
Chapter 4

Vector differential equations

4.1 Problems VC-1

4.1.1 Topics of this homework:
Vector algebra and fields in R3, gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss’s
(divergence) and Stokes’s (curl) laws, system classification (postulates).

4.1.2 Scalar fields and the∇ operator
Problem # 1: Let T (x, y) = x2 + y be an analytic scalar temperature field in two dimensions
(single-valued ∈ R2).

– 1.1: Find the gradient of T (x) and make a sketch of T and the gradient.

Sol:∇(x2 + y) = 2xx̂ + ŷ. The temperature is quadratic in x and linear in y, which has the shape of a trough
in x, linearly increasing in y. In the y (ŷ) direction the gradient is constant, and in the x̂ direction, it is linear,
and goes through zero at x = 0, with T (0) = 0. Skiing in the y direction would be a constant ride of slope 1.
If the snow had no friction, you would accelerate, but the terminal velocity would be due to the friction of the
snow on the skis. Along the x direction, you would accelerate, at first, coming down, and at x = 0 you would
stop accelerating, and begin slow down. This would be a more interesting problem if you treated it in terms of the
forces on the skis and included friction as well as gravity. �

– 1.2: Compute∇2T (x) to determine whether T (x) satisfies Laplace’s equation.

Sol: Forming this operation we find that

∂2

∂x2
x2 +

�
�
�∂2

∂y2
y = 2.

So T (x) does not satisfy laplace’s equation, rather it satisfies the Poisson equation∇2T (x) = 2. �

– 1.3: Sketch the iso-temperature contours at T = −10, 0, 10 degrees.

Sol: The iso-potential contours are the concave parabolas y = T0 − x2. �

– 1.4: The heat flux1 is defined as J(x, y) = −κ(x, y)∇T , where κ(x, y) is a constant that
denotes thermal conductivity at the point (x, y). Given that κ = 1 everywhere (the medium is
homogeneous), plot the vector J(x, y) = −∇T at x = 2, y = 1. Be clear about the origin,

1The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.
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direction, and length of your result.

Sol: J = ∇T = −2xx̂ +−ŷ thus −κ∇T (2, 1) = J = −(4x̂ + ŷ), which has a length of
√

17 and is pointed
1
√

1 unit down and 4/
√

17 units to the left. �

– 1.5: Find the vector ⊥ to ∇T (x, y)—that is, tangent to the iso-temperature contours.
Hint: Sketch it for one (x, y) point (e.g., 2, 1) and then generalize.

Sol: We may invoke the third dimension ẑ to generate this vector: ±ẑ × ∇T =

 x̂ ŷ ẑ
0 0 ±1

2x 1 0

 = ∓(1x̂ −

2xŷ + 0ẑ). Alternatively, rotate∇T by ±π/2 in the (x, y) plane. �

– 1.6: The thermal resistance RT is defined as the potential drop ∆T over the magnitude
of the heat flux |J |. At a single point the thermal resistance is

RT (x, y) = −∇T/|J |.

How is RT (x, y) related to the thermal conductivity κ(x, y)?
Sol: RT (x, y) = 1/κ(x, y). In general, resistance is the reciprocal of conductivity (conductance). This is true

for electrical and acoustic systems as well. �

Problem # 2: Acoustic wave equation
Note: In this problem, we will work in the frequency domain.

– 2.1: The basic equations of acoustics in one dimension are

− ∂

∂x
P = ρosV and − ∂

∂x
V =

s

ηoPo
P .

Here P (x, ω) is the pressure (in the frequency domain), V (x, ω) is the volume velocity (the integral of the velocity
over the wavefront with area A), s = σ + ω, ρo = 1.2 is the specific density of air, ηo = 1.4, and Po is the
atmospheric pressure (i.e., 105 Pa). Note that the pressure field P is a scalar (pressure does not have direction),
while the volume velocity field V is a vector (velocity has direction).

We can generalize these equations to three dimensions using the∇ operator

−∇P = ρosV and −∇ · V =
s

ηoPo
P .

– 2.2: Starting from these two basic equations, derive the scalar wave equation in terms of
the pressure P ,

∇2P =
s2

c20
P ,

where c0 is a constant representing the speed of sound.
Sol: We wish to remove V from the two equations, to obtain a single equation in pressure. If we take the

partial wrt x of the pressure equation, and then substitute the velocity equation, to remove the velocity:

∇2P = −ρos∇ · V =
s2ρo
ηoPo

P =
s2

c2o
P

�

– 2.3: What is c0 in terms of η0, ρ0, and P0?

Sol: Comparing the last two terms from the previous solution we see that

co =
√
ηoPo/ρo.

�
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– 2.4: Rewrite the pressure wave equation in the time domain using the time derivative
property of the Laplace transform [e.g., dx/dt ↔ sX(s)]. For your notation, define the time–
domain signal using a lowercase letter, p(x, y, z, t)↔ P .

Sol:

∇2p(x, y, z, t) =
1

c20

∂2

∂t2
p(x, y, z, t)

�

4.1.3 Vector fields and the∇ operator

4.1.4 Vector algebra
Problem # 3: Let R(x, y, z) ≡ x(t)x̂ + y(t)ŷ + z(t)ẑ.

– 3.1: If a, b, and c are constants, what is R(x, y, z) ·R(a, b, c)?
Sol: Using the formula for a scalar dot product:

R(x, y, z) ·R(a, b, c) ≡ [x(t)x̂ + y(t)ŷ + z(t)ẑ] · [ax̂ + bŷ + cẑ]

= x(t)a+ y(t)b+ z(t)c.

�

– 3.2: If a, b, and c are constants, what is d
dt

(R(x, y, z) ·R(a, b, c))?
Sol:

(
a ddtx(t) + b ddty(t) + c ddtz(t)

)
. �

Problem # 4: Find the divergence and curl of the following vector fields:

– 4.1: v = x̂ + ŷ + 2ẑ
Sol:∇ · v = 0, ∇× v = 0 �

– 4.2: v(x, y, z) = xx̂ + xyŷ + z2ẑ

Sol:∇ ·v ≡ ∂xx+ ∂yxy+ ∂zz
2 = 1 + x+ 2z ∇×v ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
x xy z2

∣∣∣∣∣∣ = (0− 0)x̂ + (0− 0)ŷ + (y− 0)ẑ = yẑ

�

– 4.3: v(x, y, z) = xx̂ + xyŷ + log(z)ẑ
Sol: Divergence: ∂xx+ ∂yxy+ ∂z log(z) = 1 + x+ 1/z, Curl: x̂ (∂y log(z)− ∂zxy) + ŷ (∂zx− ∂x log(z)) +

ẑ (∂xxy − ∂yx) = ẑy �

– 4.4: v(x, y, z) = ∇(1/x+ 1/y + 1/z)
Sol: First find v = −(x̂/x2 + ŷ/y2 + ẑ/z2). Divergence of v: −(∂x1/x2 + ∂y1/y2 + ∂z1/z

2) = 2(1/x3 +
1/y3 + 1/z3), Curl of v: 0, because the curl of the gradient is always zero. �

4.1.5 Vector and scalar field identities
Problem # 5: Find the divergence and curl of the following vector fields:

– 5.1: v = ∇φ, where φ(x, y) = xey

Sol:∇×∇φ = 0, and ∇2φ = xey �

– 5.2: v = ∇×A, where A = xx̂ + yŷ + zẑ
Sol:∇ · (∇×A) = 0, and ∇× (∇×A) = 0 �

– 5.3: v = ∇×A, where A = yx̂ + x2ŷ + zẑ
Sol:∇ · (∇×A) = 0, and ∇× (∇×A) = −2ŷ �
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– 5.4: For any differentiable vector field V , write two vector calculus identities that are
equal to zero.

Sol: Curl of the gradient ∇×∇Φ(x, y, z) = 0 and the divergence of the curl ∇ · ∇ ×V(x, y, z) = 0 are both
zero. (Page 780, Stillwell) �

– 5.5: What is the most general form a vector field may be expressed in, in terms of scalar
Φ and vector A potentials?

Sol: V = ∇Φ(x, y, z) +∇×A(x, y, z), where Φ is the scalar potential and A is the vector potential. �

Problem # 6: Perform the following calculations. If you can state the answer without doing
the calculation, explain why.

– 6.1: Let v = sin(x)x̂ + yŷ + zẑ. Find∇ · (∇× v).
Sol: 0 �

– 6.2: Let v = sin(x)x̂ + yŷ + zẑ. Find∇× (∇
√
v · v)

Sol: 0 �

– 6.3: Let v(x, y, z) = ∇(x+ y2 + sin(log(z)). Find ∇× v(x, y, z).
Sol: It is zero because ∇×∇f(x, y, z) is always zero. �

4.1.6 Integral theorems
Problem # 7: For each of the following problems, in a few words, identify either Gauss’s or
Stokes’s law, define what it means, and explain the formula that follows the question.

– 7.1: What is the name of this formula?∫
S
n̂ · v dA =

∫
V
∇ · v dV.

Sol: This is the integral form of Gauss’ law. The unit normal vector is ⊥ to the surface S having area A ≡
∫

S dA
The integral represents the total flow normal to the surface. The surface integral is equal to the integral of the
divergence of the vector field ∇ · v over the volume contained by the surface, and defined as V . �

– 7.2: What is the name of this formula?∫
S

(∇× V ) · dS =

∮
C

V · dR

Give one important application. Sol: Stokes Theorem, which relates the differential to the integral form of
Maxwell’s equations. �

– 7.3: Describe a key application of the vector identity

∇× (∇×V) = ∇(∇ ·V)−∇2V.

Sol: When we wish to reduce Maxwell’s two curl equations to the vector wave equation, we must use this iden-
tity. �


