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2.3 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Mobius transformation, Riemann sphere.
Deliverables: Answers to problems

Two-port network analysis

Problem # [: Perform an analysis of electrical two-port networks, shown in Fig. 3.6 (page 144). This
can be a mechanical system if the capacitors are taken to be springs and inductors taken as mass, as
in the suspension of the wheels of a car. In an acoustical circuit, the low-pass filter could be a car
muffler. While the physical representations will be different, the equations and the analysis are exactly
the same.

The definition of the ABCD transmission matrix (T') is

il _[a B][VWa
-2 211

The impedance matrix, where the determinant Ay = AD — BC, is given by

M 1 [;4 Ay

V2 C 1 D IQ

{h] . (AE-3.2)

— 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission matrix
definition (Eq. AE-3.1). Show your work.
Sol: The formula may be easily derived by re-arranging the equations from the matrix (Eq. AE-3.2). Begin with
Vi=AaVy, -8l
Il - C‘/Q - Q)Iz

From the second equation, we get

1 D
Vo=—-I1 + =1
2 C1+C2

which gives (upon substitution)
A AaD A AaAD
Vi=Zht=—L-8L="h+(=—-3)I
1=ch + -2 2= h + C 2

which yields the matrix equation

[Kﬂ - [ﬂll//g (mﬂ/ic_ Qg)} B;] = % [? A@T} Bﬂ (AE-3.3)

Problem # 2: Consider a single circuit element with impedance Z(s).

—2.1: What is the ABCD matrix for this element if it is in series?

Sol:
1 Z(s)
0 1
— 2.2: What is the ABCD matrix for this element if it is in shunt?
Sol:

e 1
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Problem # 3: Find the ABCD matrix for each of the circuits of Fig. 3.6.
For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency s € C, then (ii)
substitute s = 17 and calculate the total transmission matrix at this single frequency.

— 3.1: Left circuit (let Ry = Ry = 10 kilo-ohms and C' = 10 nano-farads)
Sol: Write the system in chain matrix form:
=l b Al FLE =l e Al 1]
I 0 1| |Ye 1J|0 1] |1 0 1| |[sC 1]|[0 1] |-
Now we substitute the given values:

Vil [t 1047 1 0] [t 10*][Va] _ [144107* 2x10*+j] [ V2
L [0 1][j10% 1|0 1][-L) | j10°% 1+j107*]| |-

— 3.2: Right circuit (use L and C values given in the figure), where the pressure P is analo-
gous to the voltage V', and the velocity U is analogous to the current I.
Sol: Write the system in chain matrix form:

1=l ke b w1

Now we substitute the given values:

P _ [t 411 o]t 5][L O[R]_[-2%2 %][P
Ul (0 1) (25 1) (0 1]|g 1 (U |85 2|[-Ue
I used Matlab/Octave to evaluate this T matrix:
a=[1 j3;0 1];b=[1 0;27 1]l;c=[1 1/33; 0 1]1;d=[1 0;1/45 11, T=
axbxcxd.
Finally I found 7'(2,1) to be 19/12 using the Matlab/Octave command: rats (1.5833, 6)

— 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2.
Do this for the specific frequency s = 17 as in the previous part (feel free to use Matlab/Octave
for your computation).
Sol: Left circuit: Using the previous solution, and Matlab:

w1 1+ 41074 1 I
Va| 5108 1 1+ 51074 I,

— 3.4: Right circuit: Repeat the analysis as in question 3.3.

Sol:
Pl_ 1 [-2 1][U
Pl 158335 |1 2| |U;

Algebra
Problem # 4: Fundamental theorem of algebra (FTA).

—4.1: State the fundamental theorem of algebra (FTA).
Sol: There are multiple definitions of the FTA, which of course must be equivalent.
Here are three (equivalent) answers from Wikipedia

1. The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coeffi-
cients has at least one complex root. This may then be applied recursively till the degree is zero.
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2. Every degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots. The equivalence
of the two statements can be proven through the use of successive polynomial division.

3. The field of complex numbers is algebraically closed. Note: this one requires an understanding of the term alge-
braically closed.

Wikipedia warns:

In spite of its name, there is no purely algebraic proof of the theorem, since any proof must use the complete-
ness of the reals (or some other equivalent formulation of completeness), which is not an algebraic concept.

(13 pts) Algebra with complex variables
Problem # 5: (7 pts) Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the difference and
compare it to zero, as in 4 — 3 > 0. Here we will explore how complex variables may be ordered. In the following define
{z,y} € R and complex variable z = = + yj € C.

— 5.1: Explain the meaning of |z1| > |za|.
Sol: |z| = y/x2 + y? is the length of z, so the above expression says that a disk of radius |z;| contains a second disk of
radius |za].

—5.2: If x1, x5 € R (are real numbers), define the meaning of x1 > x-.
Sol: This conditions is the same as z1 — x2 > 0. Order is meaningful on the real line, as a length.

— 5.3: Explain the meaning of z; > 2.
Sol: It makes no sense to order complex numbers. A complex number has both a length and an angle (it is the same as
a vector). The concept of an angle extends the sign of a real number, making order impossible. To show this, place two
points on a plane, and ask which is larger than the other. The order of the x and y components, each have order. Thus order
cannot be defined.

— 5.4: (2 pts) What is the meaning of |z1 + z3| > 3?
Sol: Define z3 = z1 + 2z2. Then the problem becomes |z3| > 3, which is a disk of radius 3 > 0. Thus the solution is all
values of z; + 25 outside, but not including, a circle of radius 3.

—5.5: (2 pts) If time were complex, how might the world be different?
Sol: As best we know, time is real, thus it has the order property: the is a past, present and future. If time were
complex this would not be the case. Thus if time were complex, the past could be the future.

Problem # 6: (1 pt) It is frequently necessary to consider a function w(z) = u+wvy in terms of the real
functions u(x,y) and v(z,y) (e.g. separate the real and imaginary parts). Similarly, we can consider
the inverse z(w) = x + yyj, where x(u,v) and y(u,v) are real functions.

—6.1: (1 pts) Find u(x,y) and v(x,y) for w(z) = 1/z.

Sol: Multiply by the complex conjugate x —

1 z—y
4y a4y

Therefore u(z,y) = and v(z,y) =

z _ Y _
x2+y? z24y2”

Problem # 7: (5 pts) Find u(x,y) and v(x,y) for w(z) = ¢* with complex constant ¢ € C for questions
7.1,7.2, and 7.3:

—71:c=ce¢

Sol: Since u + iv = e* = e*TY% = e*(cosy + 7siny),
u = e cosy

and
— 5T o3
v =e¢" siny.
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V+aU

k=

v-ul/v| «U  aU

Figure 2.2: This figure shows how to derive the Schwarz inequality, by finding the value of & = a* corresponding to min[E(«)]. It is identical to
«@

Fig. 3.5 on page 91.

—7.2: ¢ =1 (recall that 1 = ™™ for k € Z

Sol: From the general formula with ¢ = 1

1% = ¢ log 1 ejk27rz — eoejk27rz — efyk27refjazk27r

where k € Z is a signed counting integer. Thus u = e~*2™ cos k27z and v = e ~*2™Y sin k2.
—7.3: ¢= 7. Hint: j = e™/2t27k L c 7,
Sol: 7 = (erm/2Ha2mm)? — um/24a2mm — =m/2 g=2mm _ (). 2079 =27,

Thus for m = 0, 5* = (e7™/2)" = €227/2 = )@Hm)™/2 = (2=UI7/2 = ¢=7Y/2(cos(27/2) + gsin(zm/2)).

—7.4: (2 pts) What is 3’ ?
Sol: Since 7 = 37, then = e%% = ¢~ ™/2 & (0.20788.
Expanding this in a continued-fraction expansion using Matlab’s rat (exp (-pi/2) ) function gives
[O, 5,—5,—4,3,-3,3,- -~ ]

Schwarz inequality

Problem # 8: The above figure shows three vectors for an arbitrary value of o € R and a specific
value of o = .

— 8.1: Find the value of o € R such that the length (norm) ofﬁ (i.e., |E|| > 0) is minimum. Show

your derivation, not the answer (o = o).

Sol: In Fig. ?? we see vectors V, U, and for reference, V' + a*U. Also shown are scaled values of U, aU and a*U.
The setup for the derivation is

—

|E(a)|]* = E-E = (V +al)- (V +aU

~—

> 0. (AE-3.4)

Minimize with respect to a.
When U is scaled by a*, length || E(a*)|| is minimum, and (V' — o*U) L U, namely vector E(a*) is L to vector U.

pl
This follows from 5%|\E||2 = 3%((‘7 +al)-(V+al)) =2V +alU)-U = 0. Thus

— —

Vv
ol

*

— 8.2: Find the formula for || E(a*)||* > 0. Hint: Substitute o* into Eq. 3.5.9 (p. 92) and show that
this results in the Schwarz inequality
U - VI < [[T[IIV]].

Sol: From Eq. 3.5.9
IVI[? + 20"V - U + (o) |[U||* > 0

Substituting o gives
IVIPIUI? =2(V-U)? +|U - V[* > 0.
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Simplifying
IVIFIUIP = [U - V]2

and taking the square root (and swap order), gives the Schwarz inequality

U-VI< [TV

Problem # 9: Geometry and scaler products

—9.1: What is the geometrical meaning of the dot product of two vectors?
Sol: The dot product of two vectors is the length of the | projection of one vector on the other. According to the Schwarz
inequality, this project length must be less than the product of the lengths of the two vectors.

— 9.2 Give the formula for the dot product of two vectors. Explain the meaning based on Fig. 3.4
(page 87).

Sol: V- U = ||V||||U]] cos b 5. V.U = |V cos Bz . It represents the amount of one vector going in the
direction of the other. In a drawing, it is a projection of the one on the other, found by dropping the L from the tip of one,
on the other.

— 9.3: Write the formula for the dot product of two vectors U-VinR"in polar form (e.g., assume
the angle between the vectors is 0).

Sol: U -V = S abi(= ||U]] [|V|| cos()). This last relationship defines the angle between two vectors.

—9.4: How is the Schwarz inequality related to the Pythagorean theorem?

Sol: It says that for a right triangle, the case when a = a*, the lengths of the two vectors must be greater than the
projection of one on the other, unless they are co-linear (i.e., the angle between them is zero).

—9.5: Starting from ||U +V

, derive the triangle inequality

U+ VI < IUI+ [IVI]-

Sol: |[T+ V|2 = (U+V) (U+V)=[|U]P+|[VI?+2U -V < ||[U|? + [|V]|? + 2|U - V| Using the
Schwarz inequality we find ||U 4+ V||> < ||U||? +||V||*> + 2||U|]| ||V||. Completing the square on the right gives
[|U + V||? < (]|U|| + ||V||)?. Final taking the square root gives the triangle inequality.

— 9.6: The triangle inequality ||U + V|| < ||U|| 4 ||V|| is true for two and three dimensions:
Does it hold for five-dimensional vectors?

Sol: It is true in any number of dimensions.

—9.7: Show that the wedge product UANV LU-V.

Sol: V AU = ||V]|||U]| sin 0 5 while VU = ||V||||U]| cos 0 ;- Thus they are perpendicular. This is true in any
number of dimensions. See the discussion in the text on the wedge product.



