
1.2. PROBLEMS NS-2 7

1.2 Problems NS-2

Topic of this homework:

Prime numbers, greatest common divisors, the continued fraction algorithm

Continued fractions

Problem # 1: Here we explore the continued fraction algorithm (CFA)
In its simplest form, the CFA starts with a real number, which we denote as α ∈ R. Let us work with an irrational
real number, π ∈ I, as an example because its CFA representation will be infinitely long. We can represent the
CFA coefficients α as a vector of integers nk, k = 1, 2, . . . ,∞:

α = [n1;n2, n3, n4, . . .]

= n1 +
1

n2 + 1
n3+

1
n4+···

.

The CFA is recursive, with three repeated steps per iteration. For example α1 = π ≈ 3.14159 . . ., n1 = 3,
r1 = π − 3, and α2 ≡ 1/r1.

α2 = 1/0.1416 = 7.0625 . . .

α1 = n1 +
1

α2
= n1 +

1

n2 + 1
α3

= · · · .

In terms of a Matlab/Octave script,

alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;

for k=2:K %k=1 to K
n(k)=round(alpha(k-1));
%n(k)=fix(alpha(k-1));
alpha(k)= 1/(alpha(k-1)-n(k));
%disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab’s rat() function
rat(alpha0,1e-20)

– 1.1: By hand find the first few values of nk for α = eπ ≈ 23.1407.
Sol: The CFA for this is: eπ = 23.1407 · · · = [23; 7, 9, 4, · · · ]. �
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– 1.2: For the proceeding question, what is the error (remainder) when you truncate
the continued fraction after n1, . . . , n3? Give the absolute value of the error and the
percentage error relative to the original α.
Sol: The remainder is eπ − (23 + 1/(7 + (1/9)))) which gives an error of ε = |eπ − (23 + 1/(7 +
(1/9))))|/eπ = 2.92 · 10−6 = 0.0003% �

– 1.3: Use the Matlab/Octave program provided to find the first 10 values of nk for
α = eπ, and verify your result using the Matlab/Octave command rat().
Sol: eπ = 23.1407 · · · = [23; 7, 9, 4,−2,−591,−2,−10, 3,−2, · · · ]. �

– 1.4: Discuss the similarities and differences between the Euclidean algorithm and
the CFA.
Sol:

1. Both are recursive, meaning that the steps are repeated one after another.

2. The EA starts from two numbers (a,b). The output of the gca(a,b) is the GCD. The CFA starts with
a single number and the output is a sequence of integers. If the sequence terminates the number was
rational. If the sequence does not terminate, the number is irrational.

3. The EA works with the difference between the minimum and maximum of the two numbers whereas
the CFA works with the rounding function and the reciprocal of the error.

4. It would seem that the goals of the two algorithms, the starting point, and the results are totally
different. Both are very useful and powerful. Both generalize to more difficult situations than
working with simple numbers.

�

Greatest common divisors

Consider using the Euclidean algorithm to find the greatest common divisor (i.e., GCD; the largest common prime
factor) of two numbers (Allen 2020, p. 42). This algorithm may be performed using one of two methods:

Method Division Subtraction
On each iteration... ai+1 = bi ai+1 = max(ai, bi)−min(ai, bi)

bi+1 = ai − bi · floor(ai/bi) bi+1 = min(ai, bi)
Start with i = 1 and terminate when: b = 0 (GCD = a) b = 0 (GCD = a)

The division method (Matlab’s floor function) (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction
method may require a huge number of itterations steps.

Problem # 2: Understanding the Euclidean algorithm (GCD)

– 2.1: Find the prime factors of a = 85 and b = 15.
Sol: From Octave’s factor() we find 85 = 17 · 5, 15 = 3 · 5. �
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– 2.2: What is the greatest common prime factor of a = 85 and b = 15?
Sol: The largest common factor gcd(85,15) is 5. �

– 2.3: By hand, perform the Euclidean algorithm for a = 85 and b = 15.
Sol: Division method:

a1 = 15 b1 = 85− 15
�
���

75

b85

15
c = 10

a2 = 10 b2 = 15− 10
�
���

2

b15

10
c = 5

a3 = 5 b3 = 10− 5
�
���

2

b10

5
c = 0

∴ gcd= 5
Subtraction method:

a1 = 85− 15 = 70 b1 = 15

a2 = 70− 15 = 55 b2 = 15

a3 = 55− 15 = 40 b3 = 15

a4 = 40− 15 = 25 b4 = 15

a5 = 25− 15 = 10 b5 = 15

swap
a6 = 15− 10 = 5 b6 = 10

a7 = 10− 5 = 5 b7 = 5

terminate

∴ gcd= 5 �

– 2.4: By hand, perform the Euclidean algorithm for a = 75 and b = 25. Is the result a
prime number?
Sol: Division method:

a1 = 25 b1 = 75− 25
�
���

3

b75

25
c = 0

Subtraction method:

a1 = 75− 25 = 50 b1 = 25

a2 = 50− 25 = 25 b2 = 25

∴ gcd= 25
The result is 25 = 52, the square of a prime number. �
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– 2.5: Consider the first step of the GCD division algorithm when a < b (e.g., a = 25
and b = 75). What happens to a and b in the first step? Does it matter if you begin the
algorithm with a < b rather than b < a?
Sol: If a < b, the first step of the division algorithm swaps the terms (a→ b and b→ a). �

– 2.6: Describe in your own words how the GCD algorithm works. Try the algorithm
using numbers that have already been divided into factors (e.g., a = 5 · 3 and b = 7 · 3).
Sol: Division method:

a1 = 5 · 3 b1 = 7 · 3− 5 · 3
�
�
��>

1

b7 · 3
5 · 3
c = 2 · 3

a2 = 2 · 3 b2 = 5 · 3− 2 · 3
�
�
��>

2

b5 · 3
2 · 3
c = 1 · 3

a3 = 1 · 3 b3 = 2 · 3− 1 · 3
�
�
��>

2

b2 · 3
1 · 3
c = 0

Subtraction method:

a1 = 7 · 3− 5 · 3 = 2 · 3 b1 = 5 · 3
a2 = 5 · 3− 2 · 3 = 3 · 3 b2 = 2 · 3
a3 = 3 · 3− 2 · 3 = 1 · 3 b3 = 2 · 3
a4 = 2 · 3− 1 · 3 = 1 · 3 b4 = 1 · 3

The algorithm iteratively converges on the GCD by subtracting out multiples of the GCD until only the
GCD is left. �

– 2.7: Find the GCD of 2 · π25 and 3 · π25.
Sol: π25 � .

Problem # 3: Coprimes

– 3.1: Define the term coprime.
Sol: when two integers have no common factors the are said to be coprime �

– 3.2: How can the Euclidean algorithm be used to identify coprimes?
Sol: If gcd(a,b)=1 they only have 1 as a common factor, thus they are coprime. �

– 3.3: Give an important application of the Euclidean algorithm.
Sol: Given two integers n, d ∈ Z, if we wish to reduce the fraction n/d, we must cancel the common factors.
Example: If n = 9, d = 6 then 9/6 = (3 · 3)/(2 · 3) = 3/2, where the GCD, 3, may be identified using the
Euclidean algorithm. While this fraction may be easily simplified via inspection, the GCD algorithm could be
very helpful for larger numbers n, d. �
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– 3.4: Write a Matlab function, function x = my gcd(a,b), that uses the
Euclidean algorithm to find the GCD of any two inputs a and b. Test your function on
the (a, b) combinations from the previous problem. Include a printout (or hand-write)
your algorithm to turn in.
Hints and advice:

• Don’t give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Oc-
tave function, if you use it as a variable or function name, you won’t be able to use gcd to check
your gcd() function. Try clear all to recover from this problem.

• Try using a “while” loop for this exercise (see Matlab documentation for help).

• You may need to use some temporary variables for a and b in order to perform the algorithm.

Sol: Division method:
function x = my gcd(a,b)
while b>0
atmp= a; btmp = b;
a = btmp; b = atmp-btmp*floor(atmp/btmp);
end
Subtraction method:
function x = my gcd(a,b)
while a∼=b
atmp= a; btmp = b;
a = max(atmp,btmp) - min(atmp,btmp); b = min(atmp,btmp);
end �
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Algebraic generalization of the GCD (Euclidean) algorithm
Problem # 4: In this problem we are looking for integer solutions (m,n) ∈ Z to the
equations ma+ nb = gcd(a, b) and ma+ nb = 0 given positive integers (a, b) ∈ Z+.
Note that this requires that either m or n be negative. These solutions may be found using the Euclidean
algorithm only if (a, b) are coprime (a ⊥ b). Note that integer (whole number) polynomial relations such
as these are known as Diophantine equations. Such equations (e.g., ma+ nb = 0) are linear Diophantine
equations, possibly the simplest form of such relations.

Example: gcd(2,3)= 1: For (a, b) = (2, 3), the result is[
1
0

]
=

[
0 1
1 −2

] [
0 1
1 −1

] [
0 1
1 0

] [
2
3

]
=

[
−1 1
3 −2

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus from the above equation we find the solution (m,n) to the integer equation

2m+ 3n = gcd(2, 3) = 1;

namely, (m,n) = (−1, 1) (i.e.,−2+3 = 1). There is also a second solution (3,−2) (i.e., 3 ·2−2 ·3 = 0)
that represents the terminating condition. Thus these two solutions are a pair and the solution exists only
if (a, b) are coprime (a ⊥ b).
Subtraction method: This method is more complicated than the division algorithm because at each stage
we must check whether a < b. Define[

a0
b0

]
=

[
a
b

]
, Q =

[
1 −1
0 1

]
, S =

[
0 1
1 0

]
,

where Q sets ai+1 = ai − bi and bi+1 = bi assuming ai > bi, and S is a swap matrix that swaps ai and
bi if ai < bi. Using these matrices, we implement the algorithm by assigning[

ai+1

bi+1

]
= Q

[
ai
bi

]
for ai > bi,

[
ai+1

bi+1

]
= QS

[
ai
bi

]
for ai < bi.

The result of this method is a cascade of Q and S matrices. For (a, b) = (2, 3), the result is[
1
1

]
=

[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
2
3

]
=

[
2 −1
−1 1

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus we find two solutions (m,n) to the integer equation 2m+ 3n = gcd(2, 3) = 1.

– 4.1: By inspection, find at least one integer pair (m,n) that satisfies 12m+15n = 3.
Sol: By inspection, (m,n) = (−1, 1) is one solution. �

– 4.2: Using matrix methods for the Euclidean algorithm, find integer pairs (m,n)
that satisfy 12m+ 15n = 3 and 12m+ 15n = 0. Show your work!!!
Sol: Division method: [

3
0

]
=

[
−1 1
5 −4

] [
12
15

]
Subtraction method: [

3
3

]
=

[
−1 1
4 −3

] [
12
15

]
�

– 4.3: Does the equation 12m + 15n = 1 have integer solutions for n and m? Why
or why not?
Sol: No, because gcd(12, 15) = gcd(3 ∗ 4, 3 ∗ 5) = 3, not 1. Thus there are no Diophantine solutions to
this equation. �
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Problem # 5: Matrix approach:
It can be difficult to keep track of the a’s and b’s when the algorithm has many steps. We need an alternative
way to run the Euclidean algorithm using matrix algebra. Matrix methods provide a more transparent
approach to the operations on (a, b). Thus the Euclidean algorithm can be classified in terms of standard
matrix operations. Write out the indirect matrix approach discussed at the end of Sec. 2.4.3 (Eq. 2.4.3).
Sol: Division method:
Define [

a
b

]
0

=

[
a0
b0

]
,

[
a
b

]
i+1

=

[
0 1
1 −ba/bc

]
i

[
a
b

]
i

�

Prime numbers

Problem # 6: Every integer may be written as a product of primes.

– 6.1: Write the numbers 1, 000, 000, 1, 000, 004, and 999, 999 in the form
N =

∏
k

πβkk . Hint: Use Matlab/Octave to find the prime factors.

Sol: 1, 000, 000 = 26 · 56
1, 000, 004 = 22 · 532 · 89
999, 999 = 33 · 7 · 11 · 13 · 37
�

– 6.2: Give a generalized formula for the natural logarithm of a number ln(N) in
terms of its primes πk and their multiplicities βk. Express your answer as a sum of terms.

Sol: lnN =
∑
k

βk ln(πk) �

Problem # 7: Using the computer

– 7.1: Explain why the following brief Matlab/Octave program returns the prime
numbers πk between 1 and 100.

n=2:100;
k = isprime(n);
n(k) Sol: The first line n = 2 : 100 defines the row vector n = [2, 3, 4, · · · , 100]. The second line
creates a row vector the same length as n, with entries of 1 if the element is prime and zero if the element
is not prime. The third line n(k) prints out n() if k = 1, namely it is a list of all the primes from 2 to 100.
Run this program without the ’;’ at the end of each line, and to see what it is doing. �

– 7.2: How many primes are there between 2 and N = 100?
Sol: length(n(k)) returns 25. Thus there are 25 primes less than 100 (N/4, on average). �

Problem # 8: Prime numbers may be identified using a sieve.

– 8.1: By hand, complete the sieve of Eratosthenes for n = 1, . . . , 49. Start by writing out a
table of the integers 1-50, as 5 rows of 10 numbers. Starting with the first prime, pk = 2, k = 1
, circle it and cross out all multiples (e.g., 2πk = r, 3πk = 6, · · · , 24 ∗ π2 = 48.). Then repeat
for the second, third, and higher primes π2. When done, only the circled primes should remain.
Be sure you look up the definition of a prime.


