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Sol: Note: The number 1 should not be circled since it is not a prime.
�

– 8.2: What is the largest number you need to consider before only primes remain? Look
up the definition of the Matlab/Octave floor function (e.g, bπc = 3).
Sol: b

√
50c = b7.0711c = 7. �

– 8.3: Generalize: For n = 1, . . . , N , what is the largest number you need to consider
before only the primes remain?
Sol: floor(

√
N ) �

– 8.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49.
Sol: 22= 2 · 11 = π1π5
30= 2 · 3 · 5 = π1π2π3
34= 2 · 17 = π1π7
43= π14
44= 4 · 11 = π2

1π5
48= 4 · 12 = 42 · 3 = π4

1π2
49= 72 = π2

4
�

– 8.5: Find the largest prime πk ≤ 100. Do not use Matlab/Octave other than to check your
answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, . . . .
Cross off the even numbers, leaving 99, 97, 95, . . . . Pull out a factor (only one is necessary to
show that it is not prime).
Sol: 99=11*9, π25 = 97. �

– 8.6: Find the largest prime πk ≤ 1000. Do not use Matlab/Octave other than to
check your answer.
Sol: Write out the numbers starting with 1000 and counting backwards: 1000, 999, 998, 997, · · · . Cross
off the even numbers, leaving 999, 997, 995, · · · . Pull out a factor (only one is necessary to show that it is
not prime). 9 · 111, 997 = π168, 5 · 199 = π3 · π46. �

– 8.7: Explain why π−sk = e−s lnπk .
Sol: This follows from the identify za = ea ln z with a, z ∈ C. �

Problem # 9:CFA of ratios of large primes

– 9.1: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation
(e.g., π = [3., 7, 16, · · · ]). Show your work. Sol: 23/7 = (21 + 2)/7 = 3 + 2/7 = 3 + 1/(6 + 1)/2 =
3 + 1/(6 + 1/2). In bracket notation 23/7 = [3., 6, 2]. Matlab gives rat(23/7) = 3 + 1/(4 + 1/(−2)), or [1.,
4, -2] because rounding 7/2 can be taken as either 3+1/2 or 4-1/2. �
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– 9.2:Starting from the primes below 106, form the CFA of πj/πk with j = 78498 and
k < j.
Sol: First generate 106 primes with the matlab command π=primes(11+1e6).
The length of π is j = 78499, π(j) = 1, 000, 003, π(j − 1) = 999, 983 and π(j − 2) = 999, 979.
Let the target fraction be

T =
π(end− 1)

π(end− 2)
=

999983

999979
= 1.000004000084002.

Finding the CFA of T gives

rat(T ) = 1 + 1/249995 = [1; 249995].

Factoring this integer gives factor(249995)=5*49999. �

– 9.3: Look at other ratios of prime numbers and look for a pattern in the CFA of the
ratios of large primes. What is the most obvious conclusion? Sol: The CFA terminates
in only one term, as in the above example. �

– 9.4: (1pts) Try the Matlab/Octave functions rats(23/7), rats(3.2857), and
rats(3.2856). What an you conclude?
Sol: This function is similar to the CFA but uses rounding rather than truncation arithmatic.
rats(3.2857)=32857/10000 but rats(23/7)=23/7 because it rounds to 23/7, whereas
rats(3.2856)= 4107/1250 because it does not. �

– 9.5: (2pts) Can
√

2 be represented as a finite continued fraction? Why or why not?
Sol: No, because it is irrational. �

– 9.6: (2pts) What is the CFA for
√

2− 1?

Hint:
√

2 + 1 =
1√

2− 1
= [2; 2, 2, 2, · · · ].

Sol: 1 +
√

2 = 2 + 1/(2 + 1/(2 + · · · )) or [2., 2, 2, 2, · · · ], thus
√

2− 1 = [2., 2, 2, 2, · · · ]− 2 = 0 + 1/(2 + 1/(2 + 1/(2 + · · · ))).

�

– 9.7: Show that

1

1−
√
a

= a
11
2 + a

9
2 + a

7
2 + a

5
2 + a

3
2 +
√
a+ a5 + a4 + a3 + a2 + a+ 1 = 1− a6

syms a,b
b= taylor(1/( 1-sqrt(a) ))
simplify((1-sqrt(a))*b) = 1-aˆ6

Use symbolic analysis to show this, then explain. Sol: This seems like a very unlikely relationship. Un-
expectedly the coefficents of this expansion are all 1, leading to a is a sixth degree polynomial. It is
obvioiusly related to the six complex roots of unity. Thus we may find the companion matrix, followed
by an eigen solution. This seems to be a Taylor expansion of six roots of unity, expressed in terms of
removable singularities. See Cotes Theorem (1716) (Stillwell, 2010, p. 289). �



16 CHAPTER 1. NUMBER SYSTEMS

1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell’s equation, Fibonacci sequence

Pythagorean triplets

Problem # 1: Euclid’s formula for the Pythagorean triplets a, b, c is a = p2− q2, b = 2pq, and
c = p2 + q2.

– 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and
nonzero?

Sol: p > q > 0 (strictly greater than) �

– 1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the nonlinear system of equations for
p, q.

First solve linear system of equations for p2, q2:[
a
c

]
=

[
1 −1
1 1

] [
p2

q2

]
Inverting this 2x2 matrix gives (the determinant ∆ = 2)[

p2

q2

]
=

1

2

[
1 1
−1 1

] [
a
c

]
.

Thus p = ±
√

(a+ c)/2, q = ±
√

(c− a)/2.

Method 2: The algebraic approach is:

a+ c = (p2 − q2) + (p2 + q2) = 2p2

−a+ c = −(p2 − q2) + (p2 + q2) = 2q2,

Thus p =
√

(a+ c)/2, q =
√

(c− a)/2, where p, q ∈ N.
Method 1 seems more “transparent” than Method 2. �
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Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs
of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

– 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a c
119 169

3367 4825
4601 6649

12709 18541
65 97

Find a formula for a in terms of p and q.
Sol:

(a, c) = (119, 169) (p, q) = ±(12, 5)

(a, c) = (3367, 4825) (p, q) = ±(64, 27)

(a, c) = (4601, 6649) (p, q) = ±(75, 32)

(a, c) = (12709, 18541) (p, q) = ±(125, 54)

(a, c) = (65, 97) (p, q) = ±(9, 4)

�

– 2.2: Based on Euclid’s formula, show that c > (a, b).

Sol: c− a = (p2 + q2)− (p2 − q2) = 2q2

Because 2q2 is always positive, c > a
c− b = (p2 + q2)− 2pq = (p− q)2 > 0
Note that by the definition of p, q ∈ N, p > q. �

– 2.3: What happens when c = a?

Sol: Then its not a triangle since b = 0. The triangle is degenerate. �

– 2.4: Is b+ c a perfect square? Discuss.

Sol: b+ c = p2 + 2pq + q2 = (p+ q)2. Since p and q are integers, b+ c will always be a perfect square
(
√
b+ c will always be an integer).

�

Pell’s equation:
Problem # 3: Pell’s equation is one of the most historic (i.e., important) equations of Greek
number theory because it was used to show that

√
2 ∈ I. We seek integer solutions of

x2 −Ny2 = 1.

As shown in Sec. 2.5.2, the solutions xn, yn for the case ofN = 2 are given by the linear 2×2 matrix recursion[
xn+1

yn+1

]
= 1

[
1 2
1 1

] [
xn
yn

]
with [x0, y0]T = [1, 0]T and 1 =

√
−1 = ejπ/2. It follows that the general solution to Pell’s equation for N = 2

is [
xn
yn

]
= (eπ/2)n

[
1 2
1 1

]n [
x0
y0

]
.
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To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

An = eπn/2
[
1 2
1 1

]n
= eπn/2

[
1 2
1 1

] [
1 2
1 1

] [
1 2
1 1

]
· · ·
[
1 2
1 1

]
,

which becomes tedious for n > 2.

– 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues
as Pell’s equation. Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your
results!
Sol: The companion matrix is

A =

[
1 2
1 1

]
�

– 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of√
2. Explain why Pell’s equation is relevant to

√
2.

Sol: As discussed in Sec. 2.5.2, as the iteration n increases, the ratio of the xn/yn approaches
√

2. �

– 3.3: Find the first three values of (xn, yn)T by hand and show that they satisfy Pell’s
equation for N = 2. Sol: See class notes (slide 9.4.2) for this calculation. � By hand, find the
eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =

[
1 2
1 1

]
.

Sol: The eigenvalues are given by the roots of the equation (1 − λ±)2 = 2. Thus λ± = 1 ±
√

2 =
{2.1412,−.4142} �

– 3.4: By hand, show that the matrix of eigenvectors, E, is

E =
[
~e+ ~e−

]
=

1√
3

[
−
√

2
√

2
1 1

]
.

Sol:

The eigenvectors ~e± may be found by solving

A

[
e1
e2

]
= λ±

[
e1
e2

]
→ (A− λ±I)

[
e1
e2

]
= 0

For λ+, this gives

0 =

[
1− (1 +

√
2) 2

1 1− (1 +
√

2)

] [
e1
e2

]
=

[
−
√

2 2

1 −
√

2

] [
e1
e2

]
which gives the relation between the elements of ~e+, e1, e2, as e1 =

√
2e2.

The eigenvectors are defined to be unit length and orthogonal, namely

1. ||~ek||2 = ~ek · ~ek = 1

2. ~e+ · ~e− = 0.

Once we normalize ~e+ to have unit length, we obtain the first eigenvector

~e+ =
1√
3

[
−
√

2
1

]
Repeating this for λ− gives

~e− =
1√
3

[√
2

1

]
Thus, the matrix of eigenvalues is

E =
1√
3

[
−
√

2
√

2
1 1

]
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�

– 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[
λ+ 0
0 λ−

]
Sol: Using the formula for a matrix inverse, we find

E−1 =
1

det(E)

[
e22 −e12
−e21 e11

]
=

3

−2
√

2

1√
3

[
1 −

√
2

−1 −
√

2

]
=
−
√

3

2
√

2

[
1 −

√
2

−1 −
√

2

]
Thus

E−1AE =
−
√

3

2
√

2

[
1 −

√
2

−1 −
√

2

] [
1 2
1 1

]
1√
3

[
−
√

2
√

2
1 1

]
=
−1

2
√

2

[
1 −

√
2

−1 −
√

2

] [
(−
√

2 + 2) (
√

2 + 2)

(−
√

2 + 1) (
√

2 + 1)

]
=

[
1−
√

2 0

0 1 +
√

2

]
= Λ

�

– 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the
n = 10 solution (x10, y10)

T to Pell’s equation with N = 2.
Sol: x10 = −3363 and y10 = −2378. Note this formulation gives the negative solution, but since the
values for n = 10 are real, when they are squared in Pell’s equation, it makes no difference whether they
are negative or positive. �

The Fibonacci sequence
The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of
genetics. Let xn represent the Fibonacci sequence,

xn+1 = xn + xn−1, (NS-3.1)

where the current input sample xn is equal to the sum of the previous two inputs. This is a “discrete time”
recurrence relationship. To solve for xn, we require some initial conditions. In this exercise, let us define x0 = 1
and xn<0 = 0. This leads to the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .} for n = 0, 1, 2, 3, . . . .

Equation NS-3.1 is equivalent to the 2× 2 matrix equations[
xn
yn

]
= A

[
xn−1
yn−1

]
, A =

[
1 1
1 0

]
. (NS-3.2)

Problem # 4: Here we seek the general formula for xn. Like Pell’s equation, the Fibonacci
equation has a recursive eigenanalysis solution. To find it we must recast xn as a 2× 2 matrix
relationship and then proceed, as we did for the Pell case.

– 4.1: Show that the Fibonacci sequence xn = xn−1 + xn−2 may be generated by[
xn
yn

]
=

[
1 1
1 0

]n [
x0
y0

]
,

[
x0
y0

]
=

[
1
0

]
. (NS-3.3)

Sol: Given the Matrix Eigenequation, powers of the eigen equation An = EΛnE−1. The final solution is[
xn
yn

]
= E

[
λ+ 0
0 λ−

]n
E−1

[
x0
y0

]
. (NS-3.4)

�



20 CHAPTER 1. NUMBER SYSTEMS

– 4.2: What is the relationship between yn and xn?
Sol: This equation says that xn = xn−1 + yn−1 and yn = xn−1. The latter equation may be rewritten as

yn−1 = xn−2. Thus
xn = xn−1 + xn−2

as requested. �

– 4.3: Write a Matlab/Octave program to compute xn using the matrix equation above. Test
your code using the first few values of the sequence. Using your program, what is x40? Note:
Consider using the eigenanalysis of A, described by Eq. NS-2 2.18 of the text.

Sol: You can try something like:
function xn = fib(n)
A = [1 1; 1 0]; [E,D] = eig(A); xy = E*D∧n*inv(E)*[1; 0];
xn = xy(1);

Given the initial conditions we defined, x40 = 165, 580, 141. �

– 4.4: Using the eigenanalysis of the matrixA (and a lot of algebra), show that it is possible
to obtain the general formula for the Fibonacci sequence

xn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 . (NS-3.5)

– 4.5: What are the eigenvalues λ± of the matrix A?

Sol: The eigenvalues of the Fibonacci matrix are given by

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1 = (λ− 1/2)2 − (1/2)2 − 1 = (λ− 1/2)2 − 5/4 = 0,

thus λ± = 1±
√
5

2 = [1.618,−0.618]. �

– 4.6: How is the formula for xn related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation (A− λ±I)~e± = ~0, and normalized to 1) are given by

~e+ =

 λ+√
λ2
++1
1√
λ2
++1

 ~e− =

 λ−√
λ2
−+1
1√
λ2
−+1

 E =
[
~e+ ~e−

]
From the eigenanalysis, we find that[

xn
yn

]
= E

[
λn+ 0
0 λn−

]
E−1

[
1
0

]
=

[
e11 e12
e21 e22

] [
λn+ 0
0 λn−

]
1

(e11e22 − e12e21)

[
e22 −e12
−e21 e11

] [
1
0

]
.

Solving for xn we find that

xn =
1

(e11e22 − e12e21)

(
λn+e11e22− λn−e12e21

)
=

1
√
5√

(λ2
++1)(λn−+1)

[
λn+

(
λn+√

(λ2+ + 1)(λn− + 1)

)
− λn−

(
λn−√

(λ2+ + 1)(λn− + 1)

)]

=
1√
5

[
λn+1
+ − λn+1

−

]
�

– 4.7: What happens to each of the two terms[(
1±
√

5
)
/2
]n+1

?

Sol: [(1 +
√

5)/2]n+1 → 0 and [(1 +
√

5)/2]n+1 →∞ �


