1.2 Problems NS-2

Topic of this homework:

Prime numbers, greatest common divisors, the continued fraction algorithm

Prime numbers

Problem # 1: Every integer may be written as a product of primes.

- 1.1: Write the numbers 1,000,000, 1,000,004, and 999,999 in the form $N = \prod_k \pi_k^{\beta_k}$. Hint: Use Matlab/Octave to find the prime factors. Ans:

- 1.2: Give a generalized formula for the natural logarithm of a number $\ln(N)$ in terms of its primes π_k and their multiplicities β_k . Express your answer as a sum of terms. Ans:

Problem # 3: Prime numbers may be identified using a sieve (See Figure).

- 3.1: By hand, complete the sieve of Eratosthenes for n = 1, ..., 49. Circle each prime p, then cross out each number that is a multiple of p.

1	2	3	4	5	6	7	8	9	10
1	12	13	14	15	16	1)	18	19	20
X	22	23	24	25	26	27	28	29	30
31	<u>,32</u>	33	_34	35	36	37	<u>_38</u>	39	40
41	<u>A</u> 2	43	44	45	46	47	48	49	

Note: 1 should not be circled as it is not a prime.

-3.2: What is the largest number you need to consider before only primes remain? **Ans:**

- 3.3: Generalize: For n = 1, ..., N, what is the largest number you need to consider before only the primes remain? Ans:

```
-3.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49. Ans:
```

-3.5: Find the largest prime $\pi_k \leq 100$. Do not use Matlab/Octave other than to check your answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, Cross off the even numbers, leaving 99, 97, 95, Pull out a factor (only one is necessary to show that it is not prime). Ans:

– 3.6: Find the largest prime $\pi_k \leq 1000$. Do not use Matlab/Octave other than to check your answer. Ans:

```
- 3.7: Explain why \pi_k^{-s} = e^{-s \ln \pi_k}.
Ans:
```

Greatest common divisors

Consider using the *Euclidean algorithm* to find the *greatest common divisor* (i.e., GCD; the largest common prime factor) of two numbers. Note that this algorithm may be performed using one of two methods:

Method	Division	Subtraction
On each iteration	$a_{i+1} = b_i$	$a_{i+1} = \max(a_i, b_i) - \min(a_i, b_i)$
	$b_{i+1} = a_i - b_i \cdot \operatorname{floor}(a_i/b_i)$	$b_{i+1} = \min(a_i, b_i)$
Terminates when	b = 0 (GCD = a)	b = 0 (GCD = a)

The division method (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction method is much slower.

Problem # 4: Understanding the Euclidean algorithm (GCD)

-4.1: Use the Octave/Matlab command factor to find the prime factors of a = 85 and b = 15. Ans:

- 4.2: What is the greatest common prime factor of a = 85 and b = 15? Ans:

- 4.3: By hand, perform the Euclidean algorithm for a = 85 and b = 15. Ans: -4.4: By hand, perform the Euclidean algorithm for a = 75 and b = 25. Is the result a prime number? **Ans:**

-4.5: Consider the first step of the GCD division algorithm when a < b (e.g., a = 25 and b = 75). What happens to a and b in the first step? Does it matter if you begin the algorithm with a < b rather than b < a? Ans:

- 4.6: Describe in your own words how the GCD algorithm works. Try the algorithm using numbers that have already been divided into factors (e.g., $a = 5 \cdot 3$ and $b = 7 \cdot 3$). Ans:

- 4.7: Find the GCD of $2 \cdot \pi_{25}$ and $3 \cdot \pi_{25}$. Ans: .

Problem # 5: Coprimes

– 5.2: How can the Euclidean algorithm be used to identify coprimes? **Ans:**

– 5.3: Give at least one application of the Euclidean algorithm. **Ans:**

-5.4: Write a Matlab function, function $x = my_gcd(a, b)$, that uses the Euclidean algorithm to find the GCD of any two inputs a and b. Test your function on the (a, b) combinations from the previous problem. Include a printout (or hand-write) your algorithm to turn in. Hints and advice:

- Don't give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Octave function, if you use it as a variable or function name, you won't be able to use gcd to check your gcd() function. Try clear all to recover from this problem.
- Try using a "while" loop for this exercise (see Matlab documentation for help).
- You may need to use some temporary variables for a and b in order to perform the algorithm.

Ans:

Continued fractions

Problem # 6: Here we explore the continued fraction algorithm (CFA), discussed in Sec. 2.4.4.

In its simplest form, the CFA starts with a real number, which we denote as $\alpha \in \mathbb{R}$. Let us work with an irrational real number, $\pi \in \mathbb{I}$, as an example because its CFA representation will be infinitely long. We can represent the CFA coefficients α as a vector of integers n_k , $k = 1, 2, ..., \infty$:

$$\alpha = [n_1; n_2, n_3, n_4, \ldots]$$

= $n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{n_4 + \frac{1}$

As discussed in Sec. 2.4.3 (p. 27), the CFA is recursive, with three steps per iteration. For $\alpha_1 = \pi$, $n_1 = 3$, $r_1 = \pi - 3$, and $\alpha_2 \equiv 1/r_1$.

$$\alpha_2 = 1/0.1416 = 7.0625...$$

 $\alpha_1 = n_1 + \frac{1}{\alpha_2} = n_1 + \frac{1}{n_2 + \frac{1}{\alpha_3}} = \cdots$

In terms of a Matlab/Octave script,

```
alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;
for k=2:K %k=1 to K
n(k)=round(alpha(k-1));
%n(k)=fix(alpha(k-1));
alpha(k)= 1/(alpha(k-1)-n(k));
%disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab's rat() function
rat(alpha0,1e-20)
```

- 6.1: By hand (you may use Matlab/Octave as a calculator), find the first three values of n_k for $\alpha = e^{\pi}$. Ans:

- 6.2: For the proceeding question, what is the error (remainder) when you truncate the continued fraction after n_1, \ldots, n_3 ? Give the absolute value of the error and the percentage error relative to the original α . Ans:
-6.3: Use the Matlab/Octave program provided to find the first 10 values of n_k for $\alpha = e^{\pi}$, and verify your result using the Matlab/Octave command rat(). Ans:
-6.4: Discuss the similarities and differences between the Euclidean algorithm and the CFA. Ans:

Added Aug

Problem # 7:CFA of ratios of large primes

- 7.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation (e.g., $\pi = [3., 7, 16, \cdots]$). Show your work. Ans:

-7.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the ratios of large primes. What is the most obvious conclusion? Ans:

-7.4: (*Ipts*) *Try the Matlab/Octave functions* rats (23/7), rats (3.2857), and rats (3.2856). What an you conclude? Ans:

- 7.5: (2pts) Can $\sqrt{2}$ be represented as a finite continued fraction? Why or why not? Ans:

-7.6: (2pts) What is the CFA for $\sqrt{2} - 1$?

Hint:
$$\sqrt{2} + 1 = \frac{1}{\sqrt{2} - 1} = [2; 2, 2, 2, \cdots].$$

Ans:

-7.7: Show that

$$\frac{1}{1-\sqrt{a}} = a^{\frac{11}{2}} + a^{\frac{9}{2}} + a^{\frac{7}{2}} + a^{\frac{5}{2}} + a^{\frac{3}{2}} + \sqrt{a} + a^{5} + a^{4} + a^{3} + a^{2} + a + 1 = 1 - a^{6}$$

syms a,b b= taylor(1/(1-sqrt(a))) simplify((1-sqrt(a))*b) = 1-a^6

Use symbolic analysis to show this, then explain. Ans: