
An Invitation to Mathematical Physics

and Its History

Jont B. Allen

Copyright © 2016,17,18 Jont Allen

University of Illinois at Urbana-Champaign

http://jontalle.web.engr.illinois.edu/uploads/298/

Wednesday 27th June, 2018 @ 08:18; Version 0.90.7



2



Contents

1 Introduction 17

1.1 Early Science and Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Lecture 1: (Week 1) Three Streams from the Pythagorean theorem . . . . . 18

1.1.2 What is mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Early physics as mathematics . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.4 Modern mathematics is born . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.5 Science meets mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.6 The Three Pythagorean Streams . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Stream 1: Number Systems (10 Lectures) . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Lecture 2: The Taxonomy of Numbers: P,N,Z,Q,F, I,R,C . . . . . . . 29

1.2.2 Lecture 3: The role of physics in mathematics . . . . . . . . . . . . . . . . 36

1.2.3 Lecture 4: (Week 2) Prime numbers . . . . . . . . . . . . . . . . . . . . . 40

1.2.4 Lecture 5: The Euclidean algorithm . . . . . . . . . . . . . . . . . . . . . 43

1.2.5 Lecture 6: (Week 3) Continued fractions . . . . . . . . . . . . . . . . . . . 45

1.2.6 Lecture 7: Pythagorean triplets (Euclid’s formula) . . . . . . . . . . . . . 48

1.2.7 Lecture 8: Pell’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.2.8 Lecture 9: (Week 4) Fibonacci sequence . . . . . . . . . . . . . . . . . . . 53

1.2.9 Lecture 10: Exam I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.3 Stream 2: Algebraic Equations (12 Lectures) . . . . . . . . . . . . . . . . . . . . 56

1.3.1 Lecture 11: Algebra and geometry as physics . . . . . . . . . . . . . . . . 56

1.3.2 Matrix formulation of the polynomial . . . . . . . . . . . . . . . . . . . . 65

1.3.3 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.3.4 Lecture 12: (Week 5) Polynomial root classification . . . . . . . . . . . . . 73

1.3.5 Lecture 13: Residue expansions of rational functions . . . . . . . . . . . . 76

1.3.6 Lecture 14: Introduction to Analytic Geometry . . . . . . . . . . . . . . . 77

1.3.7 Scalar products and applications . . . . . . . . . . . . . . . . . . . . . . . 84

1.3.8 Lecture 15: (Week 6) Gaussian Elimination . . . . . . . . . . . . . . . . . 87

1.3.9 Lecture 16: Transmission (ABCD) matrix composition method . . . . . . . 89

1.3.10 The impedance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

1.3.11 Lecture 17: Riemann Sphere . . . . . . . . . . . . . . . . . . . . . . . . . 92

1.3.12 Lecture 18: (Week 7) Complex analytic mappings (Domain-coloring) . . . 95

1.3.13 Lecture 19: Signals: Fourier and Laplace transforms . . . . . . . . . . . . 97

1.3.14 Lecture 20: Systems: Laplace transforms . . . . . . . . . . . . . . . . . . 98

1.3.15 Lecture 21: (Week 8) Network (System) Postulates . . . . . . . . . . . . . 100

1.3.16 Lecture 22: Exam II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

1.4 Stream 3a: Scalar Calculus (11 Lectures) . . . . . . . . . . . . . . . . . . . . . . 103

1.4.1 Lecture 23: Fundamental theorems of calculus . . . . . . . . . . . . . . . 105

3



4 CONTENTS

1.4.2 Lecture 24: (Week 9) Cauchy-Riemann conditions . . . . . . . . . . . . . 107

1.4.3 Lecture 25: Complex Analytic functions and Brune Impedance . . . . . . . 109

1.4.4 Lecture 26: Branch cuts, Riemann Sheets . . . . . . . . . . . . . . . . . . 114

1.4.5 Lecture 27: (Week 10) Three complex integration theorems I . . . . . . . . 118

1.4.6 Lecture 28: Three complex integration theorems II, III . . . . . . . . . . . 120

1.4.7 Lecture 29: Inverse Laplace transform (t < 0) & Cauchy residue theorem . 121

1.4.8 Lecture 30: (Week 11) Inverse Laplace transform (t > 0) . . . . . . . . . . 122

1.4.9 Lecture 31: Properties of the LT . . . . . . . . . . . . . . . . . . . . . . . 123

1.4.10 Solving differential equations: Method of Frobenius . . . . . . . . . . . . 125

1.4.11 Lecture 32: In class Review re Exam III . . . . . . . . . . . . . . . . . . 125

1.5 Stream 3b: Vector Calculus (10 Lectures) . . . . . . . . . . . . . . . . . . . . . . 126

1.5.1 Lecture 33: (Week 12) Properties of Fields and potentials . . . . . . . . . . 126

1.5.2 Lecture 34: Gradient ∇, divergence∇·, curl ∇×and Laplacian ∇2 . . . . . 128

1.5.3 Lecture 35 (I): Partial differential equations from physics . . . . . . . . . . 136

1.5.4 Lecture 35 (II): Scalar Wave Equations . . . . . . . . . . . . . . . . . . . 140

1.5.5 Lecture 36a: (Week 13) The Webster horn equation (I) . . . . . . . . . . . 141

1.5.6 Lecture 36b: Webster horn equation (II) . . . . . . . . . . . . . . . . . . . 142

1.5.7 Lecture 36c: Matrix formulation of WHEN (III) . . . . . . . . . . . . . . 144

1.5.8 Lecture 37a: d’Alembert’s superposition principle . . . . . . . . . . . . . 145

1.5.9 Lecture 37b: Complex-analytic nature of Γ(s) . . . . . . . . . . . . . . . . 146

1.5.10 Lecture 37c: Finite length horns . . . . . . . . . . . . . . . . . . . . . . . 148

1.5.11 Lecture 37d: Three examples of horns . . . . . . . . . . . . . . . . . . . . 149

1.5.12 Lecture 38: Solution methods . . . . . . . . . . . . . . . . . . . . . . . . 152

1.5.13 Lecture 39: (Week 14) Integral definitions of∇(), ∇·() and ∇×() . . . . 154

1.5.14 Lecture 40: Second-order operators: Helmholtz’s decomposition . . . . . . 160

1.5.15 Lecture 41: Maxwell’s Equations: The unification E&M . . . . . . . . . . 165

1.5.16 Lecture 42: (Week 15) Quasi-statics and the Wave equation . . . . . . . . . 168

1.5.17 Lecture 43: Final overview . . . . . . . . . . . . . . . . . . . . . . . . . 171

1.5.18 Reading List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A Notation 183

A.1 Number systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.1.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.1.2 Symbols and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.1.3 Special symbols common to mathematical: . . . . . . . . . . . . . . . . . 183

A.1.4 Greek letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.1.5 Table of double-bold number notation . . . . . . . . . . . . . . . . . . . . 185

A.2 Periodic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.3 Differential equations vs. Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 186

B Matrix algebra of systems 187

B.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.1.1 Vectors in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.2 NxM Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.2.1 NxN matrices and 2x2 systems . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3 Inverse of the 2x2 matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



CONTENTS 5

B.3.1 Derivation of the inverse of a 2x2 matrix . . . . . . . . . . . . . . . . . . 194

C Eigen Analysis 195

D Symbolic analysis of T E = EΛ 199

D.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.2 Special cases having symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.1 Reversible systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.2 Reciprocal systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.3 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

D.2.4 Transmission matrices and symmetry . . . . . . . . . . . . . . . . . . . . 201

D.2.5 Hermitian symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.2.6 Double roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

E Analysis of Pell equation (N=2, 3, M) 203

E.1 Pell equation eigenvalue-eigenvector analysis . . . . . . . . . . . . . . . . . . . . 203

E.1.1 Pell equation for N = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

F Tables of Fourier and Laplace Transforms 205

F.1 Methods for automating the calculation of residues . . . . . . . . . . . . . . . . . 211

G Number Systems: Stream 1 225

G.1 Week 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

G.1.1 Lec 4 Two theorems on primes . . . . . . . . . . . . . . . . . . . . . . . 225

G.1.2 RSA public-private keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

G.1.3 Lec 5 Greatest common divisor (GCD) . . . . . . . . . . . . . . . . . . . 228

G.2 Week 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

G.2.1 Lec 6 Continued Fraction Expansion (CFA) . . . . . . . . . . . . . . . . 230

G.2.2 Lec 7 Derivation of Euclid’s formula for Pythagorean triplets (PTs) . . . . 232

G.2.3 Lec 8 Eigen-Analysis of Pell Matrix . . . . . . . . . . . . . . . . . . . . . 235

G.3 Week 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

G.3.1 Lec 9 Eigen-Analysis of Fibonacci matrix . . . . . . . . . . . . . . . . . . 237

G.3.2 Lec 10 Exam I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

H Algebraic Equations: Stream 2 239

H.1 Week 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

H.1.1 Lec 11 Algebra and geometry as physics . . . . . . . . . . . . . . . . . . 239

H.1.2 Lec 11a Physics of linear vs. nonlinear complex analytic expressions . . . 243

H.2 Week 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

H.2.1 Lec 12 Polynomial factoring by deconvolution . . . . . . . . . . . . . . . 244

H.2.2 Lec 13 Generalized impedance and Transmission lines . . . . . . . . . . . 246

H.2.3 Lec 14 Geometry and Hilbert space . . . . . . . . . . . . . . . . . . . . . 246

H.3 Week 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

H.3.1 Lec 15 Gaussian Elimination of linear equations . . . . . . . . . . . . . . 249

H.3.2 Lec 16 Matrix composition: Bilinear and ABCD . . . . . . . . . . . . . . 252

H.3.3 Lec 16a Transmission line example . . . . . . . . . . . . . . . . . . . . . 254

H.3.4 Lec 17 Introduction to the Branch cut and Riemann sheets . . . . . . . . . 258

H.4 Week 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258



6 CONTENTS

H.4.1 Lec 18 Complex analytic mappings (domain coloring) . . . . . . . . . . . 258

H.4.2 Lec 20 Laplace transform and the Riemann ζ(s) (Zeta) function (I) . . . . 259

H.4.3 Lec 20a Filter classification . . . . . . . . . . . . . . . . . . . . . . . . . 259

H.4.4 Lec 20b Laplace Transform of the Riemann ζ(s) Zeta function (II) . . . . 266

H.5 Week 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

H.5.1 Lec 21 The ten postulates of System of algebraic Networks . . . . . . . . 268

H.5.2 Lec 22 Exam II (Evening) . . . . . . . . . . . . . . . . . . . . . . . . . . 274

I Scalar Calculus: Stream 3a 275

I.1 Week 8-continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

I.1.1 Lec 23 Integration in the complex plane . . . . . . . . . . . . . . . . . . . 275

I.2 Week 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.2.1 Lec 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.2.2 Lec 25a Complex analytic functions and Brune impedance (I) . . . . . . . 276

I.2.3 Lec 25b Complex analytic functions and Brune impedance (II) . . . . . . . 276

I.2.4 Lec 26 Summary review . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.3 Week 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.3.1 Lec 27 Three Cauchy Theorems: I . . . . . . . . . . . . . . . . . . . . . 276

I.3.2 Lec 28 Three Cauchy Theorems: II, III . . . . . . . . . . . . . . . . . . . 276

I.3.3 Lec 29 Inverse Laplace Transform I . . . . . . . . . . . . . . . . . . . . . 276

I.4 Week 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.4.1 Lec 30 Inverse Laplace Transforms II . . . . . . . . . . . . . . . . . . . . 276

I.4.2 Lec 31 Laplace Transforms properties . . . . . . . . . . . . . . . . . . . . 276

I.4.3 Lec 32 Review for Exam III . . . . . . . . . . . . . . . . . . . . . . . . . 276

J Vector Calculus: Stream 3b 277

J.1 Week 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

J.1.1 Lec 33 Grad, Div, Curl and Laplacian . . . . . . . . . . . . . . . . . . . . 277

J.1.2 Lec 34 Scalar wave equation (I) . . . . . . . . . . . . . . . . . . . . . . . 277

J.1.3 Lec 35a Scalar wave equation (II) . . . . . . . . . . . . . . . . . . . . . . 277

J.1.4 Webster horn equation (IV) WHEN.tex . . . . . . . . . . . . . . . . . . . 279

J.2 Week 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

J.2.1 Lec 36: Generalized Impedance . . . . . . . . . . . . . . . . . . . . . . . 282

J.2.2 Lec 41 Vector Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

J.3 Week 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

J.3.1 Lec 42: The Quasi-static approximation and more applications . . . . . . 288

J.3.2 Lec 43 Review of the Fund Thms of Mathematics . . . . . . . . . . . . . . 289

J.4 Lec 44 Fun Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

J.4.1 WKB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

J.4.2 Inverse problem: Solving for A(x) given zrad(t) . . . . . . . . . . . . . . 290

J.4.3 Inverse-Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

J.4.4 WHEN WKB approximation . . . . . . . . . . . . . . . . . . . . . . . . . 294

J.4.5 Rydberg atom model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

J.4.6 Notes on Jaynes, QED, and quantization . . . . . . . . . . . . . . . . . . . 296

K Stillwell’s Intersection vs. composition 301



CONTENTS 7

Abstract

An understanding of physics requires knowledge of mathematics. The converse is not true. By

definition, pure mathematics contains no physics. Yet historically, mathematics has a rich history

filled with physical applications. Mathematics was developed by people with the intent of making

things work. As an engineer, I see these creators of early mathematics as budding engineers. This

book is an attempt to tell their story, of the development of mathematical physics, as viewed by an

engineer.

There are two distinct ways to learn mathematics: the traditional math way, by memorizing

everything (the hard way), and the easy “physical” way, by associating every mathematical concept

with its physical counterpart. These two methods have their pros and cons:

• Physicists and engineers choose to associate mathematical and physical concepts.

• Mathematicians choose to not make these associations.

We might conjecture why this is: Budding physicists and engineers may have come to mathematics

while learning physics. Budding mathematicians may appreciate the beauty in the pure structures

of mathematics.

Both methods have a chronological development, i.e., a history. Amazingly these histories

heavily overlap. Why is that? Because most early mathematics evolved from attempts to under-

stand the world, with the goal of navigating it. Pure mathematics followed when the corresponding

physics was not yet discovered (or perhaps doesn’t exist).

This is not strictly a book on mathematics, physics and history: rather, it is a marriage of

math and physics, presented roughly in chronological order, via its history. To teach mathematical

physics in an orderly way, our treatment requires a step backwards in terms of the mathematics,

but a step forward in terms of the physics. Historically speaking, mathematics was created by

individuals, who by modern standards, would be viewed as engineers. This book contains the

basic information that a well-informed engineer needs to know.

The presentation is broken down around three streams, presented as five chapters: 1) Intro-

duction, 2) Number Systems, 3) Algebra Equations, 4) Scalar Calculus, and 5) Vector Calculus.

