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Preface 

to the Third Edition 

This edition retains the same basic approach of the earlier editions of stress- 
ing fundamentals; however, some changes have been made to reflect the 
fact that increasingly often a digital filter course is the first course in electrical 
engineefing and the field of signal processing. To meet these needs two main 
changes have been made: (1) the inclusion of more material on the z-trans- 
form, which is often used in later courses (though the constant use of the 

formalism tends to obscure the ideas behind the manipulations), and (2) the 
inclusion of more examples and exercises. There are, of course, many minor 

changes to clarify and adapt the material to current uses. 
In the years since I wrote the first edition I have become increasingly 

convinced of the need for a very elementary treatment of the subject of 
digital filters. The need for an elementary introduction comes from the fact 
that many of the people who most need the knowledge are not mathemati- 
cally sophisticated and do not have an elaborate electrical engineering back- 
ground. Thus this book assumes only a knowledge of the calculus and a 
smattering of statistics (which is reviewed in the text). It does not assume 
any electrical engineering background knowledge. Actually; experience 
seems to show that a prior knowledge of the corresponding theory of analog 
filters often causes more harm than good! Digital filtering is not simply con- 
verting from analog to digital filters; it is a fundamentally different way of 
thinking about the topic of signal processing, and many of the ideas and 
limitations of the analog method have no counterpart in the digital form. — 

The subject of digital filters is the natural introduction to the broad, 
fundamental field of signal processing. The power and basic simplicity of 
digital signal processing over the older analog is so great that whenever 
possible we are converting present analog systems to an equivalent digital 

xi
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form. But much more important, digital signaling allows fundamentally new 
things to be done easily. The availability of modern integrated-circuit chips, 
as well as micro- and minicomputers, has greatly expanded the application 
of digital filters. 

Digital signals occur in many places. The telephone company is rapidly 
converting to the use of digital signals to represent the human voice. Even 
radio, television, and hi-fi sound systems are moving toward the all digital 
methods since they provide such superior fidelity and freedom from noise, 
as well as much more flexible signal processing. The space shots use digital 
signaling to transmit the information from the planets back to Earth, in- 
cluding the extremely detailed pictures (which were often processed digitally 
here on Earth to extract further information and to form alternate views of 
what was originally captured by the cameras in space). Most records of 
laboratory experiments are now recorded in digital form, from isolated mea- 
surements using a digital voltmeter to the automatic recording of entire sets 
of functions via a digital computer. Thus these signals are immediately ready 
for digital signal processing to extract the message that the experiment was 
designed to reveal. Economic data, from stock market prices and averages 
to the Cost of Living Index of the Bureau of Labor Statistics, occur only in 
digital form. 

Digital filtering includes the processes of smoothing, predicting, differ- - 
entiating, integrating, separation of signals, and removal of noise from a 
signal. Thus many people who do such things are actually using digital filters 
without realizing that they are; being unacquainted with the theory, they 
neither understand what they have done nor the possibilities of what they 
might have done. Computer people very often find themselves involved in 
filtering signals when they have had no appropriate training at all. Their 
needs are especially catered to inthis book. 

Because the same ideas arise in many fields there are many cross con- 
nections between the fields that can be exploited. Unfortunately each field 
seems to go its own way (while reinventing the wheel) and to develop its 
own jargon for exactly the same ideas that are used elsewhere. One goal of 
this revision is to expose and reduce this elaborate jargon equivalence from 
the various fields of application and to provide a unified approach to the 
whole field. We will adopt the simplest, most easily understood words to 
describe what is going on and exhibit lists of the equivalent words from 
related fields. We will also use only the simplest, most direct mathematical 
tools and shun fancy mathematics whenever possible. 

This book concentrates on linear signal processing; the main exceptions 
are the examination of roundoff effects and a brief mention of Kalman filters, 
which adapt themselves to the signal they are receiving. 

The fundamental tool of digital filtering is the frequency approach, 
which is based on the use of sines and cosines rather than on the use of 
polynomials (as is conventional in many fields such as numerical analysis
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and much of statistics). The frequency approach, which leads to the spec- 
trum, has been the principal method of opening the black boxes of nature. 
Examples run from the early study of the structure of the atom (using spectral 
lines as the observations) through quantum mechanics (which arose from 
the study of the spectrum of black-body radiation) to the modern methods 
of studying a system (for purposes of modeling and control) via the spectrum 
of the output as it is related to the input. 

There appears to be a deep emotional resistance to the frequency ap- 

proach. And even electrical engineers who use it daily often have only a 
slight understanding of why they are using the eigenfunction approach and 
the role of the eigenvalues. In numerical analysis there is almost complete 
antipathy to the frequency approach, while in statistics there is a great fond- 
ness for polynomials (without ever examining the question of which set of 
functions is appropriate). This book shows clearly why the sines and cosines 
are the natural, the proper, the characteristic functions to use in many sit- 
uations. It also approaches cautiously the usual traumatic experience (for 
most people) of going from the feat sines and cosines to the complex ex- 
ponentials with the mysterious VV — 1; their greater convenience in use even- 
tually compensates for the initial troubles and provides more insight. 

The text includes an accurate (but not excessively rigorous) introduction 
to the necessary mathematics. In each case the formal mathematics is post- 
poned until the need for it is clearly seen. We are interested in presenting 
the ideas of the field and will generally not give the ‘‘best’’ methods for 
designing very complex filters; in an elementary course it is proper to give 
elementary, broadly applicable design methods, and then show how these 
can be refined to meet a very wide range of design criteria. Because it is an 
elementary text, references to advanced papers and books are of little use 
to the reader. Instead we refer to a few standard texts where more advanced 
material and references can be found. The references to these books are 
indicated in the text by [L,p], where L is the book label given at the end of 
this book, and p is the page(s) where it can be found. References [IEEE-1 
and 2] give a complete bibliography for most topics that arise. 

There is a deliberate repetition in the presentation of the material. Ex- 
perience shows that the learner often becomes so involved in the immediate 
details of designing a filter that where and how the topic fits into the whole 
plan is lost. Furthermore, confusion often arises when the same ideas and 
mathematical tools are used in seemingly very different situations. It is also 
true that filters are designed to process data, but experience shows that the 
display of large sets of data that have been processed communicates very 
little to the beginner. Thus such plots are seldom given, even though the 
learner needs to be reminded that the ultimate test of a filter is how well it 
processes a signal, not how elegant the derivation is. 

As always an author is deeply indebted to others, in this case to his 
many colleagues at Bell Laboratories. Special mention should go to Pro-
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fessor J. W. Tukey (of Princeton University) and to J. F. Kaiser, who first 
taught him most of what is presented here. Thanks are also due. to Roger 
Pinkham and the many students of the short courses who used the first two 
editions; their questions and reactions have been important in many places 
of this revision. They have also strengthened the author’s belief in the basic 
rightness of giving as simple an approach as possible and of keeping rigorous 
mathematics in its proper place. Finally, thanks are due to the Naval Post- 
graduate School for providing an atmosphere suitable for thinking deeply 
about the problems of teaching. 

R. W. Hamming 
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Introduction 

1.1. WHAT IS A DIGITAL FILTER? 

In our current technical society we often measure a continuously varying 
quantity. Some examples include blood pressure, earthquake displacements, 
voltage from a voice signal in a telephone conversation, brightness of a star, 
population of a city, waves falling on a beach, and the probability of death. 
All these measurements vary with time; we regard them as functions of time: 
u(t) in mathematical notation. And we may be concerned with blood pressure 
measurements from moment to moment or from year to year. Furthermore, 

we may be concerned with functions whose independent variable is not time, 
for example the number of particles that decay ina physics experiment as 
a function of the energy of the emitted particle. Usually these variables can 
be regarded as varying continuously (analog signals) even if, as with the 
population of a city, a bacterial colony, or the number of particles in the 
physics experiment, the number being measured must change by unit 
amounts. 

For technical reasons, instead of the signal u(t), we usually record 
equally spaced samples u,, of the function u(t). The famous sampling theo- 
rem, which will be discussed in Chapter 8, gives the conditions on the signal 

that justify this sampling process. Moreover, when the samples are taken 
they are not recorded with infinite precision but are rounded off (sometimes 
chopped off) to comparatively few digits (see Figure 1.1-1). This procedure 
is often called quantizing the samples. It is these quantized samples that are 
available for the processing that we do. We do the processing in order to 
understand what the function samples u, reveal about the underlying phe- 
nomena that gave rise to the observations, and digital filters are the main 
processing tool.
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u(t) 

  

Figure 1.1-1 SAMPLING AND QUANTIZATION OF A SIGNAL 

It is necessary to emphasize that the samples are assumed to be equally 
spaced; any error or noise is in the measurements u,. Fortunately, this 
assumption is approximately true in most applications. 

Suppose that the sequence of numbers {u,} is such a set of equally 
spaced measurements of some quantity u(t), where n is an integer and ¢ is 
a continuous variable. Typically, ¢ represents time, but not necessarily so. 
We are using the notation u, = u(n). The simplest kinds of filters are the 
nonrecursive filters; they are defined by the linear formula 

Yn = Dd) Celln—e (1.1-1) 
k= ~ oo 

The coefficients c, are the constants of the filter, the u,—, are the input 
data, and the y, are the outputs. Figure 1.1-2 shows how this formula is 
computed. Imagine two strips of paper. On the first strip, written one below 
the other, are the data values u,—,. On the second strip, with the values 
written in the reverse direction (from bottom to top), are the filter coefficients 
cx. The zero subscript of one is opposite the n subscript value of the other 
(either way). The output y,, is the sum of all the products c,u,—,. Having 
computed one value, one strip, say the coefficient strip, is moved one space 
down, and the new set of products is computed to give the new output y,4.1. 
Each output is the result of adding all the products formed from the proper 
displacement between the two zero-subscripted terms. In the computer, of 
course, it is the data that is ‘‘run past’’ the coefficient array {c,}. 

This process is basic and is called a convolution of the data with the 
coefficients. It does not matter which strip is written in the reverse order; 
the result is the same. So the convolution of u, with the coefficients c; is 
the same as the convolution of the coefficients c, with the data u,. 

In practice, the number of products we can handle must be finite. It is 
usual to assume that the length of the run of nonzero coefficients c, is much 
shorter than is the run of data y,. Once in a while it is useful.to regard the
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cx coefficients as part of an infinite array with many zero coefficients, but 
it is usually preferable to think of the array {c,} as being finite and to ignore 
the zero terms beyond the end of the array. Equation (1.1-1) becomes, there- 
fore, 

N 

yn = D>) Celn-% (1.1-2) 
k=-N 

Thus the second strip (of coefficients c,) in Figure 1.1-2 is comparatively 
shorter than is the first strip (of data w,,). 

Various special cases of this formula occur frequently and should be 
familiar to most readers. Indeed, such formulas are so commonplace that a 
book could be devoted to their listing. In the case of five nonzero coefficients 
cx, Where all the coefficients that are not zero have the same value, we have 
the familiar smoothing by Ss formula (derived in Section 3.2) 

Yn = (Un—2 + Unt + Un + Unit + Unto) (1.1-3)
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Another example is the least-squares smoothing formula derived by passing 
a least-squares cubic through five equally spaced values u, and using the 
value of the cubic at the midpoint as the smoothed value. The formula for 
this smoothed value (which will be derived in Section 3.3) is 

Yn = Be(—3up—2 + 12un—-1 + Wun + 12Une1 — 3uns2) (11-4 

Many other formulas, such as those for predicting stock market prices, as 
well as other time series, also are nonrecursive filters. 

Nonrecursive filters occur in many different fields and, as a result, have 
acquired many different names. Among the disguises are the following: 

Finite impulse response filter 

FIR filter 

Transversal filter 

Tapped delay line filter 

Moving average filter 

We shall use the name nonrecursive as it is the simplest to understand from 
its name, and it contrasts with the name recursive filter, which we will soon 
introduce. 

The concept of a window is perhaps the most confusing concept in the 
whole subject, so we now introduce it in these simple cases. We can think 
of the preceding formulas as if we were looking at the data u,_, through a 
window of coefficients c;, (see Figure 1.1-3). As we slide the strip of coef- 
ficients along the data, we see the data in the form of the output y,, which 

tit it... 
SMOOTHING BY 5S WINDOW 

ti 
LEAST~SQUARES CUBIC WINDOW 

Ficure 1.1-3 Winpows
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is the running weighted average of the original data u,,. It is as if we saw 
the data through a translucent (not transparent) window where the window 
was tinted according to the coefficients c,. In the smoothing by 5s, all data 
values get through the translucent window with the same amount, 4; in the 
second example they come through the window with varying weights. (Don’t 
let any negative weights bother you, since we are merely using a manner of 
speaking when we use the words ‘‘translucent window.’’) 

When we use not only data values to compute the output values y,, but 
also use other values of the output, we have a formula of the form 

Yn = Dd) Celln-e + YS deyn—K 

where both the c, and the d,‘are constants. In this case it is usual to limit 
the range of nonzero coefficients to current and past values of the data u,, 
and to only past values of the output y,,. Furthermore, again the number of 
products that can be computed in practice must be finite. Thus the formula 
is usually written in the form 

N M 
Yn = Dy Celtn—n + >) dkeYn—k . (1.1-5) 

0 1 

where there may be some zero coefficients. These are called recursive filters 
(see Figure 1.1-4). Some equivalent names follow: 

Infinite impulse response filter 

IIR filter 

Ladder filter 

Lattice filter 

Wave digital filter 

Autoregressive moving average filter 

ARMA filter 

Autoregressive integrated moving average filter 

ARIMA filter 

We shall use the name recursive filter. A recursive digital filter is simply a 
linear difference equation with constant coefficients and nothing more; in 
practice it may be realized by a short program on a general purpose digital 
computer or by a special purpose integrated circuit chip.
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A familiar example (from the calculus) of a recursive filter is the tra- 
pezoid rule for integration 

Yn = Ya-1 + [Un + Un—1] (1.1-6) 

It is immediately obvious that a recursive filter can, as it were, remember 
all the past data, since the y,,1 value on the right side of the equation enters 
into the computation of the new value y,,, and hence into the computation 
Of Yn+1,¥n+2, and so on. In this way the initial condition for the integration 
is ‘‘remembered’’ throughout the entire estimation of the integral. 

Other examples of a recursive digital filter are the exponential smoothing 
forecast 

Yn+1 = AUn+r + (1 - ayy, O<a<1) 

and the trend indicator 

T, = clUn ~ Uni] + 1 — e)T,~1 (0<c< 1) 

As is customary, we have set aside recursive filters that use future
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values, values beyond the currently computed value. If we used future values 
beyond the current y,,, we would have to solve a system of linear algebraic 
equations, and this is a lot of computing. At times it is worth it, but often 
we. have only past computed values and the current value of the data. Filters 
that use only past and current values of the data are called causal, for if 
time is the independent variable, they do not react to future events but only 
past ones (causes). 

It is worth a careful note, however, that more and more often all the 
data of an experiment is recorded on a magnetic tape or other storage medium 
before any data processing is done. In such cases the restriction to causal 
filters is plainly foolish. Future values are available! There are, of course, 
many situations in which the data must be reduced and used as they come 
in, and in such cases the restriction to causal filters is natural. 

The student may wonder where we get the starting values of the y,. 
Once well going they, of course, come from previous computations, but how 

to start? The custom of assuming that the missing values y are to be taken 
as zeros is very dubious. This assumption usually amounts to putting a sharp 
discontinuity into the function y,,, and since as noted previously the recursive 
filter remembers the past, it follows that these zero values continue to affect 
the computation for some time, if not indefinitely. It is evident in the simple 
example of the trapezoid integration that the needed starting value of y is 
the starting area, usually taken to be zero, but not necessarily so. 

We have said it before, but it is necessary to say again that the coef- 
ficients c, and d, of the filter are assumed to be constants. Such filters are 
called time-invariant filters and are the filters most used in practice. Time- 
varying filters are occasionally useful and will be briefly touched upon in 
this text. 

Finally, it should be realized that in practice all computing must be done 
with finite-length numbers. The process of quantization affects not only the 
input numbers, but it may affect all the internal (to the filter) arithmetic that 
is done. Consequently, there are roundoff errors in the final output numbers 
yn. It is often convenient to think in terms of infinite precision arithmetic 
and perfect input data u,; but in the end we must deal with reality. Fur- 
thermore, the details of the way we arrange to do the arithmetic can affect 
the accuracy of the output numbers. We will look at this topic more closely 
in the closing chapters, 

1.2 WHY SHOULD WE CARE ABOUT DIGITAL 
FILTERS? 

The word filter is derived from electrical engineering, where filters are 
.used to transform electrical signals from one form to another, especially to 
eliminate (filter out) various frequencies in a signal. As we have already
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seen, a digital filter is a linear combination of the input data u, and possibly 

the output data y, and includes many of the operations that we do when 

processing a signal. 

For convenience we suppose that we sample at unit time and that we 

represent the nth sample of the signal as u,. Thus we may think of blood 

pressure, a brain wave, the height of a wave on a beach, or a stock market 

price as a continuous signal that we have sampled (and quantized) at unit 

times in order to obtain our sequence of data u,. In the stock market case 

we often take the integral over a period, say a week, and record only the 

total amount of stock sold each week, although the underlying idea of con-— 

tinuous variation of the price or whatever else is being measured (say the 

rate at which shares are traded) still exists. Given such a signal, we may 

want to differentiate, integrate, sum, difference, smooth, extrapolate, ana- 

lyze for periodicity, or possibly remove the noise; all these, and many others, 

are linear operations. Therefore, in the digital form, the operations are digital 

filters. 

Widespread use of mini- and microcomputers in science, medicine, and 

engineering has greatly increased the number of digital signals recorded and 

processed. Since we are already processing such data in a linear fashion, it 

is necessary to understand the alterations and distortions that these filters 

produce. Moreover, because digital transmission is so much more noise 

resistant than is analog signal transmission, a world dominated by digital 

transmission is rapidly approaching. Thus again we are impelled to study 

exactly what digital filters do, or can be designed to do, to various signals. 

Applications of digital filters now greatly transcend those that arise in 

electrical engineering. As a result, it is necessary to redefine and remove 

some of the restrictions that were natural to electrical engineering at the 

~ time when digital filters were emerging from the classical electrical analog 

filters. The student should carefully note that we are sometimes making 

different definitions than those that frequently occur in older electrical en- 

gineering texts. It is necessary to do this because we have a larger view of 

the field of applications; we include applications to numerical analysis and 

statistics, for example, as well as to other fields. 

Occasionally you read about sampled data systems. Here the signal is 

sampled, but the sampled value is not quantized. Such systems will not be 

considered in this book. 

We will always assume that the samples uv, are unit spaced and begin 

at to = 0. If they are not, it is easy to find the linear transformation that 

will make them so. Let the original data be at 

th = tot nAt (n = 0,1,2,...) 

To find the transformation, we simply assume the form 

t, = at, + b
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and impose the two conditions 

to = 0 = ato + b 

Ho = 1 = ato + At) +b 

Solve (by subtraction) 

aAt 

b = —alo 

Therefore, 

rat - th = 57 (tn — to) (1.21) 

It is easy to see that this is the desired transformation. 

The method of derivation should be learned rather than the result mem- 
orized, 

Exercises 

1,2-1 Find the standard transformation for the data: fo = 10, t; = 12, tp 
= 14,..., Answer: t' = i(t, — 10). 

1.2-2 Find the transformation that moves the sample points fo = 0.100, ¢, 
= 0,112, t2 = 0.124,..., to the standard form. 

1.2-3 List ten sources, other than those in the text, of signals that might 
be filtered. 

1.2-4 Write Simpson’s integration formula as a recursive filter. 

1.2-5 Compute the first five output values of the filter 

Yn = AYn-1 t+ Un 

for the input yo = 0, u, = 1 for all n. 

1.2-6 Compute the successive values of the filter 

Yn = AYn-1 t+ Un 

‘where yo = 0, u; = 1, and all other u, = 0. Give the formula for y,,. 

1.2-7 Compact disc (CD) recordings use 44.1 KH (kH = kiloHertz = 1000 
times a second). Find the appropriate transformation.
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1.33 HOW SHALL WE TREAT THE SUBJECT? 

Much of the theory, both as to the design and use of digital filters, 
originated in the field of analog filters. If one is already familiar with the 
field, then it might be reasonable to build on this knowledge. Today, how- 
ever, the average person who needs to know about digital filters has no such 
background, and so it is foolish to base the development on the analog ap- 
proach. Consequently, we assume no such familiarity and will only mention 
the corresponding jargon when necessary. 

The statistics field has also contributed extensively to the theory of 
digital filters. In particular, the subject of time series is closely related and 
has contributed its own elaborate and confusing jargon. 

Textbooks in numerical analysis have many formulas that are linear 
combinations of equally spaced data, and thus such formulas are equivalent 
to digital filters. Since the elements of numerical analysis are now more 
widely known than those of other fields of application, we will select many 
of our examples from numerical analysis. Furthermore it is very often needed 
in practice. 

The fundamental approach common to all the special fields is based on 
(1) the Fourier series, both discrete and continuous, and (2) the use of the 
Fourier integral. They are the mathematical tools for understanding and 
manipulating linear formulas, and we must.take the time to develop them, 
for they are rarely taught outside of electrical engineering courses these days. 
However, we will avoid becoming too involved with mathematical rigor, 
which all too often tends to become rigor mortis. Nor do we develop all the 
mathematical theory before showing its use; instead, we regularly give ap- 
plications of the theory just covered in order to show both its relevance and 
its use, In this way, we hope that much of the mathematics will become 
more obvious to the nonmathematically inclined. 

1.4 GENERAL-PURPOSE VERSUS SPECIAL- 
PURPOSE COMPUTERS 

Digital filtering is done using both special- and general-purpose digital 
computers. Even though numerical computations also use both types, most 
introductory textbooks on the subject deal only with computing done on 
general-purpose computers; similarly, most of the discussion in this book is 
confined to filtering done on general-purpose computers. 

This remark should not be interpreted as meaning that the field of spe- 
cial-purpose computers is unimportant. Rather it is an indication that com- 
putation on a general-purpose computer is usually much less restrictive. 
Therefore, in a first presentation, we concentrate on the main ideas, while
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ignoring the details of the particular computer being used. Special-purpose 
digital computers are rapidly increasing in importance, primarily because of 
the availability of inexpensive, large-scale integrated circuits, as well as the 
fact that many of the operations that we wish to perform are sometimes 
beyond the scope (in either an economic or a time sense, or both) of current 
(and foreseeable) general-purpose computers. 

1.5 ASSUMED STATISTICAL BACKGROUND 

We need to take a brief look at statistics. A set of measurements is 
called a sample. The word ‘‘sample”’ is used both for an individual mea- 

surement and for the set of measurements, even if they are repeated mea- 
surements of the same thing. This usage occurs because the statistician is 
thinking of an underlying population or ensemble of possible measurements 
and you have obtained one possible set of results (one realization). The 
statistician is concerned with the probability of obtaining the particular ob- 
served result and with the effects of repetitions of the experiment. The mea- 
surements of a sample may all be at a single point. For instance, the sample 

can be a number of measurements of the length of a particular wire. The 
measurements can also be scattered at various places in the range of a func- 
tion, for example, the velocity of a boat at various times of a day. 

Often a model for the distribution of the measurements must be found; 
we want to think about the ensemble from which we have drawn the par- 
ticular sample. 

To illustrate, if Z is the measured length of the wire just mentioned, 
then we model these measurements by 

P{L s x} = P(x) 

For P{L = x} read ‘‘probability that L is less than or equal to x.’’ P(x) is 
thus the probability that the measured length L is less than or equal to x; 
P(x) is called the cumulative distribution function for L. In many situations 
P(x) has a derivative p(x); that is, 

o p(x) and Pla <L=sb}= L p(x) dx (1.51) 

Then p(x) is called either the density or the probability density for L. 

Acommon density that occurs in such situations as measuring the length - 
of a piece of wire is the gaussian (or normal) distribution 

—(x— )2/202 p(x) = <r : (—0 <x <0) (1.5-2)
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where w and o are parameters whose values depend on the particular sit- 
uation being modeled. See Figure 1. 5-1(b). 

Another example of a model occurs in roundoff theory. It is reasonable 
to suppose that the roundoff error made when a number is quantized 
(rounded off) is ‘‘uniformly distributed’’ from —4 to 3 in the last digit kept. 
Therefore, 

=n i, —4 Sxs $ 
p(x) = { 0, |xl>4 (1.5-3) 

See Figure 1.5-1(a). 
A commonly computed characteristic of a random quantity such as L 

or, alternatively, of a density p(x) is the average or expected value (also 
called mean value). It is denoted Ave {L} or E{L} and is defined by 

Ave {L} = E{L} = [ xp(x) dx (1.5-4) 

p(x) 

  

      

«
F
 

~ 1/2 1/2   
(a) ROUNDOFF DISTRIBUTION 

A pin) 

ee       =
 Be 

(b) GAUSSIAN DISTRIBUTION 

_ (x=p)? 
plx)=—=e ?¢ 

o /8r 

Ficure 1.5-1
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You are weighting each x by its probability of occurring, P(x), and combining 
them all together. For the roundoff example, 

ee v2 
t xp(x) dx = fe dx = 0 

Note that the averaging is over the ensemble p(x). 
For the gaussian example (1.5-2), 

EL} = a i xe7 1/2[(x ~ w/o}? dx 

Replacing (x — yw)/o by the normalized variable t we have 

2 

= 3 + w= 
(1,5-5) 

% dt ° dt = —(1/2)12 —(1/2)2 E{L} =a I. te Van + [. e Vin 

The last equation is true because the first integrand is odd and therefore the 
integral equals zero. The second integral is P{/-~ < L-< o} = ], 

We can think of the expectation as an operator E{ } operating on a 
function. A moment’s thought and it is obvious that the expected value of 
a constant is the same constant, 

E{a} = a 

Again, if x is the variable of the model and if a and b are constants, then 

E{ax + b} = aE{x} + b 

Other “‘typical values’’ besides the average are widely used. One is the 
mode, the most frequent value or the one with maximum probability density. 
Another is the median, the value exceeded by half the distribution. We will 
not use them in this book. . 

Another commonly computed characteristic of a random quantity or, 
alternatively, of its distribution is the variance. It is denoted Var {L} if L is 
the random quantity, and is defined by 

Var {L} = f(x - w)?p(x) ax (1.5-6) 

where L has density p(x) and » = E{L}. It is also denoted by the symbol 
o*, Note that the variance is always measured about the mean. In mechanics 

this same expression is known as the moment of inertia.
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For the roundoff case (1.5-3), we have 

3 ce 1/2 1 
c= [= O%pa)de= fo de= LSI 

and for the gaussian (1.5-2), 

o? = Var {L} = <i i (x — pe VAG wie? gy 

If we set 

x- w= ot 

we obtain 

2 oo 

Var {x} = in L. Pe~P2 dt 

Integration by parts using 

te-P?dr=dV, Vs -e "? 
U=t, dU = dt 

gives 

  

2 co co) 

Var {x} = Tim | -e-ras + f. e772 a| 

The integrated piece vanishes at both ends, and in the integral » = 0, 
ao” = 1, Therefore, since the integral equals \/27, we have 

2 

Var {x} = Tn Vin = 0 

This result shows why we adopted the peculiar form for writing the gaussian 
distribution: o? is the variance and w is the average of the gaussian (normal) 

distribution, 

p(x) = wT eee Re = N(y, 0”) 

It is clear that the variance, which is the sum of the squares of the
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deviations of the distribution from its average value [weighted by the prob- 
ability p(x) of occurring], is closely related to the principle of least squares 
(which states that the best fit occurs when the sum of the squares of the 
errors is minimum). In both cases, it is the sum of the squares of the dif- 
ferences that is used. For the variance, it is the difference from the mean 
that is used; for a least-squares fit, it is the difference of the data from the 
approximate fit that is used. 

Exercises 

1.5-1 If the distribution for p(x) is 

_ J 90, x<0 
p(x) = { ae~*, x20 (a > 0) 

show that p = I/a and o? = 1/a?. 

1.5-2 If the distribution for p(x) is 

1-2, O<xs2 2 
p(x) = 

0, otherwise 

show that p = 4,07 = %. | 

1.5-3 Find the mean and variance of 

T T 
. cos 2x, ~GErts7 

p(x) = 

0, otherwise 

1.5-4 For a well-balanced die (singular of dice), calculate the mean and 
variance of the value on the top face after a random toss. Do the same for 
a pair of dice. 

1.6 THE DISTRIBUTION OF A STATISTIC 

We now turn to what is probably the hardest concept for the beginner 
in statistics to master, the idea of the distribution of a statistic (such as the 
mean or the variance of a sample).
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Suppose that we have made a set of measurements and that from the 
sample we have computed one or more statistics. For instance, we may have 
selected 1000 Americans at random from the entire population of around 200 
million and measured their heights. From these heights we can compute the 
sample average X. 

1 an 

Fa hh 

The variance s* of the sample is defined by 

> (x: — x) 
a1 fry 

  

sg? 

For clarity, it is customary to use Greek letters for the statistics of the model 
and Latin letters for the corresponding statistics of the sample. 

It is good to know these two numbers for the sample that we drew, but 
if we are to make much use of them, the question immediately arises: If we 
repeat the whole process again, using a different random sample of 1000 
Americans, what could we reasonably expect to get for the average? In short, 
what is the distribution of the statistic called the ““average’’? Clearly, rep- 
etitions of the whole process of selecting the people, making the measure- 
ments, and computing the average will give us a distribution of values for 
the average X (and a distribution for the variance 57). . 

In the roundoff example we had a unique model for the basic population 
from which the roundoffs were drawn, but in the gaussian example we must 
estimate the two unknown parameters of the population distribution and 
o? from the sample statistics ¥ and s?, We can ask what relation these two 
sets of numbers have to each other. In textbooks on statistics it is proved 
that, for any distribution, the average of the sample is an unbiased estimate 
of the original population average. Similarly, the sample variance s? is an 
unbiased estimate of o?. Unbiased means that, on the average, your esti- 
mates are neither too high nor too low. (That is, the average of the statistic 
equals the value being estimated.) 

TABLE 1.6-1 Relation of sample to population 

statistics 

  

  

Sample Population 
a 

Ave(x) = i > x: we 
Rijs 

2 1s =)2 2 gs? = > (a ~ ¥) o 
n— 1 jy 
 



Sec. 1.7 Noise Amplification in a Filter / 17 

If the sample is at all large (n = 10), then the central limit theorem 
shows that the statistic called the average has a distribution that is very close 
to a gaussian (normal) distribution 

— n(x ~ €)2/202 
Vn 

PO) = Sm § 
with parameters X¥ and o2/n. 

Exercise 

1.6-1 For the set of measurements 10, 11, 10, 12, 9, 10, 7, 10, 10, 9, compute 
the mean and variance of the sample and estimate the corresponding pop- 
ulation parameters. 

1.7 NOISE AMPLIFICATION IN A FILTER 

Suppose that we make some measurements. Let u, be the “‘true’’ mea- 
surement with added noise e,, whose expected value is zero. The condition 
of zero mean is 

‘Flen} = 0 

and implies that there is no bias in the measurements, only local, random 
errors. The averaging is, of course, over the ensemble of noise ¢,. Fur- 
thermore, let this noise €, have a variance o*. What is the corresponding 
noise in the output of a nonrecursive filter (assuming that the arithmetic we 
do does not increase the noise)? To compute this, we make the additional 
assumption (which is often, but not always, true) that in making the mea- 
surements u, + €, the errors €,, are uncorrelated. This assumption in mathe- 
matical notation is . 

. o7, m=n- 
Flen€m} = { 0, m*En 

Again the averaging is over the ensemble of the noise. 
A nonrecursive filter is defined by the formula 

N 

Yn = > Ce(Un—k + En—k) | (1.7-1) 

k=—N
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The expected value is, therefore, since the E operation applies only to the 
€, and not to the c, or the u,—,, and E{e,} = 0, 

N N 
Flynt = 3 cxlun-~ + Elen} = D> Cklln—k 

N k= k=u —-N 

For the variance calculation, we begin with 

N 2 

e{| > ChUn—K + €n—K) — zon] } 
k==N 

But this is (using different summation indices to keep things clear) 

FS creas} = ef] > crea | [> emén-m || 

Since E{e,} = 0 and, for m # n, Efe,€n} = 0, multiplying out and applying 
the operator E to the e, leaves only the terms 

N 

D cRE{ez} = 3S clo? =o? DS c? (1.7-2) 
k=~—N 

Thus the sum of the squares of the coefficients of a filter measures the noise 
amplification of the filtering process. It is for this reason that the sum of the 
squares of the coefficients of a nonrecursive filter plays a significant role in 
the theory. 

Exercises 

1.7-1_ Apply formula (1.7-2) using the roundoff noise model. 

1.7-2 What is the noise amplification of the least-squares cubic (1.1-4) of 
Section 1.17 

1.7-3 What is the noise amplification of smoothing by 5s? Answer: 0? = 3. 

1.7-4 Show that the minimum noise amplification of a five-term nonrecur- 
sive filter, with the sum of the coefficients equal to 1, is the smoothing by 
5s. Hint: Use Lagrange multipliers.
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1.8 GEOMETRIC PROGRESSIONS 

We need to review the topic of geometric progressions since it will occur 
often in the text. 

A geometric progression is a sequence of n values 

a, az,az*,,...,az"7* (1.8-1) 

where each is obtained from the previous one by multiplying by the constant 
z. The sum of all the terms is 

S(n) = al + zt 2% Foe $ 2th (1.8-2) 

If we multiply this equation by z and then subtract it from the original we 
get 

S(n) - zS(n) = a — az” 

S(n) = oe (1.8-3) 

The special case of symmetrically arranged terms beginning at a = z~” 
and going on for 2m + 1 terms gives 

zm + z7mrt fone ot 1 ene gmt + zm 

This sum we will label as §(-—m, m) and is, from (1.8-3), 

277d _ z2m+ty gum ses gmt 

S(-m, m) = lo = Tay   

Multiply the numerator and denominator by —z~ 

(m+ 1/2) 

=a (1.8-4) 
zine 1/2 

S(-m, m) = za 
~~ % 

— 2 

In this derivation z may be a real or complex number. Differentiating (1.8- 
2) and (1.8-3) with respect to z we get (a = 1) 

1 — nz?! + (mn — 1)z” 

(1 — z)?? 
  1+ 2z + 327 +06 + (n — Ize"? =
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Multiply by z to get the convenient formula 

zt 227 + 3z3 tie + (n — Nz"! 

[1 — nz™! + (n — 1)z"] 
  

  

      

~ 4 (1 — z)? (1.85) 

If | z| < 1 then letting n > © (1.8-3) becomes 

S(~) = i-2z (1.8-6) 

and (1.8-5) becomes 

> ket = = Fi (1.8-7) 

We often want 1/z in place of z. Then (1.8-3) becomes 

a(l + Az + Uz? + + Iz") = a (1.8-8) 

and (1.8-6) is 

a > zk = ; = i (1.8-9) 

while (1.8-7) is 

5 kg“ = 2 (1.8-10) 
k=0 (z — 1 

Similar formulas are easily found by similar methods. 

Exercises 1.8 

1.8-1 Discuss (1.8-4) when z is replaced by 1/z. 

1.8-2 From (1.8-10) find 

> k?z-* 

k=0 

1.8-3 In (1.8-5) replace z by 1/z.



2 

The Frequency 

Approach 

2.1 INTRODUCTION 

The purpose of this chapter is to show, for linear digital filter design, why 
and in what sense the use of sines and cosines of the independent variable 
t is preferable to the classical use of polynomials in ¢. The approximation 
of a function by a polynomial is generally emphasized in mathematics, sta- 
tistics, and numerical analysis. For instance, in Newton’s method for finding 
a zero of a function g(t), the function is locally replaced by the tangent line, 
a linear equation in t. Again, a Taylor’s expansion of a function expresses 
the function in powers of tf — fo. In statistics data is constantly being fitted 
by polynomials. In the trapezoid rule for integration the function is locally 
replaced by a straight line. It is natural, therefore, to suppose that in other 
fields polynomials are the proper functions to use when approximating a 
given function. Thus we are concerned in this chapter more with the psy- 
chological problem of undoing this earlier conditioning in favor of polynom- 
ials than with the logical problem of presenting the frequency approach. 

Before doing this, however, we introduce in the next section the most 
important consequence of sampling a function at equally spaced points. This 
phenomenon, called aliasing, is a common experience for most people; but 
they are so accustomed to it that they are only vaguely aware of it. 

We shall then show, in three different senses, that the sines and cosines 
are the proper functions for situations that are relevant to much of data 
processing on computers. To do so, it is necessary to introduce the concepts 
of eigenfunctions and eigenvalues and to show that the concept of the trans- 
fer function corresponds to the eigenvalues of the process. 

Since the idea of frequency is clearly central to the frequency approach, 

21
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we must be careful to say what it means. Consider, for example, a rectangular 
wave (or any other shaped wave) that exactly repeats itself 10 times a second; 
we say that it has a period (cycle) of T = zs second and a rotational frequency 
of 10 hertz (cycles per second). Hertz is abbreviated Hz when used as a unit 
of measure. By a period of a function, we mean the shortest interval for 
which the function exactly repeats itself, and the fundamental frequency is 

the corresponding frequency. 
The period T and the frequency f are reciprocals of each other. The 

angular frequency w (in radians) is related to the rotational frequency f by 

o = Inf (2.1-1) 

The use of the angular measure w is natural in calculus situations, and use 
of the rotational frequency f is natural in applications. This is the way that 
we will use them. This use of two different units occurs similarly in logs; in 
the theory part, as in the calculus, we use natural logs, while in practice we 

use the logs to the base 10. 
The adjective fundamental is often dropped, but doing so can lead to 

confusion. For instance, in Section 4.3 we will decompose a rectangular 
wave into a sum of sines and cosines and then say that the original wave 
form has high frequencies in it. Thus confusion can arise concerning the 
frequency of the original wave form and the frequencies of the terms in the 
decomposition of the wave into a set of sinusoidal (periodic) functions. 

2.2 ALIASING 

The phenomenon of aliasing, which is basic to sampling data at equally 

spaced intervals, is not new to the reader who has watched Westerns either 
on television or in the movies. As the stagecoach wheels turn faster and 
faster, they appear to slow down and then to stop. If the increase in speed 
is great enough, they may seem to go backward, stop, and go forward a 
number of times. Any actual high rate of rotation of the wheels appears, as 
a result of the equally spaced sampling of the pictures in time, to be “‘aliased”’ 
into a low frequency of rotation. Figure 2.2-1 shows, symbolically, a wheel 
with four spokes rotating at different rates, and the human mind interprets 
what is seen as the smallest motion that accounts for the observations. At 
the first time that the wheel seems to stop, it will appear to have twice the 

normal number of spokes. 
Another common application of this phenomenon of aliasing due to 

sampling occurs when a stroboscope is flashed at a rate close to that of a 
piece of rotating equipment. If the stroboscope flashes at a rate slightly less 
than the rate of rotation (or some multiple of it), then the flashes make the
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SLOW ROTATION MIDDLE ROTATION FASTER ROTATION 

APPEARS AS A DIRECT APPEARS ASIF STAND- APPEARS AS A BACK~ 
ROTATION ING STILL WITH DOUBLE WARD ROTATION 

THE NUMBER OF SPOKES 

Fieure 2,2-1 

machine appear to the eye as if it were rotating slowly forward; the closer 
the rates, the slower the apparent rotation. Again we see that one frequency 
is aliased into another due to the process of taking equally spaced samples. 

In the case of a sinusoid, we are not sampling a rotating wheel but are, 
in effect, sampling one component, either vertical or horizontal (or in any 
other direction for that matter). As a result, we can see the phenomenon of 
aliasing due to sampling at equal intervals in time (the independent variable) 
as a simple consequence of trigonometric identities. 

Consider the sinusoid 

u(t) = cos[2a(m + a)t + o] 

where m is an integer, positive or negative, a is the positive fractional part 
of the original rate of rotation, and $ is an arbitrary phase angle. Since we 
are sampling the sinusoid at integer values of t, the reduction of any angle 
by 2m leaves the cosine with the same values at the sample points. There- 
fore, the sinusoid is equivalent (at the sample points ¢,, = 1) to 

cos[2rat + ] 

If a > 4, we can remove another 27, and [since cos x = cos(—x)] 

cos[2m(—1 + a)t + $] = cos[2a(1 — a)t - o] 

at the sample points. Thus we have shown, using only simple trigonometry, 
that at the sample points any sinusoid of arbitrary frequency is equivalent 
to a sinusoid with a frequency that lies between 0 and 4, equivalent in the 
sense that the two sinusoids have the same numerical. values at the sample 
points (see Figure 2.2-2). In a very real sense, the two frequencies are in- 
distinguishable: a high frequency is aliased into (appears as) a low frequency
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AA A NONNE 
Ficure 2,2-2 ALIASING 
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due solely to the sampling process. Only sinusoids with frequencies low 
enough so that at least two samples occur in each period are not aliased. 
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has the same values as 

un = cos(-2 — 4 = cos| — = cos 

at all the sample points, and hence the original function is aliased into the 
lower-frequency function. 

Exercises 

2.2-1_ A machine rotates at 100 Hz. If a strobe light flashes at a rate of 99 
per second, what is the apparent motion of the machine? (Hint: Take oy 
second as the unit of time for the sampling.) If the strobe flashes 101 times 
per second? 98 times? 

2.2-2 Find the lowest aliased frequency of cos[8mn/3 + w/3}. Of cos[13an/3 
+ 7/3]. 

2.2-3 Repeat the argument for sines in place of cosines. Note carefully the 
small differences between the cosines and sines. 

2.2-4 What is the aliased frequency of cos 4mn? 

2.2-5 What is the highest frequency of a constant? 

2.2-6 A compact disc recording uses 44,100 samples per second. What is 
the highest unaliased frequency? Answer: 22,050
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9.3 THE IDEA OF AN EIGENFUNCTION 

The word eigenfunction is a half-translation from the German of what 
in the older English texts was called characteristic function, proper function, 

or natural function. — 
For purposes of illustration only consider a special case of eigenfunc- 

tions, the multiplication of a square matrix A = (a,,,;), of dimension N by 
N, by a vector x, of dimension N by 1. The product is another vector y, of 

dimension N by 1, 

Ax = y 

If A is the identity matrix, then, of course, the vector x equals the vector y 
in the sense that all the components have the same value. Also, if x = 0, 
then y = 0, but in the future we shall exclude the function (vector) that is 

identically zero. 
Usually the output vector y will point in a different direction (in the N- 

dimensional space) from the input vector x. For the typical matrix A of 
dimension N, there will be N different vectors x such that the corresponding 
y will have the same direction as did the x, although not necessarily the 
same length. That is, we will have 

Ax = AX 

for some constant X\. To see the truth of this remark, we can write the 

preceding equation in the form 

(A — XDx = 0 

where I is the identity matrix. For this equation to have a solution that is 
not identically zero, it is both necessary and sufficient that the determinant 
of the system of equations 

-|A- AI | = 0 

This determinant, 

Qi —X ax2 ai3 
aay d22—- 23 ree] 2g 

a31 a32 a33 — d 

when expanded, is clearly a polynomial in \ of degree N, and, in general,
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it will have N distinct zeros 41, \2,..., An, real or complex (to have a 
multiple zero is a restriction on the matrix A). Thus there are, in general, 
N distinct \, with corresponding vector solutions x,. (Note that x, is a vector 
and not a component of a vector.) The values ), are called the eigenvalues, 
and the x; are called the corresponding eigenvectors. For a given eigenvalue, 
the determinant is zero, and the corresponding eigenvector is, of course, 
determined only to within a multiplicative constant. 

Why are these eigenvectors important? There are (almost always) N 
distinct eigenvectors, and they can be shown to be linearly independent. 
Therefore, they can serve as a basis for representing an arbitrary vector x 
of N dimensions. Thus we can represent an arbitrary vector x as a linear 
combination of the N eigenvectors x;,: 

N 

x= Dd auxe 
kw 

If we now multiply this equation on both sides by the matrix A (technically, 
we apply the operation A to the equation), we find that 

N N 
Ax = 3 axAx, = 3) apdyxx 

k=l k=1 

and we see that each eigenvector is multiplied by its corresponding eigen- 
value. In the eigenvector representation, the effect of the multiplication by 
the matrix A (applying the operation A) is easy to follow. The eigenvectors 
are independent of each other.. 

To state this important property in other words, we can say that the 
eigenfunctions do not ‘‘feel’’ the presence of each other; each minds its own 
business regardless of how much there may or may not be of the other 
eigenfunctions. 

To illustrate the above consider the matrix 

This leads to the corresponding determinant 

2 
2-r| 79 

_|1i-a JA At] = | 3 
  

Upon expansion of the determinant, we get the equation for the eigenvalues 

W—-3.+2-6=0
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which has zeros \ = 4, — 1. If we use \; = 4, we obtain for the matrix 
equation (where we are using the notation x;,,; for the jth component of the 
ith vector x;) 

—3 2 X11 _ 

(3-2) (Gi) =9 
which leads to the single equation 

~ 3x11 + 2% 1,2 = 0 

and the corresponding eigenvector 

¥4,1. 

seus) = (5) 
y) 

The value of x,,, is arbitrary, since the rank of the matrix for the eigenvalue 
is 1. If we use the other eigenvalue \2 = -—1, we obtain, correspondingly, 

(3 3) (mi) - 
with the corresponding eigenvector. 

These two eigenvectors, 

(3) ¢ (1) 
are linearly independent and can represent any arbitrary two-dimensional 

vector. . 

In particular the general vector 

a\ _at+b/2 5 34 = 2b 1 
bp” 5B 5 -1 

a\ _ ,a+b/2\ 3a-2b/ 1 a (5) 4° G) (1) 
hence
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Exercises 

2.3-1 Find the eigenvalues and eigenvectors of the matrix 

a=(2 0) 
2.3-2 Given the matrix 

i 1 1 
A=j{ 1 0 -2 

1 0 0 

find all the eigenvalues and the eigenvector corresponding to the eigenvalue 
1. Answer: (1, —1, 1). 

2.4 INVARIANCE UNDER TRANSLATION 

In many data-processing problems there is no natural origin, and there- 

fore an arbitrary point is selected as the origin (typically, for a time signal, 
it is the time when we set ¢ = 0, which is arbitrary). From the addition 
formulas of trigonometry 

sin(x + y) = sin x cos y + cos x sin y 

cos(x + y) = cos x COs y ~ sinx siny (2.4-1) 

it is an easy exercise in trigonometry to see that, when x = x' + A, 

A sinx + Bcos x 

becomes 

A’ sin x’ + B' cos x’ 

where we have 

A'=Acosh — Bsinh 

B'=Asinh + Beosh (2.4-2) 

Squaring each of these expressions and adding them, we obtain 

A'* + Bl’? = A* + B? | (2.4-3)
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Thus we see that under the operation of translation the pair of functions 
cos x and sin x constitutes the eigenfunctions, for when placed into the op- 
eration of translation by the amount h, they again emerge. 

The famous Euler identities are | 

e* 

e7® (2.4-4) 

li cos x + isinx 

tt cos x — isinx 

(where i = /—1). Note that, for x real, as is assumed, 

le*|[=1 (2.4-5) 

To verify the equations (2.4-4) we expand e* in a power series 

(xP | (P(t | (i)? 
TEGO Sr tg tar Fgp 

Rearrange and separate the real and imaginary parts, noting that i? = —1, 
= 1, etc. . 

2 4 3 5 
ix ~~ ae (fp, - XX e -(1 at 4 a) a(x at 5] ..) 

and we recognize the corresponding sine and cosine expansions. Thus we 
have the top equation of (2.4-4). Replace i by ~i and you have the lower 
equation. 

The equations (2.4- 4) lead to the corresponding formulas 

1 — (e* | ~ ix cos x = 5 fe + e7*) 

1 ie —ix | sin x = 5; (¢ -e7*) (2.4-6) 

In this notation the two addition formulas (2.4-1) from trigonometry are 
contained in the single, much simpler formula 

eX ely = git») 

This fact can be seen by using the Euler identities (2.4-4) on both sides and 
then equating the real and imaginary terms on each side. Thus the complex
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IMAGINARY 
4 

el 

isin x 

  > REAL 
cos x 

  
Ficure 2.4-1 

exponentials are the eigenfunctions of translation. It is far more convenient, 
therefore, to use the complex exponentials than it is to use the real sines 
and cosines. On the other hand, the real functions are familiar, and the 
complex exponentials have a mysterious aura about them. It is simply nec- 

essary to get used to the fact that the complex exponentials are the real 
functions in a slight disguise. You can think of the cosine and sine as the 
components of a vector e*. See Figure 2.4-1. 

We have chosen the mathematical convention of i = \V —1 rather than 
the engineering convention of j. The choice is arbitrary, but since the book 
is designed to be read by nonengineers, i is a reasonable choice, and engi- 
neers need to be familiar with both notations. 

It is natural to ask if the sine and cosine are unique in having this prop- 
erty of invariance under translation. The invariant property that we want is 
that both functions under a translation of a fixed amount, say h, can be 
written as a linear combination of sine and cosine or, more generally, that 
any linear combination of a sine and cosine of a given frequency can be 
written as a linear combination when an arbitrary translation of size h of the 
coordinate axis is made. We are further assuming that the functions are odd 
and even, respectively, and that the trigonometric functions, sine and cosine, 
are reasonably smooth. Under these assumptions it can be shown that the 
sines and cosines are unique (except that the corresponding hyperbolic func- 
tions are also possible). Notice that in the complex exponential notation the 

eigenfunction property is much more simply expressed than in the trigo- 
nometric notation, 

u(t + h) = glt+h) = piwhgiot = A(w)u(t)
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where \(w) is the eigenvalue 

Mw) = el 

and is independent of the variable ¢. 
Thus the e* are the eigenfunctions of translation. 
Corresponding to equation (2.4-1), we have in the complex notation 

u(t) = ce 

(where c can be a complex number) the invariant (2.4-3) 

(ce )(Ge~') = c& = | c |? (2.4-7) 

2.5 LINEAR SYSTEMS 

The second eigenfunction property that we wish to show is that the 
complex exponential functions e“’ and e~‘' are eigenfunctions for linear, 
time-invariant systems. In abstract notation this means 

L{e'} = \(w)e 

where L{ } is an arbitrary linear time invariant operator and \(w) does not 
depend on t. A linear operator has the property that 

L{agi(t) + bg2(t)} = aL{gs(t)} + bL{g2(t)} 

For example, integration, differentiation, and interpolation are all linear op- 
erators. Clearly, for nonrecursive filters of the form 

e 

Yn = DD CkUn-k 
k=—-N 

the substitution 

u(t) = e 

produces, when we factor out the exponential term depending on n, the 
output 

N 
y(n) = pion > che tek = Mw)e” 

k=~N
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where 

N 

> cxpe@* = Nw) (2.5-1) 
k=—N 

Thus the function e’, which we put into the right side of the equation, can 
be factored out of the expression and appears multiplied by its eigenvalue 
A(w). The eigenvalue \(w) is, of course, a constant as far as ¢ or, equivalently, 

nis concerned, and is usually called the transfer function. Thus the transfer 
function is just the eigenvalue corresponding to the eigenfunction e’”. 

For a recursive filter we need to assume that both the input and the 

output are of the form 

u, = Are" and y, = Aoe@ 

where the input coefficient Az and the output coefficient Ao may be complex 
numbers. We get from equation (1.1-5) 

N M 
Aoe®" = Ar >; cpe"— + Ao Sd) dpe” 

0 1 

or the ratio of output to input coefficients 

N 

> cpe 7 tk 

Ao _ 0 
7 naan Va (2.5-2) 
Al M 

1- > dze 7k 

1 

This is a transfer function because, when you multiply the input by this ratio 
you get the output; you ‘‘transfer’’ from the input to the output. 

It is worth noting that the exponential function is also the eigenfunction 
that is appropriate for the calculus operations of differentiation, 

d jot . 3 iwt i ee = ime (2.5-3) 

and integration, 

: eit 

J em at = — (2.5-4) 
iw
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The exponential is also the eigenfunction for differencing, since 

Agi = giolt+1) — glet = givti pio _ 1} 

Thus we see, contrary to the impression gained from the usual calculus 
course, that the powers of x are not the eigenfunctions of calculus. Instead, 
the exponentials, real or complex, are the natural, the characteristic, the 
eigenfunctions of the calculus. 

The expression e occurs frequently : and it is often easier to make a 
notational change and write 

e =z 

Hence (2.5-1) has the form 

N . 

D> cxez7* = Nw) 
k=—N 

and (2.5-2) has the form 

N 

> cz * 
0 

M 

1 3S diz-* 
i 

Ao _ 

Al 

Exercises . 

2.5-1 Find the eigenvalue corresponding to the kth derivative. - 

2.5-2 Find the eigenvalue corresponding to the kth difference operator A‘. 

2.5-3. Discuss the lack of an additive constant in (2.5-4). 

2.6 THE EIGENFUNCTIONS OF EQUALLY 
SPACED SAMPLING 

The purpose of this section is to show that the eigenfunctions of the 
process of equally spaced sampling of a function are the common sines and 
cosines of trigonometry (or equally the complex exponentials e* and e~*). 
The sense in which we mean that they are eigenfunctions is that when we 
(1) take a sinusoid of some frequency (think of it as a high frequency), then
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(2) do the process of sampling the given frequency function at equally spaced 

points, and (3) finally ask ‘‘What equivalent sinusoid of low frequency do 

we have?’ we find that it is equivalent to a single sinusoid function. Stated 

simply, aliasing takes any particular frequency and, in the sense of having 

the same values at the sample points, transforms it into a single low-fre- 

quency function. . . 

Let us contrast this result with what happens when the classical poly- 

nomial method of approximation is used. In polynomial approximation when 

we use the sample points x; (i = 1,..., N), we are led directly to consider 

the sample polynomial defined by 

mx) = [x — xy][x — x2] > [x — xn] 

This function plays a central role in the theory, because it is the function 

that vanishes at all the sample points x; and thus is the function that we 

cannot ‘‘see.”’ Now, given any power of x, say x”, we divide this power by 

a(x) in order to get a quotient Q(x) and a remainder R(x): 

x™ = m(x)Q(x) + R(x) 

where R(x) is of degree less than N. A simple generalization of the standard 

remainder theorem shows that at the sample points x; the two functions x” 

and R(x) have exactly the same values. Thus the original single power of x 

is aliased into a polynomial R(x), which is, of course, a linear combination 

of 1, x, x7,..., x7, and not a single power. In this sense, the powers 

of x are not eigenfunctions for sampling at any spacing. Aliasing for poly- 

nomials is a messy business. 

Let us restate this result. If we regard the process as (1) starting with 

a basis function (a power of x, say x”), (2) sampling at N points, and finally, 

(3) constructing from the samples a new function of minimal degree in x, 

then we see that, in general, a single power of x does not go into a power 

of x. On the other hand, for sinusoids, the process of equally spaced sampling 

followed by the reconstruction of a function of minimal frequency does result 

in a single sinusoid. Consequently, in this sense, the sinusoids are the ei- 

genfunctions of equally spaced sampling, and the process reveals once more 

the central role that aliasing plays in the equally spaced sampling process. 

2.7 SUMMARY 

In this chapter we have discussed the phenomenon of aliasing, which 

is due solely to the equally spaced sampling of the original signal. We have 

also given three reasons why the trigonometric functions, sine and cosine,
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are to be used in many filter problems as the basis of representing signals. 
The reasons are that they are the eigenfunctions for (1) invariance under 

translation by an arbitrary amount, (2) linear systems, and (3) equally spaced 
sample systems. 

In the complex form e“” and e~‘, the trigonometric functions are more 
easily handled in many problems. Unfortunately, most students believe that 
we are modeling a real world, and they believe that in the final analysis they 
have to deal with real signals. The complete equivalence of the two forms, 
real and complex, does not convince them that the two approaches are ex- 
actly equivalent. 

At any frequency we have both a sine and a cosine as the basis for 

representation of any function; in the complex notation we have the positive 
and negative frequencies to use, and thus the same amount of linear inde- 
pendence. Ultimately, the convenience of the complex notation must be 
mastered, because it also leads more readily to the deeper insights of what 
is going on with all signal processing. 

In recognition of the reality of the prejudice, we will for a time continue 

to give both the real and complex forms; but finally we will have to settle 
on the complex notation as our main tool. When you have to deal with a 
real function, then the coefficients in the complex form are conjugates of 
each other, which makes the two terms conjugates of each other, and their 
sum is thus real. 

We have also introduced the z- transform 

z= ee 

which at present is a mere notational convenience and adds nothing to the 
theory. .


