Chapter 3

Differential equations

3.1 Problems DE-1

3.1.1 Topics of this homework:

Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus
(real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series

Problem # /: In each case derive (e.g., using Taylor’s formula) the power series of w(s) about
s = 0 and give the RoC of your series. If the power series doesn’t exist, state why! Hint: In
some cases, you can derive the series by relating the function to another function for which you
already know the power series at s = 0.

—1.1: 1/(1 —s)
Sol: 1/(1 —s) = >.° , s", which converges for |s| < 1 (e.g., the RoC is |s| < 1)
~1.2:1/(1 - s?)
2

Sol: 1/(1 — s?) = Y7, s*™, which converges for |s?| < 1. (e.g., the RoC is |s| < 1). One can also factor the

polynomial, thus write it as: m There are two poles, at s = =1, and each has an RoC of 1.

_13:1/(1+ ).
Sol: The resulting series is 1/(1 + s?) = 0.55_72 ;s"((—i)™ + (i)™). The RoC is |s| < 1. We can see this
by considering the poles of the function at s = =4; both poles are 1 from s = 0, the point of expansion. An
alternative is to write the function as 1/(1 — (is)?) = >_(is)™.

—14:1/s
Sol: If you try to do a Taylor expansion at s = 0, the first term, w(0) — oo. Thus, the Taylor series expansion in
s does not exist.

_1.5:1/(1—|s]?)
Sol: The imaginary part is zero. Thus the derivative of the imaginary part is zero. Thus the CR conditions cannot
be obeyed.

Problem # 2: Consider the function w(s) = 1/s

— 2.1: Expand this function as a power series about s = 1. Hint: Let 1 /s = 1/(1—1+s) =
1/(1—(1—29)).
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Sol: The power series is
which converges for |s — 1| < 1.

To convince you this is correct, use the Matlab/Octave command syms s; taylor (l/s,s,’ExpansionPoint’, 1),
which is equivalent to the shorthand syms s; taylor (1/s,s,1). Whatis missing is the logic behind this

expansion, given as follows: First move the pole to z = —1 via the Mobius “translation” s = z 4 1, and expand
using the Taylor series
1 1 = .
s 1+z:2(72) '
n=0
Next back-substitute z = s — 1 giving .

— =3 (D) (s— 1)

s
It follows that the RoC is |z| = |s — 1| < 1, as provided by Matlab/Octave.

— 2.2: What is the RoC?
Sol: As stated in the solution of 2.1, |s — 1] < 1.

—2.3: Expand w(s) = 1/s as a power series in s~' = 1/s about s™' = 1.
Sol: Let z = s~ ! and expand about 1: The solution is w(z) = z, which has a zero at 0 thus a pole at cc.

— 2.4: What is the RoC?
Sol: |s| > 0 or |z] < 0.

—2.5: What is the residue of the pole?

Sol: The pole is at co. Since w(s) = 1/s and applying the definition for the residue c_; = lim;_, o s(1/5) = 1.
Thus residue is 1. Note that it is the amplitude of the pole, which is 1.

Problem # 3: Consider the function w(s) =1/(2 — s)

— 3.1: Expand w(s) as a power series in s~* = 1/s. State the RoC as a condition on |s™}|.

Hint: Multiply top and bottom by s,

Sol: 1/(2—5) = —s71/(1 —2s71) = —s71 32757 The RoC is [2/s| < 1, or |s| > 2.

— 3.2: Find the inverse function s(w). Where are the poles and zeros of s(w), and where is
it analytic?
Sol: Solving for s(w) we find2 —s = 1/wand s = 2 — 1/w = (2w — 1) /w. This has a pole at 0 and a zero at
w = 1/2. The RoC is therefore from the expansion point out to, but not including w = 0.

Problem # 4:Summing the series
The Taylor series of functions have more than one region of convergence.

—4.1: Given some function f(x), if a = 0.1, what is the value of
fl@)=1+a+ad*+a®+ -7
Show your work. Sol: To sum this series, we may use the fact that
fla)—af(a)=1+a+a*+a*+---)—a(l+a+a®)=1+a(l-1)+a*(1—1)+---
This gives (1 —a)f(a) =1, 0r f(a) =1/(1 — a). Now since a = .1, the sumis 1/(1 — 0.1) = 1.11.
—4.2: Let a = 10. What is the value of

fla)=14+a+a*+a°+---7

Sol: In this case the series clearly does not converge. To make it converge we need to write a formula fory = 1/x
rather than for x.

f/y)—f(/y))a= A+1/a+1/a®*+1/a*+---)=1/a(1+1/a+al/*) =1+ (1—1)/a+(1—1)/a®*+---

This gives f(1/a) = —a~!/(1—a~1). Now since a = 10, the series sums to f(10) = —0.1/(1—0.1) = —1/9.
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3.1.3 Cauchy-Riemann Equations

Problem # 5: For this problem j = \/—1, s = 0 + wy, and F(s) = u(o,w)+ jv(o,w). Ac-

cording to the fundamental theorem of complex calculus (FTCC), the integration of a complex

analytic function is independent of the path. It follows that the derivative of F(s) is defined as

dF d

—_— = — . DE-1.1

= 2 [u(o,0) + 0(0,w) (DE-1.1)

If the integral is independent of the path, then the derivative must also be independent of the direction:
dF  OF OF

ab _ ol o DE-1.2

ds Jdo  Ojw ( )

The Cauchy-Riemann (CR) conditions
OJu(o,w)  Ov(o,w) d Ou(o,w) ov(o,w)

Oo ow ow Oo

may be used to show where Equation DE-1.2 holds.

—35.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Sol: First form the partial derivatives as indicated and then set the real and imaginary parts equal. This results
in the two CR equations.

—5.2: Merge the CR equations to show that u and v obey Laplace’s equations.

V2u(o,w) =0 and VZv(o,w)=0.
Sol: Take partial derivatives with respect to o and w and solve for one equation in each of u and v.

— 5.3: What can you conclude?
Sol: We can conclude that the real and imaginary parts of complex analytic functions must obey these condi-

tions.

Problem # 6: Apply the CR equations to the following functions. State for which values of
s = 0 + iw the CR conditions do or do not hold (e.g., where the function F(s) is or is not
analytic). Hint: Review where CR-1 and CR-2 hold.

—-6.1: F(s) =¢*
Sol: CR conditions hold everywhere.
-6.2: F(s)=1/s

Sol: CR conditions are violated at s = 0. The function is analytic everywhere except s = 0.

3.1.4 Branch cuts and Riemann sheets

Problem # 7: Consider the function w?(z) = z. This function can also be written as w4 (z) =
VZx. Assume z = re® and w(z) = pe?’ = \/re?/?,

— 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully
represent this function as single-valued?
Sol: There is one sheet for z and two sheet for w = +./2. When any point in the domain z (being mapped to
w(z)) crosses the z branch cut, the codomain (range) w. (z) switches from the w_ sheet to the w_ sheet. w(z)
remains analytic on the cut. Look at Fig. 4.4 in Chap. 4 (p. 130) to see how this works.



