2.3 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere.

Deliverables: Answers to problems

Two-port network analysis

Problem # 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.6 (page 144). This can be a mechanical system if the capacitors are taken to be springs and inductors taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car muffler. While the physical representations will be different, the equations and the analysis are exactly the same.

The definition of the ABCD transmission matrix (T) is

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}.$$
 (AE-3.1)

The *impedance matrix*, where the determinant $\Delta_{\tau} = AD - BC$, is given by

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \frac{1}{C} \begin{bmatrix} \mathcal{A} & \Delta_T \\ 1 & \mathcal{D} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}. \tag{AE-3.2}$$

- 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission matrix definition (Eq. AE-3.1). Show your work.

Ans:

- 2.1: What is the ABCD matrix for this element if it is in series?

Ans:

Problem # 2: Consider a single circuit element with impedance Z(s).

- 2.2: What is the ABCD matrix for this element if it is in shunt?Ans:

49

2.3. PROBLEMS AE-3 **Problem #** 3: Find the ABCD matrix for each of the circuits of Fig. 3.6. For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency $s \in \mathbb{C}$, then (ii) substitute $s=1\jmath$ and calculate the total transmission matrix at this single frequency. -3.1: Left circuit (let $R_1 = R_2 = 10$ kilo-ohms and C = 10 nano-farads) Ans: -3.2: Right circuit (use L and C values given in the figure), where the pressure P is analogous to the voltage V, and the velocity U is analogous to the current I. Ans: − 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2. Do this for the specific frequency s = 1j as in the previous part (feel free to use Matlab/Octave for your computation). Ans: -3.4: Right circuit: Repeat the analysis as in question 3.3. Ans:

Algebra

Problem # 4: Fundamental theorem of algebra (FTA).

- 4.1: State the fundamental theorem of algebra (FTA). Ans:

(13 pts) Algebra with complex variables

Problem # 5: (7 pts) Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the difference and compare it to zero, as in 4-3>0. Here we will explore how complex variables may be ordered. In the following define $\{x,y\} \in \mathbb{R}$ and complex variable $z=x+y\jmath \in \mathbb{C}$.

-5.1: Explain the meaning of $|z_1| > |z_2|$. Ans:

- 5.2: If $x_1, x_2 \in \mathbb{R}$ (are real numbers), define the meaning of $x_1 > x_2$. **Ans:**

- 5.3: Explain the meaning of $z_1 > z_2$. **Ans:**

- 5.4: (2 pts) What is the meaning of $|z_1 + z_2| > 3$? **Ans:**

- 5.5: (2 pts) If time were complex, how might the world be different?

Ans:

2.3. PROBLEMS AE-3 51

Problem # 6: (1 pt) It is frequently necessary to consider a function $w(z) = u + v \jmath$ in terms of the real functions u(x,y) and v(x,y) (e.g. separate the real and imaginary parts). Similarly, we can consider the inverse $z(w) = x + y \jmath$, where x(u,v) and y(u,v) are real functions.

-6.1: (1 pts) Find
$$u(x, y)$$
 and $v(x, y)$ for $w(z) = 1/z$.

Ans:

Problem # 7: (5 pts) Find u(x, y) and v(x, y) for $w(z) = c^z$ with complex constant $c \in \mathbb{C}$ for questions 7.1, 7.2, and 7.3:

$$-7.1: c = e$$
 Ans:

$$-$$
 7.2: $c=1$ (recall that $1=e^{\pm\jmath 2\pi k}$ for $k\in\mathbb{Z}$ Ans:

$$-7.3$$
: $c=j$. Hint: $j=e^{j\pi/2+j2\pi k}, \quad k\in\mathbb{Z}$. Ans:

Figure 2.2: This figure shows how to derive the Schwarz inequality, by finding the value of $\alpha = \alpha^*$ corresponding to $\min_{\alpha} [E(\alpha)]$. It is identical to Fig. 3.5 on page 91.

-7.4: (2 pts) What is 3³?

Ans:

Schwarz inequality

Problem # 8: The above figure shows three vectors for an arbitrary value of $\alpha \in \mathbb{R}$ and a specific value of $\alpha = \alpha^*$.

-8.1: Find the value of $\alpha \in \mathbb{R}$ such that the length (norm) of \vec{E} (i.e., $||\vec{E}|| \ge 0$) is minimum. Show your derivation, not the answer ($\alpha = \alpha^*$).

Ans:

- 8.2: Find the formula for $||E(\alpha^*)||^2 \ge 0$. Hint: Substitute α^* into Eq. 3.5.9 (p. 92) and show that this results in the Schwarz inequality

$$|\vec{U} \cdot \vec{V}| \leq ||\vec{U}||||\vec{V}||.$$

Ans:

Problem	#9.	Geometry	v and	scal	pr	products
	π \sim .	Geomen	v unu	scui	CI.	producis

- 9.1: What is the geometrical meaning of the dot product of two vectors? Ans:
– 9.2: Give the formula for the dot product of two vectors. Explain the meaning based on Fig. 3 (page 87).
Ans:
– 9.3: Write the formula for the dot product of two vectors $\vec{U} \cdot \vec{V}$ in \mathbb{R}^n in polar form (e.g., assun the angle between the vectors is θ).
Ans:
– 9.4: How is the Schwarz inequality related to the Pythagorean theorem?
Ans:

– 9.5: Starting from $||oldsymbol{U} + oldsymbol{V}||$, derive the triangle inequality

$$||\vec{U} + \vec{V}|| \le ||\vec{U}|| + ||\vec{V}||.$$

Ans:

– 9.6: The triangle inequality $||\vec{U} + \vec{V}|| \le ||\vec{U}|| + ||\vec{V}||$ is true for two and three dimensions: Does it hold for five-dimensional vectors?

Ans:

– 9.7: Show that the wedge product $\vec{U} \wedge \vec{V} \perp \vec{U} \cdot \vec{V}$.

Ans: