1.2 Problems NS-2

Topic of this homework:

Prime numbers, greatest common divisors, the continued fraction algorithm

Prime numbers

Problem \# 1: Every integer may be written as a product of primes.

- 1.1: Write the numbers $1,000,000,1,000,004$, and 999,999 in the form $N=\prod_{k} \pi_{k}^{\beta_{k}}$. Hint: Use Matlab/Octave to find the prime factors.
Ans:
- 1.2: Give a generalized formula for the natural logarithm of a number $\ln (N)$ in terms of its primes π_{k} and their multiplicities β_{k}. Express your answer as a sum of terms. Ans:

Problem \# 2: Using the computer

- 2.1: Explain why the following brief Matlab/Octave program returns the prime numbers π_{k} between 1 and 100.
n=2:100;
k = isprime(n);
n (k)
Ans:
- 2.2: How many primes are there between 2 and $N=100$?

Ans:

Problem \# 3: Prime numbers may be identified using a sieve (See Figure).

- 3.1: By hand, complete the sieve of Eratosthenes for $n=1, \ldots, 49$. Circle each prime p, then cross out each number that is a multiple of p.

(1)	2	3	4	5	6	7	8	9	10
(11)	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
$(31$	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	

Note: 1 should not be circled as it is not a prime.

- 3.2: What is the largest number you need to consider before only primes remain?

Ans:
-3.3: Generalize: For $n=1, \ldots, N$, what is the largest number you need to consider before only the primes remain?
Ans:

- 3.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49. Ans:
-3.5: Find the largest prime $\pi_{k} \leq 100$. Do not use Matlab/Octave other than to check your answer. Hint: Write the numbers starting with 100 and count backward: 100, $99,98,97, \ldots$. Cross off the even numbers, leaving $99,97,95, \ldots$. Pull out a factor (only one is necessary to show that it is not prime).
Ans:
- 3.6: Find the largest prime $\pi_{k} \leq 1000$. Do not use Matlab/Octave other than to check your answer.
Ans:
- 3.7: Explain why $\pi_{k}^{-s}=e^{-s \ln \pi_{k}}$.

Ans:

Greatest common divisors

Consider using the Euclidean algorithm to find the greatest common divisor (i.e., GCD; the largest common prime factor) of two numbers. Note that this algorithm may be performed using one of two methods:

Method	Division	Subtraction
On each iteration...	$a_{i+1}=b_{i}$	$a_{i+1}=\max \left(a_{i}, b_{i}\right)-\min \left(a_{i}, b_{i}\right)$
	$b_{i+1}=a_{i}-b_{i} \cdot$ floor $\left(a_{i} / b_{i}\right)$	$b_{i+1}=\min \left(a_{i}, b_{i}\right)$
Terminates when...	$b=0(\mathrm{GCD}=a)$	$b=0(\mathrm{GCD}=a)$

The division method (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction method is much slower.
Problem \# 4: Understanding the Euclidean algorithm (GCD)
-4.1: Use the Octave/Matlab command factor to find the prime factors of $a=85$ and $b=15$.

Ans:

-4.2: What is the greatest common prime factor of $a=85$ and $b=15$?

Ans:

-4.3: By hand, perform the Euclidean algorithm for $a=85$ and $b=15$.

Ans:

- 4.4: By hand, perform the Euclidean algorithm for $a=75$ and $b=25$. Is the result a prime number?
Ans:
- 4.5: Consider the first step of the GCD division algorithm when $a<b$ (e.g., $a=25$ and $b=75$). What happens to a and b in the first step? Does it matter if you begin the algorithm with $a<b$ rather than $b<a$?
Ans:
- 4.6: Describe in your own words how the GCD algorithm works. Try the algorithm using numbers that have already been divided into factors (e.g., $a=5 \cdot 3$ and $b=7 \cdot 3$).

Ans:

$$
-4.7: \text { Find the } G C D \text { of } 2 \cdot \pi_{25} \text { and } 3 \cdot \pi_{25}
$$

Ans:

Problem \# 5: Coprimes
-5.1: Define the term coprime.

Ans:

- 5.2: How can the Euclidean algorithm be used to identify coprimes?

Ans:

- 5.3: Give at least one application of the Euclidean algorithm.

Ans:

- 5.4: Write a Matlab function, function $x=m y-g c d(a, b)$, that uses the Euclidean algorithm to find the GCD of any two inputs a and b. Test your function on the (a, b) combinations from the previous problem. Include a printout (or hand-write) your algorithm to turn in. Hints and advice:
- Don't give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Octave function, if you use it as a variable or function name, you won't be able to use gcd to check your gcd () function. Try clear all to recover from this problem.
- Try using a "while" loop for this exercise (see Matlab documentation for help).
- You may need to use some temporary variables for a and b in order to perform the algorithm.

Ans:

Continued fractions

Problem \# 6: Here we explore the continued fraction algorithm (CFA), discussed in Sec. 2.4.4. In its simplest form, the CFA starts with a real number, which we denote as $\alpha \in \mathbb{R}$. Let us work with an irrational real number, $\pi \in \mathbb{I}$, as an example because its CFA representation will be infinitely long. We can represent the CFA coefficients α as a vector of integers $n_{k}, k=1,2, \ldots, \infty$:

$$
\begin{aligned}
\alpha & =\left[n_{1} ; n_{2}, n_{3}, n_{4}, \ldots\right] \\
& =n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}+\frac{1}{n_{4}+\cdots}}} .
\end{aligned}
$$

As discussed in Sec. 2.4.3 (p. 27), the CFA is recursive, with three steps per iteration. For $\alpha_{1}=\pi, n_{1}=3, r_{1}=\pi-3$, and $\alpha_{2} \equiv 1 / r_{1}$.

$$
\begin{aligned}
\alpha_{2} & =1 / 0.1416=7.0625 \ldots \\
\alpha_{1}=n_{1}+\frac{1}{\alpha_{2}} & =n_{1}+\frac{1}{n_{2}+\frac{1}{\alpha_{3}}}=\cdots
\end{aligned}
$$

In terms of a Matlab/Octave script,

```
alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;
for k=2:K %k=1 to K
n(k)=round (alpha(k-1));
%n(k)=fix(alpha(k-1));
alpha(k)= 1/(alpha(k-1)-n(k));
%disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab's rat() function
rat(alpha0,1e-20)
```

- 6.1: By hand (you may use Matlab/Octave as a calculator), find the first three values of n_{k} for $\alpha=e^{\pi}$.

Ans:

- 6.2: For the proceeding question, what is the error (remainder) when you truncate the continued fraction after n_{1}, \ldots, n_{3} ? Give the absolute value of the error and the percentage error relative to the original α.
Ans:
- 6.3: Use the Matlab/Octave program provided to find the first 10 values of n_{k} for $\alpha=e^{\pi}$, and verify your result using the Matlab/Octave command rat ().
Ans:
- 6.4: Discuss the similarities and differences between the Euclidean algorithm and the CFA.

Ans:

Problem \# 7:CFA of ratios of large primes

- 7.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation (e.g., $\pi=[3 ., 7,16, \cdots]$). Show your work. Ans:
- 7.2:Starting from the primes below 10^{6}, form the CFA of π_{j} / π_{k} with $j=78498$ and $k<j$. Ans:
- 7.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the ratios of large primes. What is the most obvious conclusion? Ans:
- 7.4: (1pts) Try the Matlab/Octave functions rats (23/7), rats (3.2857), and rats (3.2856). What an you conclude?
Ans:
- 7.5: (2pts) Can $\sqrt{2}$ be represented as a finite continued fraction? Why or why not?

Ans:

- 7.6: (2pts) What is the CFA for $\sqrt{2}-1$?

$$
\text { Hint: } \quad \sqrt{2}+1=\frac{1}{\sqrt{2}-1}=[2 ; 2,2,2, \cdots] \text {. }
$$

Ans:

- 7.7: Show that

$$
\frac{1}{1-\sqrt{a}}=a^{\frac{11}{2}}+a^{\frac{9}{2}}+a^{\frac{7}{2}}+a^{\frac{5}{2}}+a^{\frac{3}{2}}+\sqrt{a}+a^{5}+a^{4}+a^{3}+a^{2}+a+1=1-a^{6}
$$

```
syms a,b
b= taylor(1/( 1-sqrt(a) ))
simplify((1-sqrt(a))*b) = 1-a^6
```

Use symbolic analysis to show this, then explain. Ans:

