14 CHAPTER 1. NUMBER SYSTEMS

1 2 3) 4 (5) & (7)) & 9 10

11, x2 d3) 4 15 16 (17 48 19 20
24 22 @23y 24 25 26 27 28 (29) 307

31 32 33 3 35 .36 37 .38 39 40

_ . a0 47 @3 44 45 46 @47 48 49
Sol: Note: The number 1 should not be circled since it is rnot a prime.

— 8.2: What is the largest number you need to consider before only primes remain? Look
up the definition of the Matlab/Octave floor function (e.g, |w| = 3).
Sol: [v/50| = |7.0711] = 7.

— 8.3: Generalize: For n = 1,..., N, what is the largest number you need to consider
before only the primes remain?
Sol: floor(v/N)

— 8.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49.
@22: 2-11 = T17s
30=2-3-5=mmems
34=2-17 = T 77
43= T14
44=4-11 = 7ins
48=4-12=4%.3 = nlmy
49="7* = 72

— 8.5: Find the largest prime ;, < 100. Do not use Matlab/Octave other than to check your
answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, . ...
Cross off the even numbers, leaving 99, 97,95, ... . Pull out a factor (only one is necessary to
show that it is not prime).

Sol: 99=11%#9, w5 = 97.

— 8.6: Find the largest prime 7, < 1000. Do not use Matlab/Octave other than to
check your answer.
Sol: Write out the numbers starting with 1000 and counting backwards: 1000, 999, 998, 997, - - - . Cross
off the even numbers, leaving 999, 997,995, - - - . Pull out a factor (only one is necessary to show that it is
not prime). 9 - 111,997 = 7148, 5 - 199 = 73 - 746.

—slnmy

— 8.7: Explain why m,.°* = e
Sol: This follows from the identify z* = ¢®™* with a, z € C.

Problem # 9:CFA of ratios of large primes

—9.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation
(e.g., m = [3.,7,16,---]). Show your work. Sel: 23/7 = (21 +2)/7 = 3 +2/7 =3+ 1/(6+1)/2 =
3+1/(6 +1/2). In bracket notation 23/7 = [3., 6, 2]. Matlab gives rat (23/7) =3+1/(4+1/(-2)),or[1.,
4, -2] because rounding 7/2 can be taken as either 3+1/2 or 4-1/2.
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— 9.2:Starting from the primes below 105, form the CFA of 7; /), with j = 78498 and
k< j.
Sol: First generate 10 primes with the matlab command 7=primes (11+1e6).
The length of 7 is j = 78499, 7(j) = 1,000,003, w(j — 1) = 999,983 and 7(j — 2) = 999, 979.
Let the target fraction be

m(end—1) 999983

T — —
m(end —2) 999979

= 1.000004000084002.

Finding the CFA of T gives
rat(T) =1+ 1/249995 = [1;249995].
Factoring this integer gives factor (249995)=5%x49999.

—9.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the
ratios of large primes. What is the most obvious conclusion? Sol: The CFA terminates
in only one term, as in the above example.

—9.4: (Ipts) Try the Matlab/Octave functions rats (23/7), rats (3.2857), and
rats (3.2856). What an you conclude?
Sol: This function is similar to the CFA but uses rounding rather than truncation arithmatic.
rats (3.2857)=32857/10000 but rats (23/7)=23/7 because it rounds to 23/7, whereas
rats (3.2856)=4107/1250 because it does not.

—9.5: (2pts) Can /2 be represented as a finite continued fraction? Why or why not?

Sol: No, because it is irrational.

—9.6: (2pts) What is the CFA for /2 — 1?

Hint: V2+1= =1[2;2,2,2,---].

.
V2 -1
Sol: 1 +v2=2+1/(2+1/(2+---))or[2.,2,2,2,---], thus

V2-1=102,2,2,2,---]-2=0+1/2+1/(2+1/(2+---))).

— 9.7: Show that
1

: \f:a%—l—a%—&—a%—i—a%—|—a%+\/5+a5+a4+a3+a2+a+1:1—a6
—Va

syms a,b

b= taylor(l/( l-sgrt(a) ))

simplify ((l-sgrt(a))+b) = 1-a”6

Use symbolic analysis to show this, then explain. Sel: This seems like a very unlikely relationship. Un-
expectedly the coefficents of this expansion are all 1, leading to a is a sixth degree polynomial. It is
obvioiusly related to the six complex roots of unity. Thus we may find the companion matrix, followed
by an eigen solution. This seems to be a Taylor expansion of six roots of unity, expressed in terms of
removable singularities. See Cotes Theorem (1716) (Stillwell, 2010, p. 289).
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1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell’s equation, Fibonacci sequence

Pythagorean triplets

PrObQIem#; 1: Euclid’s formula for the Pythagorean triplets a, b, cis a = p*> — ¢>, b = 2pq, and
c=p°+q.

— 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and
nonzero?

Sol: p > q > 0 (strictly greater than)

— 1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, ¢, one may find p, ¢ via matrix operations by solving the nonlinear system of equations for

b,q.
First solve linear system of equations for p?, ¢*:

Inverting this 2x2 matrix gives (the determinant A = 2)

=2l ]

Thusp = £+/(a+¢)/2,q=£+/(c—a)/2.

Method 2: The algebraic approach is:
atc=@p*—¢)+ @ +¢) =2

—a+c=—p*—¢)+ (@ +¢°) =24,

Thus p = \/(a+¢)/2, ¢ = \/(c — a)/2, where p,q € N.
Method 1 seems more “transparent” than Method 2.
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Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs
of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

— 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a c
119 169
3367 | 4825
4601 6649
12709 | 18541
65 97
Find a formula for a in terms of p and q.
Sol:
(a,c) = (119,169) (p,q) = £(12,5)
(a,c) = (3367, 4825) (p,q) = £(64,27)
(a,c) = (4601, 6649) (p,q) = £(75,32)
(a,c) = (12709, 18541) (p,q) = +£(125,54)
(a,c) = (65,97) (p,q) = £(9,4)

— 2.2: Based on Euclid’s formula, show that ¢ > (a,b).

Sol: c —a = (p* + ¢*) — (p* — ¢*) = 2¢°
Because 2¢2 is always positive, ¢ > a
c—b=(p"+¢*)—2pg=(p—q)*>0
Note that by the definition of p,q € N, p > q.

— 2.3: What happens when ¢ = a?

Sol: Then its not a triangle since b = 0. The triangle is degenerate.

—2.4: Is b+ c a perfect square? Discuss.

Sol: b+ ¢ = p? + 2pq + ¢®> = (p + q)?. Since p and q are integers, b + ¢ will always be a perfect square
(Vb + c will always be an integer).

Pell’s equation:

Problem # 3: Pell’s equation is one of the most historic (i.e., important) equations of Greek
number theory because it was used to show that /2 € 1. We seek integer solutions of

2?2 — Ny? = 1.

As shown in Sec. 2.5.2, the solutions x,, y,, for the case of N = 2 are given by the linear 2 x 2 matrix recursion

Tp41 1 2| |z,
=1
|:yn+1] J [1 1} L/n}

with [0, 0] = [1,0]” and 17 = v/—1 = ¢/™/2. It follows that the general solution to Pell’s equation for N' = 2

][ T ]
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To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

1 21" 1 211 211 2 1 2
n _ _jmn/2 _ /2 Ce
A" =e {1 1] = [1 1} L 1} {1 1] {1 1}’

which becomes tedious for n > 2.

— 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues
as Pell’s equation. Hint: Use Matlab’s function [E, Lambda] = eig (A) to check your

results!
1 2
A=l 1]

Sol: The companion matrix is
— 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of
V2. Explain why Pell’s equation is relevant to V2.

Sol: As discussed in Sec. 2.5.2, as the iteration n increases, the ratio of the ., /1,, approaches v/2.

— 3.3: Find the first three values of (z,,yn)" by hand and show that they satisfy Pell’s
equation for N = 2. Sol: See class notes (slide 9.4.2) for this calculation. » By hand, find the
eigenvalues A1 of the 2 X 2 Pell’s equation matrix

[

Sol: The eigenvalues are given by the roots of the equation (1 — A3)? = 2. Thus A = 1+ V2 =
{2.1412, —.4142}

— 3.4: By hand, show that the matrix of eigenvectors, F, is
L L [—vV2 V2
E= [e+ e_] = ﬁ [ 1 ﬂ .

The eigenvectors €1 may be found by solving

A [el] = Az [Zj (A= A:D) _61} =0

€2

Sol:

For A, this gives

0 {1— (11+ V?2) - (12+ \/i)] [ij _ —1/5 ?/5} [‘31]

which gives the relation between the elements of €, e, €2, as e; = V2e,.
The eigenvectors are defined to be unit length and orthogonal, namely

L ||ek|]* =& -& =1
2. & -8 =0.

Once we normalize € to have unit length, we obtain the first eigenvector

Repeating this for A_ gives

Thus, the matrix of eigenvalues is
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— 3.5 Using the eigenvalues and eigenvectors you found for A, verify that

N PR
E AE_A_[O N

Sol: Using the formula for a matrix inverse, we find

_1 1 €22 —e1n 3 11 —v2] —V3[1 =2
Thus
e “ﬂ RS
:[10‘/§ f] A

— 3.6: Once you have diagonalized A, use your results for E and A to solve for the
n = 10 solution (19, y10)" to Pell’s equation with N = 2.
Sol: z19 = —3363 and y;9 = —2378. Note this formulation gives the negative solution, but since the
values for n = 10 are real, when they are squared in Pell’s equation, it makes no difference whether they
are negative or positive.

The Fibonacci sequence

The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of
genetics. Let x,, represent the Fibonacci sequence,

Tn+l = Tn + Tn—1, (NS'31)

where the current input sample z,, is equal to the sum of the previous two inputs. This is a “discrete time”
recurrence relationship. To solve for x,,, we require some initial conditions. In this exercise, let us define zy = 1
and x,<o = 0. This leads to the Fibonacci sequence {1,1,2,3,5,8,13,...} forn =10,1,2,3,...

Equation NS-3.1 is equivalent to the 2 x 2 matrix equations

[zﬂ —A [z:—j , A= E (ﬂ . (NS-3.2)

Problem # 4: Here we seek the general formula for x,. Like Pell’s equation, the Fibonacci
equation has a recursive eigenanalysis solution. To find it we must recast x,, as a 2 X 2 matrix
relationship and then proceed, as we did for the Pell case.

—4.1: Show that the Fibonacci sequence x,, = x,_1 + T,_o may be generated by

Tn| 1 1 " Zo o
Yn L 0] |wo Yo
Sol: Given the Matrix Eigenequation, powers of the eigen equation A™ = EA"E~!. The final solution is

2% IR W | B A P .
L/J_E[O )\] E [yo]' (NS-3.4)

1
= M . (NS-3.3)
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—4.2: What is the relationship between v,, and x,,?
Sol: This equation says that z,, = x,—1 + yn—1 and y, = z,—1. The latter equation may be rewritten as
Yn—1 = Tp—2. Thus
Tpn = Tp—1 + Tp-2

as requested.

—4.3: Write a Matlab/Octave program to compute x,, using the matrix equation above. Test
your code using the first few values of the sequence. Using your program, what is x,,? Note:
Consider using the eigenanalysis of A, described by Eq. NS-2 2.18 of the text.

Sol: You can try something like:

function xn = fib(n)
A= [11; 1 0]; [E,D] = eig(A); xy = ExDAnxinv(E)*[1; 0];
xn = xy(1l);

Given the initial conditions we defined, x40 = 165, 580, 141.

—4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible
to obtain the general formula for the Fibonacci sequence

n+1 n+1
o, = <1+*/5> (1‘/5> . (NS-3.5)

2 2

—4.5: What are the eigenvalues )\ of the matrix A?

Sol: The eigenvalues of the Fibonacci matrix are given by

det[II/\ ﬂ =M -A-1=(A-1/2" - (1/2° - 1= (A - 1/2)* = 5/4 =0,

thus A = Y5 — [1.618, —0.618)].

—4.6: How is the formula for x,, related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation (4 — A1 1)éy = 6, and normalized to 1) are given by

T 2y ] A
& = |V e= VAT E=[e, &]
_,//\i+1_ ,/A3+1_

From the eigenanalysis, we find that

P e i e el el i P g
yn O )\E_ 0 621 622 O )\11_ <611622—€12621) _621 611 0 ’

Solving for x,, we find that

1

(611622 - 612621)

— ) )
e — Jozrnor+n/ oz e non 1)

PERED

T, = (Aieue22 — A7i€12€21>

[t — Xt ]

Sl

—4.7: What happens to each of the two terms

[(u\/g) /2

Sol: [(1 4 v/5)/2]"** — 0and [(1 + v/5)/2]"t! — oo

n+1
} ?