The material is delivered as 43 “Lectures,” spread out over a semester of 15 weeks, 3 lectures per

week, with a three-lecture time-out for administrative duties. Eleven problem sets are provided for

weekly assignments. These problems are written out in LATEX, with built-in solutions that may be

compiled into the text by un-commenting one line of LATEX. Once the assignments are turned in,

each student is given the solution.

Many students have rated these assignments as the most important part of the course. There is

a built-in interplay between these assignments and the lectures. On many occasions I solved the

problems in class, as motivation to come to every class.

There are four exams, one at the end of each of the three sections, plus the final. The first exam

is in class, two others and the final are evening exams. Each exam and assignment is a LATEX file,

with solutions encoded with a one line software switch. When the exam is returned by the student,

the full solution is provided, while the exam is fresh in the students mind, providing a teaching

moment. The exams are entirely based on the assignments. It is my philosophy that, in principle,
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MATHEMATICSENGINEERING

PHYSICS

Figure 1: There is a natural symbiotic relationship between Mathematics, Engineering, and Physics (MEP), depicted
in the Venn diagram. Mathematics provides the method and rigor. Engineering transforms the method into technology.
Physics explores the boundaries. While these three disciplines work well together, there is poor communication, in
part due to the different vocabulary. But style may be more at issue. For example, Mathematics rarely uses a system
of units, whereas Physics and Engineering depend critically on them. Mathematics strives to abstract the ideas into
proofs. Physics rarely uses a proof. When they attempt rigor, physicists and Engineers typically get into difficulty.

the students can see the exam in advance of taking it. In a real sense they do, since each exam is

based on the assignments.

Author’s Personal Statement

An expert is someone who has made all possible mistakes in a small field. I don’t know if I

would be called an expert, but I certainly have made my share of mistakes. I openly state that

“I love making mistakes, because I learn so much from them.” One might call that the “expert’s

corollary.”

This book has been written out of both my love for the topic of mathematical physics, and a

desire to share many key concepts, and many new ideas on these basic concepts. Over the years

I have developed a certain physical sense of math, along with a related mathematical sense of

physics. While doing my research,1 I have come across what I feel are certain conceptual holes that

need filling, and sense many deep relationships between math and physics that remain unidentified.

While what we presently teach is not wrong, it is missing these relationships. What is lacking is

an intuition for how math “works.” Good scientists “listen” to their data. In the same way we need

to start listening to the language of mathematics. We need to let mathematics guide us toward our

engineering goals.

1https://auditorymodels.org/index.php/Main/Publications
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As summarized in Fig. 1, this marriage of math, engineering and physics (MEP)2 will help

us make progress in understanding the physical world. We must turn to mathematics and physics

when trying to understand the universe. My views follow from a lifelong attempt to understand

human communication, i.e., the perception and decoding of human speech sounds. This research

arose from my 32 years at Bell Labs in the Acoustics Research Department. There such lifelong

pursuits were not only possible, they were openly encouraged. The idea was that if you are suc-

cessful at something, take it as far as you can. But on the other hand “you should not do something

well that’s not worth doing.” People got fired for the latter. I should have left for a university after

a mere 20 years,3 but the job was just too cushy.

In this text it is my goal to clarify conceptual errors while telling the story of physics and

mathematics. My views have been inspired by classic works, as documented in the bibliography.

This book was inspired by my reading of Stillwell (2002), through Chapter 21 (Fig. 2, p. 11).

Somewhere in Chapter 22 I switched to the third edition (Stillwell, 2010), at which point I realized

I had much more to master. It became clear that by teaching this material to first year engineers, I

could absorb the advanced material at a reasonable pace. This book soon followed.

Summary

This is foremost a math book, but not the typical math book. First, this book is for the engineering

minded, for those who need to understand math to do engineering, to learn how things work. In that

sense the book is more about physics and engineering than mathematics. Math skills are essential

for making progress in building things, be it pyramids or computers, as clearly shown by the many

great civilizations of the Chinese, Egyptians, Arabs (people of Mesopotamia), and Greeks and

Romans.

Second, this is a book about the math that developed to explain physics, to allow people to

engineer complex things. To sail around the world one needs to know how to navigate. This

requires a model of the planets and stars. You can only know where you are, on earth, once you

understand where earth is, relative to the sun, planets, Milky Way and the distant stars. The answer

to such a cosmic questions depends strongly on who you ask. Who is qualified to answer such a

question? It is best answered by those who study mathematics applied to the physical world. The

utility and accuracy of that answer depends critically on the depth of understanding of the physics

of the cosmic clock.

The English astronomer Edmond Halley (1656–1742) asked Newton (1643–1727) for the equa-

tion that describes the orbit of the planets. Halley was obviously interested in comets. Newton

immediately answered “an ellipse.” It is said that Halley was stunned by the response (Stillwell,

2010, p. 176), as this was what had been experimentally observed by Kepler (c1619), and thus he

knew Newton must have some deeper insight. Both were eventually Knighted.

When Halley asked Newton to explain how he knew, Newton responded “I calculated it.” But

when challenged to show the calculation, Newton was unable to reproduce it. This open challenge

eventually led to Newton’s grand treatise, Philosophiae Naturalis Principia Mathematica (July 5,

1687). It had a humble beginning, as a letter to Halley, explaining how to calculate the orbits of the

planets. To do this Newton needed mathematics, a tool he had mastered. It is widely accepted that

Isaac Newton and Gottfried Leibniz invented calculus. But the early record shows that perhaps

Bhāskara II (1114–1185 CE) had mastered the art well before Newton.4

2MEP is a focused alternative to STEM.
3I started around December 1970, fresh out of graduate school, and retired in December 5 2002.
4http://www-history.mcs.st-and.ac.uk/Projects/Pearce/Chapters/Ch8_5.html
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Third, the main goal of this book is to teach motivated engineers mathematics, in a way that

it can be understood, mastered and remembered. How can this impossible goal be achieved? The

answered is to fill in the gaps with Who did what, and when? Compared with the math, the

historical record is easily mastered.

To be an expert in a field, one must know its history. This includes who the people were, what

they did, and the credibility of their story. Do you believe the Pope or Galileo on the roles of the

sun and the earth? The observables provided by science are clearly on Galileo’s side. Who were

those first engineers? They are names we all know: Archimedes, Pythagoras, Leonardo da Vinci,

Galileo, Newton, etc. All of these individuals had mastered mathematics. This book presents

the tools taught to every engineer. Rather than memorizing complex formulas, make the relations

“obvious” by mastering each simple underlying concept.

Fourth, when most educators look at this book, their immediate reactions are: Each lecture is

a topic we spend a week on (in our math/physics/engineering class). And: You have too much

material crammed into one semester. The first sentence is correct, the second is not. Tracking

the students who have taken the course, looking at their grades, and interviewing them personally,

demonstrate that the material presented here is appropriate for one semester.5

To write this book I had to master the language of mathematics (John D’Angelo language). I

had already mastered the language of engineering, and a good part of physics. One of my secondary

goals is to build this scientific Tower of Babel, by unifying the terminology and removing the

jargon.

Acknowledgments

Besides thanking my parents, I would like to credit John Stillwell for his constructive, historical

summary of mathematics. My close friend and colleague Steve Levinson somehow drew me into

this project, without my even knowing it. My brilliant graduate student Sarah Robinson was con-

stantly at my side, grading homeworks and exams, and tutoring the students. Without her, I would

never have survived the first semester the material was taught. Her proofreading skills are amazing.

Thank you Sarah for your infinite help. Finally I would like to thank John D’Angelo for putting

up with my many silly questions. When it comes to the heavy hitting, John was always there to

provide a brilliant explanation that I could easily translate into Engineerese (Matheering?) (i.e.,

engineer language).

My delightful friend Robert Fossum, emeritus professor of mathematics from the University

of Illinois, who kindly pointed out my flawed use of mathematics. James (Jamie) Hutchinson’s

precise use of the English language, dramatically raised the bar on my more than occasionally-

casual writing style. To each of you, thank you!

Finally I would like to thank my wife Sheau Feng Jeng, aka Patricia Allen, for her unbelievable

support and love. She delivered constant peace of mind, without which this project could never

have been started, much less finished. Many others played important roles, but they must remain

anonymous.

–Jont Allen, Mahomet IL, Dec. 24, 2015 (Jan 1, 2018)

5http://www.istem.illinois.edu/news/jont.allen.html
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Mathematics and its History (Stillwell, 2002)

Figure 2: Table of contents of Stillwell (2002)
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Preface

It is widely acknowledged that interdisciplinary science is the backbone of modern scientific in-

quiry as embodied in the STEM (Science, Technology, Engineering, and Mathematics) programs.

Cross-disciplinary research is about connecting different areas of knowledge. However, while

STEM is being taught, interdisciplinary science is not, due to its inherent complexity and breadth.

There are few people to teach it. As diagrammed in Fig. 1 (p. 8), Mathematics, Engineering and

Physics (MEP) define the core of these studies.

STEM vs. MEP

Mathematics is about rigor. Mathematicians specifically attend to the definitions of increasingly

general concepts. Thus mathematics advances slowly, as these complex definitions must be collec-

tively agreed upon. Since it embraces rigor, mathematics shuns controversy. Physics explores the

fringes of uncertainty, since physicists love controversy. Engineering addresses the advancement

of technology. Engineers, much like mathematicians, are uncomfortable with uncertainty, but are

trained to deal with it. Richard Hamming expressed this thought succinctly:

Great scientists tolerate ambiguity very well. They believe the theory enough to go

ahead; they doubt it enough to notice the errors and faults so they can step forward and

create the new replacement theory (Hamming, 1986).

To create an interdisciplinary STEM program, the MEP core is critical. In my view, this core

should be based on mathematics, from the historical perspective, starting with Euclid or before

(i.e., Chinese mathematics), up to modern information theory and logic. As a bare minimum,

the fundamental theorems of mathematics (arithmetic, algebra (real, complex and matrix), calcu-

lus (real, complex and matrix) etc.) should be taught to every MEP student. The core of this

curriculum is outlined in Fig. 1.5 (p. 27). Again quoting Hamming:

Well, that book I’m trying to write [on Mathematics, Calculus, Probability and Statis-

tics] says clearly . . . we can no longer tell you what mathematics you need, we must

teach you how to find it for yourself. . . . We must give up the results, and teach the

methods. You are only shown finished theorems and proofs. That is just plain wrong

for teaching.

If first year students are taught a common MEP methodology and vocabulary, presented in

terms of the history of mathematics, they will be equipped to

1. Exercise interdisciplinary science (STEM)

2. Communicate with other MEP trained (STEM) students and professors.

13
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The goal should be a comprehensive understanding of the fundamental concepts of mathematics,

defined in terms of the needs of the student. The goal should not to be drilling on surface integrals,

at least not in the first year. As suggested by Hamming, these details must be self-taught, at the

time they are needed. Furthermore, start with the students who place out of early math courses:

they love math and are highly motivated to learn as much as possible. I contend that if first or

second year students are given a comprehensive early conceptual understanding, they will end up

at the top of their field.

As identified by Hamming, a key problem is the traditional university approach, a five to eight

semester sequence of: Calc I, II, III, Linear Algebra IV, DiffEq V, Real analysis VI, Complex

analysis VII and given near-infinite stamina, Number theory VIII, over a time frame of three or

more years (six semesters). This was the way I learned math. The process simply took too long,

and the concepts spread too thin. After following this regime, I felt I had not fully mastered the

material, so I started over. I consider myself to be largely self-taught.

We need a more effective teaching method. I am not suggesting we replace the standard six

semester math curriculum of Calc I, II, III, etc. Rather, I am suggesting a broad unified introduction

to all these topics, based on an historical approach. The present approach is driving the talent

away from science and mathematics, by focusing too much on the details (as clearly articulated

by Hamming). One needs more than a high school education to succeed in college engineering

courses. The key missing element in our present education system is teaching critical thought.

Drilling facts does not do that.

By learning mathematics in the context of history, the student will fully and easily appreciate

the underlying concepts. The history provides a uniform terminology for understanding the fun-

damentals of MEP. The present teaching method, using abstract proofs, with no (or few) figures or

physical principles and units, by design, removes intuition and the motivation that was available to

the creators of these fundamentals. The present six-semester regime serves many students poorly,

leaving them with little insight (i.e., intuition) and an aversion to mathematics.

Postscript Dec 5, 2017 How to cram five semesters of math into one semester, and leave the

students with something they can remember? Here are some examples:

Maxwell’s equations (MEs) are a fundamental challenging topic, presented in one lecture (Sec-

tion 1.5.15, p. 165). Here is how it works:

1. The development starts with Sections 1.4.1-1.4.9 (pp. 105-123), which develop complex

integration (p. 107) and the Laplace transform (pp. 121-122).

2. Kennelly’s (1893) 1893 complex impedance, as defined by Ohm’s law, is the ratio of the

force over the flow, the key elements being 1) capacitance (e.g., compliance) per unit area

(ǫo [Fd/m2]), and 2) inductance (e.g., mass) per unit area (µo [H/m2]).

3. Section 1.5.1 (p. 126) develops analytic field theory, while Sect. 1.5.2 (p. 128) introduces

Grad ∇(·), Div ∇·(·), and Curl ∇×(·), starting from the scalar A ·B and vector product

A×B of two vectors.

4. On p. 160, second-order operators are introduced and given physical meanings (based on the

physics of fluids), but most important they are given memorable names (DoC, CoG, Dog,

God, and CoC: p. 128). Thanks to this somewhat quaint and gamy innovation, the students

can both understand and easily remember the relationships between these confusing second-

order vector calculus operations.
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5. Exercises and examples are interspersed throughout the lectures.

6. The foregoing carefully sets the stage for ME (p. 165), introduced using proper names and

units of the electrical and magnetic field intensity (strengths, and forces seen by charge)

E,H , and electric and magnetic flux (flow) Ḋ, Ḃ, as summarized on page 166. The mean-

ings of ME equations are next explored in integral form. After Sect. 1.5.2-1.5.15, the stu-

dents are fully conversant with MEs. The conformation of this is in the final exam grade

distributions.

Postscript Dec 15, 2017 As this book comes to completion, I’m reading and appreciating the

Feynman lectures. We all know (I hope you know) that Feynman had a special lecture style,

that was both entertaining, and informative. His communication skill was a result of his depth of

understanding, and he was not afraid to question the present understanding of physics. He was

always on a quest. He died in 1988, at the age of 70. Let us all be on his quest. Any belief,

that we have figured out the ways of the universe, is absurd. We have a lot to learn. Major errors

in our understanding must to be corrected. We cannot understand the world around us until we

understand its creation. That is, we cannot understand where we are going until we understand

from where we came.

– Jont Allen
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Chapter 1

Introduction

Much of early mathematics dating before 1600 BCE, centered around the love of art and music, due

to the sensations of light and sound. Our psychological sense a of color and pitch are determined

by the frequencies (i.e., wavelengths) of light and sound. The Chinese and later the Pythagoreans

are well known for their early contributions to early music theory. We are largely ignorant of

exactly what the Chinese scholars knew. The best record comes from Euclid, who lived the 3rd

century, after Pythagoras. Thus we can only trace the early mathematics back to the Pythagoreans

in the 6th century (580-500 BCE), which is centered around the Pythagorean theorem and early

music theory.

