1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence

Pythagorean triplets

Problem # 1: Euclid's formula for the Pythagorean triplets a, b, c is $a = p^2 - q^2$, b = 2pq, and $c = p^2 + q^2$.

-1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

Sol: p > q > 0 (strictly greater than)

-1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the *nonlinear system of equations* for p, q.

First solve linear system of equations for p^2, q^2 :

$$\begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} p^2 \\ q^2 \end{bmatrix}$$

Inverting this 2x2 matrix gives (the determinant $\Delta = 2$)

$$\begin{bmatrix} p^2 \\ q^2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix}.$$

Thus $p = \pm \sqrt{(a+c)/2}$, $q = \pm \sqrt{(c-a)/2}$.

Method 2: The algebraic approach is:

$$a + c = (p^2 - q^2) + (p^2 + q^2) = 2p^2$$

$$-a + c = -(p^2 - q^2) + (p^2 + q^2) = 2q^2,$$

Thus $p = \sqrt{(a+c)/2}$, $q = \sqrt{(c-a)/2}$, where $p, q \in \mathbb{N}$.

Method 1 seems more "transparent" than Method 2. ■

1.3. PROBLEMS NS-3

Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.7).

-2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a	c
119	169
3367	4825
4601	6649
12709	18541
65	97

Find a formula for a in terms of p and q. Sol:

$$(a,c) = (119,169)$$
 $(p,q) = \pm (12,5)$ $(a,c) = (3367,4825)$ $(p,q) = \pm (64,27)$ $(a,c) = (4601,6649)$ $(p,q) = \pm (75,32)$ $(a,c) = (12709,18541)$ $(p,q) = \pm (125,54)$ $(p,q) = \pm (9,4)$

-2.2: Based on Euclid's formula, show that c > (a, b).

-2.3: What happens when c = a?

Sol: Then its not a triangle since b = 0. The triangle is degenerate.

-2.4: Is b+c a perfect square? Discuss.

Sol: $b+c=p^2+2pq+q^2=(p+q)^2$. Since p and q are integers, b+c will always be a perfect square $(\sqrt{b+c}$ will always be an integer).

Pell's equation:

Problem # 3: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{L}$. We seek integer solutions of

$$x^2 - Ny^2 = 1.$$

As shown in Sec. 2.5.2, the solutions x_n, y_n for the case of N=2 are given by the linear 2×2 matrix recursion

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = 1j \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

with $[x_0, y_0]^T = [1, 0]^T$ and $1j = \sqrt{-1} = e^{j\pi/2}$. It follows that the general solution to Pell's equation for N = 2 is

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = (e^{j\pi/2})^n \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.$$

To calculate solutions to Pell's equation using the matrix equation above, we must calculate

$$A^n = e^{\jmath \pi n/2} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^n = e^{\jmath \pi n/2} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix},$$

which becomes tedious for n > 2.

-3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as Pell's equation. Hint: Use Matlab's function [E, Lambda] = eig(A) to check your results!

Sol: The companion matrix is

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

- 3.2: Solutions to Pell's equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell's equation is relevant to $\sqrt{2}$.

Sol: As discussed in Sec. 2.5.2, as the iteration n increases, the ratio of the x_n/y_n approaches $\sqrt{2}$.

-3.3: Find the first three values of $(x_n, y_n)^T$ by hand and show that they satisfy Pell's equation for N=2. Sol: See class notes (slide 9.4.2) for this calculation. By hand, find the eigenvalues λ_{\pm} of the 2×2 Pell's equation matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

Sol: The eigenvalues are given by the roots of the equation $(1 - \lambda_{\pm})^2 = 2$. Thus $\lambda_{\pm} = 1 \pm \sqrt{2} = \{2.1412, -.4142\}$

-3.4: By hand, show that the matrix of eigenvectors, E, is

$$E = \begin{bmatrix} \vec{e}_+ & \vec{e}_- \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}.$$

Sol:

The eigenvectors \vec{e}_{\pm} may be found by solving

$$A \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \lambda_{\pm} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \to (A - \lambda_{\pm} I) \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 0$$

For λ_+ , this gives

$$0 = \begin{bmatrix} 1 - (1 + \sqrt{2}) & 2 \\ 1 & 1 - (1 + \sqrt{2}) \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} -\sqrt{2} & 2 \\ 1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

which gives the relation between the elements of \vec{e}_+ , e_1 , e_2 , as $e_1 = \sqrt{2}e_2$. The eigenvectors are defined to be unit length and orthogonal, namely

1.
$$||\vec{e}_k||^2 = \vec{e}_k \cdot \vec{e}_k = 1$$

2.
$$\vec{e}_+ \cdot \vec{e}_- = 0$$
.

Once we normalize \vec{e}_{+} to have unit length, we obtain the first eigenvector

$$\vec{e}_{+} = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}$$

Repeating this for λ_{-} gives

$$\vec{e}_{-} = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}$$

Thus, the matrix of eigenvalues is

$$E = \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix}$$

1.3. PROBLEMS NS-3

-3.5: Using the eigenvalues and eigenvectors you found for A, verify that

$$E^{-1}AE = \Lambda \equiv \begin{bmatrix} \lambda_+ & 0\\ 0 & \lambda_- \end{bmatrix}$$

Sol: Using the formula for a matrix inverse, we find

$$E^{-1} = \frac{1}{\det(E)} \begin{bmatrix} e_{22} & -e_{12} \\ -e_{21} & e_{11} \end{bmatrix} = \frac{3}{-2\sqrt{2}} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} = \frac{-\sqrt{3}}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix}$$

Thus

$$\begin{split} E^{-1}AE &= \frac{-\sqrt{3}}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} -\sqrt{2} & \sqrt{2} \\ 1 & 1 \end{bmatrix} \\ &= \frac{-1}{2\sqrt{2}} \begin{bmatrix} 1 & -\sqrt{2} \\ -1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} (-\sqrt{2}+2) & (\sqrt{2}+2) \\ (-\sqrt{2}+1) & (\sqrt{2}+1) \end{bmatrix} \\ &= \begin{bmatrix} 1-\sqrt{2} & 0 \\ 0 & 1+\sqrt{2} \end{bmatrix} = \Lambda \end{split}$$

- 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the n = 10 solution $(x_{10}, y_{10})^T$ to Pell's equation with N = 2.

Sol: $x_{10} = -3363$ and $y_{10} = -2378$. Note this formulation gives the negative solution, but since the values for n = 10 are real, when they are squared in Pell's equation, it makes no difference whether they are negative or positive.

The Fibonacci sequence

The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of genetics. Let x_n represent the Fibonacci sequence,

$$x_{n+1} = x_n + x_{n-1},$$
 (NS-3.1)

where the current input sample x_n is equal to the sum of the previous two inputs. This is a "discrete time" recurrence relationship. To solve for x_n , we require some initial conditions. In this exercise, let us define $x_0 = 1$ and $x_{n < 0} = 0$. This leads to the Fibonacci sequence $\{1, 1, 2, 3, 5, 8, 13, \ldots\}$ for $n = 0, 1, 2, 3, \ldots$.

Equation NS-3.1 is equivalent to the 2×2 matrix equations

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = A \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$
 (NS-3.2)

Problem # 4: Here we seek the general formula for x_n . Like Pell's equation, the Fibonacci equation has a recursive eigenanalysis solution. To find it we must recast x_n as a 2×2 matrix relationship and then proceed, as we did for the Pell case.

-4.1: Show that the Fibonacci sequence $x_n = x_{n-1} + x_{n-2}$ may be generated by

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \qquad \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
 (NS-3.3)

Sol: Given the Matrix Eigenequation, powers of the eigen equation $A^n = E\Lambda^n E^{-1}$. The final solution is

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \mathbf{E} \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix}^n \mathbf{E}^{-1} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.$$
 (NS-3.4)

-4.2: What is the relationship between y_n and x_n ?

<u>Sol:</u> This equation says that $x_n = x_{n-1} + y_{n-1}$ and $y_n = x_{n-1}$. The latter equation may be rewritten as $y_{n-1} = x_{n-2}$. Thus

$$x_n = x_{n-1} + x_{n-2}$$

as requested.

-4.3: Write a Matlab/Octave program to compute x_n using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is x_{40} ? Note: Consider using the eigenanalysis of A, described by Eq. NS-2 2.18 of the text.

Sol: You can try something like:

function xn = fib(n) $A = [1 1; 1 0]; [E,D] = eig(A); xy = E*D^n*inv(E)*[1; 0];$ xn = xy(1);

Given the initial conditions we defined, $x_{40} = 165, 580, 141$.

