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3.3 Problems DE-3

3.3.1 Topics of this homework: Brune impedance
lattice transmission line analysis

3.3.2 Brune Impedance
Problem # 1: Residue form

A Brune impedance is defined as the ratio of the force F (s) to the flow V (s) and may be expressed in residue form as

Z(s) = c0 +
K∑
k=1

ck
s− sk

= N(s)
D(s) (DE-3.1)

with

D(s) =
K∏
k=1

(s− sk) and ck = lim
s→sk

(s− sk)D(s) =
K−1∏
n′=1

(s− sn).

The prime on the index n′ means that n = k is not included in the product.

– 1.1: Find the Laplace transform (LT ) of a (1) spring, (2) dashpot, and (3) mass.
Express these in terms of the force F (s) and the velocity V (s), along with the electrical equivalent impedance: (1) Hooke’s
law f(t) = Kx(t), (2) dashpot resistance f(t) = Rv(t), and (3) Newton’s law for mass f(t) = Mdv(t)/dt. Sol:

1. Hooke’s Law f(t) = Kx(t). Taking the LT gives

F (s) = KX(s) = KV (s)/s↔ f(t) = Ku(t) ? v(t) = K

∫ t

v(t),

since

v(t) = d

dt
x(t)↔ V (s) = sX(s).

Thus the impedance of the spring is

Zs(s) = K

s
↔ z(t) = Ku(t),

which is analogous to the impedance of an electrical capacitor. The relationship may be made tighter by specifying
the compliance of the spring as C = 1/K.

2. Dashpot resistance f(t) = Rv(t). From the LT this becomes

F (s) = RV (s)

and the impedance of the dashpot is then
Zr = R↔ Rδ(t),

analogous to that of an electrical resistor.

3. Newton’s law for mass f(t) = Mdv(t)/dt. Taking the LT gives

f(t) = M
d

dt
v(t)↔ F (s) = M sV (s),

thus

Zm(s) = sM ↔M
d

dt
,

analogous to an electrical inductor.

�
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– 1.2: Take the Laplace transform (LT ) of Eq. DE-3.2 and find the total impedance Z(s) of the
mechanical circuit.

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t)↔ (Ms2 +Rs+K)X(s) = F (s). (DE-3.2)

Sol: From the properties of the LT that dx/dt↔ sX(s), we find

f(t)↔ F (s) = Ms2X(s) +RsX(s) +KX(s).

In terms of velocity this is (Ms+R+K/s)V (s) = F (s). Thus the circuit impedance is

z(t)↔ Z(s) = F

V
= K +Rs+Ms2

s
.

�

– 1.3: What are N(s) and D(s) (see Eq. DE-3.1)?
Sol: D(s) = s and N(s) = K +Rs+Ms2. �

– 1.4: Assume that M = R = K = 1 and find the residue form of the admittance Y (s) = 1/Z(s)
(see Eq. DE-3.1) in terms of the roots s±. Hint: Check your answer with Octave’s/Matlab’s residue
command.
Sol: First find the roots of the numerator of Z(s) (the denominator of Y (s)):

s2
± + s± + 1 = (s± + 1/2)2 + 3/4 = 0,

which is

s± = −1± 
√

3
2 .

Second form a partial fraction expansion

s

1 + s+ s2 = c0 + c+

s− s+
+ c−
s− s−

= s(c+ + c−)− (c+s− + c−s+)
1 + s+ s2 .

Comparing the two sides shows that c0 = 0. We also have two equations for the residues c++c− = 1 and c+s−+c−s+ = 0.
The best way to solve this is to set up a matrix relation and take the inverse[

1 1
s− s+

] [
c+
c−

]
=
[
1
0

]
thus:

[
c+
c−

]
= 1
s+ − s−

[
s+ −1
−s− 1

] [
1
0

]
,

which gives c± = ± s±
s+−s− The denominator is s+ − s− = j

√
3 and the numerator is ±1 + 

√
3. Thus

c± = ± s±
s+ − s−

= 1
2

(
1± √

3

)
.

