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2.2 Problems AE-2

Topics of this homework:
Linear vs nonlinear systems of equations, Euclid’s formula, Gaussian elimination, matrix permutations, Ohm’s
law, two-port networks,

Deliverables: Answers to problems

(2 pt) Gaussian elimination
Problem # 1: (2 pts) Gaussian elimination

– 1.1: (1 pts) Find the inverse of

A =

[
1 2
4 3

]
.

Sol:

A−1 =
1

3− 8

[
3 −2
−4 1

]
.

�

– 1.2: (1 pts) Verify that A−1A = AA−1 =

[
1 0
0 1

]
.

Sol: Multiply them to show this. �

2.2.1 Two linear equations
Problem # 2 In this problem we transition from a general pair of equations

f(x, y) = 0

g(x, y) = 0

to the important case of two linear equations

y = ax+ b

y = αx+ β.

Note that to help keep track of the variables, roman coefficients (a, b) are used for the first
equation and Greek (α, β) for the second.

– 2.1: What does it mean, graphically, if these two linear equations have (1) a unique
solution, (2) a nonunique solution, or (3) no solution?
Sol: There are three possibilities:

1. When they have different slopes, they meet at one (x,y) point, which is the solution.

2. If the two lines are identical, any point on the line is a solution.

3. If they have the same slope but different intercepts (are parallel to each other) there is no
solution.

�
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– 2.2: Assuming the two equations have a unique solution, find the solution for x and y.
Sol: Since there must be one point where the two are equal, we may solve for that by setting

the y values equal to each other:
ax+ b = αx+ β

Thus

x =
β − b
a− α

y = a
β − b
a− α

+ b

�

– 2.3: When will this solution fail to exist (for what conditions on a, b, α, and β)?
Sol: As stated above, if they have the same slope α = a but different intercepts β 6= b, there

is no solution. When β = b and α = a every point on the line is a solution. �

– 2.4: Write the equations as a 2×2 matrix equation of the formA~x = ~b, where ~x = {x, y}T .

Sol: [
1 −a
1 −α

] [
y
x

]
=

[
b
β

]
�

– 2.5: State the inverse of the 2× 2 matrix, and solve the matrix equation for x and y.
Sol: [

y
x

]
=

1

∆

[
−α a
−1 1

] [
b
β

]
=

1

∆

[
−αb+ aβ
−b+ β

]
where the determinant is ∆ ≡ a− α. �

– 2.6: Discuss (state) the properties of the determinant of the matrix (∆) in terms of the
slopes of the two equations (a and α).
Sol: When the slopes are the same there is no solution and ∆ = 0. Thus the matrix solution is

consistent with the geometry. This is our first result in analytic geometry. �

Problem # 3: You are given the following pair of linear relationships between the input
(source) variables V1 and I1 and the output (load) variables V2 and I2 of a transmission line:[

V1
I1

]
=

[
 1
1 −1

] [
V2
I2

]
.

– 3.1: Let the output (the load) be V2 = 1 and I2 = 2 (i.e., V2/I2 =1/2 {Ω}). Find the input
voltage and current, V1 and I1.

Sol: This case corresponds to [
V1
I1

]
=

[
 1
1 −1

] [
1
2

]
=

[
1+ 2
1− 2

]
Thus V1 = 2 + 1 and I1 = −1. �

– 3.2: Let the input (source) be V1 = 1 and I1 = 2. Find the output voltage and current, V2
and I2.

Sol: With the input specified the two equations are[
1
2

]
=

[
 1
1 −1

] [
V2
I2

]
.
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To find the input we must invert the matrix (∆ = −j − 1)

[
V2
I2

]
=

1

1 + j

[
1 1
1 −

] [
1
2

]
.

Thus V2 = 3/(1 + ) = 3(1− )/2, I2 = (1− 2)/(1 + 1) = −(1 + 3)/2. The point of this exercise is that the
two lines have a complex intersection point, not easily visualized. �

Integer equations: applications and solutions

Any equation for which we seek only integer solutions is called a Diophantine equation.

Problem # 4: (5 pts) A practical example of using a Diophantine equation:

“A merchant had a 40-pound weight that broke into 4 pieces. When the pieces were weighed, it was found
that each piece was a whole number of pounds and that the four pieces could be used to weigh every
integral weight between 1 and 40 pounds. What were the weights of the pieces?” - Bachet de Bèziriac
(1623)a.
Here, weighing is performed using a balance scale that has two pans, with weights on either pan. Thus,
given weights of 1 and 3 pounds, one can weigh a 2-pound weight by putting the 1-pound weight in
the same pan with the 2-pound weight, and the 3-pound weight in the other pan. Then the scale will be
balanced. A solution to the four weights for Bachet’s problem is 1 + 3 + 9 + 27 = 40 pounds.

aTaken from ?, p. 50
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– 4.1: Show how the combination of 1-, 3-, 9-, and 27-pound weights can be used
to weigh 1, 2, 3, . . . , 8, 28, and 40 pounds of milk (or something else, such as flour).
Assuming that the milk is in the left pan, provide the position of the weights using a
negative sign − to indicate the left pan and a positive sign + to indicate the right pan.
For example, if the left pan has 1 pound of milk, then 1 pound of milk in the right pan,
+1, will balance the scales.

Hint: It is helpful to write the answer in matrix form. Set the vector of values to be weighed equal to
a matrix indicating the pan assignments, multiplied by a vector of the weights [1, 3, 9, 27]T . The pan
assignments matrix should contain only the values −1 (left pan), +1 (right pan), and 0 (leave out). You
can indicate these using −, +, and blanks.
Sol: Any integer between 1 and 40 may be expanded using the weights 1, 3, 9, 27. Here is the problem
stated in matrix form: 

1
2
3
4
5
6
7
8
. . .
28
. . .
40



=



+
− +

+
+ +
− − +
− +

+ − +
− +
. . .
+ +
. . .
+ + + +




1
3
9
27



The left column is the weight of the milk. The right-most column are the four weights. It should be clear
that these four weights span the integers from 1-40 with binary weights. Each weight may be computed
recursively from twice the sum of the previous weights +1, that is

Wn+1 = 2Wn + 1 = 2n+1 since Wn = 2n.

For example to get 26 we place weights 9+3+1 in the pan with 26, and get 27-1. For example 27 =
2*(9+3+1)+1 is the next weight. Recursively, the weights are 3=2*1+1, 9=2*(3+1)+1, 27=2*(9+3+1)+1.
The next weight (not shown) would be: 81=2*(27+9+3+1)+1 = 2*40+1. �

2.2.2 Vector algebra in R3

Definitions of the vector scalar A ·B and wedge A ∧B products.

θ

L∗

A ·B = ||A|| ||B|| cos θ ∈ R

C = A ∧B ẑ = ||A|| ||B|| sin θ ẑ ∈ R

A
∧
B

A

B

Vector product: ⊥ AB plane

Scalar product: In AB plane

ŷ

x̂

ẑ

Problem # 5: Scalar product A ·B

– 5.1: If A = axx̂ +ayŷ +azẑ and B = bxx̂ + byŷ + bzẑ, write out the definition of A ·B.
Sol: See the definition in the above figure. A ·B = axbx + ayby + azbz . In general: A ·B =

∑
k AkBk. �
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– 5.2: The dot product is often defined as ||A|| ||B|| cos(θ), where ||A|| =
√
A ·A and θ

is the angle between A,B. If ||A|| = 1, describe how the dot product relates to the vector B.
Sol: See the definition in the above figure. The vector product is the portion of B in the direction of A. �

Problem # 6: Vector (cross) product A×B

– 6.1: If A = axx̂+ayŷ+azẑ and B = bxx̂+byŷ+bzẑ, write out the definition of A×B.
Sol:

A×B ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣ = x̂

∣∣∣∣ay az
by bz

∣∣∣∣− ŷ

∣∣∣∣ax az
bx bz

∣∣∣∣+ ẑ

∣∣∣∣ax ay
bx by

∣∣∣∣ .
�

– 6.2: Show that the cross product is equal to the area of the parallelogram formed by
A,B, namely ||A|| ||B|| sin(θ), where ||A|| =

√
A ·A and θ is the angle between A and B.

Sol: A parallelogram’s area is equal to its base times its height. Therefore, let’s say the base is length ||A||, and
the height ||B|| sin(θ), which is the portion of B that is perpendicular to A. �

Problem # 7: Triple product A · (B ×C)
Let A = [a1, a2, a3]T , B = [b1, b2, b3]T , C = [c1, c2, c3]T be three vectors in R3.

– 7.1: Starting from the definition of the dot and cross product, explain using a diagram

and/or words, how one shows that: A · (B ×C) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣.
Sol: Using the determinate-definition of the cross product,

B ×C ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
bx by bz
cx cy cz

∣∣∣∣∣∣ = x̂

∣∣∣∣by bz
cy cz

∣∣∣∣− ŷ

∣∣∣∣bx bz
cx cz

∣∣∣∣+ ẑ

∣∣∣∣bx by
cx cy

∣∣∣∣ .
Let D = B×C and compute A ·D = A · (B×C). Finally compute the requested right-hand side, and compare
the two. It should be clear that they are the same, because the dot product transfers the elements of vector A to
cross product and reduces the product to the scalar. �

– 7.2: Describe why |A · (B×C)| is the volume of parallelepiped generated by A,B, and
C.
Sol: Note that the norm of B ×C is the area of the parallelogram generated by C and B. Taking the dot product
with A results in the volume of the corresponding parallelepiped (prism). So the absolute value of triple product
is volume of parallelepiped. �

– 7.3: Explain why three vectors A, B, C are in one plane if and only if the triple product
A · (B×C) = 0.
Sol: (triple product is zero) if and only if: (volume is zero), if and only if: (they are in the same plane) �

2.2.3 Ohm’s Law
As shown in the Table on page 94, the impedance concept also holds in mechanics, acoustics, and thermal
circuits, and perhaps, even for non-relativistic gravity. In mechanics, the force is equal to the mechanical force on
an element (e.g., a mass, dashpot, or spring) and the flow is the velocity. In acoustics, the force is pressure and the
flow is either the volume velocity or particle velocity of air molecules.

Case Force Flow Impedance units
Electrical voltage (V) current (I) / Ḋ / photon Z Ohms [Ω]
Mechanics force (F) velocity (V ) Z Mechanical Ohms [Ω]
Acoustics pressure (P) particle velocity (U) ZA, ρc Acoustic Ohms [Ω]
Thermal temperature (T) entropy-rate (Ṡ ) ZT Thermal Ohms [Ω]
Gravity potential momentum = 2π/λG / graviton ZG gravitational Ohms [?]
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Problem # 8: The resistance of an incandescent (filament) lightbulb, measured cold, is about
100 ohms. As the bulb lights up, the resistance of the metal filament increases as the tempera-
ture T rises.
Ohm’s law says that the current

V

I
= R(T ),

where T is the temperature.

– 8.1: In the United States, the voltage is 120 volts (RMS) at 60 (Hz). Find the current when
the light is first switched on.

Sol: Thus the current is
I = 120/R = 120/100 = 1.2. [Amps]

As the bulb heats up, the current rapidly drops, and the resistance increases. This typically takes less than a
milliseconds [ms], which depends on the wattage of the light bulb. Such light-bulbs are nonlinear. These rules
don’t apply to LED bulbs. �

Problem # 9: (1 pts) The power in watts is the product of the force and the flow. What is the
power of the lightbulb of Problem 8?

Sol: P = V · I = 120× 1.2 = 120 + 24 = 144 [W]. �

Problem # 10: (1 pts) State the impedance Z(s) of each of the following circuit elements:
(1) a resistor with resistance R, (2) an inductor with inductance L, and (3) a capacitor with
capacitance C.

Sol: (1) For the resistor, Z = R.
(2) For the inductor, Z = sL with s = σ + ω. Note the flux ψ(t) = Li(t). The voltage v(t) is the time

derivative of the flux

v(t) =
dψ(t)

dt
= L

di(t)

dt
.

(3) For the capacitor, Z = 1/sC. Note the charge q(t) = Cv(t), thus the current i(t) is the time derivative of
the charge

i(t) =
d

dt
q(t) = C

dv(t)

dt
.

�

2.2.4 Nonlinear (quadratic) to linear equations
Problem # 11: Solve the equations:

– 11.1: Solve for x(p, q) (remove y):

x+ y = p

xy = q.

Sol: Solve the first equation for y as y = p− x, and then substitute it into the second equation, resulting in

x(p− x) = −x2 + px = q.

Collecting terms gives the quadratic equation in x

x2 − px+ q = 0.

Completing the square
(x− p/2)2 = (p/2)2 − q

providing the roots x± = p/2±
√

(p/2)2 − q, and the corresponding values for y±(x±) y± = p− x±.

Summary: Here we started with one linear and one quadratic (hyperbola). By the use of composition we found
the roots. For certain values of {p, q} (a negative discriminant) the roots are complex. �
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Euclid’s formula derivation
Euclid’s formula for Pythagorean triplets (Eq. NS-2 2.6, p. 42) can be derived by intersecting a circle and a secant
line. Consider the nonlinear equation of a unit circle having radius 1, centered at (x, y) = (0, 0),

x2 + y2 = 1,

and the secant line through (−1, 0),
y = t(x+ 1),

a linear equation having slope t and intercept x = −1. If the slope 0 < t < 1, the line intersects the circle at a
second point (a, b) in the positive x, y quadrant. The goal is to find a, b ∈ N and then show that c2 = a2 + b2.
Since the construction gives a right triangle with short sides a, b ∈ N, then it follows that c ∈ N.

1) t = p/q ∈Q
2) a = p2 − q2

3) b = 2pq

4) c = p2 + q2

2) b(a) = t(a + c)

1) c2 = a2+ b2

4) ζ = |c|eiθ = |c|1+it
1−it = |c|(cos(θ) + i sin(θ))

3) ζ(t) ≡ a+b =
1−t2+2t

1+t2

Diophantus’s Proof:

1) 2φ + η = π

2) η + Θ = π

3) ∴ φ = Θ/2

Euclidean Proof:

(a, b)b

a
φ

η

φ

b(a) = t (a + c)

O
c2 = a2 + b2

c =
p
2 +

q
2

b
=

2p
q

Θ a = p2 − q2

Y

X

Pythagorean triplets:

Derivation of Euclid’s formula for the Pythagorean triplets (PT) [a, b, c], based on a composition of a line, having a rational slope
t = p/q ∈ F, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This analysis is attributed to Diophantus (Di·o·phan′·tus) (250 CE), and

today such equations are called Diophantine (Di·o·phan′·tine) equations. PTs have applications in architecture and scheduling, and
many other practical problems. Most interesting is their relation to Rydberg’s formula for the eigenstates of the hydrogen atom

(Appendix H).

Problem # 12: Derive Euclid’s formula

– 12.1: Draw the circle and the line, given a positive slope 0 < t < 1.
Sol: Sol in given in Fig. 2.2.4 �

Problem # 13: Substitute y = t(x + 1) (the line equation) into the equation for the
circle, and solve for x(t).
Hint: Because the line intersects the circle at two points, you will get two solutions for x. One of these
solutions is the trivial solution x = −1. Sol: x(t) = (1− t2)/(1 + t2) �

– 13.1: Substitute the x(t) you found back into the line equation, and solve for y(t).
Sol: y(t) = 2t/(1 + t2) �

– 13.2: Let t = q/p be a rational number, where p and q are integers. Find x(p, q)
and y(p, q).
Sol: x(p, q) = 2pq/(p2 + q2) and y(p, q) = (p2 − q2)/(p2 + q2) �

– 13.3: Substitute x(p, q) and y(p, q) into the equation for the circle, and show how
Euclid’s formula for the Pythagorean triples is generated.
Sol: Multiplying out gives (p2 + q2) = (p2 − q2) + 2pq �

For full points you must show that you understand the argument. Explain the meaning of the comment
“magic happens” when t4 cancels.