-4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to obtain the general formula for the Fibonacci sequence

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right].$$
 (NS-3.5)

-4.5: What are the eigenvalues λ_{\pm} of the matrix A?

Sol: The eigenvalues of the Fibonacci matrix are given by

$$\det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 - \lambda - 1 = (\lambda - 1/2)^2 - (1/2)^2 - 1 = (\lambda - 1/2)^2 - 5/4 = 0,$$

thus $\lambda_{\pm} = \frac{1 \pm \sqrt{5}}{2} = [1.618, -0.618]$.

-4.6: How is the formula for x_n related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation $(A - \lambda_{\pm} I)\vec{e}_{\pm} = \vec{0}$, and normalized to 1) are given by

$$\vec{e}_+ = \begin{bmatrix} \frac{\lambda_+}{\sqrt{\lambda_+^2 + 1}} \\ \frac{1}{\sqrt{\lambda_+^2 + 1}} \end{bmatrix} \qquad \qquad \vec{e}_- = \begin{bmatrix} \frac{\lambda_-}{\sqrt{\lambda_-^2 + 1}} \\ \frac{1}{\sqrt{\lambda_-^2 + 1}} \end{bmatrix} \qquad \qquad E = \begin{bmatrix} \vec{e}_+ & \vec{e}_- \end{bmatrix}$$

From the eigenanalysis, we find that

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = E \begin{bmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{bmatrix} E^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{bmatrix} \begin{bmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{bmatrix} \frac{1}{(e_{11}e_{22} - e_{12}e_{21})} \begin{bmatrix} e_{22} & -e_{12} \\ -e_{21} & e_{11} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Solving for x_n we find that

$$x_{n} = \frac{1}{(e_{11}e_{22} - e_{12}e_{21})} \left(\lambda_{+}^{n}e_{11}e^{22} - \lambda_{-}^{n}e_{12}e_{21}\right)$$

$$= \frac{1}{\frac{\sqrt{5}}{\sqrt{(\lambda_{+}^{2}+1)(\lambda_{-}^{n}+1)}}} \left[\lambda_{+}^{n} \left(\frac{\lambda_{+}^{n}}{\sqrt{(\lambda_{+}^{2}+1)(\lambda_{-}^{n}+1)}}\right) - \lambda_{-}^{n} \left(\frac{\lambda_{-}^{n}}{\sqrt{(\lambda_{+}^{2}+1)(\lambda_{-}^{n}+1)}}\right)\right]$$

$$= \frac{1}{\sqrt{5}} \left[\lambda_{+}^{n+1} - \lambda_{-}^{n+1}\right]$$

- 4.7: What happens to each of the two terms

$$\left[\left(1\pm\sqrt{5}\right)/2\right]^{n+1}?$$

Sol: $[(1+\sqrt{5})/2]^{n+1} \to 0$ and $[(1+\sqrt{5})/2]^{n+1} \to \infty$

1.3. PROBLEMS NS-3 21

-4.8: What happens to the ratio x_{n+1}/x_n ? Sol: $x_{n+1}/x_n \to (1+\sqrt{5})/2$, because $((1-\sqrt{5})/2)^n \to 0$ as $n \to \infty$ thus for large $n, x_n \approx [(1+\sqrt{5})/2]^{n+1}$.

Problem # 5: Replace the Fibonacci sequence with

$$x_n = \frac{x_{n-1} + x_{n-2}}{2},$$

such that the value x_n is the average of the previous two values in the sequence.

- 5.1: What matrix A is used to calculate this sequence? **Sol:**

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix}$$

- 5.2: Modify your computer program to calculate the new sequence x_n . What happens as $n \to \infty$?

Sol: As $n \to \infty$, $x_n \to 2/3$

-5.3: What are the eigenvalues of your new A? How do they relate to the behavior of x_n as $n \to \infty$? Hint: You can expect the closed-form expression for x_n to be similar to Eq. NS-3.4. Sol: The eigenvalues are $\lambda_+ = 1$ and $\lambda_- = -0.5$. From Eq. NS-2 2.18, the expression for A^n is

$$A^n = (E\Lambda E^{-1})^n = E\Lambda^n E^{-1} = \begin{bmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{bmatrix}^n = \begin{bmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{bmatrix}.$$

The solution is the sum of two sequences, one a constant and the other an oscillation that quickly fades. As $n \to \infty$, $\lambda_+^n = 1^n \to 1$ and $\lambda_-^n = (-1/2)^n \to 0$. The solution becomes

$$x_n = \frac{2}{3} \left[\lambda_+^n - \lambda_-^n \right] = \frac{2}{3} \left[1^n - (-1)^n \right] \to \frac{2}{3}.$$

Problem # 6: Consider the expression

$$\sum_{1}^{N} f_n^2 = f_N f_{N+1}.$$

-6.1: Find a formula for f_n that satisfies this relationship. Hint: It holds for only the Fibonacci recursion formula.

Sol: Write this out for N and N-1:

$$f_1^2 + f_2^2 + \dots + f_{N-1}^2 + f_N^2 = f_N f_{N+1}$$

$$f_1^2 + f_2^2 + \dots + f_{N-1}^2 = f_{N-1} f_N$$

Subtracting gives

$$f_N^{2} = f_N f_{N+1} - f_{N-1} f_N = f_N (f_{N+1} - f_{N-1})$$

 $f_N = f_{N+1} - f_{N-1}$

Thus the relation only holds for the Fibonacci recursion formula.

CFA as a matrix recursion

Problem # 7: The CFA may be writen as a matrix recursion. For this we adopt a special notation, unlike other matrix notations, a with $k \in \mathbb{N}$:

$$\begin{bmatrix} n \\ x \end{bmatrix}_{k+1} = \begin{bmatrix} 0 & \lfloor x_k \rfloor \\ 0 & \frac{1}{x_k - \lfloor x_k \rfloor} \end{bmatrix} \begin{bmatrix} n \\ x \end{bmatrix}_k.$$

This equation says that $n_{k+1} = \lfloor x_k \rfloor$ and $x_{k+1} = 1/(x_k - \lfloor x_k \rfloor)$. It does *not* mean that $n_{k+1} = \lfloor x_k \rfloor x_k$, as would be implied by standard matrix notation. The lower equation says that $r_k = x_k - \lfloor x_k \rfloor$ is the *remainder*—namely, $x_k = \lfloor x_k \rfloor + r_k$ (Octave/Matlab's rem(x, floor(x)) function), also known as mod(x, y).

-7.1: Start with $n_0 = 0 \in \mathbb{N}$, $x_0 \in \mathbb{I}$, $n_1 = \lfloor x_0 \rfloor \in \mathbb{N}$, $r_1 = x - \lfloor x \rfloor \in \mathbb{I}$, and $x_1 = 1/r_1 \in \mathbb{I}$, $r_n \neq 0$. For k = 1 this generates on the left the next CFA parameter $n_2 = \lfloor x_1 \rfloor$ and $x_2 = 1/r_2 = 1/(x_0 - \lfloor x_0 \rfloor)$ from n_0 and x_0 . Find $[n, x]_{k+1}^T$ for k = 2, 3, 4, 5.

Sol: If $x_0 = \pi$, then $n_1 = \lfloor \pi \rfloor = 3$, $r_1 = \pi - n_1 = 0.14159 \cdots$, and $x_1 = 1/r_1 \approx 7.06$:

$$\begin{bmatrix} 3 \\ 7.06251 \end{bmatrix}_1 = \begin{bmatrix} 0 & \lfloor \pi \rfloor \\ 0 & \frac{1}{\pi - \lfloor \pi \rfloor} \end{bmatrix} \begin{bmatrix} 0 \\ \pi \end{bmatrix}_0$$

and for n=2

$$\begin{bmatrix} 7 \\ 15.99659 \end{bmatrix}_2 = \begin{bmatrix} 7 \\ \frac{1}{0.06251} \end{bmatrix}_2 = \begin{bmatrix} 0 & 7 \\ 0 & \frac{1}{7.0625-7} \end{bmatrix} \begin{bmatrix} 3 \\ 7.06251 \end{bmatrix}_1$$

For n = 3, $\pi_3 = [n_1; n_2, n_3] = [3; 7, 15]$. Continuing $n_4 = |1.003418| = 1$ and $n_5 = 292$.

^aThis notation is highly nonstandard due to the nonlinear operations. The matrix elements are *derived* from the vector rather than multiplying them. These calculation may be done with the help of Matlab/Octave.