As always, finding the coefficients is always the most difficult part. Using 2x2 matrix algebra automates the process.
Always check your final result as correct. �

– 1.5: By applying Eq. 4.5.3 (page 151), find the inverse Laplace transform (LT −1). Use the
residue form of the expression that you derived in question 1.4.
Sol:

z(t) = 1
2πj

∮
C
Z(s)estds.

were C is the Laplace contour which encloses the entire left-half s plane. Applying the CRT

z(t) = c+e
s+t + c−e

s−t.

where s± = −1/2± 
√

3/2 and c± = 1/2± /(2
√

3). �
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Figure 3.2: Depiction of a train consisting of cars treated as masses M and linkages treated as springs of stiffness K or compliance C = 1/K.
Below it is the electrical equivalent circuit for comparison. The masses are modeled as inductors and the springs as capacitors to ground. The velocity is
analogous to a current and the force fn(t) to the voltage φn(t). The length of each cell is ∆ [m]. The train may be accurately modeled as a transmission
line (TL), since the equivalent electrical circuit is a lumped model of a TL. This method, called a Cauer synthesis, is based on the ABCD transmission
line method of Sec. 3.8 (p. 108).

3.3.3 Transmission-line analysis
Problem # 2: Train-mission-line We wish to model the dynamics of a freight train that has N such
cars and study the velocity transfer function under various load conditions.

As shown in Fig. 4.8.2, the train model consists of masses connected by springs.
Use the ABCD method (see the discussion in Appendix B.3, p. 228) to find the matrix representation of the system of

Fig. 4.8.2. Define the force on the nth train car fn(t)↔ Fn(ω) and the velocity vn(t)↔ Vn(ω).
Break the model into cells consisting of three elements: a series inductor representing half the mass (M/2), a shunt

capacitor representing the spring (C = 1/K), and another series inductor representing half the mass (L = M/2), trans-
forming the model into a cascade of symmetric (A = D ) identical cell matrices T (s).

– 2.1: Find the elements of the ABCD matrix T for the single cell that relate the input node 1 to
output node 2 [

F
V

]
1

= T
[
F (ω)
−V (ω)

]
2
. (DE-3.3)

Sol:

T =
[
1 sM/2
0 1

] [
1 0
sC 1

] [
1 sM/2
0 1

]
=
[
1 + s2MC/2 (sM)(1 + s2MC/4)

sC 1 + s2MC/2

]
(DE-3.4a)

�

– 2.2: Express each element of T (s) in terms of the complex Nyquist ratio s/sc < 1 (s = 2πjf ,
sc = 2πjfc). The Nyquist wavelength sampling condition is λc > 2∆. It says the critical wavelength
λc > 2∆. Namely it is defined in terms the minimum number of cells 2∆, per minimum wavelength λc.
The Nyquist wavelength sampling theorem says that there are at least two cars per wavelength.

Proof: From the figure, the distance between cars ∆ = coTo [m], where

co = 1√
MC

[m/s].

The cutoff frequency obeys fcλc = co. The Nyquist critical wavelength is λc = co/fc > 2∆. Therefore the Nyquist
sampling condition is

f < fc ≡
co
λc

= co
2∆ = 1

2∆
√
MC

[rad/sec]. (DE-3.5)

Finally, sc = 2πfc.
Sol: The solution is a repeat what is summarized above: the system in Fig. 4.8.2 represents a transmission line having a

wave speed of co = 1/
√
MC and characteristic impedance ro =

√
M/C. Each cell, composed of 2 masses M connected

by one spring K, has length ∆.
We wish to define the Nyquist frequency fc such that the wavelength λ > 2∆, where ∆ is the cell length. Using the

formula for the wavelength in terms of the wave velocity and frequency we find

λ = co/fc = 2∆,
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thus we conclude that
f < fc = co

2∆ = 1
2∆
√
MC

. (DE-3.6)

If we wish to have the system be accurate for a given frequency we may make the cell length ∆ smaller, while keeping the
velocity constant (MC is held constant). Thus the characteristic resistance [ohms/unit length] ro must change as fc →∞
and ∆→ 0. We can either let M →∞ and C → 0 (their product remains constant), or the other way around. In one case
ro →∞ and in the other case it goes to 0. �

– 2.3: Use the property of the Nyquist sampling frequency ω < ωc (Eq. DE-3.4) to remove higher
order powers of frequency

1 +
�
�
���

0(
s

sc

)2
≈ 1 (DE-3.7)

to determine a band-limited approximation of T (s).
Sol:

T =
[
1 + 2(s/sc)2 sM(1 + (s/sc)2)

sC 1 + 2(s/sc)2

]
≈
[

1 sM
sC 1

]
The approximation is highly accurate below the Nyquist cutoff frequency s < sc. Given any desired frequency f , we
can always make the cell size ∆ smaller by decreasing M and C, while keeping f < fc and the cell velocity constant
(co = 1/

√
MC). Thus the Nyquist condition represents a computational bound, not a physical limitation. �

Problem # 3: Now consider the cascade of N such T (s) matrices and perform an eigenanalysis.

– 3.1: Find the eigenvalues and eigenvectors of T (s) as functions of s/sc.
Sol: Matrix T (s) has eigenvalues

λ± = 1∓ 2s/sc ≈ e±2s/sc = e∓sTc .

From this we can interpret the eigenvalues as the cell delay Tc = 2/sc.
The corresponding unnormalized eigenvectors are

E± =
[
∓
√
M/C
1

]
,

where the characteristic impedance defined is ro =
√
M/C. �

Problem # 4: Find the velocity transferfunction H12(s) = V2/V1|F2=0.

– 4.1: Assuming that N = 2 and F2 = 0 (two half-mass problem), find the transfer function
H(s) ≡ V2/V1. From the results of the T matrix, find

H21(s) = V2

V1

∣∣∣∣
F2=0

Express H12 in terms of a residue expansion. Sol: From Eq. ??, V1 = sCF2 − (s2MC/2 + 1)V2. Since F2 = 0

V2

V1
= −1
s2MC/2 + 1 =

(
c+

s− s+
+ c−
s− s−

)

having eigenfrequencies s± = ±
√

2
2MC = ±sc and residues c± = ±/

√
2MC = ±sc. �

– 4.2: Find h21(t)↔ H21(s).
Sol:

h(t) =
∮ σ0+j∞

σ0−j∞

est

s2MC/2 + 1
ds

2πj = c+e
−s+tu(t) + c−e

−s−tu(t).

The integral follows from the Cauchy Residue theorem (CRT). �
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– 4.3: What is the input impedance Z2 = F2/V2, assuming F3 = −r0V3?
Sol: Starting from Eq. ?? find Z2

Z2(s) = F2

V2
= T

[
F
−V

]
2

= −(1 + s2CM/2)r0��V2 − sM(1 + s2CM/4)��V2

−sCr0��V2 − (1 + s2CM/2)��V2

�

– 4.4: Simplify the expression for Z2 as follows:
1. Assuming the characteristic impedance r0 =

√
M/C,

2. terminate the system in r0: F2 = −r0V2 (i.e., −V2 cancels).

3. Assume higher-order frequency terms are less than 1 (|s/sc| < 1).

4. Let the number of cells N →∞. Thus |s/sc|N = 0.

When a transmission line is terminated in its characteristic impedance r0, the input impedance Z1(s) = r0. Thus, when
we simplify the expression for T (s), it should be equal to r0. Show that this is true for this setup.

Sol: Applying the Nyquist approximation (i.e., ignore second order frequency terms (s/sc)2 ≈ 0)

Z1(s) = ro(1 +���
��: 0

s2CM/2) + sM(1 +���
��: 0

s2CM/4)

rosC + (1 +���
��: 0

s2CM/2)

≈ ro + sM

1 + rosC
= MC

MC
· ro + sM

1 + rosC
= M

C
· roC + sMC

M + rosMC
= r2

o

roC + s/sc
M + ros/sc

≈ r2
o

roC +���*
0

s/sc

M + ro��
�* 0

s/sc

= r3
o

C

M

= ro.

We conclude that below the Nyquist cutoff frequency, as N → ∞ the system equals a transmission line terminated by its
characteristic impedance thus Z1(s) = ro. �

– 4.5: State the ABCD matrix relationship between the first and N th nodes in terms of the cell
matrix. Write out the transfer function for one cell, H21.
Sol:

T =
[

A B
C D

]
Now use the formulae for the eigenvalues and vectors to obtain T for N = 1:

T = EΛE−1 = E

[
λ+ 0
0 λ−

]
E−1.

�

– 4.6: What is the velocity transfer function HN1 = VN
V1

?
Sol: [

F1
V1

]
= T N

[
FN (ω)
−VN (ω)

]
along with the eigenvalue expansion

T N = EΛNE−1 = E

[
λN+ 0
0 λN−

]
E−1.

where λN± = e∓sNTo . Recall that NTo is the one way delay.
We conclude that as we add more cells, the delay linearly increases with N , since each eigenvalue represents the delay

of one cell, and delay adds. �
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