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2 CHAPTER 1. NUMBER SYSTEMS

1.1 Problems NS-1

Topic of this homework:

Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)
Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab

Problem # 1: Consider the functions f(s) = s2 + 6s+ 25 and g(s) = s2 + 6s+ 5.

– 1.1: Find the zeros of functions f(s) and g(s) using the command roots().

Sol: The roots of f(s) are−3±4i (in Matlab: roots([1 6 25])). The roots of g(s) are−1 and−5 (in Matlab:
roots([1 6 5])). You will find the program that generates all these figures at https://jontalle.web.
engr.illinois.edu/uploads/298.17/NS1.m �

– 1.2: Show the roots of f(s) as red circles and of g(s) as blue plus signs.
The x-axis should display the real part of each root, and the y-axis should display the imaginary part. Use hold
on and grid on when plotting the roots.

Sol:
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– 1.3 Give your figure the title “Complex Roots of f(s) and g(s).” Label the x- and y-axes
“Real Part” and “Imaginary Part.” Hint: Use xlabel, ylabel, ylim([-10 10]), and
xlim([-10 10]) to expand the axes.

Problem # 2: Consider the function h(t) = e2πft for f = 5 and t=[0:0.01:2].

– 2.1: Use subplot to show the real and imaginary parts of h(t).
Make two graphs in one figure. Label the x-axes “Time (s)” and the y-axes “Real Part” and “Imaginary Part.”

Sol: Breaking h(t) into real and imaginary parts gives e2π5t = cos(10πt) +  sin(10πt).
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– 2.2: Use subplot to plot the magnitude and phase parts of h(t).
Use the command angle or unwrap(angle()) to plot the phase. Label the x-axes “Time (s)” and the y-axes
’‘Magnitude” and “Phase (radians).”

Sol:

0 0.5 1 1.5 2
1

1

1

1

Time (s)

M
a

g
n

it
u

d
e

0 0.5 1 1.5 2
0

20

40

60

80

Time (s)

P
h

a
s
e

 (
ra

d
ia

n
s
)

�



4 CHAPTER 1. NUMBER SYSTEMS

Prime numbers, infinity
Problem # 3: Prime numbers

– 3.1: Use the Matlab/Octave function factor to find the prime factors of 123, 248,
1767, and 999,999.
Sol: Factors: 123 (3, 41), 248 (2,2,2,31), 1767 (3,19,31), 999999 (3,3,3,7,11,13,37) �

– 3.2: Use the Matlab/Octave function isprime to determine whether 2, 3, and 4
are prime numbers. What does the function isprime return when a number is prime
or not prime? Why?
Sol: Function isprime(2) returns 1, isprime(3) returns 1, and isprime(4) returns 0. 1 means
‘yes’ and 0 means ‘no’ �

– 3.3: Use the Matlab/Octave function primes to generate prime numbers between
1 and 106. Save them in a vector x. Plot this result using the command hist(x).
Sol:
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– 3.4: Now try [n,bincenters] = hist(x). Use length(n) to find the
number of bins.

Sol: length(n) is 10 �

– 3.5: Set the number of bins to 100 by using an extra input argument to the function
hist. Show the resulting figure, give it a title, and label the axes. Hint: help hist
and doc hist.
Sol:
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Problem # 4: Very large primes on Intel computers.

– 4.1: Find the largest prime number πmax that can be stored on an Intel 64-bit
computer, Hint: As explained in the Matlab/Octave command help flintmax.

The largest positive integer is 253; however, the largest unsigned integer that can be factored is at least 254.
Explain the logic of your answer. Hint: help isprime().
Sol: Using Matlab/Octave, start with the largest integer 232 and check if its prime. Then work down by
subtracting 1, and again check. Stop when you get to the first prime below the largest integer. The answer
I get is: 232 − 5 = 4, 294, 967, 291, is the first prime below 232 prime. However later, by trial and error, I
discovered that the largest integer that Octave can factor is 254− 6 = 2 · 2203 · 5741 · 712176643]. �

Problem # 5: We are interested in primes that are greater than πmax.

– 5.1: How can you find them on an Intel computer (i.e., one using IEEE floating
point)? Hint: Consider a sieve that contains only odd numbers, starting from 3 (not 2).
Since every prime number greater than 2 is odd, there is no reason to check the even
numbers. nodd ∈ N/2 contain all the primes other than 2.
Sol: At this time, I don’t see any way to do this, due to the Matlab/Octave limitation that it cannot factor

numbers larger than 254 − 6. �

Special functions in Octave/Matlab and infinity (∞)
Problem # 6: Inf, NaN, and logarithms in Octave/Matlab.

– 6.1: Try 1/0 and 0/0 in the Octave/Matlab command window.
What are the results? What do these “numbers” mean in Octave/Matlab? Sol: 1/0 returns Inf (infinity) and 0/0
returns NaN (‘not a number’). �

– 6.2: Try log(0), log10(0), and log2(0) in the command window.
In Matlab/Octave, the natural logarithm ln(·) is computed using the function log. Functions log10 and log2 are
computed using log10 and log2. Sol: log(0) is -Inf. Working in any base results in a scale factor, so
the vlaue does not change in these different bases. For example if 10x = 2y then x = log10 2y = y log10 2 =
0.30103y. �

– 6.3: Try log(1) in the command window. What do you expect for log10(1) and
log2(1)?
Sol: As with log(0), changing base of log(1)=0 gives the same result, because scaling 0 always gives 0. �

– 6.4: Try log(-1) in the command window. What do you expect for log10(-1) and
log2(-1)?
Sol: From Matlab/Octave log(-1)=iπ. For the answer to the two other questions, see the next problems. �

– 6.5: Explain how Matlab/Octave arrives at the answer in problem 6.4. Hint:
−1 = eiπ.
Sol: log(-1) is 0 + iπ, because ln(−1) = ln(eiπ) = iπ ln(e) = iπ. For base 10 let ex = 10y and y =
log10 e

x. Thus log(−1) = log10(eπi) = πi log10 e = 1.364i. Likewise log2(−1) = πi log2(e) = 4.532i.
�

– 6.6: Try log(exp(j*sqrt(pi))) (i.e., log e
√
π) in the command window.

What do you expect?
Sol: log e

√
π = 

√
π = 1.7725. because ln(·) = is the inverse of e(·). �
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– 6.7: What does “inverse” mean in this context? What is the inverse of ln f(x)?
Sol: ln f(x) = eln f(x)? Conclusion: eG and lnG are mutual inverses: that is: ln() of e() and e() of ln() . Or said
another way: G = eln(G), G = ln eG. �

– 6.8: What is a decibel? (Look up decibels on the internet.)
Sol: The decibel is very important in engineering (and unused in mathematics). It is defined as the log of a power
ratio. If a power ratio is 2, the dB value is 6 [dB]. A ratio of 10 is 20 [dB]. Thus the formula for the dB-ref is
10 log10

P
Pref

. Thus the decibel is defined on the log (i.e., ratio) scale. Engineers quickly learn to “think” in dB
units, because its so easy (once they learn to think in terms of ratios).

While the definition is in terms of power, it practice, is almost always used in terms of voltage, pressure,
current, velocity, (force and flux), etc. Of course power is the product of force and flux, and the log of the power
is the sum of the log of the force plus the log of the flux. �

Problem # 7: The following identity is interesting. Can you find a proof?

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

1 + 3 + 5 + 7 + 9 = 52

...
N−1∑
n=0

2n+ 1 = N2.

– 7.1: Can you find a proof?
Sol: Subtracting any line from the line following it, gives:

(1− 1) + 3 = 22 − 12

5 = 32 − 22

7 = 42 − 32

9 = 52 − 42

· · ·
N−1∑
n=0

2n+ 1−
N−2∑
n=0

2n+ 1 = N2.− (N − 1)2

2N − 1 = N2 − (N2 − 2N + 1)

2N − 1 = 2N − 1.

Thus the two sides are equal, as suggested by the above formula.
Can you find a simpler more constructive “proof?” Hint: assuming you know what integration by parts is, can

you devise a concept called Summation by parts? �
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1.2 Problems NS-2

Topic of this homework:

Prime numbers, greatest common divisors, the continued fraction algorithm

Continued fractions

Problem # 1: Here we explore the continued fraction algorithm (CFA)
In its simplest form, the CFA starts with a real number, which we denote as α ∈ R. Let us work with an irrational
real number, π ∈ I, as an example because its CFA representation will be infinitely long. We can represent the
CFA coefficients α as a vector of integers nk, k = 1, 2, . . . ,∞:

α = [n1;n2, n3, n4, . . .]

= n1 +
1

n2 + 1
n3+

1
n4+···

.

The CFA is recursive, with three repeated steps per iteration. For example α1 = π ≈ 3.14159 . . ., n1 = 3,
r1 = π − 3, and α2 ≡ 1/r1.

α2 = 1/0.1416 = 7.0625 . . .

α1 = n1 +
1

α2
= n1 +

1

n2 + 1
α3

= · · · .

In terms of a Matlab/Octave script,

alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;

for k=2:K %k=1 to K
n(k)=round(alpha(k-1));
%n(k)=fix(alpha(k-1));
alpha(k)= 1/(alpha(k-1)-n(k));
%disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab’s rat() function
rat(alpha0,1e-20)

– 1.1: By hand find the first few values of nk for α = eπ ≈ 23.1407.
Sol: The CFA for this is: eπ = 23.1407 · · · = [23; 7, 9, 4, · · · ]. �
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– 1.2: For the proceeding question, what is the error (remainder) when you truncate
the continued fraction after n1, . . . , n3? Give the absolute value of the error and the
percentage error relative to the original α.
Sol: The remainder is eπ − (23 + 1/(7 + (1/9)))) which gives an error of ε = |eπ − (23 + 1/(7 +
(1/9))))|/eπ = 2.92 · 10−6 = 0.0003% �

– 1.3: Use the Matlab/Octave program provided to find the first 10 values of nk for
α = eπ, and verify your result using the Matlab/Octave command rat().
Sol: eπ = 23.1407 · · · = [23; 7, 9, 4,−2,−591,−2,−10, 3,−2, · · · ]. �

– 1.4: Discuss the similarities and differences between the Euclidean algorithm and
the CFA.
Sol:

1. Both are recursive, meaning that the steps are repeated one after another.

2. The EA starts from two numbers (a,b). The output of the gca(a,b) is the GCD. The CFA starts with
a single number and the output is a sequence of integers. If the sequence terminates the number was
rational. If the sequence does not terminate, the number is irrational.

3. The EA works with the difference between the minimum and maximum of the two numbers whereas
the CFA works with the rounding function and the reciprocal of the error.

4. It would seem that the goals of the two algorithms, the starting point, and the results are totally
different. Both are very useful and powerful. Both generalize to more difficult situations than
working with simple numbers.

�

Greatest common divisors

Consider using the Euclidean algorithm to find the greatest common divisor (i.e., GCD; the largest common prime
factor) of two numbers (Allen 2020, p. 42). This algorithm may be performed using one of two methods:

Method Division Subtraction
On each iteration... ai+1 = bi ai+1 = max(ai, bi)−min(ai, bi)

bi+1 = ai − bi · floor(ai/bi) bi+1 = min(ai, bi)
Start with i = 1 and terminate when: b = 0 (GCD = a) b = 0 (GCD = a)

The division method (Matlab’s floor function) (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction
method may require a huge number of itterations steps.

Problem # 2: Understanding the Euclidean algorithm (GCD)

– 2.1: Find the prime factors of a = 85 and b = 15.
Sol: From Octave’s factor() we find 85 = 17 · 5, 15 = 3 · 5. �
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– 2.2: What is the greatest common prime factor of a = 85 and b = 15?
Sol: The largest common factor gcd(85,15) is 5. �

– 2.3: By hand, perform the Euclidean algorithm for a = 85 and b = 15.
Sol: Division method:

a1 = 15 b1 = 85− 15
�
���

75

b85

15
c = 10

a2 = 10 b2 = 15− 10
�
���

2

b15

10
c = 5

a3 = 5 b3 = 10− 5
�
���

2

b10

5
c = 0

∴ gcd= 5
Subtraction method:

a1 = 85− 15 = 70 b1 = 15

a2 = 70− 15 = 55 b2 = 15

a3 = 55− 15 = 40 b3 = 15

a4 = 40− 15 = 25 b4 = 15

a5 = 25− 15 = 10 b5 = 15

swap
a6 = 15− 10 = 5 b6 = 10

a7 = 10− 5 = 5 b7 = 5

terminate

∴ gcd= 5 �

– 2.4: By hand, perform the Euclidean algorithm for a = 75 and b = 25. Is the result a
prime number?
Sol: Division method:

a1 = 25 b1 = 75− 25
�
���

3

b75

25
c = 0

Subtraction method:

a1 = 75− 25 = 50 b1 = 25

a2 = 50− 25 = 25 b2 = 25

∴ gcd= 25
The result is 25 = 52, the square of a prime number. �
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– 2.5: Consider the first step of the GCD division algorithm when a < b (e.g., a = 25
and b = 75). What happens to a and b in the first step? Does it matter if you begin the
algorithm with a < b rather than b < a?
Sol: If a < b, the first step of the division algorithm swaps the terms (a→ b and b→ a). �

– 2.6: Describe in your own words how the GCD algorithm works. Try the algorithm
using numbers that have already been divided into factors (e.g., a = 5 · 3 and b = 7 · 3).
Sol: Division method:

a1 = 5 · 3 b1 = 7 · 3− 5 · 3
�
�
��>

1

b7 · 3
5 · 3
c = 2 · 3

a2 = 2 · 3 b2 = 5 · 3− 2 · 3
�
�
��>

2

b5 · 3
2 · 3
c = 1 · 3

a3 = 1 · 3 b3 = 2 · 3− 1 · 3
�
�
��>

2

b2 · 3
1 · 3
c = 0

Subtraction method:

a1 = 7 · 3− 5 · 3 = 2 · 3 b1 = 5 · 3
a2 = 5 · 3− 2 · 3 = 3 · 3 b2 = 2 · 3
a3 = 3 · 3− 2 · 3 = 1 · 3 b3 = 2 · 3
a4 = 2 · 3− 1 · 3 = 1 · 3 b4 = 1 · 3

The algorithm iteratively converges on the GCD by subtracting out multiples of the GCD until only the
GCD is left. �

– 2.7: Find the GCD of 2 · π25 and 3 · π25.
Sol: π25 � .

Problem # 3: Coprimes

– 3.1: Define the term coprime.
Sol: when two integers have no common factors the are said to be coprime �

– 3.2: How can the Euclidean algorithm be used to identify coprimes?
Sol: If gcd(a,b)=1 they only have 1 as a common factor, thus they are coprime. �

– 3.3: Give an important application of the Euclidean algorithm.
Sol: Given two integers n, d ∈ Z, if we wish to reduce the fraction n/d, we must cancel the common factors.
Example: If n = 9, d = 6 then 9/6 = (3 · 3)/(2 · 3) = 3/2, where the GCD, 3, may be identified using the
Euclidean algorithm. While this fraction may be easily simplified via inspection, the GCD algorithm could be
very helpful for larger numbers n, d. �
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– 3.4: Write a Matlab function, function x = my gcd(a,b), that uses the
Euclidean algorithm to find the GCD of any two inputs a and b. Test your function on
the (a, b) combinations from the previous problem. Include a printout (or hand-write)
your algorithm to turn in.
Hints and advice:

• Don’t give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Oc-
tave function, if you use it as a variable or function name, you won’t be able to use gcd to check
your gcd() function. Try clear all to recover from this problem.

• Try using a “while” loop for this exercise (see Matlab documentation for help).

• You may need to use some temporary variables for a and b in order to perform the algorithm.

Sol: Division method:
function x = my gcd(a,b)
while b>0
atmp= a; btmp = b;
a = btmp; b = atmp-btmp*floor(atmp/btmp);
end
Subtraction method:
function x = my gcd(a,b)
while a∼=b
atmp= a; btmp = b;
a = max(atmp,btmp) - min(atmp,btmp); b = min(atmp,btmp);
end �
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Algebraic generalization of the GCD (Euclidean) algorithm
Problem # 4: In this problem we are looking for integer solutions (m,n) ∈ Z to the
equations ma+ nb = gcd(a, b) and ma+ nb = 0 given positive integers (a, b) ∈ Z+.
Note that this requires that either m or n be negative. These solutions may be found using the Euclidean
algorithm only if (a, b) are coprime (a ⊥ b). Note that integer (whole number) polynomial relations such
as these are known as Diophantine equations. Such equations (e.g., ma+ nb = 0) are linear Diophantine
equations, possibly the simplest form of such relations.

Example: gcd(2,3)= 1: For (a, b) = (2, 3), the result is[
1
0

]
=

[
0 1
1 −2

] [
0 1
1 −1

] [
0 1
1 0

] [
2
3

]
=

[
−1 1
3 −2

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus from the above equation we find the solution (m,n) to the integer equation

2m+ 3n = gcd(2, 3) = 1;

namely, (m,n) = (−1, 1) (i.e.,−2+3 = 1). There is also a second solution (3,−2) (i.e., 3 ·2−2 ·3 = 0)
that represents the terminating condition. Thus these two solutions are a pair and the solution exists only
if (a, b) are coprime (a ⊥ b).
Subtraction method: This method is more complicated than the division algorithm because at each stage
we must check whether a < b. Define[

a0
b0

]
=

[
a
b

]
, Q =

[
1 −1
0 1

]
, S =

[
0 1
1 0

]
,

where Q sets ai+1 = ai − bi and bi+1 = bi assuming ai > bi, and S is a swap matrix that swaps ai and
bi if ai < bi. Using these matrices, we implement the algorithm by assigning[

ai+1

bi+1

]
= Q

[
ai
bi

]
for ai > bi,

[
ai+1

bi+1

]
= QS

[
ai
bi

]
for ai < bi.

The result of this method is a cascade of Q and S matrices. For (a, b) = (2, 3), the result is[
1
1

]
=

[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
2
3

]
=

[
2 −1
−1 1

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus we find two solutions (m,n) to the integer equation 2m+ 3n = gcd(2, 3) = 1.

– 4.1: By inspection, find at least one integer pair (m,n) that satisfies 12m+15n = 3.
Sol: By inspection, (m,n) = (−1, 1) is one solution. �

– 4.2: Using matrix methods for the Euclidean algorithm, find integer pairs (m,n)
that satisfy 12m+ 15n = 3 and 12m+ 15n = 0. Show your work!!!
Sol: Division method: [

3
0

]
=

[
−1 1
5 −4

] [
12
15

]
Subtraction method: [

3
3

]
=

[
−1 1
4 −3

] [
12
15

]
�

– 4.3: Does the equation 12m + 15n = 1 have integer solutions for n and m? Why
or why not?
Sol: No, because gcd(12, 15) = gcd(3 ∗ 4, 3 ∗ 5) = 3, not 1. Thus there are no Diophantine solutions to
this equation. �
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Problem # 5: Matrix approach:
It can be difficult to keep track of the a’s and b’s when the algorithm has many steps. We need an alternative
way to run the Euclidean algorithm using matrix algebra. Matrix methods provide a more transparent
approach to the operations on (a, b). Thus the Euclidean algorithm can be classified in terms of standard
matrix operations. Write out the indirect matrix approach discussed at the end of Sec. 2.4.3 (Eq. 2.4.3).
Sol: Division method:
Define [

a
b

]
0

=

[
a0
b0

]
,

[
a
b

]
i+1

=

[
0 1
1 −ba/bc

]
i

[
a
b

]
i

�

Prime numbers

Problem # 6: Every integer may be written as a product of primes.

– 6.1: Write the numbers 1, 000, 000, 1, 000, 004, and 999, 999 in the form
N =

∏
k

πβkk . Hint: Use Matlab/Octave to find the prime factors.

Sol: 1, 000, 000 = 26 · 56
1, 000, 004 = 22 · 532 · 89
999, 999 = 33 · 7 · 11 · 13 · 37
�

– 6.2: Give a generalized formula for the natural logarithm of a number ln(N) in
terms of its primes πk and their multiplicities βk. Express your answer as a sum of terms.

Sol: lnN =
∑
k

βk ln(πk) �

Problem # 7: Using the computer

– 7.1: Explain why the following brief Matlab/Octave program returns the prime
numbers πk between 1 and 100.

n=2:100;
k = isprime(n);
n(k) Sol: The first line n = 2 : 100 defines the row vector n = [2, 3, 4, · · · , 100]. The second line
creates a row vector the same length as n, with entries of 1 if the element is prime and zero if the element
is not prime. The third line n(k) prints out n() if k = 1, namely it is a list of all the primes from 2 to 100.
Run this program without the ’;’ at the end of each line, and to see what it is doing. �

– 7.2: How many primes are there between 2 and N = 100?
Sol: length(n(k)) returns 25. Thus there are 25 primes less than 100 (N/4, on average). �

Problem # 8: Prime numbers may be identified using a sieve.

– 8.1: By hand, complete the sieve of Eratosthenes for n = 1, . . . , 49. Start by writing out a
table of the integers 1-50, as 5 rows of 10 numbers. Starting with the first prime, pk = 2, k = 1
, circle it and cross out all multiples (e.g., 2πk = r, 3πk = 6, · · · , 24 ∗ π2 = 48.). Then repeat
for the second, third, and higher primes π2. When done, only the circled primes should remain.
Be sure you look up the definition of a prime.
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Sol: Note: The number 1 should not be circled since it is not a prime.
�

– 8.2: What is the largest number you need to consider before only primes remain? Look
up the definition of the Matlab/Octave floor function (e.g, bπc = 3).
Sol: b

√
50c = b7.0711c = 7. �

– 8.3: Generalize: For n = 1, . . . , N , what is the largest number you need to consider
before only the primes remain?
Sol: floor(

√
N ) �

– 8.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49.
Sol: 22= 2 · 11 = π1π5
30= 2 · 3 · 5 = π1π2π3
34= 2 · 17 = π1π7
43= π14
44= 4 · 11 = π2

1π5
48= 4 · 12 = 42 · 3 = π4

1π2
49= 72 = π2

4
�

– 8.5: Find the largest prime πk ≤ 100. Do not use Matlab/Octave other than to check your
answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, . . . .
Cross off the even numbers, leaving 99, 97, 95, . . . . Pull out a factor (only one is necessary to
show that it is not prime).
Sol: 99=11*9, π25 = 97. �

– 8.6: Find the largest prime πk ≤ 1000. Do not use Matlab/Octave other than to
check your answer.
Sol: Write out the numbers starting with 1000 and counting backwards: 1000, 999, 998, 997, · · · . Cross
off the even numbers, leaving 999, 997, 995, · · · . Pull out a factor (only one is necessary to show that it is
not prime). 9 · 111, 997 = π168, 5 · 199 = π3 · π46. �

– 8.7: Explain why π−sk = e−s lnπk .
Sol: This follows from the identify za = ea ln z with a, z ∈ C. �

Problem # 9:CFA of ratios of large primes

– 9.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation
(e.g., π = [3., 7, 16, · · · ]). Show your work. Sol: 23/7 = (21 + 2)/7 = 3 + 2/7 = 3 + 1/(6 + 1)/2 =
3 + 1/(6 + 1/2). In bracket notation 23/7 = [3., 6, 2]. Matlab gives rat(23/7) = 3 + 1/(4 + 1/(−2)), or [1.,
4, -2] because rounding 7/2 can be taken as either 3+1/2 or 4-1/2. �
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– 9.2:Starting from the primes below 106, form the CFA of πj/πk with j = 78498 and
k < j.
Sol: First generate 106 primes with the matlab command π=primes(11+1e6).
The length of π is j = 78499, π(j) = 1, 000, 003, π(j − 1) = 999, 983 and π(j − 2) = 999, 979.
Let the target fraction be

T =
π(end− 1)

π(end− 2)
=

999983

999979
= 1.000004000084002.

Finding the CFA of T gives

rat(T ) = 1 + 1/249995 = [1; 249995].

Factoring this integer gives factor(249995)=5*49999. �

– 9.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the
ratios of large primes. What is the most obvious conclusion? Sol: The CFA terminates
in only one term, as in the above example. �

– 9.4: (1pts) Try the Matlab/Octave functions rats(23/7), rats(3.2857), and
rats(3.2856). What an you conclude?
Sol: This function is similar to the CFA but uses rounding rather than truncation arithmatic.
rats(3.2857)=32857/10000 but rats(23/7)=23/7 because it rounds to 23/7, whereas
rats(3.2856)= 4107/1250 because it does not. �

– 9.5: (2pts) Can
√

2 be represented as a finite continued fraction? Why or why not?
Sol: No, because it is irrational. �

– 9.6: (2pts) What is the CFA for
√

2− 1?

Hint:
√

2 + 1 =
1√

2− 1
= [2; 2, 2, 2, · · · ].

Sol: 1 +
√

2 = 2 + 1/(2 + 1/(2 + · · · )) or [2., 2, 2, 2, · · · ], thus
√

2− 1 = [2., 2, 2, 2, · · · ]− 2 = 0 + 1/(2 + 1/(2 + 1/(2 + · · · ))).

�

– 9.7: Show that

1

1−
√
a

= a
11
2 + a

9
2 + a

7
2 + a

5
2 + a

3
2 +
√
a+ a5 + a4 + a3 + a2 + a+ 1 = 1− a6

syms a,b
b= taylor(1/( 1-sqrt(a) ))
simplify((1-sqrt(a))*b) = 1-aˆ6

Use symbolic analysis to show this, then explain. Sol: This seems like a very unlikely relationship. Un-
expectedly the coefficents of this expansion are all 1, leading to a is a sixth degree polynomial. It is
obvioiusly related to the six complex roots of unity. Thus we may find the companion matrix, followed
by an eigen solution. This seems to be a Taylor expansion of six roots of unity, expressed in terms of
removable singularities. See Cotes Theorem (1716) (Stillwell, 2010, p. 289). �
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1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell’s equation, Fibonacci sequence

Pythagorean triplets

Problem # 1: Euclid’s formula for the Pythagorean triplets a, b, c is a = p2− q2, b = 2pq, and
c = p2 + q2.

– 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and
nonzero?

Sol: p > q > 0 (strictly greater than) �

– 1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the nonlinear system of equations for
p, q.

First solve linear system of equations for p2, q2:[
a
c

]
=

[
1 −1
1 1

] [
p2

q2

]
Inverting this 2x2 matrix gives (the determinant ∆ = 2)[

p2

q2

]
=

1

2

[
1 1
−1 1

] [
a
c

]
.

Thus p = ±
√

(a+ c)/2, q = ±
√

(c− a)/2.

Method 2: The algebraic approach is:

a+ c = (p2 − q2) + (p2 + q2) = 2p2

−a+ c = −(p2 − q2) + (p2 + q2) = 2q2,

Thus p =
√

(a+ c)/2, q =
√

(c− a)/2, where p, q ∈ N.
Method 1 seems more “transparent” than Method 2. �



1.3. PROBLEMS NS-3 17

Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs
of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.7).

– 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a c
119 169

3367 4825
4601 6649

12709 18541
65 97

Find a formula for a in terms of p and q.
Sol:

(a, c) = (119, 169) (p, q) = ±(12, 5)

(a, c) = (3367, 4825) (p, q) = ±(64, 27)

(a, c) = (4601, 6649) (p, q) = ±(75, 32)

(a, c) = (12709, 18541) (p, q) = ±(125, 54)

(a, c) = (65, 97) (p, q) = ±(9, 4)

�

– 2.2: Based on Euclid’s formula, show that c > (a, b).

Sol: c− a = (p2 + q2)− (p2 − q2) = 2q2

Because 2q2 is always positive, c > a
c− b = (p2 + q2)− 2pq = (p− q)2 > 0
Note that by the definition of p, q ∈ N, p > q. �

– 2.3: What happens when c = a?

Sol: Then its not a triangle since b = 0. The triangle is degenerate. �

– 2.4: Is b+ c a perfect square? Discuss.

Sol: b+ c = p2 + 2pq + q2 = (p+ q)2. Since p and q are integers, b+ c will always be a perfect square
(
√
b+ c will always be an integer).

�

Pell’s equation:
Problem # 3: Pell’s equation is one of the most historic (i.e., important) equations of Greek
number theory because it was used to show that

√
2 ∈ I. We seek integer solutions of

x2 −Ny2 = 1.

As shown in Sec. 2.5.2, the solutions xn, yn for the case ofN = 2 are given by the linear 2×2 matrix recursion[
xn+1

yn+1

]
= 1

[
1 2
1 1

] [
xn
yn

]
with [x0, y0]T = [1, 0]T and 1 =

√
−1 = ejπ/2. It follows that the general solution to Pell’s equation for N = 2

is [
xn
yn

]
= (eπ/2)n

[
1 2
1 1

]n [
x0
y0

]
.
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To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

An = eπn/2
[
1 2
1 1

]n
= eπn/2

[
1 2
1 1

] [
1 2
1 1

] [
1 2
1 1

]
· · ·
[
1 2
1 1

]
,

which becomes tedious for n > 2.

– 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues
as Pell’s equation. Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your
results!
Sol: The companion matrix is

A =

[
1 2
1 1

]
�

– 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of√
2. Explain why Pell’s equation is relevant to

√
2.

Sol: As discussed in Sec. 2.5.2, as the iteration n increases, the ratio of the xn/yn approaches
√

2. �

– 3.3: Find the first three values of (xn, yn)T by hand and show that they satisfy Pell’s
equation for N = 2. Sol: See class notes (slide 9.4.2) for this calculation. � By hand, find the
eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =

[
1 2
1 1

]
.

Sol: The eigenvalues are given by the roots of the equation (1 − λ±)2 = 2. Thus λ± = 1 ±
√

2 =
{2.1412,−.4142} �

– 3.4: By hand, show that the matrix of eigenvectors, E, is

E =
[
~e+ ~e−

]
=

1√
3

[
−
√

2
√

2
1 1

]
.

Sol:

The eigenvectors ~e± may be found by solving

A

[
e1
e2

]
= λ±

[
e1
e2

]
→ (A− λ±I)

[
e1
e2

]
= 0

For λ+, this gives

0 =

[
1− (1 +

√
2) 2

1 1− (1 +
√

2)

] [
e1
e2

]
=

[
−
√

2 2

1 −
√

2

] [
e1
e2

]
which gives the relation between the elements of ~e+, e1, e2, as e1 =

√
2e2.

The eigenvectors are defined to be unit length and orthogonal, namely

1. ||~ek||2 = ~ek · ~ek = 1

2. ~e+ · ~e− = 0.

Once we normalize ~e+ to have unit length, we obtain the first eigenvector

~e+ =
1√
3

[
−
√

2
1

]
Repeating this for λ− gives

~e− =
1√
3

[√
2

1

]
Thus, the matrix of eigenvalues is

E =
1√
3

[
−
√

2
√

2
1 1

]
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�

– 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[
λ+ 0
0 λ−

]
Sol: Using the formula for a matrix inverse, we find

E−1 =
1

det(E)

[
e22 −e12
−e21 e11

]
=

3

−2
√

2

1√
3

[
1 −

√
2

−1 −
√

2

]
=
−
√

3

2
√

2

[
1 −

√
2

−1 −
√

2

]
Thus

E−1AE =
−
√

3

2
√

2

[
1 −

√
2

−1 −
√

2

] [
1 2
1 1

]
1√
3

[
−
√

2
√

2
1 1

]
=
−1

2
√

2

[
1 −

√
2

−1 −
√

2

] [
(−
√

2 + 2) (
√

2 + 2)

(−
√

2 + 1) (
√

2 + 1)

]
=

[
1−
√

2 0

0 1 +
√

2

]
= Λ

�

– 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the
n = 10 solution (x10, y10)

T to Pell’s equation with N = 2.
Sol: x10 = −3363 and y10 = −2378. Note this formulation gives the negative solution, but since the
values for n = 10 are real, when they are squared in Pell’s equation, it makes no difference whether they
are negative or positive. �

The Fibonacci sequence
The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of
genetics. Let xn represent the Fibonacci sequence,

xn+1 = xn + xn−1, (NS-3.1)

where the current input sample xn is equal to the sum of the previous two inputs. This is a “discrete time”
recurrence relationship. To solve for xn, we require some initial conditions. In this exercise, let us define x0 = 1
and xn<0 = 0. This leads to the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .} for n = 0, 1, 2, 3, . . . .

Equation NS-3.1 is equivalent to the 2× 2 matrix equations[
xn
yn

]
= A

[
xn−1
yn−1

]
, A =

[
1 1
1 0

]
. (NS-3.2)

Problem # 4: Here we seek the general formula for xn. Like Pell’s equation, the Fibonacci
equation has a recursive eigenanalysis solution. To find it we must recast xn as a 2× 2 matrix
relationship and then proceed, as we did for the Pell case.

– 4.1: Show that the Fibonacci sequence xn = xn−1 + xn−2 may be generated by[
xn
yn

]
=

[
1 1
1 0

]n [
x0
y0

]
,

[
x0
y0

]
=

[
1
0

]
. (NS-3.3)

Sol: Given the Matrix Eigenequation, powers of the eigen equation An = EΛnE−1. The final solution is[
xn
yn

]
= E

[
λ+ 0
0 λ−

]n
E−1

[
x0
y0

]
. (NS-3.4)

�
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– 4.2: What is the relationship between yn and xn?
Sol: This equation says that xn = xn−1 + yn−1 and yn = xn−1. The latter equation may be rewritten as

yn−1 = xn−2. Thus
xn = xn−1 + xn−2

as requested. �

– 4.3: Write a Matlab/Octave program to compute xn using the matrix equation above. Test
your code using the first few values of the sequence. Using your program, what is x40? Note:
Consider using the eigenanalysis of A, described by Eq. NS-2 2.18 of the text.

Sol: You can try something like:
function xn = fib(n)
A = [1 1; 1 0]; [E,D] = eig(A); xy = E*D∧n*inv(E)*[1; 0];
xn = xy(1);

Given the initial conditions we defined, x40 = 165, 580, 141. �

– 4.4: Using the eigenanalysis of the matrixA (and a lot of algebra), show that it is possible
to obtain the general formula for the Fibonacci sequence

xn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 . (NS-3.5)

– 4.5: What are the eigenvalues λ± of the matrix A?

Sol: The eigenvalues of the Fibonacci matrix are given by

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1 = (λ− 1/2)2 − (1/2)2 − 1 = (λ− 1/2)2 − 5/4 = 0,

thus λ± = 1±
√
5

2 = [1.618,−0.618]. �

– 4.6: How is the formula for xn related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation (A− λ±I)~e± = ~0, and normalized to 1) are given by

~e+ =

 λ+√
λ2
++1
1√
λ2
++1

 ~e− =

 λ−√
λ2
−+1
1√
λ2
−+1

 E =
[
~e+ ~e−

]
From the eigenanalysis, we find that[

xn
yn

]
= E

[
λn+ 0
0 λn−

]
E−1

[
1
0

]
=

[
e11 e12
e21 e22

] [
λn+ 0
0 λn−

]
1

(e11e22 − e12e21)

[
e22 −e12
−e21 e11

] [
1
0

]
.

Solving for xn we find that

xn =
1

(e11e22 − e12e21)

(
λn+e11e22− λn−e12e21

)
=

1
√
5√

(λ2
++1)(λn−+1)

[
λn+

(
λn+√

(λ2+ + 1)(λn− + 1)

)
− λn−

(
λn−√

(λ2+ + 1)(λn− + 1)

)]

=
1√
5

[
λn+1
+ − λn+1

−

]
�

– 4.7: What happens to each of the two terms[(
1±
√

5
)
/2
]n+1

?

Sol: [(1 +
√

5)/2]n+1 → 0 and [(1 +
√

5)/2]n+1 →∞ �



1.3. PROBLEMS NS-3 21

– 4.8: What happens to the ratio xn+1/xn?
Sol: xn+1/xn → (1+

√
5)/2, because

(
(1−

√
5)/2

)n → 0 as n→∞ thus for large n, xn ≈ [(1+
√

5)/2]n+1. �

Problem # 5: Replace the Fibonacci sequence with

xn =
xn−1 + xn−2

2
,

such that the value xn is the average of the previous two values in the sequence.

– 5.1: What matrix A is used to calculate this sequence?
Sol:

A =

[
1
2

1
2

1 0

]
�

– 5.2: Modify your computer program to calculate the new sequence xn. What happens as
n→∞?
Sol: As n→∞, xn → 2/3 �

– 5.3: What are the eigenvalues of your new A? How do they relate to the behavior of xn as
n→∞? Hint: You can expect the closed-form expression for xn to be similar to Eq. NS-3.4.
Sol: The eigenvalues are λ+ = 1 and λ− = −0.5. From Eq. NS-2 2.18, the expression for An is

An = (EΛE−1)n = EΛnE−1 =

[
λ+ 0
0 λ−

]n
=

[
λn+ 0
0 λn−

]
.

The solution is the sum of two sequences, one a constant and the other an oscillation that quickly fades. As
n→∞, λn+ = 1n → 1 and λn− = (−1/2)n → 0. The solution becomes

xn =
2

3

[
λn+ − λn−

]
=

2

3
[1n − (−1)n]→ 2

3
.

�

Problem # 6: Consider the expression

N∑
1

f2n = fNfN+1.

– 6.1: Find a formula for fn that satisfies this relationship. Hint: It holds for only
the Fibonacci recursion formula.

Sol: Write this out for N and N − 1:

f21 + f22 + · · ·+ f2N−1 + f2N = fNfN+1

f21 + f22 + · · ·+ f2N−1 = fN−1fN

Subtracting gives

f �2N =��fNfN+1 − fN−1��fN =��fN (fN+1 − fN−1)

fN = fN+1 − fN−1

Thus the relation only holds for the Fibonacci recursion formula. �
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CFA as a matrix recursion

Problem # 7: The CFA may be writen as a matrix recursion. For this we adopt a special
notation, unlike other matrix notations,a with k ∈ N:[

n
x

]
k+1

=

[
0 bxkc
0 1

xk−bxkc

] [
n
x

]
k

.

This equation says that nk+1 = bxkc and xk+1 = 1/(xk − bxkc). It does not mean that nk+1 = bxkcxk,
as would be implied by standard matrix notation. The lower equation says that rk = xk − bxkc is the
remainder—namely, xk = bx− kc + rk (Octave/Matlab’s rem(x,floor(x)) function), also known
as mod(x,y).

– 7.1: Start with n0 = 0 ∈ N, x0 ∈ I, n1 = bx0c ∈ N, r1 = x − bxc ∈ I, and
x1 = 1/r1 ∈ I, rn 6= 0. For k = 1 this generates on the left the next CFA param-
eter n2 = bx1c and x2 = 1/r2 = 1/(x0 − bx0c) from n0 and x0. Find [n, x]Tk+1 for
k = 2, 3, 4, 5.
Sol: If x0 = π, then n1 = bπc = 3, r1 = π − n1 = 0.14159 · · · , and x1 = 1/r1 ≈ 7.06:[

3
7.06251

]
1

=

[
0 bπc
0 1

π−bπc

] [
0
π

]
0

and for n = 2 [
7

15.99659

]
2

=

[
7
1

0.06251

]
2

=

[
0 7
0 1

7.0625−7

] [
3

7.06251

]
1

For n = 3, π3 = [n1;n2, n3] = [3; 7, 15]. Continuing n4 = b1.003418c = 1 and n5 = 292. �

aThis notation is highly nonstandard due to the nonlinear operations. The matrix elements are derived from the vector rather than
multiplying them. These calculation may be done with the help of Matlab/Octave.



Chapter 2

Algebraic Equations

2.1 Problems AE-1

Topics of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse,
convolution, Newton’s root finding method, Riemann zeta function. Deliverables: Answers to problems

Note: The term analytic is used in two different ways. (1) An analytic function is a function that may be
expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate sys-
tem.

Polynomials and the fundamental theorem of algebra (FTA)
Problem # 1: A polynomial of degree N is defined as

PN (x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N .

– 1.1: How many coefficients an does a polynomial of degree N have?
Sol: N + 1 �

– 1.2: How many roots does PN(x) have?
Sol: N �

Problem # 2: The fundamental theorem of algebra (FTA)

– 2.1: State and then explain the FTA.

Sol: The FTA says that every polynomial has at least one root x = xr. �

– 2.2: Using the FTA, prove your answer to question 1.2. Hint: Apply the FTA to prove
how many roots a polynomial PN(x) of order N has.
Sol: When a root is determined, it may be factored out, leaving a new polynomial of degree one less than the first.
Specifically,

PN−1(x) =
PN (x)

x− xr
.

Thus it follows that by a recursive application of this theorem, a polynomial has a number of roots equal to its
degree. All the roots must be counted, including repeated and complex roots and roots at∞. �

Problem # 3: Consider the polynomial function P2(x) = 1 + x2 of degree N = 2 and the
related function F (x) = 1/P2(x). What are the roots (e.g., zeros) x± of P2(x)? Hint: Complete
the square on the polynomial P2(x) = 1 + x2 of degree 2, and find the roots.
Sol: Solving for the roots by setting P2(x) = 0 gives x2± = −1, leading to x± = ±1j. �

23
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Problem # 4: F (x) may be expressed as (A,B, x± ∈ C)

F (x) =
A

x− x+
+

B

x− x−
, (AE-1.1)

where x± are the roots (zeros) of P2(x), which become the poles of F (x); A and B are the residues. The
expression for F (x) is sometimes called a partial fraction expansion or residue expansion, and it appears in many
engineering applications.

– 4.1:Find A,B ∈ C in terms of the roots x± of P2(x).
Sol: The fastest (i.e., easiest) way to find the constants A,B is to cross-multiply

1

1 + x2
=
A(x− x−) +B(x− x+)

(x− x+)(x− x−)
=

(A+B)x− (Ax− +Bx+)

(x− x+)(x− x−)

Since the numerator must equal 1, B = −A and A = 1/(x+ − x1).
In summary , in terms of the roots of Eq. AE-1.1

A = −B =
1

(x+ − x−)
, thus F (x) =

1

1 + x2
=

1

2

(
1

x− 1
− 1

x+ 1

)
.

�

– 4.2: Verify your answers for A and B by showing that this expression for F (x) is indeed
equal to 1/P2(x).
Sol: This is easily verified by cross-multiplying and simplifying. In the numerator the x terms cancel and Eq. AE-
1.1 is recovered. �

– 4.3: Give the values of the poles and zeros of P2(x).
Sol: The zeros are at xz = ±j, and the poles are at xp = ±∞ �

– 4.4: Give the values of the poles and zeros of F (x) = 1/P2(x).
Sol: The poles are at xp = ±j, and the zeros are at xz = ±∞ �

2.1.1 Analytic functions
Overview: Analytic functions are defined by infinite (power) series. The function f(x) is said to be analytic at
any value of constant x = xo, where there exists a convergent power series

P (x) =

∞∑
n=0

an(x− xo)n

such that P (xo) = f(xo). The point x = xo is called the expansion point. The region around xo such that
|x− xo| < 1 is called the radius of convergence, or region of convergence (RoC). The local power series for f(x)
about x = xo is defined by the Taylor series:

f(x) ≈ f(xo) +
df

dx

∣∣∣
x=xo

(x− xo) +
1

2!

d2f

dx2

∣∣∣
x=xo

(x− xo)2 + · · ·

=

∞∑
n=0

1

n!

dn

dxn
f(x)

∣∣∣∣
x=xo

(x− xo)n.

Two classic examples are the geometric series1 where an = 1,

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn, (AE-1.2)

and the exponential function where an = 1/n!, Eq. NS-3.11 (p. 71). The coefficients for both series may be
derived from the Taylor formula.

1The geometric series is not defined as the function 1/(1 − x), it is defined as the series 1 + x + x2 + x3 + · · · , such that the ratio of
consecutive terms is x.
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Problem # 5: The geometric series

– 5.1: What is the region of convergence (RoC) for the power series Eq. AE-1.2 of 1/(1−x)
given above—for example, where does the power series P (x) converge to the function value
f(x)? State your answer as a condition on x. Hint: What happens to the power series when
x > 1?
Sol: |x| < 1 because for |x| ≥ 1, the power series diverges to infinity. �

– 5.2: In terms of the pole, what is the RoC for the geometric series in Eq. AE-1.2?
Sol: The nearest pole relative to the expansion point, at x = 0 is at at the nearest pole xp = 1 to the expansion

point at x = 0. Namely the RoC is 1 re 0. �

– 5.3: How does the RoC relate to the location of the pole of 1/(1− x)?
Sol: The pole is at x = 1, on the border of the RoC. The nearest pole relative to the expansion point, at x = 0 is

at x = 1. Thus the RoC is 1. �

– 5.4: Where are the zeros, if any, in Eq. AE-1.2?

Sol: There is a single zero at x =∞. �

– 5.5: Assuming x is in the RoC, prove that the geometric series correctly represents
1/(1− x) by multiplying both sides of Eq. AE-1.2 by (1− x).

Sol:

1 =
1− x
1− x

for all x 6= 1

= (1− x)(1 + x+ x2 + x2 · · · ), |x| < 1

= (1 + x+ x2 + x2 · · · )− x(1 + x+ x2 · · · )
= 1 +((((

(((((x+ x2 + x3 · · · )−(((((
(((

(x+ x2 + x3 · · · )
= 1 for all x.

The introduction of the pole introduces an added zero since PN (x)|x=1 = N .
If one lets z = 1/x the relation becomes

1 =
1− z
1− z

,

which is valid for z 6= 1, which when expanded the RoC is |z| < 1, or x > 1. Once the removable pole and zero
at x = 1 are cancelled, the solution is valid for all x. �

Problem # 6: Use the geometric series to study the degree N polynomial. It is very important
to note that all the coefficients cn of this polynomial are 1.

PN (x) = 1 + x+ x2 + · · ·+ xN =

N∑
n=0

xn. (AE-1.3)

– 6.1: Prove that

PN (x) =
1− xN+1

1− x
. (AE-1.4)

Sol:

PN (x) = 1 + x+ x2 · · ·xN

=

∞∑
n=0

xn −
∞∑

n=N+1

xn

=

∞∑
n=0

xn − xN+1
∞∑
n=0

xn

= (1− xN+1)

∞∑
n=0

xn

=
1− xN+1

1− x
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�

– 6.2: What is the RoC for Eq. AE-1.3?
Sol: There is no pole; thus the RoC is∞. This polynomial has N zeros. �

– 6.3: What is the RoC for Eq. AE-1.4?
Sol: A polynomial has no RoC. �

– 6.4: How many poles does PN(x) (Eq. AE-1.3) have? Where are they?
Sol: Since PN (x) is defined by Eq. AE-1.3, there is no poles at x = 1. However it still has a pole of order N at
x =∞. To show this, define z = 1/x and study the zeros. �

– 6.5: How many zeros does PN(x) (Eq. AE-1.4) have? State where are they in the complex
plane.

Sol: PN (x) only has N zeros, at sz = N
√
−1 = ej2πn/(N+1)) where n = 1, 2, . . . , N . The zero at sz = 1

(n = 0) of Eq. AE-1.4 exactly cancels with the pole at sp = 1. This this zero-pole pair are referred to as a
removable singularity. �

– 6.6: Explain why Eqs. AE-1.3 and AE-1.4 have different numbers of poles and zeros.
Sol: The answer is very interesting. For Eq. AE-1.3, PN (sr) = 0 has N roots and we are not sure where they

are. The numerator of Eq. AE-1.4 hasN+1 roots at sr = e2πn/(N+1) for n = 0, 1, 2, . . . N . However for n = 0,
sr = e0/N = 1 is not a root, since PN (1) = N . This root and the pole exactly cancel. All the roots N + 1 of
Eq. AE-1.4 are known as the roots of unity, but the root at n = 0 is special because it cancels with the pole at s = 1.
Given the roots of Eq. AE-1.4, we can see that the N roots of Eq. AE-1.3 are at sz = N

√
−1 = ej2πn/(N+1)), with

n = 1, . . . , N (n 6= 0). Perhaps even a bit clever. �

– 6.7: Is the function 1/(1− x) analytic outside of the RoC?
Sol: Yes, because it is analytice everwhere other than at the pole x = 1. �

– 6.8: Extra credit. Evaluate PN(x) at x = 0 and x = 0.9 for the case of N = 100,
and compare the result to that from Matlab.
%sum the geometric series and P_100(0.9)
clear all;close all;format long
N=100; x=0.9; S=0;
for n=0:N
S=S+xˆn
end
P100=(1-xˆ(N+1))/(1-x);
disp(sprintf(’S= %g, P100= %g, error= %g’,S,P100, S-P100))

Sol: PN (0) = 1 and PN (0.9) = 1−.9N+1

1−0.9 = 9.999760947410010. According to Matlab P100(0) = 1 and
P100(0.9) = 9.999760947410014, with a difference of −3.55271× 10−15 (i.e., -16×eps). �

Problem # 7: The exponential series

– 7.1: What is the RoC for the exponential series Eq. NS-3.11?
Sol: The exponential is convergent everywhere on the open real line. �
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– 7.2: Let x =  in Eq. NS-3.11, and write out the series expansion of ex in terms of
its real and imaginary parts.

Sol:

e =

∞∑
0

n

n!

= 1 + − 1

2!
−  1

3!
+

1

4!
+ 

1

5!
− 1

6!
+ · · ·

=

(
1− 1

2!
+

1

4!
− 1

6!
+ · · ·

)
+ 

(
1− 1

3!
+

1

5!
− 1

7!
+ · · ·

)
=

n even∑
n=0,2,...

(−1)n

n!
+ 

n odd∑
n=1,3,...

(−1)n

n!
.

�

– 7.3: Let x = θ in Eq. NS-3.11, and write out the series expansion of ex in
terms of its real and imaginary parts. How does your result relate to Euler’s identity
(eθ = cos(θ) +  sin(θ))?

Sol:

eθ =

∞∑
0

nθn

n!

= 1 + θ − θ2

2!
− θ

3

3!
+
θ4

4!
+ 

θ5

5!
− θ6

6!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
︸ ︷︷ ︸

cos θ

+

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
︸ ︷︷ ︸

sin θ

= cos(θ) +  sin(θ).

�

(5 pts) Inverse analytic functions and composition

Overview: It may be surprising, but every analytic function has an inverse function. Note that the inverse
is not to be confused with the reciprocal. The function (x, y ∈ C)

y(x) =
1

1− x
,

has a pole at x = 1 and a zero at x =∞. Its inverse

x(y) =
y − 1

y
= 1− 1

y

has a zero at y = 1 and a pole at y = 0, with x(∞) = 1. The reciprocal of y(x) is 1/y(x) = (1 − x),
which is very different from x(y).

Problem # 8(2 pts) Consider the exponential function z(x) = ex (x, z ∈ C).

– 8.1: Find the inverse x(z).
Sol: Taking the natural log (ln) of both sides gives x(z) = ln(z). Thus the natural log is the inverse of the

exponential. �



28 CHAPTER 2. ALGEBRAIC EQUATIONS

– 8.2: Where are the poles and zeros of x(z)?
Sol: Their is a branch cut between z = 0,−∞, and the zero is at z = 1. There seems to be a pole at z = 0,

where the branch cut terminates. I don’t seem to fully understand this singular point. �

Problem # 9: (3 pts) Composition.

– 9.1: If y(s) = 1/(1− s) and z(s) = es, compose these two functions to obtain (y ◦ z)(s).
Give the expression for (y ◦ z)(s) = y(z(s)). Sol:

(y ◦ z)(s) =
1

1− es

�

– 9.2: Where are the poles and zeros of (y ◦ z)(s)?
Sol: It is best to analyize this function using zviz 1./(1-exp(5.*s)). There are an∞ number of poles

at sn = 2πn, n ∈ Z (namely when esn = 1). There is a single zero at <s = σ → ∞, and y(s) goes to 1 for
<s = σ → −∞. �

– 9.3: Where (for what condition on s) is (y ◦ z)(s) analytic?
Sol: It is analytic everywhere except at the poles sn = 2πn, n = Z. �

Eigen-analysis
Problem # 10: (4 pts) The vectorized eigen-equation for a matrix A is

AE = EΛ. (AE-1.5)

– 10.1: (4pt) Provide a formula for A3 in terms of the eigenvector E and eigenvalue Λ
matricies.
Sol: To find powers of a matrix modify Eq. AE-1.5 by post multication by E

A = EΛE−1.

Then
A3 = EΛE−1EΛE−1EΛE−1 = EΛ3E−1.

�

– 10.2: (4 pts) Find the eigenvalues of the matrix, and find the roots, by completing the
square, where a, b, c, d ∈ C, and

A =

[
a b
c d

]
.

Sol: The definition of the eigenvalues is
det
∣∣A− λI2∣∣ = 0

which is

det

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ− bc.

Completing the square (
λ− a+ d

2

)2

−
(
a+ 2

2

)2

− bc = 0.

Thus

λ± =
a+ d

2
±

√
bc+

(
a− d

2

)2

.

The eigenvalues are typically the damped resonant frequencies λ± = σo ± ωo of a mechanical or electrical
circuit. In these cases the radical is ω0 is the resonance radian frequency and jσo ≤ 0 is the resonant damping.
This requires that the constants {a, b, c, d} ≥ 0 and ∈ R.

�
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(4 pts) Convolution

Multiplying two short or simple polynomials is not demanding. However, if the polynomials have many
terms, it can become tedious. For example, multiplying two 10th-degree polynomials is not something
one would like to do every day.
An alternative is a method called convolution. The inverse of convolution is called deconvolution, which
is equivalent to long-division of polynomials, also known as factoring polynomials (Sec. ??, p. ??).
Newton’s method is a reliable and accurately algorithm to extract roots from polynomials using term by
term deconvolution. When the roots are well approximated by fractional numbers, the method is accurate
to within computational accuracy. For example, if the root is π ≈ π̂19 ≡ 817696623/260280919 ∈ F, as
given by rats(pi,19). π̂19 is the 64 bit machine’s internal representation of π since π− π̂19 = 0 (See
text Fig. 2.6, p. 48).

Problem # 11: (4 pts) Convolution of sequences. Practice convolution (by hand!!) using a few
simple examples. Manually evaluate the following convolutions. Show your work!

– 11.1: (2 pts) Multiplying two polynomials is the same as convolving their coefficients.
Given

f(x) = x3 + 3x2 + 3x+ 1↔ [1; 3, 3, 1]
g(x) = x3 + 2x2 + x+ 2↔ [1; 2, 1, 2].

show that
f(x)g(x) = x6 + 5x5 + 10x4 + 12x3 + 11x2 + 7x+ 2↔ [1; 3, 3, 1] ? [1; 2, 1, 2].

Sol: Do the convolution [1; 3, 3, 1]? [1; 2, 1, 2]. Reverse the first vector and run it across the second. This produces
[1, [3, 1] · [1, 2], [1, 3, 3] · [1, 2, 1] · · · = [1; 5, 10, 12, 11, 7, 2]. �

Here is how you put [] inside the latex’s
begin{question}[: [bracketed text] ]

\begin{question}
[: (1 pts)
\( \char91 1;-1 \char93 \star \char91 0; 1, 2, 4, 7, 0\char93 \)

]
\end{question}

as used in the following question:

– 11.2: (1 pts) [1;−1] ? [0; 1, 2, 4, 7, 0]
Sol: [1;−1] ? [0; 1, 2, 4, 7, 0] = [0; 1, 2, 4, 3,−7, 0, . . .] � . = [0, 1, 1, 2, 3,−7, 0, . . .].

– 11.3: (1 pts) [1; 2, 1] ? [1;−1]
Sol: [1; 1,−1,−1] �

Newton’s root-finding method
Problem # 12: (2 pts) Use Newton’s iteration to find the roots of the polynomial

P3(x) = 1− x3.

– 12.1: Draw a graph describing the first step of the iteration starting with
x0 = (1/2, 0).
Sol: Start with an (x, y) coordinate system and put points at and the vertex of P3(x). �
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– 12.2: Calculate x1 and x2. What number is the algorithm approaching?
Sol: First we must find P ′3(x) = −3x2. Thus the equation we must iterate is:

xn+1 = xn +
1− x3n

3x2n
.

Given a first guess for the root x0, the next are x1 = x0 +
1−x3

0

3x2
0

and x2 = x1 +
1−x3

1

3x2
1
. Note that if x + 0 is the

root, then x1 = x0 and we are done. However, if x0 = 0, then x1 =∞, since x0 = 0 is a root of P ′3(x). Thus we
must not start at the roots of P ′n(x0) = 0. �

– 12.3: Here is an Octave/Matlab script for the P2(x) case. Modify it to find P3(x):

x(1)=1/2; %x(1)=0.9; %x(1)=-10
y(1)=x(1);
for n=2:10

x(n) = x(n-1) + (1-x(n-1)ˆ2)/(2*x(n-1));
y(n) = (1+y(n-1)ˆ2)/(2*x(n-1));
end

semilogy(abs(x)-1); hold on
semilogy(abs(7)-1,’or’); hold off

Sol:
x=1/2;
for n = 1:3
x = x+(1-x*x*x)/(3*x*x);
end
�

– 12.4: (1 pts) For n = 4, what is the absolute difference between the root and the estimate,
|xr − x4|?
Sol: 4.6E-8 (very small!) �

– 12.5: Does Newton’s method work for P2(x) = 1 + x2? If so, why? Hint: The poles and
zeros are exactly known!
Sol: Here P ′2(x) = 2x. Thus the iteration gives

xn+1 = xn −
1 + x2n

2xn
.

In this case the roots are x± = ±1—namely, purely imaginary. The solution will converge for complex roots
as long as the starting point is complex. If we start with a real number for x0, and use real arithmetic, Newton’s
method fails because there is no way for the answer to become complex. Real in = Real out. �

– 12.6: What if we let x0 = (1 + )/2 for the case of P2(x) = 1 + x2?
Sol: By starting with a complex initial value, we fix the Real in = Real out problem. �
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Problem # 13: In this problem we consider the case of fractional roots, and take ad-
vantage of this fact during the itteration. Given that the roots are integers, composed of
primes, we may uniquely identify the primes by factoring the numerator and denomina-
tor of the rational approximation of the root.
The method is:

1. Start the Newton itteration

sn+1 = sn −
M(sn)

M ′(sn)

2. Apply the CFA to the next output rats(sn+1)

3. Factor the Num and Dem of the CFA

4. Terminate when the factors converge

Using this method, show that we can find either the best possible fractional approximation to the roots (or
even the exact roots, when the answer is within machine accuracy).

– 13.1: Find the roots of a Monic having coefficents mk ∈ F.
Let

M3(x) = (x− 254/17)(x− 2047/13)(x− 17/13)

In this case the root vector R becomes

R = [14.9412, 157.4615, 1.3077].

Verify that rats(M) returns the rational set of roots. Sol: In double precision this returns M3. (Not sure
what happens in single precision.) �
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2.2 Problems AE-2

Topics of this homework:
Linear vs nonlinear systems of equations, Euclid’s formula, Gaussian elimination, matrix permutations, Ohm’s
law, two-port networks,

Deliverables: Answers to problems

(2 pt) Gaussian elimination
Problem # 1: (2 pts) Gaussian elimination

– 1.1: (1 pts) Find the inverse of

A =

[
1 2
4 3

]
.

Sol:

A−1 =
1

3− 8

[
3 −2
−4 1

]
.

�

– 1.2: (1 pts) Verify that A−1A = AA−1 =

[
1 0
0 1

]
.

Sol: Multiply them to show this. �

2.2.1 Two linear equations
Problem # 2 In this problem we transition from a general pair of equations

f(x, y) = 0

g(x, y) = 0

to the important case of two linear equations

y = ax+ b

y = αx+ β.

Note that to help keep track of the variables, roman coefficients (a, b) are used for the first
equation and Greek (α, β) for the second.

– 2.1: What does it mean, graphically, if these two linear equations have (1) a unique
solution, (2) a nonunique solution, or (3) no solution?
Sol: There are three possibilities:

1. When they have different slopes, they meet at one (x,y) point, which is the solution.

2. If the two lines are identical, any point on the line is a solution.

3. If they have the same slope but different intercepts (are parallel to each other) there is no
solution.

�
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– 2.2: Assuming the two equations have a unique solution, find the solution for x and y.
Sol: Since there must be one point where the two are equal, we may solve for that by setting

the y values equal to each other:
ax+ b = αx+ β

Thus

x =
β − b
a− α

y = a
β − b
a− α

+ b

�

– 2.3: When will this solution fail to exist (for what conditions on a, b, α, and β)?
Sol: As stated above, if they have the same slope α = a but different intercepts β 6= b, there

is no solution. When β = b and α = a every point on the line is a solution. �

– 2.4: Write the equations as a 2×2 matrix equation of the formA~x = ~b, where ~x = {x, y}T .

Sol: [
1 −a
1 −α

] [
y
x

]
=

[
b
β

]
�

– 2.5: State the inverse of the 2× 2 matrix, and solve the matrix equation for x and y.
Sol: [

y
x

]
=

1

∆

[
−α a
−1 1

] [
b
β

]
=

1

∆

[
−αb+ aβ
−b+ β

]
where the determinant is ∆ ≡ a− α. �

– 2.6: Discuss (state) the properties of the determinant of the matrix (∆) in terms of the
slopes of the two equations (a and α).
Sol: When the slopes are the same there is no solution and ∆ = 0. Thus the matrix solution is

consistent with the geometry. This is our first result in analytic geometry. �

Problem # 3: You are given the following pair of linear relationships between the input
(source) variables V1 and I1 and the output (load) variables V2 and I2 of a transmission line:[

V1
I1

]
=

[
 1
1 −1

] [
V2
I2

]
.

– 3.1: Let the output (the load) be V2 = 1 and I2 = 2 (i.e., V2/I2 =1/2 {Ω}). Find the input
voltage and current, V1 and I1.

Sol: This case corresponds to [
V1
I1

]
=

[
 1
1 −1

] [
1
2

]
=

[
1+ 2
1− 2

]
Thus V1 = 2 + 1 and I1 = −1. �

– 3.2: Let the input (source) be V1 = 1 and I1 = 2. Find the output voltage and current, V2
and I2.

Sol: With the input specified the two equations are[
1
2

]
=

[
 1
1 −1

] [
V2
I2

]
.
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To find the input we must invert the matrix (∆ = −j − 1)

[
V2
I2

]
=

1

1 + j

[
1 1
1 −

] [
1
2

]
.

Thus V2 = 3/(1 + ) = 3(1− )/2, I2 = (1− 2)/(1 + 1) = −(1 + 3)/2. The point of this exercise is that the
two lines have a complex intersection point, not easily visualized. �

Integer equations: applications and solutions

Any equation for which we seek only integer solutions is called a Diophantine equation.

Problem # 4: (5 pts) A practical example of using a Diophantine equation:

“A merchant had a 40-pound weight that broke into 4 pieces. When the pieces were weighed, it was found
that each piece was a whole number of pounds and that the four pieces could be used to weigh every
integral weight between 1 and 40 pounds. What were the weights of the pieces?” - Bachet de Bèziriac
(1623)a.
Here, weighing is performed using a balance scale that has two pans, with weights on either pan. Thus,
given weights of 1 and 3 pounds, one can weigh a 2-pound weight by putting the 1-pound weight in
the same pan with the 2-pound weight, and the 3-pound weight in the other pan. Then the scale will be
balanced. A solution to the four weights for Bachet’s problem is 1 + 3 + 9 + 27 = 40 pounds.

aTaken from ?, p. 50
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– 4.1: Show how the combination of 1-, 3-, 9-, and 27-pound weights can be used
to weigh 1, 2, 3, . . . , 8, 28, and 40 pounds of milk (or something else, such as flour).
Assuming that the milk is in the left pan, provide the position of the weights using a
negative sign − to indicate the left pan and a positive sign + to indicate the right pan.
For example, if the left pan has 1 pound of milk, then 1 pound of milk in the right pan,
+1, will balance the scales.

Hint: It is helpful to write the answer in matrix form. Set the vector of values to be weighed equal to
a matrix indicating the pan assignments, multiplied by a vector of the weights [1, 3, 9, 27]T . The pan
assignments matrix should contain only the values −1 (left pan), +1 (right pan), and 0 (leave out). You
can indicate these using −, +, and blanks.
Sol: Any integer between 1 and 40 may be expanded using the weights 1, 3, 9, 27. Here is the problem
stated in matrix form: 

1
2
3
4
5
6
7
8
. . .
28
. . .
40



=



+
− +

+
+ +
− − +
− +

+ − +
− +
. . .
+ +
. . .
+ + + +




1
3
9
27



The left column is the weight of the milk. The right-most column are the four weights. It should be clear
that these four weights span the integers from 1-40 with binary weights. Each weight may be computed
recursively from twice the sum of the previous weights +1, that is

Wn+1 = 2Wn + 1 = 2n+1 since Wn = 2n.

For example to get 26 we place weights 9+3+1 in the pan with 26, and get 27-1. For example 27 =
2*(9+3+1)+1 is the next weight. Recursively, the weights are 3=2*1+1, 9=2*(3+1)+1, 27=2*(9+3+1)+1.
The next weight (not shown) would be: 81=2*(27+9+3+1)+1 = 2*40+1. �

2.2.2 Vector algebra in R3

Definitions of the vector scalar A ·B and wedge A ∧B products.

θ

L∗

A ·B = ||A|| ||B|| cos θ ∈ R

C = A ∧B ẑ = ||A|| ||B|| sin θ ẑ ∈ R

A
∧
B

A

B

Vector product: ⊥ AB plane

Scalar product: In AB plane

ŷ

x̂

ẑ

Problem # 5: Scalar product A ·B

– 5.1: If A = axx̂ +ayŷ +azẑ and B = bxx̂ + byŷ + bzẑ, write out the definition of A ·B.
Sol: See the definition in the above figure. A ·B = axbx + ayby + azbz . In general: A ·B =

∑
k AkBk. �
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– 5.2: The dot product is often defined as ||A|| ||B|| cos(θ), where ||A|| =
√
A ·A and θ

is the angle between A,B. If ||A|| = 1, describe how the dot product relates to the vector B.
Sol: See the definition in the above figure. The vector product is the portion of B in the direction of A. �

Problem # 6: Vector (cross) product A×B

– 6.1: If A = axx̂+ayŷ+azẑ and B = bxx̂+byŷ+bzẑ, write out the definition of A×B.
Sol:

A×B ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣ = x̂

∣∣∣∣ay az
by bz

∣∣∣∣− ŷ

∣∣∣∣ax az
bx bz

∣∣∣∣+ ẑ

∣∣∣∣ax ay
bx by

∣∣∣∣ .
�

– 6.2: Show that the cross product is equal to the area of the parallelogram formed by
A,B, namely ||A|| ||B|| sin(θ), where ||A|| =

√
A ·A and θ is the angle between A and B.

Sol: A parallelogram’s area is equal to its base times its height. Therefore, let’s say the base is length ||A||, and
the height ||B|| sin(θ), which is the portion of B that is perpendicular to A. �

Problem # 7: Triple product A · (B ×C)
Let A = [a1, a2, a3]T , B = [b1, b2, b3]T , C = [c1, c2, c3]T be three vectors in R3.

– 7.1: Starting from the definition of the dot and cross product, explain using a diagram

and/or words, how one shows that: A · (B ×C) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣.
Sol: Using the determinate-definition of the cross product,

B ×C ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
bx by bz
cx cy cz

∣∣∣∣∣∣ = x̂

∣∣∣∣by bz
cy cz

∣∣∣∣− ŷ

∣∣∣∣bx bz
cx cz

∣∣∣∣+ ẑ

∣∣∣∣bx by
cx cy

∣∣∣∣ .
Let D = B×C and compute A ·D = A · (B×C). Finally compute the requested right-hand side, and compare
the two. It should be clear that they are the same, because the dot product transfers the elements of vector A to
cross product and reduces the product to the scalar. �

– 7.2: Describe why |A · (B×C)| is the volume of parallelepiped generated by A,B, and
C.
Sol: Note that the norm of B ×C is the area of the parallelogram generated by C and B. Taking the dot product
with A results in the volume of the corresponding parallelepiped (prism). So the absolute value of triple product
is volume of parallelepiped. �

– 7.3: Explain why three vectors A, B, C are in one plane if and only if the triple product
A · (B×C) = 0.
Sol: (triple product is zero) if and only if: (volume is zero), if and only if: (they are in the same plane) �

2.2.3 Ohm’s Law
As shown in the Table on page 96, the impedance concept also holds in mechanics, acoustics, and thermal
circuits, and perhaps, even for non-relativistic gravity. In mechanics, the force is equal to the mechanical force on
an element (e.g., a mass, dashpot, or spring) and the flow is the velocity. In acoustics, the force is pressure and the
flow is either the volume velocity or particle velocity of air molecules.

Case Force Flow Impedance units
Electrical voltage (V) current (I) / Ḋ / photon Z Ohms [Ω]
Mechanics force (F) velocity (V ) Z Mechanical Ohms [Ω]
Acoustics pressure (P) particle velocity (U) ZA, ρc Acoustic Ohms [Ω]
Thermal temperature (T) entropy-rate (Ṡ ) ZT Thermal Ohms [Ω]
Gravity potential momentum = 2π/λG / graviton ZG gravitational Ohms [?]
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Problem # 8: The resistance of an incandescent (filament) lightbulb, measured cold, is about
100 ohms. As the bulb lights up, the resistance of the metal filament increases as the tempera-
ture T rises.
Ohm’s law says that the current

V

I
= R(T ),

where T is the temperature.

– 8.1: In the United States, the voltage is 120 volts (RMS) at 60 (Hz). Find the current when
the light is first switched on.

Sol: Thus the current is
I = 120/R = 120/100 = 1.2. [Amps]

As the bulb heats up, the current rapidly drops, and the resistance increases. This typically takes less than a
milliseconds [ms], which depends on the wattage of the light bulb. Such light-bulbs are nonlinear. These rules
don’t apply to LED bulbs. �

Problem # 9: (1 pts) The power in watts is the product of the force and the flow. What is the
power of the lightbulb of Problem 8?

Sol: P = V · I = 120× 1.2 = 120 + 24 = 144 [W]. �

Problem # 10: (1 pts) State the impedance Z(s) of each of the following circuit elements:
(1) a resistor with resistance R, (2) an inductor with inductance L, and (3) a capacitor with
capacitance C.

Sol: (1) For the resistor, Z = R.
(2) For the inductor, Z = sL with s = σ + ω. Note the flux ψ(t) = Li(t). The voltage v(t) is the time

derivative of the flux

v(t) =
dψ(t)

dt
= L

di(t)

dt
.

(3) For the capacitor, Z = 1/sC. Note the charge q(t) = Cv(t), thus the current i(t) is the time derivative of
the charge

i(t) =
d

dt
q(t) = C

dv(t)

dt
.

�

2.2.4 Nonlinear (quadratic) to linear equations
Problem # 11: Solve the equations:

– 11.1: Solve for x(p, q) (remove y):

x+ y = p

xy = q.

Sol: Solve the first equation for y as y = p− x, and then substitute it into the second equation, resulting in

x(p− x) = −x2 + px = q.

Collecting terms gives the quadratic equation in x

x2 − px+ q = 0.

Completing the square
(x− p/2)2 = (p/2)2 − q

providing the roots x± = p/2±
√

(p/2)2 − q, and the corresponding values for y±(x±) y± = p− x±.

Summary: Here we started with one linear and one quadratic (hyperbola). By the use of composition we found
the roots. For certain values of {p, q} (a negative discriminant) the roots are complex. �
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Euclid’s formula derivation
Euclid’s formula for Pythagorean triplets (Eq. NS-2 2.6, p. 45) can be derived by intersecting a circle and a secant
line. Consider the nonlinear equation of a unit circle having radius 1, centered at (x, y) = (0, 0),

x2 + y2 = 1,

and the secant line through (−1, 0),
y = t(x+ 1),

a linear equation having slope t and intercept x = −1. If the slope 0 < t < 1, the line intersects the circle at a
second point (a, b) in the positive x, y quadrant. The goal is to find a, b ∈ N and then show that c2 = a2 + b2.
Since the construction gives a right triangle with short sides a, b ∈ N, then it follows that c ∈ N.

1) t = p/q ∈Q
2) a = p2 − q2

3) b = 2pq

4) c = p2 + q2

2) b(a) = t(a + c)

1) c2 = a2+ b2

4) ζ = |c|eiθ = |c|1+it
1−it = |c|(cos(θ) + i sin(θ))

3) ζ(t) ≡ a+b =
1−t2+2t

1+t2

Diophantus’s Proof:

1) 2φ + η = π

2) η + Θ = π

3) ∴ φ = Θ/2

Euclidean Proof:

(a, b)b

a
φ

η

φ

b(a) = t (a + c)

O
c2 = a2 + b2

c =
p
2 +

q
2

b
=

2p
q

Θ a = p2 − q2

Y

X

Pythagorean triplets:

Derivation of Euclid’s formula for the Pythagorean triplets (PT) [a, b, c], based on a composition of a line, having a rational slope
t = p/q ∈ F, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This analysis is attributed to Diophantus (Di·o·phan′·tus) (250 CE), and

today such equations are called Diophantine (Di·o·phan′·tine) equations. PTs have applications in architecture and scheduling, and
many other practical problems. Most interesting is their relation to Rydberg’s formula for the eigenstates of the hydrogen atom

(Appendix H).

Problem # 12: Derive Euclid’s formula

– 12.1: Draw the circle and the line, given a positive slope 0 < t < 1.
Sol: Sol in given in Fig. 2.2.4 �

Problem # 13: Substitute y = t(x + 1) (the line equation) into the equation for the
circle, and solve for x(t).
Hint: Because the line intersects the circle at two points, you will get two solutions for x. One of these
solutions is the trivial solution x = −1. Sol: x(t) = (1− t2)/(1 + t2) �

– 13.1: Substitute the x(t) you found back into the line equation, and solve for y(t).
Sol: y(t) = 2t/(1 + t2) �

– 13.2: Let t = q/p be a rational number, where p and q are integers. Find x(p, q)
and y(p, q).
Sol: x(p, q) = 2pq/(p2 + q2) and y(p, q) = (p2 − q2)/(p2 + q2) �

– 13.3: Substitute x(p, q) and y(p, q) into the equation for the circle, and show how
Euclid’s formula for the Pythagorean triples is generated.
Sol: Multiplying out gives (p2 + q2) = (p2 − q2) + 2pq �

For full points you must show that you understand the argument. Explain the meaning of the comment
“magic happens” when t4 cancels.
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2.3 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere.
Deliverables: Answers to problems

Two-port network analysis

Problem # 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.6 (page
93). This can be a mechanical system if the capacitors are taken to be springs and inductors
taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass
filter could be a car muffler. While the physical representations will be different, the equations
and the analysis are exactly the same.

The definition of the ABCD transmission matrix (T ) is[
V1
I1

]
=

[
A B
C D

] [
V2
−I2

]
. (AE-3.1)

The impedance matrix, where the determinant ∆T = AD −BC, is given by[
V1
V2

]
=

1

C

[
A ∆T
1 D

] [
I1
I2

]
. (AE-3.2)

– 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission
matrix definition (Eq. AE-3.1). Show your work.

Sol: The formula may be easily derived by re-arranging the equations from the matrix (Eq. AE-3.2). Begin with

V1 = AV2 −B I2
I1 = C V2 −D I2

From the second equation, we get

V2 =
1

C
I1 +

D
C
I2

which gives (upon substitution)

V1 =
A
C
I1 +

AD
C
I2 −B I2 =

A
C
I1 +

(AD
C
−B

)
I2

which yields the matrix equation[
V1
V2

]
=

[
A/C (AD/C −B )
1/C D/C

] [
I1
I2

]
=

1

C

[
A ∆T
1 D

] [
I1
I2

]
. (AE-3.3)

�

Problem # 2: Consider a single circuit element with impedance Z(s).

– 2.1: What is the ABCD matrix for this element if it is in series?
Sol: [

1 Z(s)
0 1

]
�
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– 2.2: What is the ABCD matrix for this element if it is in shunt?
Sol: [

1 0
1/Z(s) 1

]
�

Problem # 3: Find the ABCD matrix for each of the circuits of Fig. 3.6.
For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency s ∈ C, then

(ii) substitute s = 1 and calculate the total transmission matrix at this single frequency.

– 3.1: Left circuit (let R1 = R2 = 10 kilo-ohms and C = 10 nano-farads)

Sol: Write the system in chain matrix form:[
V1
I1

]
=

[
1 Z1

0 1

] [
1 0
YC 1

] [
1 Z3

0 1

] [
V2
−I2

]
=

[
1 Z1

0 1

] [
1 0
sC 1

] [
1 Z3

0 1

] [
V2
−I2

]
Now we substitute the given values:[

V1
I1

]
=

[
1 104

0 1

] [
1 0

j10−8 1

] [
1 104

0 1

] [
V2
−I2

]
=

[
1 + j10−4 2× 104 + j
j10−8 1 + j10−4

] [
V2
−I2

]
�

– 3.2: Right circuit (use L and C values given in the figure), where the pressure P is
analogous to the voltage V , and the velocity U is analogous to the current I .

Sol: Write the system in chain matrix form:[
P1

U1

]
=

[
1 sL1

0 1

] [
1 0
sC2 1

] [
1 1

sC3

0 1

] [
1 0
1
sL4

1

] [
P2

−U2

]
Now we substitute the given values:[

P1

U1

]
=

[
1 j
0 1

] [
1 0
2j 1

] [
1 1

3j

0 1

] [
1 0
1
4j 1

] [
P2

−U2

]
=

[
− 2

3
4
3j

19
12j

5
3

] [
P2

−U2

]
I used Matlab/Octave to evaluate this script:

a=[1 j;0 1];b=[1 0;2j 1];c=[1 1/3j; 0 1];d=[1 0;1/4j 1]; T=a*b*c*d.

Finally I found T (2, 1) to be 19/12 using the Matlab/Octave command: rats(1.5833,6)
�

– 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2.
Do this for the specific frequency s = 1 as in the previous part (feel free to use Matlab/Octave
for your computation).

Sol: Left circuit: Using the previous solution, and Matlab:[
V1
V2

]
=

1

j10−8

[
1 + j10−4 1

1 1 + j10−4

] [
I1
I2

]
�

– 3.4: Right circuit: Repeat the analysis as in question 3.3.
Sol: [

P1

P2

]
=

1

1.5833j

[
− 2

3 1
1 5

3

] [
U1

U2

]
�
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Algebra
Problem # 4: Fundamental theorem of algebra (FTA).

– 4.1: State the fundamental theorem of algebra (FTA).
Sol: There are multiple definitions of the FTA, which of course must be equivalent.

Here are three (equivalent) answers from Wikipedia

1. The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex
coefficients has at least one complex root. This may then be applied recursively till the degree is zero.

2. Every degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots. The
equivalence of the two statements can be proven through the use of successive polynomial division.

3. The field of complex numbers is algebraically closed. Note: this one requires an understanding of the term
algebraically closed.

Wikipedia warns:

In spite of its name, there is no purely algebraic proof of the theorem, since any proof must use the
completeness of the reals (or some other equivalent formulation of completeness), which is not an
algebraic concept.

�

(13 pts) Algebra with complex variables
Problem # 5: (7 pts) Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the
difference and compare it to zero, as in 4− 3 > 0. Here we will explore how complex variables may be ordered.
In the following define {x, y} ∈ R and complex variable z = x+ y ∈ C.

– 5.1: Explain the meaning of |z1| > |z2|.
Sol: |z| =

√
x2 + y2 is the length of z, so the above expression says that a disk of radius |z1| contains a second

disk of radius |z2|. �

– 5.2: If x1, x2 ∈ R (are real numbers), define the meaning of x1 > x2.
Sol: This conditions is the same as x1 − x2 > 0. Order is meaningful on the real line, as a length. �

– 5.3: Explain the meaning of z1 > z2.
Sol: It makes no sense to order complex numbers. A complex number has both a length and an angle (it is the
same as a vector). The concept of an angle extends the sign of a real number, making order impossible. To show
this, place two points on a plane, and ask which is larger than the other. The order of the x and y components,
each have order. Thus order cannot be defined. �

– 5.4: (2 pts) What is the meaning of |z1 + z2| > 3?
Sol: Define z3 = z1 +z2. Then the problem becomes |z3| > 3, which is a disk of radius 3 > 0. Thus the solution

is all values of z1 + z2 outside, but not including, a circle of radius 3. �

– 5.5: (2 pts) If time were complex, how might the world be different?
Sol: As best we know, time is real, thus it has the order property: the is a past, present and future. If time were
complex this would not be the case. Thus if time were complex, the past could be the future. �

Problem # 6: (1 pt) It is sometimes necessary to consider a function w(z) = u + v in terms
of the real functions u(x, y) and v(x, y) (e.g. separate the real and imaginary parts). Similarly,
we can consider the inverse z(w) = x+ y, where x(u, v) and y(u, v) are real functions.

– 6.1: (1 pts) Find u(x, y) and v(x, y) for w(z) = 1/z.

Sol: Multiply by the complex conjugate x− y

w =
1

x+ y
=

x− y
x2 + y2

Therefore u(x, y) = x
x2+y2 and v(x, y) = −y

x2+y2 . �
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Problem # 7: (5 pts) Find u(x, y) and v(x, y) for w(z) = cz with complex constant c ∈ C for
questions 7.1, 7.2, and 7.3:

– 7.1: c = e
Sol: Since u+ iv = ez = ex+y = ex(cos y +  sin y),

u = ex cos y

and
v = ex sin y.

�

– 7.2: c = 1 (recall that 1 = e±2πk for k ∈ Z
Sol: From the general formula with c = 1

1z = ez log 1 ek2πz = e0ek2πz = e−yk2πe−xk2π

where k ∈ Z is a signed counting integer. Thus u = e−k2πy cos k2πx and v = e−k2πy sin k2πx. �

– 7.3: c = . Hint:  = eπ/2+2πk, k ∈ Z.
Sol:  =

(
eπ/2+2πm

)
= eπ/2+2πm = e−π/2 e−2πm = 0.2079 e−2πm.

Thus for m = 0, z =
(
eπ/2

)z
= ezπ/2 = e(x+y)π/2 = e(x−y)π/2 = e−πy/2(cos(xπ/2) +  sin(xπ/2)).

�

– 7.4: (2 pts) What is ?
Sol: Since  = e

π
2 , then  = e

π
2  = e−π/2 ≈ 0.20788.

Expanding this in a continued-fraction expansion using Matlab’s rat(exp(-pi/2)) function gives
[0; 5,−5,−4, 3,−3, 3, · · · ]. �

Schwarz inequality
Problem # 8: The above figure shows three vectors for an arbitrary value of α ∈ R and a
specific value of α = α∗.

– 8.1: Find the value of α ∈ R such that the length (norm) of ~E (i.e., || ~E|| ≥ 0) is minimum.
Show your derivation, not the answer (α = α∗).

Sol: In the above figure we see vectors V , U , and for reference, V + α∗U . Also shown are scaled values of
U , αU and α∗U . The setup for the derivation is

||E(a)||2 = E ·E = (~V + α~U) · (~V + α~U) ≥ 0. (AE-3.4)

Minimize with respect to α.
When U is scaled by α∗, length ||E(α∗)|| is minimum, and (V − α∗U) ⊥ U , namely vector E(α∗) is ⊥ to

vector U . This follows from ∂
∂α || ~E||

2 = ∂
∂α ((~V + α~U) · (~V + α~U)) = 2(~V + α~U) · ~U = 0. Thus

α∗ = −
~V · ~U
||~U ||2

�

– 8.2: Find the formula for ||E(α∗)||2 ≥ 0. Hint: Substitute α∗ into Eq. NS-3.9 (p. 85) and
show that this results in the Schwarz inequality

|~U · ~V | ≤ ||~U ||||~V ||.

Sol: From Eq. NS-3.9
||V ||2 + 2α∗V ·U + (α∗)

2 ||U ||2 ≥ 0
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Substituting α∗ gives
||V ||2||U ||2 − 2(V ·U)2 + |U · V |2 ≥ 0.

Simplifying
||V ||2||U ||2 ≥ |U · V |2

and taking the square root (and swap order), gives the Schwarz inequality

|~U · ~V | ≤ ||~U ||||~V ||.

�

Problem # 9: Geometry and scaler products

– 9.1: What is the geometrical meaning of the dot product of two vectors?
Sol: The dot product of two vectors is the length of the ⊥ projection of one vector on the other. According to the

Schwarz inequality, this project length must be less than the product of the lengths of the two vectors. �

– 9.2: Give the formula for the dot product of two vectors. Explain the meaning based on
Fig. 3.4 (page 80).

Sol: ~V · ~U = ||~V ||||~U || cos θ~V ,~U . ~V · ~U = ||~V ||||~U || cos θ~V ,~U . It represents the amount of one vector going
in the direction of the other. In a drawing, it is a projection of the one on the other, found by dropping the ⊥ from
the tip of one, on the other. �

– 9.3: Write the formula for the dot product of two vectors ~U · ~V in Rn in polar form (e.g.,
assume the angle between the vectors is θ).

Sol: ~U · ~V =
∑n
i=1 aibi(= ||~U || ||~V || cos(θ)). This last relationship defines the angle between two vectors.

�

– 9.4: How is the Schwarz inequality related to the Pythagorean theorem?

Sol: It says that for a right triangle, the case when a = a∗, the lengths of the two vectors must be greater than
the projection of one on the other, unless they are co-linear (i.e., the angle between them is zero). �

– 9.5: Starting from ||U + V ||, derive the triangle inequality

||~U + ~V || ≤ ||~U ||+ ||~V ||.

Sol: ||~U + ~V ||2 = (~U + ~V ) · (~U + ~V ) = ||U ||2 + ||V ||2 + 2U · V ≤ ||U ||2 + ||V ||2 + 2|U · V | Using the
Schwarz inequality we find ||~U + ~V ||2 ≤ ||U ||2 + ||V ||2 + 2||U || ||V ||. Completing the square on the right gives
||~U + ~V ||2 ≤ (||U ||+ ||V ||)2. Final taking the square root gives the triangle inequality. �

– 9.6: The triangle inequality ||~U+ ~V || ≤ ||~U ||+ ||~V || is true for two and three dimensions:
Does it hold for five-dimensional vectors?

Sol: It is true in any number of dimensions. �

– 9.7: Show that the wedge product ~U ∧ ~V ⊥ ~U · ~V .

Sol: ~V ∧ ~U = ||~V ||||~U || sin θ~V ,~U while ~V · ~U = ||~V ||||~U || cos θ~V ,~U . Thus they are perpendicular. This is true
in any number of dimensions. See the discussion in the text on the wedge product. �

Probability
Problem # 10: Basic terminology of experiments

– 10.1: What is the mean of a trial, and what is the average over all trials?
Sol: The mean and average are the same. What is different in these two questions is the size of the set being
averaged. �
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– 10.2: What is the expected value of a random variable X?
Sol: This is a mathematical definition of how to compute the mean, as an inner product. �

– 10.3: What is the standard deviation about the mean?
Sol: This is the expected value of the second moment of the random variable. �

– 10.4: What is the definition of information of a random variable?
Sol: The information is I = 1/P (Xk). �

– 10.5: How do you combine events? Hint: If the event is the flip of a biased coin, the
events are H = p, T = 1 − p, so the event is {p, 1 − p}. To solve the problem, you must find
the probabilities of two independent events.
Sol: If one event has probability p it may be captured by a vector [p, 1 − p]T . Two uncorrelated (independent)
events then have probability [p, 1 − p] ? [p, 1 − p] = [p2, 2p(1 − p), (1 − p2)]. Here ? represents convolution
(Section 4.7.4, p. 147). Three events have four outcomes [p, 1− p] ? [p, 1− p] ? [p,−1− p]. Pascal’s triangle is a
related structure defined by recursive convolutions of [1, 1], assuming p = 1/2. �

– 10.6: What does the term independent mean in the context of question 10.5? Give an
example.
Sol: This term means that one event (flip of a coin) has no influence on the next (or any other flip) of that same
coin. An example of non-independent events might be that upon flipping the coin, it bent. thus changing the
probability for any following flips. �

– 10.7: Define odds.
Sol: The odds are the ratio of the two outcomes. Namely the odds are p/(1 − p), or equivalently (1 − p)/p =
1/p− 1. �
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Differential equations

3.1 Problems DE-1

3.1.1 Topics of this homework:
Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus
(real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series
Problem # 1: In each case derive (e.g., using Taylor’s formula) the power series of w(s) about
s = 0 and give the RoC of your series. If the power series doesn’t exist, state why! Hint: In
some cases, you can derive the series by relating the function to another function for which you
already know the power series at s = 0.

– 1.1: 1/(1− s)
Sol: 1/(1− s) =

∑∞
n=0 s

n, which converges for |s| < 1 (e.g., the RoC is |s| < 1) �

– 1.2: 1/(1− s2)
Sol: 1/(1 − s2) =

∑∞
n=0 s

2n, which converges for |s2| < 1. (e.g., the RoC is |s| < 1). One can also factor the
polynomial, thus write it as: 1

(1−s)(1+s) . There are two poles, at s = ±1, and each has an RoC of 1. �

– 1.3: 1/(1 + s2).
Sol: The resulting series is 1/(1 + s2) = 0.5

∑∞
n=0 s

n((−i)n + (i)n). The RoC is |s| < 1. We can see this
by considering the poles of the function at s = ±i; both poles are 1 from s = 0, the point of expansion. An
alternative is to write the function as 1/(1− (is)2) =

∑
(is)n. �

– 1.4: 1/s
Sol: If you try to do a Taylor expansion at s = 0, the first term, w(0)→∞. Thus, the Taylor series expansion in
s does not exist. �

– 1.5: 1/(1− |s|2)
Sol: The imaginary part is zero. Thus the derivative of the imaginary part is zero. Thus the CR conditions cannot

be obeyed. �

Problem # 2: Consider the function w(s) = 1/s

– 2.1: Expand this function as a power series about s = 1. Hint: Let 1/s = 1/(1−1+s) =
1/(1− (1− s)).

45
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Sol: The power series is

w(s) =

∞∑
n=0

(−1)n(s− 1)n,

which converges for |s− 1| < 1.
To convince you this is correct, use the Matlab/Octave command syms s; taylor(1/s,s,’ExpansionPoint’,1),

which is equivalent to the shorthand syms s; taylor(1/s,s,1). What is missing is the logic behind this
expansion, given as follows: First move the pole to z = −1 via the Möbius “translation” s = z + 1, and expand
using the Taylor series

1

s
=

1

1 + z
=

∞∑
n=0

(−z)n.

Next back-substitute z = s− 1 giving
1

s
=
∑

(−1)n(s− 1)n.

It follows that the RoC is |z| = |s− 1| < 1, as provided by Matlab/Octave. �

– 2.2: What is the RoC?
Sol: As stated in the solution of 2.1, |s− 1| < 1. �

– 2.3: Expand w(s) = 1/s as a power series in s−1 = 1/s about s−1 = 1.
Sol: Let z = s−1 and expand about 1: The solution is w(z) = z, which has a zero at 0 thus a pole at∞. �

– 2.4: What is the RoC?
Sol: |s| > 0 or |z| <∞. �

– 2.5: What is the residue of the pole?
Sol: The pole is at∞. Since w(s) = 1/s and applying the definition for the residue c−1 = lims→∞ s(1/s) = 1.
Thus residue is 1. Note that it is the amplitude of the pole, which is 1. �

Problem # 3: Consider the function w(s) = 1/(2− s)

– 3.1: Expand w(s) as a power series in s−1 = 1/s. State the RoC as a condition on |s−1|.
Hint: Multiply top and bottom by s−1.
Sol: 1/(2− s) = −s−1/(1− 2s−1) = −s−1

∑
2ns−n. The RoC is |2/s| < 1, or |s| > 2. �

– 3.2: Find the inverse function s(w). Where are the poles and zeros of s(w), and where is
it analytic?
Sol: Solving for s(w) we find 2 − s = 1/w and s = 2 − 1/w = (2w − 1)/w. This has a pole at 0 and a zero at
w = 1/2. The RoC is therefore from the expansion point out to, but not including w = 0. �

Problem # 4:Summing the series
The Taylor series of functions have more than one region of convergence.

– 4.1: Given some function f(x), if a = 0.1, what is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

Show your work. Sol: To sum this series, we may use the fact that

f(a)− af(a) = (1 + a+ a2 + a3 + · · · )− a(1 + a+ a2) = 1 + a(1− 1) + a2(1− 1) + · · ·

This gives (1− a)f(a) = 1, or f(a) = 1/(1− a). Now since a = .1, the sum is 1/(1− 0.1) = 1.11. �

– 4.2: Let a = 10. What is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

Sol: In this case the series clearly does not converge. To make it converge we need to write a formula for y = 1/x
rather than for x.

f(1/y)−f(1/y)/a = (1+1/a+1/a2 +1/a3 + · · · )−1/a(1+1/a+a1/2) = 1+(1−1)/a+(1−1)/a2 + · · ·

This gives f(1/a) = −a−1/(1−a−1). Now since a = 10, the series sums to f(10) = −0.1/(1−0.1) = −1/9. �
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3.1.3 Cauchy-Riemann Equations

Problem # 5: For this problem  =
√
−1, s = σ + ω, and F (s) = u(σ, ω)+ v(σ, ω). Ac-

cording to the fundamental theorem of complex calculus (FTCC), the integration of a complex
analytic function is independent of the path. It follows that the derivative of F (s) is defined as

dF

ds
=

d

ds
[u(σ, ω) + v(σ, ω)] . (DE-1.1)

If the integral is independent of the path, then the derivative must also be independent of the direction:

dF

ds
=
∂F

∂σ
=

∂F

∂ω
. (DE-1.2)

The Cauchy-Riemann (CR) conditions

∂u(σ, ω)

∂σ
=
∂v(σ, ω)

∂ω
and

∂u(σ, ω)

∂ω
= −∂v(σ, ω)

∂σ

may be used to show where Equation DE-1.2 holds.

– 5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Sol: First form the partial derivatives as indicated and then set the real and imaginary parts equal. This results
in the two CR equations. �

– 5.2: Merge the CR equations to show that u and v obey Laplace’s equations.

∇2u(σ, ω) = 0 and ∇2v(σ, ω) = 0.

Sol: Take partial derivatives with respect to σ and ω and solve for one equation in each of u and v. �

– 5.3: What can you conclude?

Sol: We can conclude that the real and imaginary parts of complex analytic functions must obey these condi-
tions. �

Problem # 6: Apply the CR equations to the following functions. State for which values of
s = σ + iω the CR conditions do or do not hold (e.g., where the function F (s) is or is not
analytic). Hint: Review where CR-1 and CR-2 hold.

– 6.1: F (s) = es

Sol: CR conditions hold everywhere. �

– 6.2: F (s) = 1/s

Sol: CR conditions are violated at s = 0. The function is analytic everywhere except s = 0. �

3.1.4 Branch cuts and Riemann sheets
Problem # 7: Consider the function w2(z) = z. This function can also be written as w±(z) =√
z±. Assume z = reφ and w(z) = ρeθ =

√
reφ/2.

– 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully
represent this function as single-valued?
Sol: There is one sheet for z and two sheet for w = ±

√
z. When any point in the domain z (being mapped to

w(z)) crosses the z branch cut, the codomain (range) w±(z) switches from the w+ sheet to the w− sheet. w(z)
remains analytic on the cut. Look at Fig. 4.4 in Chap. 4 (p. 132) to see how this works. �
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– 7.2: Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in
the range.
Sol: Above we show the mapping for the square root function w(z) =

√
z± =

√
reφ/2. �

– 7.3: Use zviz.m to plot the positive and negative square roots +
√
z and−

√
z. Describe

what you see.
Sol: The sheet for the positive root is shown in Fig 3.2 (page 106 of the Oct 24 version of the class notes.) Two
view the two sheets use Matlab command zviz sqrt(W) -sqrt(W). �

– 7.4: Where does zviz.m place the branch cut for this function?
Sol: Typically the cut is placed along the negative real z axis φ = ±π. This is Matlab’s/Octave’s default location.
In the figure above, it has been placed along the positive real axis, φ = 0 = 2π. �

– 7.5: Must the branch cut necessarily be in this location?
Sol: No, it can be moved, at will. It must start from z = 0 and end at |z| → ∞. The cut may be move when using
zviz.m by multiplying z by eφo . For example, zviz W = sqrt(j*Z) rotates the cut by π/2. The colors of
w(z) (angle maps to color) always ‘jump’ at the branch cut, as you make the transition across the cut. �

Problem # 8: Consider the function w(z) = log(z). As in Problem 7, let z = reφ and
w(z) = ρeθ.

– 8.1: Describe with a sketch and then discuss the branch cut for f(z).
Sol: From the plot of zviz w(z) = log(z) of Lecture 18, we see a branch cut going from w = 0 to w =
−∞. If we express z in polar coordinates (z = reφ), then

w(z) = log(r) + φ = u(x, y) + v(x, y),

where r(x, y) = |z| =
√
x2 + y2 and φ = ∠z = φ(x, y). Thus a zero in w(z) appears at z = 1 + 0, and only

appears on the principle sheet of z (between [−π < ∠z = φ < π]), because this is the only place where φ = 0.
As the angle φ increases, the imaginary part of w = ∠z, which increases without bound. Thus w is like a spiral
stair case, or cork-screw. If ρ = 1 and φ 6= 0, w(r) = log(1) + φ is not zero, since the angle is not zero. �

– 8.2: What is the inverse of the function z(f)? Does this function have a branch cut? If
so, where is it?
Sol: z(w) = ew is a single valued function, so a branch cut is not appropriate. Only multi-valued functions require
a branch cut. �

– 8.3: Using zviz.m, show that

tan−1(z) = − 
2

log
− z
+ z

. (DE-1.3)

In Fig. 4.1 (p. 118) these two functions are shown to be identical.
Sol: Use the Matlab commands zviz atan(Z) and zviz -(j/2)*log((j+Z)./(j-Z)). �

– 8.4: Algebraically justify Eq. DE-1.3. Hint: Letw(z) = tan−1(z) and z(w) = tanw = sinw/ cosw;
then solve for ewj .
Sol: Following the hint gives

z(w) = −e
w − e−w

ew + e−w
= −e

2w − 1

e2w + 1
.

Solving this bilinear equation for e2w gives

e2w =
1 + z

1− z
=
− z
+ z

Taking the log and using our definition of w(z) we find

w(z) = tan−1(z) = − 
2

log
− z
+ z

.

�
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3.1.5 A Cauer synthesis of any Brune impedance
Problem # 9: One may synthesize a transmission line (ladder network) from a positive real
impedance Z(s) by using the continued fraction method. To obtain the series and shunt imped-
ance values, we can use a residue expansion. Here we shall explore this method.

– 9.1: Starting from the Brune impedance Z(s) = 1
s+1

, find the impedance network as a
ladder network.
Sol: Taking the reciprocal we find the sum of two shunt admittances, and capacitor and resistor

Y (s) = s+ 1.

The the impedance is Z(s) = 1/(s+ 1). �

– 9.2: Use a residue expansion in place of the CFA floor function (Sec. 2.4.4, p. 37) for
polynomial expansions. Find the residue expansion of H(s) = s2/(s + 1) and express it as a
ladder network.
Sol: Verify that

Z(s) = s2/(s+ 1) = s− 1 + 1/(s+ 1). (DE-1.4)

Thus the Cauer synthesis is a series combination s − 1 (an inductor L = 1 and a resistor R = −1 ohms) and a
shunt 1||s (i.e., Y (s) = 1 + s, a resistor of R = 1 in parallel with a capacitor C = 1.) It would appear that Z(s)
is not a positive real impedance. �

– 9.3: Discuss how the series impedance Z(s, x) and shunt admittance Y (s, x) determine
the wave velocity κ(s, x) and the characteristic impedance zo(s, x) when (1) Z(s) and Y (s)
are both independent of x; (2) Y (s) is independent of x, Z(s, x) depends on x; (3) Z(s) is
independent of x, Y (s, x) depends on x; and (4) both Y (s, x), Z(s, x) depend on x.

Sol: In the most general case
zo(s, x) =

√
Z(s, x)/Y (s, x)

and
κ(s, x) =

√
Z(s, x)Y (s, x).

The general equations for zo(s, s) and κ(s, x) are given in Mason (1927), and discussed in Appendix D (p. 223).
When zo and κ depend on x, the area function A(x) of the WHEN will depend on x. Thus the eigenfunction will
critically depend on the characteristic impedance and the propagation function.

For example, κ(s) can be independent of the area because it cancels out in the product. This is called the case
of constant k because the speed of sound is independent of the area function. It follows that the area function only
depends on zo(s, x).

This shows that a Cauer synthesis may be implemented with the residue expansion replacing the floor function
in the CFA. This seems to solve Brune’s network synthesis problem. �
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3.2 Problems DE-2

3.2.1 Topics of this homework:
Integration of complex functions, Cauchy’s theorem, integral formula, residue theorem, power series, Riemann
sheets and branch cuts, inverse Laplace transforms, Quadratic forms.

Two fundamental theorems of calculus
Fundamental Theorem of Calculus (Leibniz):

According to the fundamental theorem of (real) calculus (FTC),

f(x) = f(a) +

∫ x

a

F (ξ)dξ, (DE-2.1)

where x, a, ξ, F, f ∈ R. This is an indefinite integral (since the upper limit is unspecified). It follows that

df(x)

dx
=

d

dx

∫ x

a

F (x)dx = F (x).

This justifies also calling the indefinite integral the antiderivative.
For a closed interval [a, b], the FTC is ∫ b

a

F (x)dx = f(b)− f(a), (DE-2.2)

thus the integral is independent of the path from x = a to x = b.

Fundamental Theorem of Complex Calculus:

According to the fundamental theorem of complex calculus (FTCC),

f(z) = f(z0) +

∫ z

z0

F (ζ)dζ, (DE-2.3)

where z0, z, ζ, f, F ∈ C. It follows that

df(z)

dz
=

d

dz

∫ z

z0

F (ζ)dζ = F (z). (DE-2.4)

For a closed interval [s, so], the FTCC is∫ s

so

F (ζ)dζ = f(s)− f(so), (DE-2.5)

thus the integral is independent of the path from x = a to x = b.

Problem # 1

– 1.1: (2 pts) Consider Equation DE-2.1. What is the condition on F (x) for which this
formula is true?

Sol: The sufficient condition is that the integrand F (x) is be analytic, namely F (x) =
∑∞
x=0 anx

n. This
assures that F (x) is single valued and may be integrated, since it may integrated term by term. It follows that as
long as x < ROC, this integral exists. Thus the integral equals F (x) − F (a). Note that if the integrand has a
Taylor series, all of its derivatives exist within the ROC, because the coefficients depend on derivatives of F (x).
�
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– 1.2: (2 pts) Consider Equation DE-2.3. What is the condition on F (z) for which this
formula is true?

Sol: The sufficient condition is that the integrand F (z) must be complex analytic, namely F (z) =
∑∞
z=0 cnz

n,
with c ∈ C. �

– 1.3: Let F (z) =
∑∞

k=0 ckz
k.

Sol: Applying term by term integration gives

I =

∫
C

∞∑
k=0

ckz
kdz =

∞∑
k=0

ck

∫
C
zkdz

=

∞∑
k=0

ck
k + 1

zk+1

�

– 1.4: Let

F (z) =

∑∞
k=0 ckz

k

z − 
.

Sol: Applying term by term integration, and using CT-3, gives

I =

∫
C

∑∞
k=0 ckz

k

z − 
dz =

∞∑
k=0

ck

∫
C

zk

z − 
dz

=

{
0 z =  /∈ C
1

2π

∑∞
k=0 ck

k z =  ∈ C

Note: ∫
C

zk

z − 
dz =

k∑
m=1

(z)m

m
+ ln(z − ),

but the residue is k which saves the day. �

Problem # 2: In the following problems, solve the integral

I =

∫
C
F (z)dz

for a given path C ∈ C.
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– 2.1: Perform the following integrals (z = x+ iy ∈ C):
I =

∫ 1+

0
zdz

Sol: I = 1
2z

2
∣∣1+
0

= 1
2 (1 + )2 = 1

2 (1− 1 + 2) =  �

– 2.2: I =
∫ 1+j

0
zdz, but this time make the path explicit: from 0 to 1, with y = 0,

and then to y = 1, with x = 1.

Sol: Some text to start the ball rolling

I =

∫ 1

x=0

(x+ 0) dx+

∫ 1

y=0

(1 + y) dy 

I =
1

2
x2
∣∣1
0

+

∫ 1

y=0

(− y) dy

=
1

2
+

(
y− 1

2
y2
)∣∣∣∣1

0

=
1

2
+ j − 1

2
= j

We conclude that the integration of z is independent of the path. This is true for any integrand zn with
n ∈ Z. �

– 2.3: Discuss whether your results agree with Eq. DE-2.4?

Sol: Yes the two integrals must agree, because the function is analytic, and the integral must be the same,
independent of the path. �

Problem # 3: Perform the following integrals on the closed path C , which we define to be the
unit circle. You should substitute z = eiθ and dz = ieiθdθ, and integrate from {−π, π} to go
once around the unit circle.

Discuss whether your results agree with Eq. DE-2.4?

– 3.1: (2 pts)
∫

C zdz

Sol:
∫

C zdz =
∫ π
−π e

iθdeiθ =
∫ π
−π e

i2θidθ = ei2θ|π−π = 0.

This example obeys the FTCC because f(z) = z is analytic everywhere; �

– 3.2: (2 pts)
∫

C
1
z
dz

Sol:
∫ π
−π idθ = 2πi.

This example does not obey FTCC because f(z) = 1/z is not analytic at z = 0 (inside C), instead it satisfies
CT-2; �

– 3.3: (2 pts)
∫

C
1
z2
dz

Sol:
∫

C
dz
z2 =

∫ π
−π e

−i2θdeiθ =
∫ π
−π e

−iθidθ = − e
−iθ

θ |
π
−π = − e

−iπ

π + eiπ

π = 1−1
π = 0.

This example obeys the FTCC because the residue is −e−iθ/θ, and the loop is closed (starting and ending
points are the same). �
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– 3.4: I =
∫

C
1

(z+2)2
dz.

Recall that the path of integration is the unit circle, starting and ending at -1.

Sol: Let ζ = z + 2, then the limits become [−1 + 2, 1 + 2] = [2+ e−π, 2+ eπ+2].

I =

∫
C

dζ

ζ2
=

∫ π

−π
e−i2θdeiθ =

∫ π

−π
e−iθidθ = −e

−iθ

θ
|π−π = −e

−iπ

π
+
eiπ

π
=

1− 1

π
= 0.

This example reduces to the case of (3), and therefore must have the same conclusion as (3). But in this
case the reasoning is different because the second order pole (singular point) is outside the unit circle, thus
the function is analytic inside C , so CT-1 applies. �

Problem # 4: FTCC and integration in the complex plane
Let the function F (z) = cz , where c ∈ C is given for each question. Hint: Can you apply the FTCC?

– 4.1: For the function f(z) = cz, where c ∈ C is an arbitrary complex constant, use the
Cauchy-Riemann (CR) equations to show that f(z) is analytic for all z ∈ C.

Sol: We may rewrite this function as f(z) = eln(c)z , where z = x+ iy and f = u+ iv. Thus

u(x, y) = eln(c)x cos(ln(c)y),

v(x, y) = eln(c)x sin(ln(c)y)

∂u

∂x
= ln(c) eln(c)x cos(ln(c)y) =

∂v

∂y
= ln(c) eln(c)x cos(ln(c)y)

∂u

∂y
= − ln(c) eln(c)x sin(ln(c)y) = −∂v

∂x
= − ln(c) eln(c)x sin(ln(c)y)

Thus the CR conditions are satisfied everywhere and the function is analytic for all z ∈ C. �

– 4.2: Find the antiderivative of F (z).

Sol: Since cz = eln(c)z , the indefinite integral (anti-derivative) is

I(z) =
1

ln c
eln(c)z since

d

dz
I(z) =

d

dz

1

ln c
eln(c)z = eln(c)z = F (z).

�

– 4.3: c = 1/e = 1/2.7183, . . . where C is ζ = 0→ i→ z

Sol: The integrand is F (z) = e−z , which is entire. Thus the the integral is independent of the path (i.e., C is
not relevant to the final answer).

I(z) =

∫ i

0

e−ζdζ +

∫ z

i

e−ζdζ = F (z)− F (i) + F (i)− F (0)

=

∫ z

0

e−ζdζ = −ez
∣∣∣z
0

= −(e−z − 1)

�

– 4.4: c = 2, where C is ζ = 0→ (1 + i)→ z

Sol: The integrand is F (z) = 2z , where 2 = eln 2. The path C is not relevant to the final answer.

I(z) =

∫ z

0

2ζdζ =

∫ z

0

eζ ln 2dζ =
eζ ln 2

ln 2

∣∣∣∣z
0

= (ez ln 2 − 1)/ ln 2 ≈ 1.443(e0.693z − 1)

�
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– 4.5: c = i, where the path C is an inward spiral described by z(t) = 0.99tei2πt for
t = 0→ t0 →∞

Sol: i = eiπ/2ei2πn. We have already proved that the path doesn’t matter for any F (z) = cz , so we just need to
evaluated z(t) for t = 0 and t→∞. This gives z(0) = 1 and z(t→∞) = 0.

I =

∫ z(t→∞)

z(0)

izdz =

∫ z(t→∞)

z(0)

eiπz/2dz =
2eiπz/2

iπ

∣∣∣∣0
1

=
2

iπ
(1− eiπ/2) =

−2(i+ 1)

π

�

– 4.6: c = et−τ0 , where τ0 > 0 is a real number and C is z = (1− i∞)→ (1 + i∞). Hint:
Do you recognize this integral? If you do not, please do not spend a lot of time trying to solve
it via the “brute force” method.

Sol: This is the basically the inverse Laplace transform of e−τ0z , we are just missing the scale factor 1
2πi .

I(t) =

∫ 1+i∞

1−i∞
e(t−τ0)zdz =

∫ 1+i∞

1−i∞
e−τ0zeztdz = 2πiδ(t− τ0)

�

3.2.2 Cauchy’s theorems CT-1, CT-2, CT-3
There are three basic definitions related to Cauchy’s integral formula. They are all related and can greatly simplify
integration in the complex plane. When a function depends on a complex variable, we use uppercase notation,
consistent with the engineering literature for the Laplace transform.

Problem # 5: Describe the relationships between the theorems:

– 5.1: CT-1 and CT-2
Sol: When z0 falls outside of C , CT-2 reduces to CT-1. �

– 5.2: CT-1 and CT-3
Sol: When there are no poles inside C , all the residues are zero, and CT-3 reduces to CT-1. �

– 5.3: CT-2 and CT-3
Sol: Case CT-2 has only one induced pole at z = z0, having residue F (z0). Thus CT-3 is the same as CT-2 when
K = 1, the pole at z0 is within contour C , and the single residue is F (z0). �

– 5.4: Consider the function with poles at z = ±j,

F (z) =
1

1 + z2
=

1

(z − j)(z + j)
.

Find the residue expansion.
Sol:

F (z) =
j

2

( 1

z + j
− 1

z − j

)
.

�

Problem # 6: Apply Cauchy’s theorems to solve the following integrals. State which theo-
rem(s) you used and show your work.

– 6.1:
∮

C F (z)dz, where C is a circle centered at z = 0 with a radius of 1
2

Sol: Because the contour C does not include the poles, F (z) is analytic everywhere inside C ). Using Cauchy’s
integral theorem, the integral is 0. �

– 6.2:
∮

C F (z)dz, where C is a circle centered at z = j with a radius of 1

Sol: Since we only enclose the pole at z = j, use the integral formula with F (z) = 1/(z + j):∮
C

F (z)

z − j
dz = 2πjResj = 2πj

[ 1

z + j

]
z=j

= 2πj
1

2j
= π

�
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– 6.3:
∮

C F (z)dz, where C is a circle centered at z = 0 with a radius of 2

Sol: Since we enclose both poles, using the residue theorem:∮
C
F (z)dz = 2πj(Resj + Res−j) = 2πj

( 1

2j
− 1

2j

)
= 0

As a side note, the inverse Laplace transform for F (z) is sin(t), which is zero for t = 0, consistent with this result.
�

Integration of analytic functions
Problem # 7: In the following questions, you’ll be asked to integrate F (s) = u(σ, ω)+iv(σ, ω)
around the contour C for complex s = σ + iω,∮

C
F (s)ds. (DE-2.6)

Follow the directions carefully for each question. When asked to state where the function is and is not analytic,
you are not required to use the Cauchy-Riemann equations

– 7.1: F (s) = sin(s)
Sol: Analytic everywhere. − cos(s) =

∫ 2π

θ=0
sin(s)ds = 0. This function is entire (i.e., has no poles) so the

integral must be zero. �

– 7.2: Given function F (s) = 1
s

State where the function is and is not analytic.

Sol: Analytic everywhere except at s = 0, where it has a pole. �

– 7.3: Explicitly evaluate the integral when C is the unit circle, defined as s = eiθ,
0 ≤ θ ≤ 2π.
Sol: ∮

C
F (s)ds =

∫ 2π

0

1

eiθ
ieiθdθ =

∫ 2π

0

idθ = 2πi

�

– 7.4: Evaluate the same integral using Cauchy’s theorem and/or the residue theorem.
Sol: The residue is 1 so the integral is 2πi. �

– 7.5: F (s) = 1
s2

State where the function is and is not analytic.
Sol: Analytic everywhere except at s = 0, where it has a 2nd order pole. �

– 7.6: Explicitly evaluate the integral when C is the unit circle, defined as s = eiθ,
0 ≤ θ ≤ 2π.
Sol: ∮

C
F (s)ds =

∫ 2π

0

1

ei2θ
ieiθdθ =

∫ 2π

0

ie−iθdθ = i
1

−i
e−iθ

∣∣∣2π
0

= 1(e−i2π − e0) = 0

�

– 7.7: What does your result imply about the residue of the second-order pole at s = 0?
Sol: The residue is 0. �

– 7.8: F (s) = est: State where the function is and is not analytic.
Sol: Analytic everywhere. �

– 7.9: Explicitly evaluate the integral when C is the square
(σ, ω) = (1, 1)→ (−1, 1)→ (−1,−1)→ (1,−1)→ (1, 1).

Sol: When you perform this integral piece-wise, you will find that all terms cancel out and the result is 0. �

– 7.10: Evaluate the same integral using Cauchy’s theorem and/or the residue theorem.
Sol: The function is analytic everywhere, so the integral is 0 by Cauchy’s theorem. �
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– 7.11: F (s) = 1
s+2

: State where the function is and is not analytic.
Sol: Analytic everywhere except at s = −2, where it has a pole. �

– 7.12: Let C be the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral using
Cauchy’s theorem and/or the residue theorem.

Sol: The function is analytic everywhere inside C , so the integral is 0 by Cauchy’s theorem. �

– 7.13: Let C be a circle of radius 3, defined as s = 3eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral
using Cauchy’s theorem and/or the residue theorem.

Sol: The contour contains the pole and the residue 1, therefore the integral is 2πı. �

– 7.14: F (s) = 1
2πi

est

(s+4)
State where the function is and is not analytic.

Sol: Analytic everywhere except at s = −4, where it has a pole. �

– 7.15: Let C be a circle of radius 3, defined as s = 3eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral
using Cauchy’s theorem and/or the residue theorem.

Sol: The contour does not contain the pole. Thus the integral is zero. �

– 7.16: Let C contain the entire left half s plane. Evaluate the integral using Cauchy’s
theorem and/or the residue theorem. Do you recognize this integral?

Sol: This contour contains the pole. The residue is 1
2πie

−2t, therefore the integral is equal to e−2t. This contour
is the inverse Laplace transform. �

– 7.17: F (s) = ± 1√
s

(e.g., F 2 = 1
s
) State where the function is and is not analytic.

Sol: Analytic everywhere except s = 0, where there is a pole. �

– 7.18: This function is multivalued. How many Riemann sheets do you need in the domain
(s) and the range (f ) to fully represent this function? Indicate (e.g., using a sketch) how the
sheet(s) in the domain map to the sheet(s) in the range.

Sol: There are 2 sheets in the domain (for the ± square root) which map to 1 sheet in the range. �

– 7.19: Explicitly evaluate the integral
∫

C
1√
z
dz when C is the unit circle, defined as s = eiθ,

0 ≤ θ ≤ 2π. Is this contour closed? State why or why not.

Sol: The solution is

2
√
z
∣∣2π
θ=0

= 2ejθ/2
∣∣∣2π
0

= 2(ejπ − e0) = −4.

In polar coordinates ∫ 2π

0

ds√
s

=

∫ 2π

0

deiθ

eiθ/2

= i

∫ 2π

0

eiθ

eiθ/2
dθ

= i

∫ 2π

0

eiθ/2dθ

= 2 eiθ/2
∣∣∣2π
0

= 2[eiπ − 1] = 2(−2) = −4.

This contour is not closed. One way to determine this is to see if going once around the unit circle returns F (s) to
its original value.

F (ei0) = 1 6= F (ei2π) = e−iπ = −1.

�
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– 7.20: Explicitly evaluate the integral
∫

C
1√
z
dz when C is twice around the unit circle,

defined as s = eiθ, 0 ≤ θ ≤ 4π. Is this contour closed? State why or why not. Hint: Note that√
ei(θ+2π) =

√
ei2πeiθ = eiπ

√
eiθ = −1

√
eiθ.

Sol: ∫ 4π

0

ds√
s

=

∫ 4π

0

deiθ

eiθ/2

= i

∫ 4π

0

eiθ

eiθ/2
dθ

= i

∫ 4π

0

eiθ/2dθ

= 2 eiθ/2
∣∣∣4π
0

= 2[ei2π − 1] = 2(0) = 0.

This contour is closed. One way to determine this is to see if going twice around the unit circle returns F (s) to its
original value. F (ei0) = 1 = F (ei4π) = e−i2π = 1. �

– 7.21: What does your result imply about the residue of the (twice-around 1
2

order) pole at
s = 0?

Sol: The residue is 0. �

– 7.22: Show that the residue is zero. Hint: Apply the definition of the residue.
Sol: c−1 = limz→zk z/

√
z = limz→zk

√
z = 0. �

3.2.3 Laplace transform applications
Problem # 8: A two-port network application for the Laplace transform

+

−

+

−

R R

I1

V1 V2

C I2

This three-element electrical circuit is a system that acts to low-pass filter the signal voltage V1(ω), to
produce signal V2(ω). It is convenient to define the dimensionless ratio s/sc = RCs in terms of a time
constant τ = RC and cutoff frequency sc = 1/τ .

3.2.4 Computer exercises with Matlab/Octave
Problem # 9: With the help of a computer

Now we look at a few important concepts using Matlab/Octave’s syms commands or Wolfram Alpha’s symbolic
math toolbox.1

For example, to find the Taylor series expansion about s = 0 of

F (s) = − log(1− s),

we first consider the derivative and its Taylor series (about s = 0)

F ′(s) =
1

1− s
=

∞∑
n=0

sn.

1https://www.wolframalpha.com/
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Then, we integrate this series term by term:

F (s) = − log(1− s) =

∫ s

F ′(s)ds =

∞∑
n=0

sn

n
.

Alternatively we can use Matlab/Octave commands:

syms s
taylor(-log(1-s),’order’,7)

– 9.1: Use Octave’s taylor(-log(1-s)) to the seventh order, as in the example above.
Try the above Matlab/Octave commands. Give the first seven terms of the Taylor series (confirm
that Matlab/Octave agrees with the formula derived above).

Sol:

F (s) = · · ·+ s7

7
+
s6

6
+
s5

5
+
s4

4
+
s3

3
+
s2

2
+ s

�

– 9.2: What is the inverse Laplace transform of this series? Consider the series term by
term.

Sol: f(t) =
∑
δ(n)/n �

– 9.3: The function 1/
√
z has a branch point at z = 0; thus it is singular there. Can you

apply Cauchy’s integral theorem when integrating around the unit circle?
Sol: No, one cannot apply the Cauchy Theorem since it is not analytic at z = 0. But the integral may be

evaluated. �

– 9.4: This Matlab/Octave code computes
∫ 4π

0
dz√
z

using Matlab’s/Octave’s symbolic anal-
ysis package. Run the following script:

syms z
I=int(1/sqrt(z))
J = int(1/sqrt(z),exp(-j*pi),exp(j*pi))
eval(J)

What answers do you get for I and J?
Sol: This script returns the answers I = 2 ∗

√
z and J = 2.4493e − 16, which is numerically the same as

zero. �

– 9.5: Modify this code to integrate f(z) = 1/z2 once around the unit circle. What answers
do you get for I and J?
Sol: This function has a 2d order pole at s = 0. Thus from the CIT, the integral evaluates to zero.

Proof:

I =

∮
ds

s2
= − 1

s

∣∣∣∣2π
0

= − e−iθ
∣∣2π
0

= −(1− 1) = 0

More generally I =
∮
ds
sn = 0 for n 6= 1. As best I know, this holds for any n ∈ Z,Q,F,R,C. For n = 1 it has a

value of 2πj. �

– 9.6: Bessel functions can describe waves in a cylindrical geometry.
The Bessel function has a Laplace transform with a branch cut

J0(t)u(t)↔ 1√
1 + s2

.

Draw a hand sketch showing the nature of the branch cut. Hint: Use zviz. Sol: The roots are given by s± = ±.
The branch cut connects the two roots, or can go from each root to∞. Either choice is valid. �
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Problem # 10: Matlab/Octave exercises

– 10.1: Try the following Matlab/Octave commands, and then comment on your findings.

%Take the inverse LT of 1/sqrt(1+sˆ2)
syms s
I=ilaplace(1/(sqrt((1+sˆ2))));
disp(I)

Sol: I = Jo(t)u(t). �

%Find the Taylor series of the LT
T = taylor(1/sqrt(1+sˆ2),10); disp(T);

Sol:

T = · · · +
3s4

8
− s2

2
+ 1

�

%Verify this
syms t
J=laplace(besselj(0,t));
disp(J);

Sol: I = 1√
1+s2

. �

%plot the Bessel function
t=0:0.1:10*pi;
b=besselj(0,t);
plot(t/pi,b);
grid on;

Sol: Plot of Jo(t)u(t). �

– 10.2: When did Friedrich Bessel live?
Sol: 1784–1846, in Königsberg, Germany. �

– 10.3: What did he use Bessel functions for?
Sol: Solving the Bessel equation, which is the wave equation in 2D. Bessel functions were first introduced by the
Daniel Bernoulli. �

Problem # 11: Colorized plots of analytic functions. Use zviz for each of the following.

– 11.1: Describe the plot generated by zviz S=Z.
Sol: It is a polar plot of the function, with intensity coding the magnitude and color coding the phase. Red is a

positive real number while and blue is a negative real number. �

– 11.2: Describe the plot generated by zviz 1./sqrt(1 + S.2).
Sol: No. The RHP has blue near the branch cut, in the RHP. �

– 11.3: Describe the plot generated by zviz 1./sqrt(1 − S.2). Is this function a Brune
impedance (i.e., does this function obey

Sol: NO, there is a branch cut in the RHP. �

– 11.4: zviz 1./(1 + sqrt(S))
Sol: Yes, it’s red almost everywhere even though it has a branch cut from [−∞ < σ ≤ −10]. Since 1/

√
s has an

LT −1, this function must as well. Matlab found

1√
1 + s

↔ e−t
√
π
√
t
u(t),

however Octave failed to find the inverse transform, (but was able to find the forward transform). �

3.2.5 Inverse of Riemann ζ(s) function
Problem # 12: Inverse zeta function (This problem is for extra credit).

– 12.1: Find the LT −1 of one factor of the Riemann zeta function ζp(s), where ζp(s)↔ zp(t).
Describe your results in words. Hint: Consider the geometric series representation

ζp(s) =
1

1− e−sTp
=

∞∑
k=0

e−skTp , (DE-2.7)

for which you can look up the LT −1 of each term.
Sol: Since each term in the series is a pure delay2

2Here we use a shorthand double-parentheses notation to define the infinite (one-sided) sum f(t))T ≡
∑∞

k=0 f(t− kT ).
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zp(t) = δ(t))Tp ≡
∞∑
k=0

δ(t− kTp)↔
1

1− e−sTp
. (DE-2.8)

�

Problem # 13: Inverse transform of products:
The time-domain version of Eq. DE-2.7 may be written as the convolution of all the zk(t) factors:

z(t) ≡ z2(t) ? z3(t) ? z5(t) ? z7(t) ? · · · ? zp(t) ? · · · , (DE-2.9)

where ? represents time convolution.
Explain what this means in physical terms. Start with two terms (e.g., z1(t) ? z2). Hint: The input admittance

of this cascade may be interpreted as the analytic continuation of ζ(s) by defining a cascade of eigenfunctions
with eigenvalues derived from the primes. For a discussion of this idea see Sec. 3.2.3 and C.1.1.

Sol: In terms of the physics, these transmission line equations are telling us that ζ(s) may be decomposed into
an infinite cascade of transmission lines, each having a delay given by Tp = lnπp. �

Physical interpretation: Such functions may be generated in the time domain, as shown in Fig. 3.3 (p. 63),
using a feedback delay of Tp seconds, described by the two equations in the Fig. 3.3 with a unity feedback gain
α = −1. Taking the Laplace transform of the system equation, we see that the transfer function between the state
variable q(t) and the input x(t) is given by ζp(s), which is an all-pole function, since

Q(s) = e−sTnQ(s) + V (s), or ζp(s) ≡
Q(s)

V (s)
=

1

1− e−sTp
. (DE-2.10)

Closing the feed-forward path gives a second transfer function Y (s) = I(s)/V (s)—namely,

Y (s) ≡ I(s)

V (s)
=

1− e−sTp
1 + e−sTp

. (DE-2.11)

If we take i(t) as the current and v(t) as the voltage at the input to the transmission line, then yp(t) ↔ ζp(s)
represents the input impedance at the input to the line. The poles and zeros of the impedance interleave along the
jω axis. By a slight modification, ζp(s) may alternatively be written as

Yp(s) =
esTp/2 + e−sTp/2

esTp/2 − e−sTp/2
= j tan(sTp/2). (DE-2.12)

Every impedance Z(s) has a corresponding reflectance function given by a Möbius transformation, which may
be read off of Eq. DE-2.11 as

Γ(s) ≡ 1 + Z(s)

1− Z(s)
= e−sTp , (DE-2.13)

since impedance is also related to the round-trip delay Tp on the line. The inverse Laplace transform of Γ(s) is
the round-trip delay Tp on the line

γ(t) = δ(t− Tp)↔ e−sTp . (DE-2.14)

Working in the time domain provides a key insight, as it allows us to parse out the best analytic continuation of
the infinity of possible continuations that are not obvious in the frequency domain (See Sec. 3.2.3). Transforming
to the time domain is a form of analytic continuation of ζ(s) that depends on the assumption that Zeta(t)↔ ζ(s)
is one-sided in time (causal).

3.2.6 Quadratic forms
A matrix that has positive eigenvalues is said to be positive-definite. The eigenvalues are real if the matrix is
symmetric, so this is a necessary condition for the matrix to be positive-definite. This condition is related to
conservation of energy, since the power is the voltage times the current. Given an impedance matrix

V = Z I,

the power P is
P = I ·V = I · Z I,

which must be positive-definite for the system to obey conservation of energy.
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Problem # 14: In this problem, consider the 2× 2 impedance matrix

Z =

[
2 1
1 4

]
.

– 14.1: Solve for the power P (i1, i2) by multiplying out this matrix equation (which is a
quadratic form):

P (i1, i2) = IT
[
2 1
1 4

]
I.

Sol:

P (i1, i2) =
[
i1 i2

] [2 1
1 4

] [
i1
i2

]
=
[
i1 i2

] [2i1 + i2
i1 + 4i2

]
= 2i21 + 2i1i2 + 4i22.

�

– 14.2: Is the impedance matrix positive-definite? Show your work by finding the eigenval-
ues of the matrix Z.
Sol: Yes, as it is positive-definite if the eigenvalues are both positive. You need to show that the eigenvalues are
positive (not zero or negative). They are, so it is.∣∣∣∣ 2− λ 1

1 4− λ

∣∣∣∣ = 0⇒ λ = 3±
√

2 > 0

�

– 14.3: Should an impedance matrix always be positive-definite? Explain.
Sol: Yes. �
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3.3 Problems DE-3

3.3.1 Topics of this homework: Brune impedance
lattice transmission line analysis

3.3.2 Brune Impedance
Problem # 1: Residue form

A Brune impedance is defined as the ratio of the force F (s) to the flow V (s) and may be expressed in residue
form as

Z(s) = c0 +

K∑
k=1

ck
s− sk

=
N(s)

D(s)
(DE-3.1)

with

D(s) =

K∏
k=1

(s− sk) and ck = lim
s→sk

(s− sk)D(s) =

K−1∏
n′=1

(s− sn).

The prime on the index n′ means that n = k is not included in the product.

– 1.1: Find the Laplace transform (LT ) of a (1) spring, (2) dashpot, and (3) mass.
Express these in terms of the force F (s) and the velocity V (s), along with the electrical equivalent impedance:
(1) Hooke’s law f(t) = Kx(t), (2) dashpot resistance f(t) = Rv(t), and (3) Newton’s law for mass f(t) =
Mdv(t)/dt. Sol:

1. Hooke’s Law f(t) = Kx(t). Taking the LT gives

F (s) = KX(s) = KV (s)/s↔ f(t) = Ku(t) ? v(t) = K

∫ t

v(t),

since
v(t) =

d

dt
x(t)↔ V (s) = sX(s).

Thus the impedance of the spring is

Zs(s) =
K

s
↔ z(t) = Ku(t),

which is analogous to the impedance of an electrical capacitor. The relationship may be made tighter by
specifying the compliance of the spring as C = 1/K.

2. Dashpot resistance f(t) = Rv(t). From the LT this becomes

F (s) = RV (s)

and the impedance of the dashpot is then

Zr = R↔ Rδ(t),

analogous to that of an electrical resistor.

3. Newton’s law for mass f(t) = Mdv(t)/dt. Taking the LT gives

f(t) = M
d

dt
v(t)↔ F (s) = M sV (s),

thus
Zm(s) = sM ↔M

d

dt
,

analogous to an electrical inductor.
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�

– 1.2: Take the Laplace transform (LT ) of Eq. DE-3.2 and find the total impedance Z(s)
of the mechanical circuit.

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t)↔ (Ms2 +Rs+K)X(s) = F (s). (DE-3.2)

Sol: From the properties of the LT that dx/dt↔ sX(s), we find

f(t)↔ F (s) = Ms2X(s) +RsX(s) +KX(s).

In terms of velocity this is (Ms+R+K/s)V (s) = F (s). Thus the circuit impedance is

z(t)↔ Z(s) =
F

V
=
K +Rs+Ms2

s
.

�

– 1.3: What are N(s) and D(s) (see Eq. DE-3.1)?
Sol: D(s) = s and N(s) = K +Rs+Ms2. �

– 1.4: Assume that M = R = K = 1 and find the residue form of the admittance
Y (s) = 1/Z(s) (see Eq. DE-3.1) in terms of the roots s±. Hint: Check your answer with
Octave’s/Matlab’s residue command.

Sol: First find the roots of the numerator of Z(s) (the denominator of Y (s)):

s2± + s± + 1 = (s± + 1/2)2 + 3/4 = 0,

which is

s± =
−1± 

√
3

2
.

Second form a partial fraction expansion

s

1 + s+ s2
= c0 +

c+
s− s+

+
c−

s− s−
=
s(c+ + c−)− (c+s− + c−s+)

1 + s+ s2
.

Comparing the two sides shows that c0 = 0. We also have two equations for the residues c+ + c− = 1 and
c+s− + c−s+ = 0. The best way to solve this is to set up a matrix relation and take the inverse[

1 1
s− s+

] [
c+
c−

]
=

[
1
0

]
thus:

[
c+
c−

]
=

1

s+ − s−

[
s+ −1
−s− 1

] [
1
0

]
,

which gives c± = ± s±
s+−s− The denominator is s+ − s− = j

√
3 and the numerator is ±1 + 

√
3. Thus

c± = ± s±
s+ − s−

=
1

2

(
1± √

3

)
.

As always, finding the coefficients is always the most difficult part. Using 2x2 matrix algebra automates the
process. Always check your final result as correct. �

– 1.5: By applying Eq. NS-3.3 (page 135), find the inverse Laplace transform (LT −1). Use
the residue form of the expression that you derived in question 1.4.
Sol:

z(t) =
1

2πj

∮
C
Z(s)estds.

were C is the Laplace contour which encloses the entire left-half s plane. Applying the CRT

z(t) = c+e
s+t + c−e

s−t.

where s± = −1/2± 
√

3/2 and c± = 1/2± /(2
√

3). �
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K K KK K
MM M M

f1 f2 f3 f4

C

1
2M

1
2M

φ1 φ2 φ3 φ4

∆ Depiction of a train consisting
of cars treated as masses M and linkages treated as springs of stiffness K or compliance C = 1/K.

Below it is the electrical equivalent circuit for comparison. The masses are modeled as inductors and the
springs as capacitors to ground. The velocity is analogous to a current and the force fn(t) to the voltage
φn(t). The length of each cell is ∆ [m]. The train may be accurately modeled as a transmission line (TL),
since the equivalent electrical circuit is a lumped model of a TL. This method, called a Cauer synthesis,

is based on the ABCD transmission line method of Sec. 3.6 (p. 92).

3.3.3 Transmission-line analysis

Problem # 2:(14 pts) Train-mission-line We wish to model the dynamics of a freight
train that has N such cars and study the velocity transfer function under various load
conditions.

As shown in Fig. 4.8.2, the train model consists of masses connected by springs.

Problem # 3: Transfer functions

Use the ABCD method (see the discussion in Appendix B.3, p. 212) to find the matrix representation of the
system of Fig. 4.8.2. Define the force on the nth train car fn(t)↔ Fn(ω) and the velocity vn(t)↔ Vn(ω).
Break the model into cells consisting of three elements: a series inductor representing half the mass (M/2),
a shunt capacitor representing the spring (C = 1/K), and another series inductor representing half the
mass (L = M/2), transforming the model into a cascade of symmetric (A = D ) identical cell matrices
T (s).

– 3.1: Find the elements of the ABCD matrix T for the single cell that relate the input
node 1 to output node 2 [

F
V

]
1

= T
[
F (ω)
−V (ω)

]
2

. (DE-3.3)

Sol:

T =

[
1 sM/2
0 1

] [
1 0
sC 1

] [
1 sM/2
0 1

]
=

[
1 + s2MC/2 (sM)(1 + s2MC/4)

sC 1 + s2MC/2

]
(DE-3.4a)

�
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– 3.2: Express each element of T (s) in terms of the complex Nyquist ratio s/sc < 1
(s = 2πjf , sc = 2πjfc). The Nyquist wavelength sampling condition is λc > 2∆. It says
the critical wavelength λc > 2∆. condition is λc > 2∆.a It says the critical wavelength
λc > 2∆. Namely it is defined in terms the minimum number of cells 2∆, per minimum
wavelength λc.
The Nyquist wavelength sampling theorem says that there are at least two cars per wavelength.
Proof: From the figure, the distance between cars ∆ = coTo [m], where

co =
1√
MC

[m/s].

The cutoff frequency obeys fcλc = co. The Nyquist critical wavelength is λc = co/fc > 2∆. Therefore
the Nyquist sampling condition is

f < fc ≡
co
λc

=
co
2∆

=
1

2∆
√
MC

[rad/sec]. (DE-3.5)

Finally, sc = 2πfc.
Sol: The solution is a repeat what is summarized above: the system in Fig. 4.8.2 represents a transmission
line having a wave speed of co = 1/

√
MC and characteristic impedance ro =

√
M/C. Each cell,

composed of 2 masses M connected by one spring K, has length ∆.
We wish to define the Nyquist frequency fc such that the wavelength λ > 2∆, where ∆ is the cell length.
Using the formula for the wavelength in terms of the wave velocity and frequency we find

λ = co/fc = 2∆,

thus we conclude that
f < fc =

co
2∆

=
1

2∆
√
MC

. (DE-3.6)

If we wish to have the system be accurate for a given frequency we may make the cell length ∆ smaller,
while keeping the velocity constant (MC is held constant). Thus the characteristic resistance [ohms/unit
length] ro must change as fc → ∞ and ∆ → 0. We can either let M → ∞ and C → 0 (their product
remains constant), or the other way around. In one case ro →∞ and in the other case it goes to 0. �

aThe history of this relation has been traced back to 1841, as discussed by (Brillouin, 1953, Chap. I,II, Eq. 4.7).

– 3.3: Use the property of the Nyquist sampling frequency ω < ωc (Eq. DE-3.4) to
remove higher order powers of frequency

1 +
�
�
���

0(
s

sc

)2

≈ 1 (DE-3.7)

to determine a band-limited approximation of T (s).
Sol:

T =

[
1 + 2(s/sc)

2 sM(1 + (s/sc)
2)

sC 1 + 2(s/sc)
2

]
≈
[

1 sM
sC 1

]
The approximation is highly accurate below the Nyquist cutoff frequency s < sc. Given any desired
frequency f , we can always make the cell size ∆ smaller by decreasing M and C, while keeping f < fc
and the cell velocity constant (co = 1/

√
MC). Thus the Nyquist condition represents a computational

bound, not a physical limitation. �

Problem # 4: (4 pts) Now consider the cascade of N such T (s) matrices and perform an
eigenanalysis.
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– 4.1: (4 pts) Find the eigenvalues and eigenvectors of T (s) as functions of s/sc.
Sol: Matrix T (s) has eigenvalues

λ± = 1∓ 2s/sc ≈ e±2s/sc = e∓sTc .

From this we can interpret the eigenvalues as the cell delay Tc = 2/sc.
The corresponding unnormalized eigenvectors are

E± =

[
∓
√
M/C
1

]
,

where the characteristic impedance defined is ro =
√
M/C. �

Problem # 5: (14 pts) Find the velocity transferfunction H12(s) = V2/V1|F2=0.

– 5.1: (3 pts) Assuming that N = 2 and F2 = 0 (two half-mass problem), find the
transfer function H(s) ≡ V2/V1. From the results of the T matrix, find

H21(s) =
V2
V1

∣∣∣∣
F2=0

Express H12 in terms of a residue expansion.
Sol: From Eq. DE-3.4a, V1 = sCF2 − (s2MC/2 + 1)V2. Since F2 = 0

V2
V1

=
−1

s2MC/2 + 1
=

(
c+

s− s+
+

c−
s− s−

)

having eigenfrequencies s± = ±
√

2
2MC = ±sc and residues c± = ±/

√
2MC = ±sc. �

– 5.2: (2 pts) Find h21(t)↔ H21(s).
Sol:

h(t) =

∮ σ0+j∞

σ0−j∞

est

s2MC/2 + 1

ds

2πj
= c+e

−s+tu(t) + c−e
−s−tu(t).

The integral follows from the Cauchy Residue theorem (CRT). �

– 5.3: (2 pts) What is the input impedance Z2 = F2/V2, assuming F3 = −r0V3?
Sol: Starting from Eq. DE-3.4a find Z2

Z2(s) =
F2

V2
= T

[
F
−V

]
2

=
−(1 + s2CM/2)r0��V2 − sM(1 + s2CM/4)��V2

−sCr0��V2 − (1 + s2CM/2)��V2

�
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– 5.4: (5 pts) Simplify the expression for Z2 as follows:
1. Assuming the characteristic impedance r0 =

√
M/C,

2. terminate the system in r0: F2 = −r0V2 (i.e., −V2 cancels).

3. Assume higher-order frequency terms are less than 1 (|s/sc| < 1).

4. Let the number of cells N →∞. Thus |s/sc|N = 0.

When a transmission line is terminated in its characteristic impedance r0, the input impedanceZ1(s) = r0.
Thus, when we simplify the expression for T (s), it should be equal to r0. Show that this is true for this
setup.
Sol: Applying the Nyquist approximation (i.e., ignore second order frequency terms (s/sc)

2 ≈ 0)

Z1(s) =
ro(1 +��

���:
0

s2CM/2) + sM(1 +���
��: 0

s2CM/4)

rosC + (1 +��
���:

0
s2CM/2)

≈ ro + sM

1 + rosC
=
MC

MC
· ro + sM

1 + rosC
=
M

C
· roC + sMC

M + rosMC
= r2o

roC + s/sc
M + ros/sc

≈ r2o
roC +�

��*
0

s/sc

M + ro��
�* 0

s/sc

= r3o
C

M

= ro.

We conclude that below the Nyquist cutoff frequency, as N → ∞ the system equals a transmission line
terminated by its characteristic impedance thus Z1(s) = ro. �

– 5.5: (1 pts) State the ABCD matrix relationship between the first and N th nodes in
terms of the cell matrix. Write out the transfer function for one cell, H21.
Sol:

T =

[
A B
C D

]
Now use the formulae for the eigenvalues and vectors to obtain T for N = 1:

T = EΛE−1 = E

[
λ+ 0
0 λ−

]
E−1.

�

– 5.6: (1 pts) What is the velocity transfer function HN1 = VN
V1

?
Sol: [

F1

V1

]
= T N

[
FN (ω)
−VN (ω)

]
along with the eigenvalue expansion

T N = EΛNE−1 = E

[
λN+ 0
0 λN−

]
E−1.

where λN± = e∓sNTo . Recall that NTo is the one way delay.
We conclude that as we add more cells, the delay linearly increases with N , since each eigenvalue repre-
sents the delay of one cell, and delay adds. �
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Chapter 4

Vector differential equations

4.1 Problems VC-1

4.1.1 Topics of this homework:
Vector algebra and fields in R3, gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss’s
(divergence) and Stokes’s (curl) laws, system classification (postulates).

4.1.2 Scalar fields and the∇ operator
Problem # 1: Let T (x, y) = x2 + y be an analytic scalar temperature field in two dimensions
(single-valued ∈ R2).

– 1.1: Find the gradient of T (x) and make a sketch of T and the gradient.

Sol:∇(x2 + y) = 2xx̂ + ŷ. The temperature is quadratic in x and linear in y, which has the shape of a trough
in x, linearly increasing in y. In the y (ŷ) direction the gradient is constant, and in the x̂ direction, it is linear,
and goes through zero at x = 0, with T (0) = 0. Skiing in the y direction would be a constant ride of slope 1.
If the snow had no friction, you would accelerate, but the terminal velocity would be due to the friction of the
snow on the skis. Along the x direction, you would accelerate, at first, coming down, and at x = 0 you would
stop accelerating, and begin slow down. This would be a more interesting problem if you treated it in terms of the
forces on the skis and included friction as well as gravity. �

– 1.2: Compute∇2T (x) to determine whether T (x) satisfies Laplace’s equation.

Sol: Forming this operation we find that

∂2

∂x2
x2 +

�
�
�∂2

∂y2
y = 2.

So T (x) does not satisfy laplace’s equation, rather it satisfies the Poisson equation∇2T (x) = 2. �

– 1.3: Sketch the iso-temperature contours at T = −10, 0, 10 degrees.

Sol: The iso-potential contours are the concave parabolas y = T0 − x2. �

– 1.4: The heat flux1 is defined as J(x, y) = −κ(x, y)∇T , where κ(x, y) is a constant that
denotes thermal conductivity at the point (x, y). Given that κ = 1 everywhere (the medium is
homogeneous), plot the vector J(x, y) = −∇T at x = 2, y = 1. Be clear about the origin,

1The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.
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direction, and length of your result.

Sol: J = ∇T = −2xx̂ +−ŷ thus −κ∇T (2, 1) = J = −(4x̂ + ŷ), which has a length of
√

17 and is pointed
1
√

1 unit down and 4/
√

17 units to the left. �

– 1.5: Find the vector ⊥ to ∇T (x, y)—that is, tangent to the iso-temperature contours.
Hint: Sketch it for one (x, y) point (e.g., 2, 1) and then generalize.

Sol: We may invoke the third dimension ẑ to generate this vector: ±ẑ × ∇T =

 x̂ ŷ ẑ
0 0 ±1

2x 1 0

 = ∓(1x̂ −

2xŷ + 0ẑ). Alternatively, rotate∇T by ±π/2 in the (x, y) plane. �

– 1.6: The thermal resistance RT is defined as the potential drop ∆T over the magnitude
of the heat flux |J |. At a single point the thermal resistance is

RT (x, y) = −∇T/|J |.

How is RT (x, y) related to the thermal conductivity κ(x, y)?
Sol: RT (x, y) = 1/κ(x, y). In general, resistance is the reciprocal of conductivity (conductance). This is true

for electrical and acoustic systems as well. �

Problem # 2: Acoustic wave equation
Note: In this problem, we will work in the frequency domain.

– 2.1: The basic equations of acoustics in one dimension are

− ∂

∂x
P = ρosV and − ∂

∂x
V =

s

ηoPo
P .

Here P (x, ω) is the pressure (in the frequency domain), V (x, ω) is the volume velocity (the integral of the velocity
over the wavefront with area A), s = σ + ω, ρo = 1.2 is the specific density of air, ηo = 1.4, and Po is the
atmospheric pressure (i.e., 105 Pa). Note that the pressure field P is a scalar (pressure does not have direction),
while the volume velocity field V is a vector (velocity has direction).

We can generalize these equations to three dimensions using the∇ operator

−∇P = ρosV and −∇ · V =
s

ηoPo
P .

– 2.2: Starting from these two basic equations, derive the scalar wave equation in terms of
the pressure P ,

∇2P =
s2

c20
P ,

where c0 is a constant representing the speed of sound.
Sol: We wish to remove V from the two equations, to obtain a single equation in pressure. If we take the

partial wrt x of the pressure equation, and then substitute the velocity equation, to remove the velocity:

∇2P = −ρos∇ · V =
s2ρo
ηoPo

P =
s2

c2o
P

�

– 2.3: What is c0 in terms of η0, ρ0, and P0?

Sol: Comparing the last two terms from the previous solution we see that

co =
√
ηoPo/ρo.

�
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– 2.4: Rewrite the pressure wave equation in the time domain using the time derivative
property of the Laplace transform [e.g., dx/dt ↔ sX(s)]. For your notation, define the time–
domain signal using a lowercase letter, p(x, y, z, t)↔ P .

Sol:

∇2p(x, y, z, t) =
1

c20

∂2

∂t2
p(x, y, z, t)

�

4.1.3 Vector fields and the∇ operator

4.1.4 Vector algebra
Problem # 3: Let R(x, y, z) ≡ x(t)x̂ + y(t)ŷ + z(t)ẑ.

– 3.1: If a, b, and c are constants, what is R(x, y, z) ·R(a, b, c)?
Sol: Using the formula for a scalar dot product:

R(x, y, z) ·R(a, b, c) ≡ [x(t)x̂ + y(t)ŷ + z(t)ẑ] · [ax̂ + bŷ + cẑ]

= x(t)a+ y(t)b+ z(t)c.

