1.2 Problems NS-2

Topic of this homework:
Prime numbers, greatest common divisors, the continued fraction algorithm

Prime numbers

Problem # 1: Every integer may be written as a product of primes.

- 1.1: Write the numbers 1,000,000, 1,000,004, and 999,999 in the form $N = \prod_k \pi_k^{\beta_k}$. Hint: Use Matlab/Octave to find the prime factors.

Ans:

- 1.2: Give a generalized formula for the natural logarithm of a number $\ln(N)$ in terms of its primes π_k and their multiplicities β_k. Express your answer as a sum of terms.

Ans:
Problem # 2: Using the computer

– 2.1: Explain why the following brief Matlab/Octave program returns the prime numbers \(\pi_k \) between 1 and 100.

\[
n=2:100;
k = \text{isprime}(n);
n(k)
\]

Ans:

– 2.2: How many primes are there between 2 and \(N = 100 \)?

Ans:

Problem # 3: Prime numbers may be identified using a sieve (See Figure).

– 3.1: By hand, complete the sieve of Eratosthenes for \(n = 1, \ldots, 49 \). Circle each prime \(p \), then cross out each number that is a multiple of \(p \).

Note: 1 should not be circled as it is not a prime.

– 3.2: What is the largest number you need to consider before only primes remain?

Ans:

– 3.3: Generalize: For \(n = 1, \ldots, N \), what is the largest number you need to consider before only the primes remain?

Ans:
– 3.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49. **Ans:**

– 3.5: Find the largest prime \(\pi_k \leq 100 \). Do not use Matlab/Octave other than to check your answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, Cross off the even numbers, leaving 99, 97, 95, Pull out a factor (only one is necessary to show that it is not prime). **Ans:**

– 3.6: Find the largest prime \(\pi_k \leq 1000 \). Do not use Matlab/Octave other than to check your answer. **Ans:**

– 3.7: Explain why \(\pi_k^{-s} = e^{-s \ln \pi_k} \). **Ans:**

Greatest common divisors

Consider using the Euclidean algorithm to find the greatest common divisor (i.e., GCD; the largest common prime factor) of two numbers. Note that this algorithm may be performed using one of two methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Division</th>
<th>Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>On each iteration</td>
<td>(a_{i+1} = b_i)</td>
<td>(a_{i+1} = \max(a_i, b_i) - \min(a_i, b_i))</td>
</tr>
<tr>
<td></td>
<td>(b_{i+1} = a_i - b_i \cdot \floor(a_i/b_i))</td>
<td>(b_{i+1} = \min(a_i, b_i))</td>
</tr>
<tr>
<td>Terminates when</td>
<td>(b = 0) (GCD = (a))</td>
<td>(b = 0) (GCD = (a))</td>
</tr>
</tbody>
</table>

The division method (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction method is much slower.

Problem # 4: Understanding the Euclidean algorithm (GCD)
- 4.1: Use the Octave/Matlab command `factor` to find the prime factors of $a = 85$ and $b = 15$.

\textbf{Ans:}

- 4.2: What is the greatest common prime factor of $a = 85$ and $b = 15$?

\textbf{Ans:}

- 4.3: By hand, perform the Euclidean algorithm for $a = 85$ and $b = 15$.

\textbf{Ans:}
- 4.4: By hand, perform the Euclidean algorithm for \(a = 75 \) and \(b = 25 \). Is the result a prime number?

\textbf{Ans:}

- 4.5: Consider the first step of the GCD division algorithm when \(a < b \) (e.g., \(a = 25 \) and \(b = 75 \)). What happens to \(a \) and \(b \) in the first step? Does it matter if you begin the algorithm with \(a < b \) rather than \(b < a \)?

\textbf{Ans:}

- 4.6: Describe in your own words how the GCD algorithm works. Try the algorithm using numbers that have already been divided into factors (e.g., \(a = 5 \cdot 3 \) and \(b = 7 \cdot 3 \)).

\textbf{Ans:}

- 4.7: Find the GCD of \(2 \cdot \pi_{25} \) and \(3 \cdot \pi_{25} \).

\textbf{Ans:}

\textbf{Problem # 5: Coprimes}

- 5.1: Define the term coprime.

\textbf{Ans:}
5.2: How can the Euclidean algorithm be used to identify coprimes?

Answer:

5.3: Give at least one application of the Euclidean algorithm.

Answer:

5.4: Write a Matlab function, \(\text{function } x = \text{my}_{-}\text{gcd}(a,b) \), that uses the Euclidean algorithm to find the GCD of any two inputs \(a \) and \(b \). Test your function on the \((a, b)\) combinations from the previous problem. Include a printout (or hand-write) your algorithm to turn in.

Hints and advice:

- Don’t give your variables the same names as Matlab functions! Since \(\text{gcd} \) is an existing Matlab/Octave function, if you use it as a variable or function name, you won’t be able to use \(\text{gcd} \) to check your \(\text{gcd}() \) function. Try \(\text{clear all} \) to recover from this problem.

- Try using a “while” loop for this exercise (see Matlab documentation for help).

- You may need to use some temporary variables for \(a \) and \(b \) in order to perform the algorithm.

Answer:

Continued fractions

Problem #6: Here we explore the continued fraction algorithm (CFA), discussed in Sec. 2.4.4. In its simplest form, the CFA starts with a real number, which we denote as \(\alpha \in \mathbb{R} \). Let us work with an irrational real number, \(\pi \in \mathbb{I} \), as an example because its CFA representation will be infinitely long. We can represent the CFA coefficients \(\alpha \) as a vector of integers \(n_k, k = 1, 2, \ldots, \infty \):

\[
\alpha = [n_1; n_2, n_3, n_4, \ldots] = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{n_4 + \cdots}}}
\]
As discussed in Sec. 2.4.3 (p. 27), the CFA is recursive, with three steps per iteration. For \(\alpha_1 = \pi \), \(n_1 = 3 \), \(r_1 = \pi - 3 \), and \(\alpha_2 \equiv 1/r_1 \).

\[
\alpha_2 = \frac{1}{0.1416} = 7.0625 \ldots
\]

\[
\alpha_1 = n_1 + \frac{1}{\alpha_2} = n_1 + \frac{1}{n_2 + \frac{1}{\alpha_3}} = \ldots
\]

In terms of a Matlab/Octave script,

```matlab
alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;
for k=2:K %k=1 to K
    n(k)=round(alpha(k-1));
    %n(k)=fix(alpha(k-1));
    alpha(k)= 1/(alpha(k-1)-n(k));
    %disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab’s rat() function
rat(alpha0,1e-20)
```

– 6.1: By hand (you may use Matlab/Octave as a calculator), find the first three values of \(n_k \) for \(\alpha = e^\pi \).

Ans:
6.2: For the proceeding question, what is the error (remainder) when you truncate the continued fraction after \(n_1, \ldots, n_3 \)? Give the absolute value of the error and the percentage error relative to the original \(\alpha \).

\textbf{Ans:}

6.3: Use the Matlab/Octave program provided to find the first 10 values of \(n_k \) for \(\alpha = e^\pi \), and verify your result using the Matlab/Octave command \texttt{rat}() .

\textbf{Ans:}

6.4: Discuss the similarities and differences between the Euclidean algorithm and the CFA.

\textbf{Ans:}

Problem # 7: CFA of ratios of large primes

6.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation (e.g., \(\pi = [3, 7, 16, \ldots] \)). Show your work. \textbf{Ans:}

6.2: Starting from the primes below 10^6, form the CFA of \(\pi_j/\pi_k \) with \(j = 78498 \) and \(k < j \).

\textbf{Ans:}
CHAPTER 1. NUMBER SYSTEMS

7.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the ratios of large primes. What is the most obvious conclusion? **Ans:**

7.4: (1pts) Try the Matlab/Octave functions `rats(23/7)`, `rats(3.2857)`, and `rats(3.2856)`. What can you conclude? **Ans:**

7.5: (2pts) Can \(\sqrt{2} \) be represented as a finite continued fraction? Why or why not? **Ans:**

7.6: (2pts) What is the CFA for \(\sqrt{2} - 1 \)?

Hint: \[\sqrt{2} + 1 = \frac{1}{\sqrt{2} - 1} = [2; 2, 2, \ldots] \]

Ans:

7.7: Show that

\[
\frac{1}{1 - \sqrt{a}} = a^\frac{1}{2} + a^\frac{3}{2} + a^2 + a^\frac{5}{2} + a^3 + \sqrt{a} + a^4 + a^3 + a^2 + a + 1 = 1 - a^6
\]

Ans: