�

– 4.2: Verify your answers for A and B by showing that this expression for F (x) is indeed equal to
1/P2(x).
Sol: This is easily verified by cross-multiplying and simplifying. In the numerator the x terms cancel and Eq. AE-1.1 is
recovered. �

– 4.3: Give the values of the poles and zeros of P2(x).
Sol: The zeros are at xz = ±j, and the poles are at xp = ±∞ �

– 4.4: Give the values of the poles and zeros of F (x) = 1/P2(x).
Sol: The poles are at xp = ±j, and the zeros are at xz = ±∞ �

2.1.1 Analytic functions
Overview: Analytic functions are defined by infinite (power) series. The function f(x) is said to be analytic at any value
of constant x = xo, where there exists a convergent power series

P (x) =
∞∑
n=0

an(x− xo)n

such that P (xo) = f(xo). The point x = xo is called the expansion point. The region around xo such that |x− xo| < 1 is
called the radius of convergence, or region of convergence (RoC). The local power series for f(x) about x = xo is defined
by the Taylor series:

f(x) ≈ f(xo) + df

dx

∣∣∣
x=xo

(x− xo) + 1
2!
d2f

dx2

∣∣∣
x=xo

(x− xo)2 + · · ·

=
∞∑
n=0

1
n!

dn

dxn
f(x)

∣∣∣∣
x=xo

(x− xo)n.

Two classic examples are the geometric series1 where an = 1,

1
1− x = 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn, (AE-1.2)

and the exponential function where an = 1/n!, Eq. 3.2.11 (p. 70). The coefficients for both series may be derived from the
Taylor formula.

Problem # 5: The geometric series

– 5.1: What is the region of convergence (RoC) for the power series Eq. AE-1.2 of 1/(1− x) given
above—for example, where does the power series P (x) converge to the function value f(x)? State
your answer as a condition on x. Hint: What happens to the power series when x > 1?
Sol: |x| < 1 because for |x| ≥ 1, the power series diverges to infinity. �

1The geometric series is not defined as the function 1/(1 − x), it is defined as the series 1 + x + x2 + x3 + · · · , such that the ratio of consecutive
terms is x.
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– 5.2: In terms of the pole, what is the RoC for the geometric series in Eq. AE-1.2?
Sol: The nearest pole relative to the expansion point, at x = 0 is at at the nearest pole xp = 1 to the expansion point at
x = 0. Namely the RoC is 1 re 0. �

– 5.3: How does the RoC relate to the location of the pole of 1/(1− x)?
Sol: The pole is at x = 1, on the border of the RoC. The nearest pole relative to the expansion point, at x = 0 is at x = 1.

Thus the RoC is 1. �

– 5.4: Where are the zeros, if any, in Eq. AE-1.2?

Sol: There is a single zero at x =∞. �

– 5.5: Assuming x is in the RoC, prove that the geometric series correctly represents 1/(1− x) by
multiplying both sides of Eq. AE-1.2 by (1− x).
Sol:

1 = 1− x
1− x for all x 6= 1

= (1− x)(1 + x+ x2 + x2 · · · ), |x| < 1
= (1 + x+ x2 + x2 · · · )− x(1 + x+ x2 · · · )
= 1 +(((((

((((x+ x2 + x3 · · · )−(((((
((((x+ x2 + x3 · · · )

= 1 for all x.

The introduction of the pole introduces an added zero since PN (x)|x=1 = N .
If one lets z = 1/x the relation becomes

1 = 1− z
1− z ,

which is valid for z 6= 1, which when expanded the RoC is |z| < 1, or x > 1. Once the removable pole and zero at x = 1
are cancelled, the solution is valid for all x. �

Problem # 6: Use the geometric series to study the degree N polynomial. It is very important to note
that all the coefficients cn of this polynomial are 1.

PN (x) = 1 + x+ x2 + · · ·+ xN =
N∑
n=0

xn. (AE-1.3)

– 6.1: Prove that

PN (x) = 1− xN+1

1− x . (AE-1.4)

Sol:

PN (x) = 1 + x+ x2 · · ·xN

=
∞∑
n=0

xn −
∞∑

n=N+1
xn

=
∞∑
n=0

xn − xN+1
∞∑
n=0

xn

= (1− xN+1)
∞∑
n=0

xn

= 1− xN+1

1− x
�

– 6.2: What is the RoC for Eq. AE-1.3?
Sol: There is no pole; thus the RoC is∞. This polynomial has N zeros. �

– 6.3: What is the RoC for Eq. AE-1.4?
Sol: A polynomial has no RoC. �
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– 6.4: How many poles does PN(x) (Eq. AE-1.3) have? Where are they?
Sol: Since PN (x) is defined by Eq. AE-1.3, there is no poles at x = 1. However it still has a pole of order N at x = ∞.

To show this, define z = 1/x and study the zeros. �

– 6.5: How many zeros does PN(x) (Eq. AE-1.4) have? State where are they in the complex plane.
Sol: PN (x) only has N zeros, at sz = N

√
−1 = ej2πn/(N+1)) where n = 1, 2, . . . , N . The zero at sz = 1 (n = 0) of

Eq. AE-1.4 exactly cancels with the pole at sp = 1. This this zero-pole pair are referred to as a removable singularity. �

– 6.6: Explain why Eqs. AE-1.3 and AE-1.4 have different numbers of poles and zeros.
Sol: The answer is very interesting. For Eq. AE-1.3, PN (sr) = 0 has N roots and we are not sure where they are. The

numerator of Eq. AE-1.4 has N + 1 roots at sr = e2πn/(N+1) for n = 0, 1, 2, . . . N . However for n = 0, sr = e0/N = 1
is not a root, since PN (1) = N . This root and the pole exactly cancel. All the roots N + 1 of Eq. AE-1.4 are known as the
roots of unity, but the root at n = 0 is special because it cancels with the pole at s = 1. Given the roots of Eq. AE-1.4, we
can see that the N roots of Eq. AE-1.3 are at sz = N

√
−1 = ej2πn/(N+1)), with n = 1, . . . , N (n 6= 0). Perhaps even a bit

clever. �

– 6.7: Is the function 1/(1− x) analytic outside of the RoC?
Sol: Yes, because it is analytice everwhere other than at the pole x = 1. �

– 6.8: Extra credit. Evaluate PN(x) at x = 0 and x = 0.9 for the case of N = 100, and
compare the result to that from Matlab.
%sum the geometric series and P_100(0.9)
clear all;close all;format long
N=100; x=0.9; S=0;
for n=0:N
S=S+xˆn
end
P100=(1-xˆ(N+1))/(1-x);
disp(sprintf(’S= %g, P100= %g, error= %g’,S,P100, S-P100))

Sol: PN (0) = 1 and PN (0.9) = 1−.9N+1

1−0.9 = 9.999760947410010. According to Matlab P100(0) = 1 and
P100(0.9) = 9.999760947410014, with a difference of −3.55271× 10−15 (i.e., -16×eps). �

Problem # 7: The exponential series

– 7.1: What is the RoC for the exponential series Eq. 3.2.11?
Sol: The exponential is convergent everywhere on the open real line. �

– 7.2: Let x =  in Eq. 3.2.11, and write out the series expansion of ex in terms of its real
and imaginary parts.

Sol:

e =
∞∑
0

n

n!

= 1 + − 1
2! − 

1
3! + 1

4! + 
1
5! −

1
6! + · · ·

=
(

1− 1
2! + 1

4! −
1
6! + · · ·

)
+ 

(
1− 1

3! + 1
5! −

1
7! + · · ·

)
=

n even∑
n=0,2,...

(−1)n

n! + 

n odd∑
n=1,3,...

(−1)n

n! .

�
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– 7.3: Let x = θ in Eq. 3.2.11, and write out the series expansion of ex in terms of its real
and imaginary parts. How does your result relate to Euler’s identity (eθ = cos(θ) +  sin(θ))?
Sol:

eθ =
∞∑
0

nθn

n!

= 1 + θ − θ2

2! − 
θ3

3! + θ4

4! + 
θ5

5! −
θ6

6! + · · ·

=
(

1− θ2

2! + θ4

4! −
θ6

6! + · · ·
)

︸ ︷︷ ︸
cos θ

+
(
θ − θ3

3! + θ5

5! − · · ·
)

︸ ︷︷ ︸
sin θ

= cos(θ) +  sin(θ).

�

2.1.2 Inverse analytic functions and composition
Overview: It may be surprising, but every analytic function has an inverse function. Starting from the function (x, y ∈ C)

y(x) = 1
1− x

the inverse is
x = y − 1

y
= 1− 1

y
.

Problem # 8: Consider the inverse function described above

– 8.1: Where are the poles and zeros of x(y)?
Sol: The pole is at y = 0, and the zero is at y = 1. There are no poles or zeros at∞ because limy→±∞(y−1)/y =

1 �

– 8.2: Where (for what condition on y) is x(y) analytic?
Sol: It is analytic anywhere but the pole, at y = 0. �

Problem # 9 Consider the exponential function z(x) = ex (x, z ∈ C).

– 9.1: Find the inverse x(z).
Sol: Taking the natural log (ln) of both sides gives x(z) = ln(z). Thus the natural log is the inverse of the exponential. �

– 9.2: Where are the poles and zeros of x(z)?
Sol: Their is a branch cut between z = 0,−∞, and the zero is at z = 1. There are no poles. �

Problem # 10: Composition.

– 10.1: If y(s) = 1/(1− s) and z(s) = es, compose these two functions to obtain (y ◦ z)(s).
Give the expression for (y ◦ z)(s) = y(z(s)). Sol:

(y ◦ z)(s) = 1
1− es

�

– 10.2: Where are the poles and zeros of (y ◦ z)(s)?
Sol: Poles at s = 2πn, n = Z. Zero at <s = σ → +∞. �

– 10.3: Where (for what condition on x) is (y ◦ z)(x) analytic?
Sol: It is analytic everywhere except x = 0. �
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Eigen-analysis
Problem # 11: (4 pts) The vectorized eigen-equation for a matrix A is

AE = EΛ. (AE-1.5)

– 11.1: (4pt) Provide a formula for A3 in terms of the eigenvector E and eigenvalue Λ matricies.
Sol: To find powers of a matrix modify Eq. AE-1.5 by post multication by E

A = EΛE−1.

Then
A3 = EΛE−1EΛE−1EΛE−1 = EΛ3E−1.

�

– 11.2: (4 pts) Find the eigenvalues of the matrix, and find the roots, by completing the square,
where a, b, c, d ∈ C, and

A =
[
a b
c d

]
.

Sol: The definition of the eigenvalues is
det
∣∣A− λI2

∣∣ = 0

which is

det
∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ− bc.

Completing the square (
λ− a+ d

2

)2
−
(
a+ 2

2

)2
− bc = 0.

Thus

λ± = a+ d

2 ±

√
bc+

(
a+ d

2

)2
.

The eigenvalues are typically the damped resonant frequencies λ± = σo ± ωo of a mechanical or electrical circuit. In
these cases the radical is ω0 is the resonance radian frequency and jωo ≤ 0 is the resonant damping. This requires that the
constants {a, b, c, d} ≥ 0 and ∈ R.

�

(4 pts) Convolution
Multiplying two short or simple polynomials is not demanding. However, if the polynomials have many terms, it can
become tedious. For example, multiplying two 10th-degree polynomials is not something one would like to do every day.

An alternative is a method called convolution. The inverse of convolution is called deconvolution, which is equivalent to
long-division of polynomials, also known as factoring polynomials (Sec. 3.4.1, p. 109-111). Newton’s method is a reliable
and accurately algorithm to extract roots from polynomials using term by term deconvolution. When the roots are well
approximated by fractional numbers, the method is accurate to within computational accuracy. For example, if the root is
π ≈ π̂19 ≡ 817696623/260280919 ∈ F, as given by rats(pi,19). π̂19 is the 64 bit machine’s internal representation
of π since π − π̂19 = 0 (See text Fig. 2.6, p. 48).

Problem # 12: (4 pts) Convolution of sequences. Practice convolution (by hand!!) using a few simple
examples. Manually evaluate the following convolutions. Show your work!

– 12.1: (2 pts) Multiplying two polynomials is the same as convolving their coefficients.
Given

f(x) = x3 + 3x2 + 3x+ 1↔ [1; 3, 3, 1]
g(x) = x3 + 2x2 + x+ 2↔ [1; 2, 1, 2].

show that
f(x)g(x) = x6 + 5x5 + 10x4 + 12x3 + 11x2 + 7x+ 2↔ [1; 3, 3, 1] ? [1; 2, 1, 2].

Sol: Do the convolution [1; 3, 3, 1] ? [1; 2, 1, 2]. Reverse the first vector and run it across the second. This produces
[1, [3, 1] · [1, 2], [1, 3, 3] · [1, 2, 1] · · · = [1; 5, 10, 12, 11, 7, 2]. �
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– 12.2: (1 pts) [1;−1] ? [1; 2, 4, 7, 0]
Sol: [1;−1] ? [0; 1, 2, 4, 7, 0] = [0; 1, 2, 4, 3,−7, 0, . . .]. = [0, 1, 1, 2, 3,−7, 0, . . .]. �

– 12.3: (1 pts) [1; 2, 1] ? [1;−1]
Sol: [1; 1,−1,−1] �

Newton’s root-finding method
Problem # 13: Use Newton’s iteration to find the roots of the polynomial

P3(x) = 1− x3.

– 13.1: Draw a graph describing the first step of the iteration starting with x0 = (1/2, 0).
Sol: Start with an (x, y) coordinate system and put points at and the vertex of P3(x). �

– 13.2: Calculate x1 and x2. What number is the algorithm approaching?
Sol: First we must find P ′3(x) = −3x2. Thus the equation we must iterate is Eq. 3.1.14 (p. 56):

xn+1 = xn + 1− x3
n

3x2
n

.

Given a first guess for the root x0, the next are x1 = x0 + 1−x3
0

3x2
0

and x2 = x1 + 1−x3
1

3x2
1
. Note that if x+ 0 is the root,

then x1 = x0 and we are done. However, if x0 = 0, then x1 =∞, since x0 = 0 is a root of P ′3(x). Thus we must
not start at the roots of P ′n(x0) = 0. �

– 13.3: Does Newton’s method work for P2(x) = 1 + x2? If so, why? Hint: What are the
roots in this case?
Sol: Here P ′2(x) = +2x; thus the iteration gives

xn+1 = xn −
1 + x2

n

2xn
.

In this case the roots are x± = ±1—namely, purely imaginary. The solution will converge for complex roots
as long as the starting point is complex. If we start with a real number for x0, and use real arithmetic, Newton’s
method fails because there is no way for the answer to become complex. Real in = Real out. �
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Problem # 14: In this problem we consider the case of fractional roots, and take advantage
of this fact during the itteration. Given that the roots are integers, composed of primes, we
may uniquely identify the primes by factoring the numerator and denominator of the rational
approximation of the root.
The method is:

1. Start the Newton itteration

sn+1 = sn −
M(sn)
M ′(sn)

2. Apply the CFA to the next output rats(sn+1)

3. Factor the Num and Dem of the CFA

4. Terminate when the factors converge

Using this method, show that we can find either the best possible fractional approximation to the roots (or even the
exact roots, when the answer is within machine accuracy).

– 14.1: Find the roots of a Monic having coefficents mk ∈ F.
Let

M3(x) = (x− 254/17)(x− 2047/13)(x− 17/13)

In this case the root vector R becomes

R = [14.9412, 157.4615, 1.3077].

Verify that rats(M) returns the rational set of roots. Sol: In double precision this returns M3. (Not sure what
happens in single precision.) �


