
Chapter 1

Number systems

1.1 Problems NS-1

Topic of this homework:
Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)

Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab
Problem # 1: Consider the functions f(s) = s2 + 6s+ 25 and g(s) = s2 + 6s+ 5.

– 1.1: Find the zeros of functions f(s) and g(s) using the command roots().

Sol: The roots of f(s) are −3 ± 4i (in Matlab: roots([1 6 25])). The roots of g(s) are −1 and −5 (in Matlab:
roots([1 6 5])). You will find the program that generates all these figures at https://jontalle.web.engr.
illinois.edu/uploads/298.17/NS1.m �

– 1.2: Show the roots of f(s) as red circles and of g(s) as blue plus signs.
The x-axis should display the real part of each root, and the y-axis should display the imaginary part. Use hold on and
grid on when plotting the roots.

Sol:

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Complex roots of f(s) and g(s)

Im
a

g
in

a
ry

 P
a

rt

Real Part

�

– 1.3 Give your figure the title “Complex Roots of f(s) and g(s).” Label the x- and y-axes “Real
Part” and “Imaginary Part.” Hint: Use xlabel, ylabel, ylim([-10 10]), and xlim([-10
10]) to expand the axes.

3

4 CHAPTER 1. NUMBER SYSTEMS

Problem # 2: Consider the function h(t) = e2πft for f = 5 and t=[0:0.01:2].

– 2.1: Use subplot to show the real and imaginary parts of h(t).
Make two graphs in one figure. Label the x-axes “Time (s)” and the y-axes “Real Part” and “Imaginary Part.”

Sol: Breaking h(t) into real and imaginary parts gives e2π5t = cos(10πt) + sin(10πt).

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time (s)
R

e
a

l
P

a
rt

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time (s)

Im
a

g
in

a
ry

 P
a

rt

�

– 2.2: Use subplot to plot the magnitude and phase parts of h(t).
Use the command angle or unwrap(angle()) to plot the phase. Label the x-axes “Time (s)” and the y-axes ’‘Mag-
nitude” and “Phase (radians).”

Sol:

0 0.5 1 1.5 2
1

1

1

1

Time (s)

M
a

g
n

it
u

d
e

0 0.5 1 1.5 2
0

20

40

60

80

Time (s)

P
h

a
s
e

 (
ra

d
ia

n
s
)

�

Prime numbers, infinity, etc. in Octave/Matlab

Problem # 3: Prime numbers, infinity, etc.

– 3.1: Use the Matlab/Octave function factor to find the prime factors of 123, 248, 1767, and
999,999.
Sol: Factors: 123 (3, 41), 248 (2,2,2,31), 1767 (3,19,31), 999999 (3,3,3,7,11,13,37) �

– 3.2: Use the Matlab/Octave function isprime to check if 2, 3 and 4 are prime numbers.
What does the function isprime return when a number is prime, or not prime? Why?

Sol: Function isprime(2) returns 1, isprime(3) returns 1, and isprime(4) returns 0. 1 means ‘yes’ and 0
means ‘no’ �

– 3.3: Use the Matlab/Octave function primes.m to generate prime numbers between 1 and 106

Save them in a vector x. Plot this result using the command hist(x). Sol:

1.1. PROBLEMS NS-1 5

0 2 4 6 8 10

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

�

– 3.4: Now try [n,bincenters] = hist(x).
Use length(n) to find the number of bins. Sol: length(n) is 10 �

– 3.5: Set the number of bins to 100 by using an extra input argument to the function hist.
Show the resulting figure and give it a title and axes labels. Sol:

0 2 4 6 8 10

x 10
5

0

200

400

600

800

1000

1200

1400
Primes between 1 and 10

6

F
re

q
u

e
n

c
y
 o

f
p

ri
m

e
s

Number

�

Problem # 4: Inf, NaN and logarithms in Octave/Matlab

– 4.1: Try 1/0 and 0/0 in the Octave/Matlab command window.
What are the results? What do these ‘numbers’ mean in Octave/Matlab? Sol: 1/0 returns Inf (infinity) and 0/0 returns
NaN (‘not a number’). �

– 4.2: Try log(0), log10(0) and log2(0) in the command window.
In Matlab/Octave, the natural logarithm ln(·) is computed using the function log. Functions log10, and log2 are computed
using log10 and log2. Sol: log(0) is -Inf. Working in any base results in a scale factor, so the vlaue does not change
in these different bases. For example if 10x = 2y then x = log10 2y = y log10 2 = 0.30103y. �

– 4.3: Try log(1) in the command window. What you expect for log10(1) and log2(1)?
Sol: As with log(0), changing base of log(1)=0 gives the same result, because scaling 0 always gives 0. �

– 4.4: Try log(-1) in the command window. What do you expect for log10(-1) and log2(-1)?
Sol: From Matlab/Octave log(-1)=iπ. For the answer to the two other questions, see the next problems. �

– 4.5: Show how Matlab/Octave arrives at the above answer because −1 = eiπ.
Sol: log(-1) is 0 + iπ, because ln(−1) = ln(eiπ) = iπ ln(e) = iπ. For base 10 let ex = 10y and y = log10 e

x. Thus
log(−1) = log10(eπi) = πi log10 e = 1.364i. Likewise log2(−1) = πi log2(e) = 4.532i. �

6 CHAPTER 1. NUMBER SYSTEMS

– 4.6: Try log(exp(j*sqrt(pi))) (i.e., log e
√
π) in the command window. What do you

expect?
Sol: log e

√
π =

√
π = 1.7725. because ln(·) = is the inverse of e(·). �

– 4.7: What does inverse mean in this context? What is the inverse of ln f(x)?
Sol: ln f(x) = eln f(x)? Conclusion: eG and lnG are mutual inverses: that is: ln() of e() and e() of ln() . Or said another
way: G = eln(G), G = ln eG. �

– 4.8: What is a decibel? (Look up decibels on the internet.)
Sol: The decibel is very important in engineering (and unused in mathematics). It is defined as the log of a power ratio. If
a power ratio is 2, the dB value is 6 [dB]. A ratio of 10 is 20 [dB]. Thus the formula for the dB-ref is 10 log10

P
Pref

. Thus
the decibel is defined on the log (i.e., ratio) scale. Engineers quickly learn to “think” in dB units, because its so easy (once
they learn to think in terms of ratios).

While the definition is in terms of power, it practice, is almost always used in terms of voltage, pressure, current,
velocity, (force and flux), etc. Of course power is the product of force and flux, and the log of the power is the sum of the
log of the force plus the log of the flux. �

Problem # 5: Very large primes on Intel computers

– 5.1: Find the largest prime number that can be stored on an Intel 64 bit computer, which we call
πmax.
Hint: As explained in the Matlab/Octave command help flintmax, the largest positive integer is 253, however the
largest integer that can be factored is 232 =

√
264. Explain the logic of your answer. Hint: help isprime(). Sol: Using

Matlab/Octave, start with the largest integer 232 and check if its prime. Then work down by subtracting 1, and again check.
Stop when you get to the first prime below the largest integer. The answer I get is (Fall 2020): 232 − 5 = 4, 294, 967, 291
as the first prime below 232. �

Problem # 6: Suppose you are interested in primes that are greater than πmax. How can you find them
on an Intel computer (i.e., one using IEEE-floating point)?

– 6.1: Extending the number of primes you may considered.
Hint 1: Use uint64(myprimes) to extend the numbers unsigned 64 bit integers (we don’t need negative primes). Hint

2: Since every prime number greater than 2 is odd, there is no reason to check the even numbers. Starting from 3 (not 2).
nodd ∈ N/2 contain all the primes other than 2. Sol: Matlab seems to have improved since I first considered the solution to
this problem, so I’m unsure of the present answer. It needs some research. �

Problem # 7: The following idenity is interesting:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

1 + 3 + 5 + 7 + 9 = 52

· · ·
N−1∑
n=0

2n+ 1 = N2.

– 7.1: Can you find a proof?1

1This problem came from an exam problem for Math 213, Fall 2016.

1.1. PROBLEMS NS-1 7

Sol: Subtracting any line from the line following it, gives:

(1− 1) + 3 = 22 − 12

5 = 32 − 22

7 = 42 − 32

9 = 52 − 42

· · ·
N−1∑
n=0

2n+ 1−
N−2∑
n=0

2n+ 1 = N2.− (N − 1)2

2N − 1 = N2 − (N2 − 2N + 1)
2N − 1 = 2N − 1.

Thus the two sides are equal, as suggested by the above formula.
Can you find a simpler more constructive “proof?” Hint: assuming you know what integration by parts is, can you

devise a concept called Summation by parts? �

