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2.3 Problems AE-3

Topics of this homework:
Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere.

Deliverables: Answers to problems

Two-port network analysis
Problem # 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.6 (page 144). This
can be a mechanical system if the capacitors are taken to be springs and inductors taken as mass, as
in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car
muffler. While the physical representations will be different, the equations and the analysis are exactly
the same.
The definition of the ABCD transmission matrix (T ) is[

V1
I1

]
=
[

A B
C D

] [
V2
−I2

]
. (AE-3.1)

The impedance matrix, where the determinant ∆T = AD −BC, is given by[
V1
V2

]
= 1

C

[
A ∆T
1 D

] [
I1
I2

]
. (AE-3.2)

– 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission matrix
definition (Eq. AE-3.1). Show your work.
Sol: The formula may be easily derived by re-arranging the equations from the matrix (Eq. AE-3.2). Begin with

V1 = AV2 −B I2

I1 = C V2 −D I2

From the second equation, we get

V2 = 1
C
I1 + D

C
I2

which gives (upon substitution)

V1 = A
C
I1 + AD

C
I2 −B I2 = A

C
I1 +

(AD
C
−B

)
I2

which yields the matrix equation[
V1
V2

]
=
[

A/C (AD/C −B )
1/C D/C

] [
I1
I2

]
= 1

C

[
A ∆T
1 D

] [
I1
I2

]
. (AE-3.3)

�

Problem # 2: Consider a single circuit element with impedance Z(s).

– 2.1: What is the ABCD matrix for this element if it is in series?
Sol: [

1 Z(s)
0 1

]
�

– 2.2: What is the ABCD matrix for this element if it is in shunt?
Sol: [

1 0
1/Z(s) 1

]
�
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Problem # 3: Find the ABCD matrix for each of the circuits of Fig. 3.6.
For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency s ∈ C, then (ii)

substitute s = 1 and calculate the total transmission matrix at this single frequency.

– 3.1: Left circuit (let R1 = R2 = 10 kilo-ohms and C = 10 nano-farads)

Sol: Write the system in chain matrix form:[
V1
I1

]
=
[
1 Z1
0 1

] [
1 0
YC 1

] [
1 Z3
0 1

] [
V2
−I2

]
=
[
1 Z1
0 1

] [
1 0
sC 1

] [
1 Z3
0 1

] [
V2
−I2

]
Now we substitute the given values:[

V1
I1

]
=
[
1 104

0 1

] [
1 0

j10−8 1

] [
1 104

0 1

] [
V2
−I2

]
=
[
1 + j10−4 2× 104 + j
j10−8 1 + j10−4

] [
V2
−I2

]
�

– 3.2: Right circuit (use L and C values given in the figure), where the pressure P is analo-
gous to the voltage V , and the velocity U is analogous to the current I .
Sol: Write the system in chain matrix form:[

P1
U1

]
=
[
1 sL1
0 1

] [
1 0
sC2 1

] [
1 1

sC3
0 1

] [
1 0
1
sL4

1

] [
P2
−U2

]
Now we substitute the given values:[

P1
U1

]
=
[
1 j
0 1

] [
1 0
2j 1

] [
1 1

3j
0 1

] [
1 0
1
4j 1

] [
P2
−U2

]
=
[
− 2

3
4
3j19

12j
5
3

] [
P2
−U2

]
I used Matlab/Octave to evaluate this T matrix:
a=[1 j;0 1];b=[1 0;2j 1];c=[1 1/3j; 0 1];d=[1 0;1/4j 1]; T=
a*b*c*d.
Finally I found T (2, 1) to be 19/12 using the Matlab/Octave command: rats(1.5833,6)
�

– 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2.
Do this for the specific frequency s = 1 as in the previous part (feel free to use Matlab/Octave
for your computation).

Sol: Left circuit: Using the previous solution, and Matlab:[
V1
V2

]
= 1
j10−8

[
1 + j10−4 1

1 1 + j10−4

] [
I1
I2

]
�

– 3.4: Right circuit: Repeat the analysis as in question 3.3.
Sol: [

P1
P2

]
= 1

1.5833j

[
− 2

3 1
1 5

3

] [
U1
U2

]
�

Algebra

Problem # 4: Fundamental theorem of algebra (FTA).

– 4.1: State the fundamental theorem of algebra (FTA).
Sol: There are multiple definitions of the FTA, which of course must be equivalent.

Here are three (equivalent) answers from Wikipedia

1. The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coeffi-
cients has at least one complex root. This may then be applied recursively till the degree is zero.
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2. Every degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots. The equivalence
of the two statements can be proven through the use of successive polynomial division.

3. The field of complex numbers is algebraically closed. Note: this one requires an understanding of the term alge-
braically closed.

Wikipedia warns:

In spite of its name, there is no purely algebraic proof of the theorem, since any proof must use the complete-
ness of the reals (or some other equivalent formulation of completeness), which is not an algebraic concept.

�

(13 pts) Algebra with complex variables
Problem # 5: (7 pts) Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the difference and
compare it to zero, as in 4− 3 > 0. Here we will explore how complex variables may be ordered. In the following define
{x, y} ∈ R and complex variable z = x+ y ∈ C.

– 5.1: Explain the meaning of |z1| > |z2|.
Sol: |z| =

√
x2 + y2 is the length of z, so the above expression says that a disk of radius |z1| contains a second disk of

radius |z2|. �

– 5.2: If x1, x2 ∈ R (are real numbers), define the meaning of x1 > x2.
Sol: This conditions is the same as x1 − x2 > 0. Order is meaningful on the real line, as a length. �

– 5.3: Explain the meaning of z1 > z2.
Sol: It makes no sense to order complex numbers. A complex number has both a length and an angle (it is the same as
a vector). The concept of an angle extends the sign of a real number, making order impossible. To show this, place two
points on a plane, and ask which is larger than the other. The order of the x and y components, each have order. Thus order
cannot be defined. �

– 5.4: (2 pts) What is the meaning of |z1 + z2| > 3?
Sol: Define z3 = z1 + z2. Then the problem becomes |z3| > 3, which is a disk of radius 3 > 0. Thus the solution is all

values of z1 + z2 outside, but not including, a circle of radius 3. �

– 5.5: (2 pts) If time were complex, how might the world be different?
Sol: As best we know, time is real, thus it has the order property: the is a past, present and future. If time were
complex this would not be the case. Thus if time were complex, the past could be the future. �

Problem # 6: (1 pt) It is frequently necessary to consider a function w(z) = u+v in terms of the real
functions u(x, y) and v(x, y) (e.g. separate the real and imaginary parts). Similarly, we can consider
the inverse z(w) = x+ y, where x(u, v) and y(u, v) are real functions.

– 6.1: (1 pts) Find u(x, y) and v(x, y) for w(z) = 1/z.

Sol: Multiply by the complex conjugate x− y

w = 1
x+ y

= x− y
x2 + y2

Therefore u(x, y) = x
x2+y2 and v(x, y) = −y

x2+y2 . �

Problem # 7: (5 pts) Find u(x, y) and v(x, y) forw(z) = cz with complex constant c ∈ C for questions
7.1, 7.2, and 7.3:

– 7.1: c = e
Sol: Since u+ iv = ez = ex+y = ex(cos y +  sin y),

u = ex cos y

and
v = ex sin y.

�
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V + α∗U

|V ·U|/||V||

U
α∗U

E
(α
∗ )

=
V
−
α
∗
U

E(α) =
V
−
αU

V

αU

Figure 2.2: This figure shows how to derive the Schwarz inequality, by finding the value of α = α∗ corresponding to min
α

[E(α)]. It is identical to

Fig. 3.5 on page 91.

– 7.2: c = 1 (recall that 1 = e±2πk for k ∈ Z
Sol: From the general formula with c = 1

1z = ez log 1 ek2πz = e0ek2πz = e−yk2πe−xk2π

where k ∈ Z is a signed counting integer. Thus u = e−k2πy cos k2πx and v = e−k2πy sin k2πx. �

– 7.3: c = . Hint:  = eπ/2+2πk, k ∈ Z.
Sol:  =

(
eπ/2+2πm) = eπ/2+2πm = e−π/2 e−2πm = 0.2079 e−2πm.

Thus for m = 0, z =
(
eπ/2)z = ezπ/2 = e(x+y)π/2 = e(x−y)π/2 = e−πy/2(cos(xπ/2) +  sin(xπ/2)). �

– 7.4: (2 pts) What is ?
Sol: Since  = e

π
2 , then  = e

π
2  = e−π/2 ≈ 0.20788.

Expanding this in a continued-fraction expansion using Matlab’s rat(exp(-pi/2)) function gives
[0; 5,−5,−4, 3,−3, 3, · · · ]. �

Schwarz inequality
Problem # 8: The above figure shows three vectors for an arbitrary value of α ∈ R and a specific
value of α = α∗.

– 8.1: Find the value of α ∈ R such that the length (norm) of ~E (i.e., || ~E|| ≥ 0) is minimum. Show
your derivation, not the answer (α = α∗).

Sol: In Fig. ?? we see vectors V , U , and for reference, V + α∗U . Also shown are scaled values of U , αU and α∗U .
The setup for the derivation is

||E(a)||2 = E ·E = (~V + α~U) · (~V + α~U) ≥ 0. (AE-3.4)

Minimize with respect to α.
When U is scaled by α∗, length ||E(α∗)|| is minimum, and (V − α∗U) ⊥ U , namely vector E(α∗) is ⊥ to vector U .

This follows from ∂
∂α || ~E||

2 = ∂
∂α ((~V + α~U) · (~V + α~U)) = 2(~V + α~U) · ~U = 0. Thus

α∗ = −
~V · ~U
||~U ||2

�

– 8.2: Find the formula for ||E(α∗)||2 ≥ 0. Hint: Substitute α∗ into Eq. 3.5.9 (p. 92) and show that
this results in the Schwarz inequality

|~U · ~V | ≤ ||~U ||||~V ||.

Sol: From Eq. 3.5.9
||V ||2 + 2α∗V ·U + (α∗)2 ||U ||2 ≥ 0

Substituting α∗ gives
||V ||2||U ||2 − 2(V ·U)2 + |U · V |2 ≥ 0.
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Simplifying
||V ||2||U ||2 ≥ |U · V |2

and taking the square root (and swap order), gives the Schwarz inequality

|~U · ~V | ≤ ||~U ||||~V ||.

�

Problem # 9: Geometry and scaler products

– 9.1: What is the geometrical meaning of the dot product of two vectors?
Sol: The dot product of two vectors is the length of the ⊥ projection of one vector on the other. According to the Schwarz

inequality, this project length must be less than the product of the lengths of the two vectors. �

– 9.2: Give the formula for the dot product of two vectors. Explain the meaning based on Fig. 3.4
(page 87).

Sol: ~V · ~U = ||~V ||||~U || cos θ~V ,~U . ~V · ~U = ||~V ||||~U || cos θ~V ,~U . It represents the amount of one vector going in the
direction of the other. In a drawing, it is a projection of the one on the other, found by dropping the ⊥ from the tip of one,
on the other. �

– 9.3: Write the formula for the dot product of two vectors ~U · ~V in Rn in polar form (e.g., assume
the angle between the vectors is θ).

Sol: ~U · ~V =
∑n
i=1 aibi(= ||~U || ||~V || cos(θ)). This last relationship defines the angle between two vectors. �

– 9.4: How is the Schwarz inequality related to the Pythagorean theorem?

Sol: It says that for a right triangle, the case when a = a∗, the lengths of the two vectors must be greater than the
projection of one on the other, unless they are co-linear (i.e., the angle between them is zero). �

– 9.5: Starting from ||U + V ||, derive the triangle inequality

||~U + ~V || ≤ ||~U ||+ ||~V ||.

Sol: ||~U + ~V ||2 = (~U + ~V ) · (~U + ~V ) = ||U ||2 + ||V ||2 + 2U · V ≤ ||U ||2 + ||V ||2 + 2|U · V | Using the
Schwarz inequality we find ||~U + ~V ||2 ≤ ||U ||2 + ||V ||2 + 2||U || ||V ||. Completing the square on the right gives
||~U + ~V ||2 ≤ (||U ||+ ||V ||)2. Final taking the square root gives the triangle inequality. �

– 9.6: The triangle inequality ||~U + ~V || ≤ ||~U ||+ ||~V || is true for two and three dimensions:
Does it hold for five-dimensional vectors?

Sol: It is true in any number of dimensions. �

– 9.7: Show that the wedge product ~U ∧ ~V ⊥ ~U · ~V .

Sol: ~V ∧ ~U = ||~V ||||~U || sin θ~V ,~U while ~V · ~U = ||~V ||||~U || cos θ~V ,~U . Thus they are perpendicular. This is true in any
number of dimensions. See the discussion in the text on the wedge product. �


