1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence

Pythagorean triplets

Problem \# 1: Euclid's formula for the Pythagorean triplets a, b, c is $a=p^{2}-q^{2}, b=2 p q$, and $c=p^{2}+q^{2}$.

- 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

Ans:

- 1.2: Solve for p and q in terms of a, b, and c.

Ans:

Problem \# 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

- 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a	c
119	169
3367	4825
4601	6649
12709	18541
65	97

Find a formula for a in terms of p and q.
Ans:

- 2.2: Based on Euclid's formula, show that $c>(a, b)$.

Ans:

- 2.3: What happens when $c=a$?

Ans:

- 2.4: Is $b+c$ a perfect square? Discuss.

Ans:

Pell's equation:

Problem \# 3: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{I}$. We seek integer solutions of

$$
x^{2}-N y^{2}=1 .
$$

As shown in Sec. 2.5.2, the solutions x_{n}, y_{n} for the case of $N=2$ are given by the linear 2×2 matrix recursion

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=1 \jmath\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

with $\left[x_{0}, y_{0}\right]^{T}=[1,0]^{T}$ and $1 \jmath=\sqrt{-1}=e^{j \pi / 2}$. It follows that the general solution to Pell's equation for $N=2$ is

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\left(e^{\jmath \pi / 2}\right)^{n}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

To calculate solutions to Pell's equation using the matrix equation above, we must calculate

$$
A^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \ldots\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

which becomes tedious for $n>2$.

- 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as Pell's equation. Hint: Use Matlab's function [E, Lambda] = eig (A) to check your results!

Ans:

- 3.2: Solutions to Pell's equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell's equation is relevant to $\sqrt{2}$.

Ans:

- 3.3: Find the first three values of $\left(x_{n}, y_{n}\right)^{T}$ by hand and show that they satisfy Pell's equation for $N=2$. Ans: By hand, find the eigenvalues $\lambda_{ \pm}$of the 2×2 Pell's equation matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

Ans:

Problem \# 4: Here we seek the general formula for x_{n}. Like Pell's equation, the Fibonacci equation has a recursive eigenanalysis solution. To find it we must recast x_{n} as a 2×2 matrix relationship and then proceed, as we did for the Pell case.

- 4.1: Show that the Fibonacci sequence $x_{n}=x_{n-1}+x_{n-2}$ may be generated by

$$
\left[\begin{array}{l}
x_{n} \tag{NS-3.1}\\
y_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right], \quad\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

-4.2: What is the relationship between y_{n} and x_{n} ?

Ans:

- 4.3: Write a Matlab/Octave program to compute x_{n} using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is x_{40} ? Note: Consider using the eigenanalysis of A, described by Eq. 2.5.18 of the text.

Ans:

- 4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to obtain the general formula for the Fibonacci sequence

$$
\begin{equation*}
x_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right] . \tag{NS-3.2}
\end{equation*}
$$

- 4.5: What are the eigenvalues $\lambda_{ \pm}$of the matrix A ?

Ans:

- 4.6: How is the formula for x_{n} related to these eigenvalues? Hint: Find the eigenvectors.

Ans:

-4.7: What happens to each of the two terms

$$
[(1 \pm \sqrt{5}) / 2]^{n+1} ?
$$

Ans:
-4.8: What happens to the ratio x_{n+1} / x_{n} ?
Ans:

Problem \# 5: Replace the Fibonacci sequence with

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2},
$$

such that the value x_{n} is the average of the previous two values in the sequence.

- 5.1: What matrix A is used to calculate this sequence?

Ans:
-5.2: Modify your computer program to calculate the new sequence x_{n}. What happens as $n \rightarrow \infty$?
Ans:

- 5.3: What are the eigenvalues of the modified A ? How do they relate to the behavior of x_{n} as $n \rightarrow \infty$? Hint: You can expect the closed-form expression for x_{n} to be similar to Eq. NS-3.4.

Ans:

Problem \# 6: Consider the expression

$$
\sum_{1}^{N} f_{n}^{2}=f_{N} f_{N+1} .
$$

- 6.1: Find a formula for f_{n} that satisfies this relationship. Hint: It holds for only the Fibonacci recursion formula.

Ans:

CFA as a matrix recursion

Problem \# 7: The CFA may be writen as a matrix recursion. For this we adopt a special notation, unlike other matrix notations, ${ }^{\text {a }}$ with $k \in \mathbb{N}$:

$$
\left[\begin{array}{l}
n \\
x
\end{array}\right]_{k+1}=\left[\begin{array}{cc}
0 & \left\lfloor x_{k}\right\rfloor \\
0 & \frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}
\end{array}\right]\left[\begin{array}{l}
n \\
x
\end{array}\right]_{k} .
$$

This equation says that $n_{k+1}=\left\lfloor x_{k}\right\rfloor$ and $x_{k+1}=1 /\left(x_{k}-\left\lfloor x_{k}\right\rfloor\right)$. It does not mean that $n_{k+1}=\left\lfloor x_{k}\right\rfloor x_{k}$, as would be implied by standard matrix notation. The lower equation says that $r_{k}=x_{k}-\left\lfloor x_{k}\right\rfloor$ is the remainder-namely, $x_{k}=\lfloor x-k\rfloor+r_{k}$ (Octave/Matlab's rem ($\mathrm{x}, \mathrm{floor}(\mathrm{x})$) function), also known as mod (x, y).

- 7.1: Start with $n_{0}=0 \in \mathbb{N}, x_{0} \in \mathbb{I}, n_{1}=\left\lfloor x_{0}\right\rfloor \in \mathbb{N}, r_{1}=x-\lfloor x\rfloor \in \mathbb{I}$, and $x_{1}=1 / r_{1} \in \mathbb{I}, r_{n} \neq 0$. For $k=1$ this generates on the left the next CFA parameter $n_{2}=\left\lfloor x_{1}\right\rfloor$ and $x_{2}=1 / r_{2}=1 /\left(x_{0}-\left\lfloor x_{0}\right\rfloor\right)$ from n_{0} and x_{0}. Find $[n, x]_{k+1}^{T}$ for $k=2,3,4,5$.
Ans:

[^0]
[^0]: ${ }^{a}$ This notation is highly nonstandard due to the nonlinear operations. The matrix elements are derived from the vector rather than multiplying them. These calculation may be done with the help of Matlab/Octave.

