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24 CHAPTER 2. ALGEBRAIC EQUATIONS

Problem # 4: F(x) may be expressed as (A, B,z+ € C)

A B
+ )
T—TL T —a_

F(z) = (AE-1.1)
where 24 are the roots (zeros) of P»(z), which become the poles of F(x); A and B are the residues. The
expression for F'(x) is sometimes called a partial fraction expansion or residue expansion, and it appears in many
engineering applications.

—4.1:Find A, B € C in terms of the roots x 1. of Py(x).

Sol: The fastest (i.e., easiest) way to find the constants A, B is to cross-multiply

1 A@-z_)+B@-—=zy) (A+B)r—(Az_+ Bzy)
1+22  (z-zy)(z—z_) (z—zy)(z—a_)
Since the numerator must equal 1, B = —Aand A = 1/(z4 — x1).
In summary , in terms of the roots of Eq. AE-1.1
1 1 1 1 1
A=-B=——— thus F(z)= =— — .
(x4 —x_) 1+22 2 \z—-1; z+1y

—4.2: Verify your answers for A and B by showing that this expression for F(x) is indeed
equal to 1/ Py(x).
Sol: This is easily verified by cross-multiplying and simplifying. In the numerator the = terms cancel and Eq. AE-
1.1 is recovered.

—4.3: Give the values of the poles and zeros of Ps(z).
Sol: The zeros are at 2, = =+, and the poles are at x,, = 00

—4.4: Give the values of the poles and zeros of F(x) = 1/ Py(x).
Sol: The poles are at 2, = £, and the zeros are at x, = 00
2.1.1 Analytic functions

Overview: Analytic functions are defined by infinite (power) series. The function f(z) is said to be analyric at
any value of constant = z,,, where there exists a convergent power series

P@) =Y anle - )"
n=0

such that P(z,) = f(z,). The point z = x, is called the expansion point. The region around z, such that
|@ — x| < 1is called the radius of convergence, or region of convergence (RoC). The local power series for f(z)
about z = x, is defined by the Taylor series:

df 1d%f 2
f(@) ~ flzo) + = z:xo(i —%o) T 513 Z:%(w —@)"
o0
1 dn
=) o l@ (z — o)™
ng“ n! dzn oz, ¢
Two classic examples are the geometric series! where a,, = 1,
1 oo
=ltzta?tadto = am, (AE-1.2)
11—z =

and the exponential function where a,, = 1/n!, Eq. NS-3.11 (p. 69). The coefficients for both series may be
derived from the Taylor formula.

!'The geometric series is not defined as the function 1/(1 — ), it is defined as the series 1 + x + 22 + x° + - - -, such that the ratio of
consecutive terms is .
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26 CHAPTER 2. ALGEBRAIC EQUATIONS

—6.2: What is the RoC for Eq. AE-1.3?
Sol: There is no pole; thus the RoC is co. This polynomial has N zeros. =

—6.3: What is the RoC for Eq. AE-1.4?
Sol: A polynomial has no RoC. »

— 6.4: How many poles does Py(x) (Eq. AE-1.3) have? Where are they?
Sol: Since Py () is defined by Eq. AE-1.3, there is no poles at x = 1. However it still has a pole of order N at
2 = 0. To show this, define z = 1/ and study the zeros. =

—6.5: How many zeros does Py (x) (Eq. AE-1.4) have? State where are they in the complex
plane.
Sol: Py (z) only has N zeros, at s, = {/—1 = e72mn/(N+1)) where n = 1,2,...,N. The zero at s, = 1

(n = 0) of Eq. AE-1.4 exactly cancels with the pole at s, = 1. This this zero-pole pair are referred to as a
removable singularity.

— 6.6: Explain why Eqs. AE-1.3 and AE-1.4 have different numbers of poles and zeros.

Sol: The answer is very interesting. For Eq. AE-1.3, Py(s,) = 0 has N roots and we are not sure where they
are. The numerator of Eq. AE-1.4 has N + 1 roots at s, = e2m/(N+1) forn = 0, 1,2, ... N. However forn = 0,
s, = /N = 1 is not a root, since Py (1) = N. This root and the pole exactly cancel. All the roots N + 1 of
Eq. AE-1.4 are known as the roots of unity, but the root at n = 0 is special because it cancels with the pole at s = 1.
Given the roots of Eq. AE-1.4, we can see that the N roots of Eq. AE-1.3 are at s, = Y/—1 = e/2™/(N+1)) with
n=1,...,N (n # 0). Perhaps even a bit clever. »

—6.7: Is the function 1/(1 — ) analytic outside of the RoC?

Sol: Yes, because it is analytice everwhere other than at the pole z = 1. =

— 6.8: Extra credit. Evaluate Py(x) at x = 0 and x = 0.9 for the case of N = 100,
and compare the result to that from Matlab.

%$sum the geometric series and P_100(0.9)

clear all;close all; format long

N=100; x=0.9; S=0;

for n=0:N

S=S+x"n

end

P100=(1-x" (N+1))/(1-x);

disp (sprintf ('’ S= %g, P100= %g, error= %g’,S,P100, S-P100))
1— 9N+]

Sol: Py (0) = 1and Py (0.9) = 5555~ = 9.999760947410010. According to Matlab Pigo(0) = 1 and

Pi00(0.9) = 9.999760947410014, with a difference of —3.55271 x 1071° (ie., -16xeps). =

Problem # 7: The exponential series

— 7.1: What is the RoC for the exponential series Eq. NS-3.117

Sol: The exponential is convergent everywhere on the open real line. =

2.1. PROBLEMS AE-1

31

Problem # [3: In this problem we consider the case of fractional roots, and take ad-
vantage of this fact during the itteration. Given that the roots are integers, composed of
primes, we may uniquely identify the primes by factoring the numerator and denomina-
tor of the rational approximation of the root.

The method is:

1. Start the Newton itteration
M(sn)

Sn+1 = Sn — M'(57)

2. Apply the CFA to the next output rat s(sp+1)
3. Factor the Num and Dem of the CFA
4. Terminate when the factors converge

Using this method, show that we can find either the best possible fractional approximation to the roots (or
even the exact roots, when the answer is within machine accuracy).

— 13.1: Find the roots of a Monic having coefficents m;, € F.
Let
Ms(z) = (z — 254/17)(z — 2047/13)(z — 17/13)

In this case the root vector R becomes
R = [14.9412,157.4615,1.3077].

Verify that rats (M) returns the rational set of roots. Sol: In double precision this returns M. (Not sure
what happens in single precision.) =
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— 8.2: Where are the poles and zeros of x(z)?
Sol: Their is a branch cut between z = 0, —oo, and the zero is at z = 1. There seems to be a pole at z = 0,
where the branch cut terminates. I don’t seem to fully understand this singular point.

Problem # 9: (3 pts) Composition.

-9.1: Ify(s) = 1/(1 — s) and z(s) = €°, compose these two functions to obtain (y o z)(s).
Give the expression for (y o 2)(s) = y(z(s)). Sol:

1
1—es

(yoz)(s) =

—9.2: Where are the poles and zeros of (y o z)(s)?
Sol: It is best to analyize this function using zviz 1./ (l-exp (5.+s)). There are an oo number of poles
at s, = j2mn,n € Z (namely when ef, = 1). There is a single zero at Rs = 0 — oo, and y(s) goes to 1 for
Rs =0 — —o0.

—9.3: Where (for what condition on s) is (y o z)(s) analytic?
Sol: It is analytic everywhere except at the poles s,, = 727n,n = Z.
Eigen-analysis

Problem # 10: (4 pts) The vectorized eigen-equation for a matrix 4 is

AE = EA. (AE-1.5)

— 10.1: (4pt) Provide a formula for A® in terms of the eigenvector E and eigenvalue A
matricies.
Sol: To find powers of a matrix modify Eq. AE-1.5 by post multication by E

A=FEAE™!.

Then
A® = EAE'EAE'EAE~' = EA’E~!.

— 10.2: (4 pts) Find the eigenvalues of the matrix, and find the roots, by completing the
square, where a,b,c,d € C, and
a b
A= [c d] ’

det|A—AL| =0

Sol: The definition of the eigenvalues is

which is
a—A b
c d—A\

a+d\? [a+2\?
(=) - (222) o

2
,\i:“;di bc+(“_d> .

det

’:(a*/\)(d*/\)*b(}:/\z*([l+d))\*bc.

Completing the square

Thus

2

The eigenvalues are typically the damped resonant frequencies A+ = 0, & jw, of a mechanical or electrical
circuit. In these cases the radical is jwy is the resonance radian frequency and jo, < 0 is the resonant damping.
This requires that the constants {a, b, ¢,d} > 0 and € R.

2.1. PROBLEMS AE-1 29

(4 pts) Convolution

Multiplying two short or simple polynomials is not demanding. However, if the polynomials have many
terms, it can become tedious. For example, multiplying two 10th-degree polynomials is not something
one would like to do every day.

An alternative is a method called convolution. The inverse of convolution is called deconvolution, which
is equivalent to long-division of polynomials, also known as factoring polynomials (Sec. ??, p. ??).
Newton’s method is a reliable and accurately algorithm to extract roots from polynomials using term by
term deconvolution. When the roots are well approximated by fractional numbers, the method is accurate
to within computational accuracy. For example, if the root is 7 ~ 719 = 817696623/260280919 € F, as
given by rats (pi, 19). g is the 64 bit machine’s internal representation of 7 since 7 — 719 = 0 (See
text Fig. 2.6, p. 48).

Problem # /1: (4 pts) Convolution of sequences. Practice convolution (by hand!!) using a few
simple examples. Manually evaluate the following convolutions. Show your work!

—11.1: (2 pts) Multiplying two polynomials is the same as convolving their coefficients.
Given
fz)=2%+322 +3z+ 1+ [1;3,3,1]
g(z)=2%+222 + 2+ 2 [1;2,1,2].
show that
f(@)g(x) = 25 4 52° + 1021 + 122 + 112% + 7 + 2 < [1;3,3,1] % [1;2,1,2].

Sol: Do the convolution [1; 3, 3, 1]+ [1; 2, 1, 2]. Reverse the first vector and run it across the second. This produces
(1,[3.1] - [1,2],[1,3,3] - [1,2,1] - - =[1;5,10,12,11,7, 2.

Here is how you put [] inside the latex’s
begin{question}[: [bracketed text] ]

\begin{question}
[: (1 pts)

\( \char9l 1;-1 \char93 \star \char9l 0; 1, 2, 4, 7, 0\char93 \)
]

\end{question}
as used in the following question:

—11.2: (I pts) [1;—1] + [0;1,2,4,7,0]
Sol: [1;—1] % [0;1,2,4,7,0] = [0;1,2,4,3,-7,0,...] m. =[0,1,1,2,3,—7,0,...].

—11.3: (1 pts) [1;2,1] * [1; —1]
Sol: [1;1, -1, ~1]

Newton’s root-finding method

Problem # 12: (2 pts) Use Newton’s iteration to find the roots of the polynomial

Py(z) =1—2a%

— 12.1: Draw a graph describing the first step of the iteration starting with
xo = (1/2,0).
Sol: Start with an (x,y) coordinate system and put points at and the vertex of Ps(x).