�

– 3.2: If a, b, and c are constants, what is d
dt

(R(x, y, z) ·R(a, b, c))?
Sol:

(
a ddtx(t) + b ddty(t) + c ddtz(t)

)
. �

Problem # 4: Find the divergence and curl of the following vector fields:

– 4.1: v = x̂ + ŷ + 2ẑ
Sol:∇ · v = 0, ∇× v = 0 �

– 4.2: v(x, y, z) = xx̂ + xyŷ + z2ẑ

Sol:∇ ·v ≡ ∂xx+ ∂yxy+ ∂zz
2 = 1 + x+ 2z ∇×v ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
x xy z2

∣∣∣∣∣∣ = (0− 0)x̂ + (0− 0)ŷ + (y− 0)ẑ = yẑ

�

– 4.3: v(x, y, z) = xx̂ + xyŷ + log(z)ẑ
Sol: Divergence: ∂xx+ ∂yxy+ ∂z log(z) = 1 + x+ 1/z, Curl: x̂ (∂y log(z)− ∂zxy) + ŷ (∂zx− ∂x log(z)) +

ẑ (∂xxy − ∂yx) = ẑy �

– 4.4: v(x, y, z) = ∇(1/x+ 1/y + 1/z)
Sol: First find v = −(x̂/x2 + ŷ/y2 + ẑ/z2). Divergence of v: −(∂x1/x2 + ∂y1/y2 + ∂z1/z

2) = 2(1/x3 +
1/y3 + 1/z3), Curl of v: 0, because the curl of the gradient is always zero. �

4.1.5 Vector and scalar field identities
Problem # 5: Find the divergence and curl of the following vector fields:

– 5.1: v = ∇φ, where φ(x, y) = xey

Sol:∇×∇φ = 0, and ∇2φ = xey �

– 5.2: v = ∇×A, where A = xx̂ + yŷ + zẑ
Sol:∇ · (∇×A) = 0, and ∇× (∇×A) = 0 �

– 5.3: v = ∇×A, where A = yx̂ + x2ŷ + zẑ
Sol:∇ · (∇×A) = 0, and ∇× (∇×A) = −2ŷ �
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– 5.4: For any differentiable vector field V , write two vector calculus identities that are
equal to zero.

Sol: Curl of the gradient ∇×∇Φ(x, y, z) = 0 and the divergence of the curl ∇ · ∇ ×V(x, y, z) = 0 are both
zero. (Page 780, Stillwell) �

– 5.5: What is the most general form a vector field may be expressed in, in terms of scalar
Φ and vector A potentials?

Sol: V = ∇Φ(x, y, z) +∇×A(x, y, z), where Φ is the scalar potential and A is the vector potential. �

Problem # 6: Perform the following calculations. If you can state the answer without doing
the calculation, explain why.

– 6.1: Let v = sin(x)x̂ + yŷ + zẑ. Find∇ · (∇× v).
Sol: 0 �

– 6.2: Let v = sin(x)x̂ + yŷ + zẑ. Find∇× (∇
√
v · v)

Sol: 0 �

– 6.3: Let v(x, y, z) = ∇(x+ y2 + sin(log(z)). Find ∇× v(x, y, z).
Sol: It is zero because ∇×∇f(x, y, z) is always zero. �

4.1.6 Integral theorems
Problem # 7: For each of the following problems, in a few words, identify either Gauss’s or
Stokes’s law, define what it means, and explain the formula that follows the question.

– 7.1: What is the name of this formula?∫
S
n̂ · v dA =

∫
V
∇ · v dV.

Sol: This is the integral form of Gauss’ law. The unit normal vector is ⊥ to the surface S having area A ≡
∫

S dA
The integral represents the total flow normal to the surface. The surface integral is equal to the integral of the
divergence of the vector field ∇ · v over the volume contained by the surface, and defined as V . �

– 7.2: What is the name of this formula?∫
S

(∇× V ) · dS =

∮
C

V · dR

Give one important application. Sol: Stokes Theorem, which relates the differential to the integral form of
Maxwell’s equations. �

– 7.3: Describe a key application of the vector identity

∇× (∇×V) = ∇(∇ ·V)−∇2V.

Sol: When we wish to reduce Maxwell’s two curl equations to the vector wave equation, we must use this iden-
tity. �
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4.2 Problems VC-2

4.2.1 Topics of this homework:
Partial differential equations; fundamental theorem of vector calculus (Helmholtz’s theorem); wave equation;
Maxwell’s equations (ME) and variables (E,D;B,H); Second-order vector differentials; Webster horn equation.

Notation: The following notation is used in this homework:

1. s = σ + jω is the Laplace frequency, as used in the Laplace transform.

2. A Laplace transform pair is indicated by the symbol↔: for example, f(t)↔ F (s).

3. πk is the kth prime; for example, πk ∈ P, πk = [2, 3, 5, 7, 11, 13, . . .] for k = 1, . . . , 6).

4.2.2 Partial differential equations (PDEs): Wave equation
Problem # 1: Solve the wave equation in one dimension by defining ξ = t∓ x/c.

– 1.1: Show that d’Alembert’s solution, %(x, t) = f(t− x/c) + g(t+ x/c), is a solution to
the acoustic pressure wave equation in one dimension:

∂2%(x, t)

∂x2
=

1

c2
∂2%(x, t)

∂t2
,

where f(ξ) and g(ξ) are arbitrary functions. Sol:

∂

∂x
%(x, t) =

∂

∂x
f(t− x/c) +

∂

∂x
g(t+ x/c) =

−1

c
f ′(t− x/c) +

1

c
g′(t+ x/c) (VC-2.1)

∂2

∂x2
%(x, t) =

∂2

∂x2
f(t− x/c) +

∂2

∂x2
g(t+ x/c) =

1

c2
f ′′(t− x/c) +

1

c2
g′′(t+ x/c) (VC-2.2)

∂2

∂t2
%(x, t) =

∂2

∂t2
f(t− x/c) +

∂2

∂t2
g(t+ x/c) = f ′′(t− x/c) + g′′(t+ x/c) (VC-2.3)

�

Problem # 2: Solving the wave equation in spherical coordinates (i.e., three dimensions)

– 2.1: Write the wave equation in spherical coordinates %(r, θ, φ, t). Consider only the
radial term r (i.e., dependence on angles θ and φ is assumed to be zero). Hint: The form of
the Laplacian as a function of the number of dimensions is given in Eq. NS-3.9 (page 157).
Alternatively, look it up on the internet or in a calculus book.
Sol: Given the formula for the Laplacian in spherical coordinates, the wave equation is

1

r2
∂

∂r
r2
∂

∂r
%(r, t) =

1

c2
∂2

∂t2
%(r, t)

�

– 2.2: Show that this equation is true:

∇2
r%(r) ≡ 1

r2
∂

∂r
r2
∂

∂r
%(r) =

1

r

∂2

∂r2
r%(r). (VC-2.4)

Hint: Expand both sides of the equation. Sol: Both sides of the equation expand to

∂2R

∂r2
+

2

r

∂R

∂r
�
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– 2.3: Use the results from Eq. VC-2.1 to show that the solution to the spherical wave
equation is

∇2
r %(r, t) =

1

c2
∂2

∂t2
%(r, t) (VC-2.5)

%(r, t) =
f(t− r/c)

r
+
g(t+ r/c)

r
. (VC-2.6)

Sol: This proceed exactly as in the rectangular case (see above) except one must first recognize that the Laplacian
in spherical coordinates may be written as

1

r

∂2

∂r2
r%(r). (VC-2.7)

One then may proceed to use the solution for the rectangular case, but for r%(r), and then divide that solution by
r. �

– 2.4: Using f(ξ) = sin(ξ)u(ξ) and g(ξ) = eξu(ξ), write the solutions to the spherical
wave equation, where u(ξ) is the Heaviside step function.
Sol: In each case replace ξ = t− x/c to obtain the solution to the wave equation for 1 dimensional waves. Thus

%(r, t) =
f(t− r/c)

r
+
g(t+ r/c)

r

=
sin(t− r/c)
t− r/c

u(t− r/c) +
e(t+r/c)u(t+ r/c)

t+ r/c

�

– 2.5: Sketch this f(ξ) and g(ξ) for several times (e.g., 0, 1, and 2 seconds), and describe
the behavior of the pressure %(r, t) as a function of time t and radius r.
Sol: Plot the functions at several times (e.g., 0, 1 2 seconds), as a function of x. The first function becomes smaller
as the radius grows. The second function becomes larger as the inbound waves approaches r = 0. �

– 2.6: What happens when the inbound wave reaches the center at r = 0?
Sol: Stand back. It blows up. The equations fail when the solution becomes so large that the linearity assumption
fails. I’m not sure what actually happens, in practice. This seems to be how they detonate nuclear weapons. �

4.2.3 Helmholtz’s formula
Every differentiable vector field may be written as the sum of a scalar potential φ and a vector potential w. This
relationship is best known as the fundamental theorem of vector calculus (also called Helmholtz’s formula):

v = −∇φ+∇×w. (VC-2.8)

This formula seems to be a natural extension of the algebraic products A·B ⊥ A×B, since A·B ∝ ‖A‖‖B‖ cos(θ)
and A×B ∝ ‖A‖‖B‖ sin(θ), as developed in Appendix A.3.1, page 203. Thus these orthogonal components
have magnitude 1 when we take the norm, due to Euler’s identity (cos2(θ) + sin2(θ) = 1).

As shown in Table 5.1 (p. 155), Helmholtz’s formula separates a vector field (i.e., v(x)) into compressible and
rotational parts:

1. The rotational (e.g., angular) part is defined by the vector potential w, which requires that∇×∇×w 6= 0.
A field is irrotational (conservative) when∇×v = 0, meaning that the field v can be generated using only a
scalar potential, v = ∇φ (note that this is how a conservative field is usually defined, by saying there exists
some φ such that v = ∇φ).2

2. The compressible (e.g., radial) part of a field is defined by the scalar potential φ, which requires that∇·∇φ =
∇2φ 6= 0. A field is incompressible (solenoidal) when∇ · v = 0, meaning that the field v can be generated
using only a vector potential, v = ∇×w.

2A note about the relationship between the generating function and the test: You might imagine special cases where ∇ × w 6= 0 but
∇ × ∇ ×w = 0 (or ∇φ 6= 0 but ∇2φ = 0). In these cases, the vector (or scalar) potential can be recast as a scalar (or vector) potential.
For example, consider a field v = ∇φ0 + b, where b = xx̂ + yŷ + zẑ. Note that b can actually be generated by either a scalar potential
(φ1 = 1

2
[x2 + y2 + z2], such that ∇φ1 = b) or a vector potential (w0 = 1

2
[z2x̂ + x2ŷ + y2ẑ], such that ∇ ×w0 = b). We find that

∇× v = 0; therefore v must be irrotational. We say this irrotational field is generated by∇φ = ∇(φ0 + φ1).
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The definitions and generating potential functions of irrotational (conservative) and incompressible (solenoidal)
fields naturally follow from two key vector identities: (1)∇ · (∇×w) = 0 and (2) ∇× (∇φ) = 0.

Problem # 3: Define the following:

– 3.1: A conservative vector field
Sol: A conservative vector field is defined as the gradient of a scalar potential v = ∇φ(x, y, z). Every conservative
field is necessarily irrotational (the test for an irrotational field is∇× v = 0). �

– 3.2: An irrotational vector field
Sol: The vector field v is rotational if there exists a vector potential w such that v = ∇ × w(x, y, z). The for
irrotational is ∇× v = 0. A purely rotational field is not conservative. �

– 3.3: An incompressible vector field
Sol: A field v is incompressible if∇ · v = 0. �

– 3.4: A solenoidal vector field
Sol: A rotational field is one having a divergence of zero, i.e., ∇ · v = 0, or alternatively, v ≡ ∇ × w(x, y, z),
since any field defined by a curl is rotational, since the divergence of the curl is always zero. �

– 3.5: When is a conservative field irrotational?
Sol: Always! �

– 3.6: When is an incompressible field irrotational?
Sol: A field is incompressible if ∇ · v = 0 and irrotational if ∇× v = 0. So, almost never. The only case is the
trivial solution v = 0, or a constant field v = x0x̂ + y0ŷ + z0ẑ. �

Problem # 4: For each of the following, (i) compute∇·v, (ii) compute∇×v, and (iii) classify
the vector field (e.g., conservative, irrotational, incompressible, etc.).

– 4.1: v(x, y, z) = −∇(3yx3 + y log(xy))
Sol: The field is conservative (or irrotational) because it is defined by a gradient. To test for irrotational, show that
the curl is zero. But ∇ × ∇φ(x, y, z) = 0 for any φ(x, y, z). Thus you do not need to do any computation, just
state the answer. �

– 4.2: v(x, y, z) = xyx̂− zŷ + f(z)ẑ
Sol: To test for a irrotational field, take the curl, to see if it is zero:

∇× v ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
xy −z f(z)

∣∣∣∣∣∣ = x̂− xẑ, (VC-2.9)

which is not zero. We can also see by inspection that∇·v 6= 0. Thus the vector field is rotational and compressible.
�

– 4.3: v(x, y, z) = ∇× (xx̂− zŷ)
Sol: v = x̂. Therefore,∇× v = 0, and∇ · v = 0. This field is technically incompressible and irrotational, but it
is also very boring, since it is a constant. �

4.2.4 Maxwell’s Equations
The variables have the following names and defining equations (see Table 5.4, p. 185):

Symbol Equation Name Units
E ∇×E = −Ḃ Electric field strength [volts/m]

D = εoE ∇ ·D = ρ Electric displacement (flux density) [coul/m2]
H ∇×H = J + Ḋ Magnetic field strength [amps/m]

B = µoH ∇ ·B = 0 Magnetic induction (flux density) [webers/m2]

Note that J = σE is the current density (which has units of [amps/m2]). Furthermore, the speed of light in vacuo
is co = 3×108 = 1/

√
µoεo [m/s], and the characteristic resistance of light ro = 377 =

√
µo/εo [Ω (i.e., ohms)].
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4.2.5 Speed of light
Problem # 5: The speed of light in vacuo is co = 1/

√
µoεo ≈ 3×108 [m/s]. The characteristic

resistance in vacuo is ro =
√
µo/εo ≈ 377 [Ω].

– 5.1: Find a formula for the in-vacuo permittivity εo and permeability in terms of co and
ro. Sol: εo = 1/roco and µo = ro/co. � Based on your formula, what are the numeric values of
εo and µo?
Sol: εo ≈ 10−8/3 · 377 = 8.84 · 10−12 and µo ≈ 377/3 · 108 = 1.26 · 10−6. �

– 5.2: In a few words, identify the law given by this equation, define what it means, and
explain the formula: ∫

S
n̂ · v dA =

∫
V
∇ · v dV.

Sol: This is the integral form of Gauss’ law. The unit normal vector is ⊥ to the surface S having area A ≡
∫

S dA
The integral represents the total flow normal to the surface. The surface integral is equal to the integral of the
divergence of the vector field ∇ · v over the volume contained by the surface, and defined as V . �

4.2.6 Application of Maxwell’s equations

Problem # 6: The electric Maxwell equation is ∇ × E = −Ḃ, where E is the electric field
strength and Ḃ is the time rate of change of the magnetic induction field, or simply the magnetic
flux density. Consider this equation integrated over a two-dimensional surface S, where n̂ is a
unit vector normal to the surface (you may also find it useful to define the closed path C around
the surface): ∫∫

S

[∇×E] · n̂dS = − ∂

∂t

∫∫
S

B · n̂dS.

– 6.1: Apply Stokes’s theorem to the left-hand side of the equation.
Hint: view this relation in therms of the “integral forms” of the curl. Sol: The surface S must be open, with its

edge C defining the path for the line integral.

emf ≡
∫∫

S

∇×E · n̂dS =

∮
C

E · dR. (VC-2.10)

From Stokes’ theorem: the electromotive force (emf) is the line integral of E around the rim of the open surface.
Think of the flux change as the Thévenin source driving the voltage. �

– 6.2: Consider the right-hand side of the equation. How is it related to the magnetic flux
Ψ through the surface S?
Sol: It is equal to the negative time rate of change of the flux, −Ψ̇. From Gauss’ Law the total magnetic flux Ψ is
the surface integral over the normal component of the magnetic flux density B. After applying Gauss’ Laws, the
surface integral becomes

Ψ = −
∫∫

S

B · n̂dS (VC-2.11)

�

– 6.3: Assume the right-hand side of the equation is zero. Can you relate your answer in
question 6.1 to one of Kirchhoff’s laws?
Sol: This result is well know as Kirchhoff’s first (voltage) law (KVL), emf =

∑
k Vk = −Ψ̇. When the flux

induced into the loop may be ignored (e.g., it is very small), the sum of the voltages around the loop is zero. In
rectangular coordinates with a plane surface this is simply Φ = BnA, where A is the area and Bn the normal
component of B (⊥ to the surface S). �

Problem # 7: The magnetic Maxwell equation is ∇ ×H = C ≡ J + Ḋ, where H is the
magnetic field strength, J = σE is the conductive (resistive) current density, and the displace-
ment current Ḋ is the time rate of change of the electric flux density D. Here we defined a new
variable C as the total current density.
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– 7.1: First consider the equation over a two-dimensional surface S:∫∫
S

[∇×H] · n̂dS =

∫∫
S

[J + Ḋ] · n̂dS =

∫∫
S

C · n̂dS.

Then apply Stokes’s theorem to the left-hand side of this equation. In a sentence or two, explain the meaning of
the resulting equation. Hint: What is the right-hand side of the equation? Sol: The surface S must be open, with
its edge C prescribing the line integral, and its surface of C defines the total current I(t). The normal component
of the surface integral over the total current C gives total current I(t). By Stokes theorem:

mmf ≡
∫∫

S

∇×H · n̂dS =

∮
C

H · dR =

∫∫
S

C · n̂dS = I(t)

This is Ampere’s Law. �

Problem # 8: Consider the next equation in three dimensions. Take the divergence of both
sides and integrate over a volume V (closed surface S):∫∫∫

V

∇ · [∇×H]dV =

∫∫∫
V

∇ ·CdV.

– 8.1: What happens to the left-hand side of this equation? Hint: Can you apply a vector
identity? Sol: It is 0. � Apply the divergence theorem (sometimes known as Gauss’s theorem)
to the right-hand side of the equation, and interpret your result. Hint: Can you relate your
result to one of Kirchhoff’s laws?
Sol: We get ∫∫∫

V

∇ ·CdV =

∫∫
S

C · n̂dS = 0

This result is Kirchhoff’s second (current) law (KCL),
∑
k Ik =

∫∫
Ḋ(t) · dS. When the stray capacitance (Ḋ)

can be ignored the sum of the currents into the ‘node’ is zero. Generalizing, a ‘node’ to a volume V , the total
current I(t) flowing in/out of the volume is the integral of the normal component of the current density over the
cross-sectional closed surface area, which equals 0. �

4.2.7 Second-order differentials
Problem # 9: This problem is about second-order vector differentials.

– 9.1: If v(x, y, z) = ∇φ(x, y, z), then what is∇ · v(x, y, z)?
Sol: Since ∇ · ∇ = ∇2 this is∇2φ(x, y, z). �

– 9.2: Evaluate∇2φ and ∇×∇φ for φ(x, y) = xey.
Sol: CoG =0 ∇×∇φ=0,∇2φ = xey �

– 9.3: Evaluate∇ · (∇× v) and ∇× (∇× v) for v = xx̂ + yŷ + zẑ.
Sol:∇ · (∇× v) = 0,∇× (∇× v) = 0 �

– 9.4: When V (x, y, z) = ∇(1/x+ 1/y + 1/z), what is∇× V (x, y, z)?
Sol: This is always zero. �

– 9.5: When was Maxwell born and when did he die? How long did he live (within ±10
years)?
Sol: He lived 48 years, from 1831 to 1879. �

4.2.8 Capacitor analysis

Problem # 10: Find the solution to the Laplace equation between two infinite3 parallel plates
separated by a distance d. Assume that the left plate at x = 0 is at voltage V (0) = 0 and the
right plate at x = d is at voltage Vd ≡ V (d).

3We study plates that are infinite because this means the electric field lines are perpendicular to the plates, running directly from one plate
to the other. However, we solve for per-unit-area characteristics of the capacitor.
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– 10.1: Write Laplace’s equation in one dimension for V (x).
Sol: This is the Laplace equation for rectangular coordinates

∂2V (x)

∂x2
= 0

�

– 10.2: Write the general solution to your differential equation for V (x).
Sol: Integration is trivial since the solution must be of the form V (x) = A+Bx. �

– 10.3: Apply the boundary conditions V (0) = 0 and V (d) = Vd to determine the constants
in your equation from question 10.2.
Sol: From the BC A = 0 and B = Vd/d. Thus V (x) = Vd

d x. �

– 10.4: Find the charge density per unit area (σ = Q/A, where Q is charge and A is area)
on the surface of each plate. Hint: E = −∇V , and Gauss’s law states that

∫∫
S
D·n̂dS = Qenc.

Sol: To find the charge, we must first compute the electric field from the voltage using E = −∇V (x)

−E ≡ ∇V (r) = x̂
∂

∂x
V (x) = x̂Vd

Since D = εoE we find the normal component of the D field

D = εoE = −εo∇V

is just a constant Thus using Gauss’ law (σ = − 1
A

∫
S DxdA = Dr), the surface charge density σ in farads per

square-meter is
σ =

εo
d
Vd

�

– 10.5: Determine the per-unit-area capacitance C of the system.
Sol: Since σ = CVd, the capacity C per unit area is

C =
εo
d

[F/m2].

The units are farads per square-meter. Note that the sign must work out so that C > 0.
https://en.wikipedia.org/wiki/Capacitance �

4.2.9 Webster horn equation
Problem # 11: Horns illustrate an important generalization of the solution of the one dimen-
sional wave equation in regions where the properties (i.e., area of the tube) vary along the axis
of wave propagation. Classic applications of horns are in vocal tract acoustics, loudspeaker
design, cochlear mechanics, and any case that has wave propagation. Write the formula for
the Webster horn equation, and explain the variables.
Sol: The horn equation may be written as

1

A(x)

∂

∂x

(
A(x)

∂%

∂x

)
=

1

c2
∂2%

∂t2
. (VC-2.12)

where A(x) is the area of the horn at x (range variable). %(x, t) is the pressure and c is the wave speed. �
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