Pythagoras strongly believed that “all is number,” meaning that every number, and every math-

ematical and physical concept, could be explained by integral (integer) relationships, mostly based

on either ratios, or the Pythagorean theorem. It is likely that his belief was based on Chinese

mathematics from thousands of years earlier. It is also believed that his ideas about the importance

of integers followed from the theory of music. The musical notes (pitches) obey natural integral

ratio relationships, based on the octave (a factor of two in frequency). The western 12-tone scale

breaks the octave into 12 ratios. Today this has been rationalized to be the 12 root of 2, which is

approximately equal to 18/17. This innate sense of frequency ratios comes from the physiology

the auditory organ (the cochlea).

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is relevant today:

With the digital computer, digital audio, and digital video coding everything, at least

approximately, into sequences of whole numbers, we are closer than ever to a world in

which “all is number.”

1.1 Early Science and Mathematics

While early Asian mathematics is not fully documented, it clearly defined the course for math for

at least several thousand years. The first recorded mathematics were those of the Chinese (5000-

1200 BCE) and the Egyptians (3,300 BCE). Some of the best early records were left by the people

of Mesopotamia (Iraq, 1800 BCE).1

The first 5,000 years of math are not well documented, but the basic record is clear, as outlined

in Fig. 1.1. Thanks to Euclid and later Diophantus (c250 CE), we have some vague understanding

of Chinese mathematics. For example, Euclid’s formula (Eq. 1.9, p. 48; Sec. G.2.2, Fig. G.3,

1See Fig. 1.10, p. 49.

17



18 CHAPTER 1. INTRODUCTION

p. 233) provides a method for computing Pythagorean triplets, a formula believed to be due to the

Chinese (Stillwell, 2010, pp. 4-9).2

Chinese bells and stringed musical instruments were exquisitely developed with tonal quality,

as documented by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development

was so rich that one must ask why the Chinese failed to initiate the industrial revolution. Specif-

ically, why did Europe eventually dominate with its innovation when it was the Chinese who did

the extensive early invention?

It could have been for the wrong reasons, but perhaps our best insight into the scientific history

from China may have come from an American chemist and scholar from Yale, Joseph Needham,

who learned to speak Chinese after falling in love with a Chinese woman, and ended up researching

early Chinese science and technology for the US government.Verify!Verify!

According to Lin (1995) this is known as the Needham question:

“Why did modern science, the mathematization of hypotheses about Nature, with all

its implications for advanced technology, take its meteoric rise only in the West at the

time of Galileo[, but] had not developed in Chinese civilization or Indian civilization?”

Needham cites the many developments in China:3

“Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon

considered as the three most important inventions facilitating the West’s transforma-

tion from the Dark Ages to the modern world, were invented in China.” (Lin, 1995)

“Needham’s works attribute significant weight to the impact of Confucianism and Tao-

ism on the pace of Chinese scientific discovery, and emphasizes what it describes as

the ‘diffusionist’ approach of Chinese science as opposed to a perceived independent

inventiveness in the western world. Needham held that the notion that the Chinese

script had inhibited scientific thought was ‘grossly overrated’ ” (Grosswiler, 2004).

Lin was focused on military applications, missing the importance of non-military contributions.

A large fraction of mathematics was developed to better understand the solar system, acoustics,

musical instruments and the theory of sound and light. Eventually the universe became a popular

topic, as it still is today.

Regarding the “Needham question,” I suspect the resolution is now clear. In the end, China

withdrew from its several earlier expansions (Menzies, 2004, 2008).

1.1.1 Lec 1 The Pythagorean theorem

Thanks to Euclid’s Elements (c323 BCE) we have an historical record, tracing the progress in

geometry, as established by the Pythagorean theorem, which states that for any right triangle

c2 = a2 + b2, (1.1)

having sides of lengths (a, b, c) ∈ R that are either positive real numbers, or more interesting,

integers, such that c > [a, b] and a + b > c. Early integer solutions were likely found by trial and

error rather than by Euclid’s formula.

If a, b, c are lengths, then a2, b2, c2 are each the area of a square. Equation 1.1 says that thefigure?figure?

2One might view Euclid significant role as a mathematical messenger.
3https://en.wikipedia.org/wiki/Joseph_Needham\#cite_note-11
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Chronological history pre 16th century

20th BCE Chinese (Primes; quadratic equation; Euclidean algorithm (GCD))

18th BCE Babylonia (Mesopotamia/Iraq) (quadratic equation)

6th BCE Pythagoras (Thales) and the Pythagorean “tribe”

4th BCE Euclid (quadratic equation); Archimedes

3d BCE Eratosthenes 276-194BCE

3d CE Diophantus c250CE

4th Alexandria Library destroyed 391CE

6th Brahmagupta (negative numbers; quadratic equation) 598-670CE

10th al-Khwārizmī (algebra) 830CE Hasan Ibn al-Haytham (Alhazen) 965-1040CE

12th Bhaskara (calculus) 1114-1183 Marco Polo 1254-1324

15th Leonardo da Vinci 1452-1519; Michelangelo 1475-1564 Copernicus 1473-1543

16th Tartaglia (cubic eqs); Bombelli 1526-1572 Galileo Galilei 1564-1642

Time-Line

1500BCE |0CE |500 |1000 |1400|1650

|830Christ

Chinese
Babylonia

Pythagoreans
Euclid

LeonardoBrahmagupta
Diophantus Bhaskara

Archimedes
Bombelli

al-Khawarizmi
Marco Polo

Copernicus

Figure 1.1: Mathematical time-line between 1500 BCE and 1650 CE. The western renaissance is considered to
have occurred between the 15-17 centuries. However the Asian “renaissance” was likely well before the 1st century
(i.e., 1500 BCE?). There is significant evidence that a Chinese ‘treasure ship’ visited Italy in 1434, initiating the Italian
renaissance (Menzies, 2008). This was not the first encounter between the Italians and the Chinese, as documented in
‘The travels of Marco Polo’ (c1300 CE). [fig:TimeLineBCE]

area a2 plus the area b2 equals the area c2. Today a simple way to prove this is to compute the

magnitude of the complex number c = a + b, which forces the right angle

|c|2 = (a+ b)(a− b) = a2 + b2. (1.2)

However, complex arithmetic was not an option for the Greek mathematicians, since complex

numbers and algebra had yet to be discovered.

Almost 700 years after Euclid’s Elements, the Library of Alexandria was destroyed by fire

(391 CE), taking with it much of the accumulated Greek knowledge. As a result, one of the

best technical records remaining is Euclid’s Elements, along with some sparse mathematics due

to Archimedes (c300 BCE) on geometrical series, computing the volume of a sphere, the area of

the parabola, and elementary hydrostatics. In c1572 a copy of a book by Diophantus Arithmetic

was discovered by Bombelli in the Vatican library (Stillwell, 2010, p. 51). This book became an

inspiration for Galileo, Descartes, Fermat and Newton.

Early number theory: Well before Pythagoras, the Babylonians (c1,800 BCE) had tables of

triplets of integers [a, b, c] that obey Eq. 1.1, such as [3, 4, 5]. However the triplets from the Babylo-

nians were larger numbers, the largest being a = 12709, c = 18541. A stone tablet (Plimpton-322)
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dating back to 1800 BCE (Fig. 1.10, p. 49) was found with integers for [a, c]. Given such sets of

two numbers, which determined a third positive integer b = 13500 such that b =
√
c2 − a2, this

table is more than convincing that the Babylonians were well aware of Pythagorean triplets (PTs),

but less convincing that they had access to Euclid’s formula (Eq. 1.9 p. 48).

It seems likely that Euclid’s Elements was largely the source of the fruitful era due to the Greek

mathematician Diophantus (215-285) (Fig. 1.1), who developed the concept of discrete mathemat-

ics, now known as Diophantine analysis. The term means that the solution, not the equation, are

integers. The work of Diophantus was followed by fundamental change in mathematics, possibly

leading to the development of algebra, but at least including the discovery of

1. negative numbers,

2. quadratic equation (Brahmagupta, 7th CE),

3. algebra (al-Khwārizmī, 9th CE), and

4. complex arithmetic (Bombelli, 15th CE).

These discoveries overlapped with the European middle (aka, dark) ages. While Europe went

“dark,” presumably European intellectuals did not stop working during these many centuries.4

1.1.2 What is mathematics?

Mathematics is a language, not so different from other languages. Today’s mathematics is a written

language with an emphasis on symbols and glyphs, biased toward Greek letters. The specific

evolution of these symbols is interesting (Mazur, 2014). Each symbol is dynamically assigned

a meaning, appropriate for the problem being described. These symbols are then assembled to

make sentences. It is similar to Chinese in that the spoken and written versions are different across

dialects. Like Chinese, the sentences may be read out loud in any language (dialect), while the

mathematical sentence (like Chinese characters) is universal.

There is a second answer to this question, told by studying its history, which starts with the

earliest record. This chronological view starts, of course, with the study of numbers. First there

is the taxonomy of numbers. It took thousands of year to realize that numbers are more than the

counting numbers N, and to create a symbol for nothing (i.e., zero), and negative numbers. With

the invention of the abacus, a memory aid for the manipulation of complex sets of real integers,

one could do very detailed calculations. But this required the discovery of algorithms (procedures)

to add, subtract, multiply (many adds of the same number) and divide (many subtracts of the

same number), such as the Euclidean algorithm. Eventually it became clear to the experts (early

mathematicians) that there were natural rules to be discovered, thus books (e.g., Euclid’s Elements)

were written to summarize this knowledge.

Learning mathematics is just like building a house. If you learn how to use all the tools needed

to build a house, you can build it. But you must master the tool chain, from the bottom up. If you

are missing even one of the tools (if the chain is broken at any point), you will fail. There are many

concepts that must be learned, and they form a long chain. All the concepts must be mastered, not

simply learned. You need to learn about nails, screws, hammers, drills, lime, sand, water, concrete,

you must know how to read drawings, down to the little marks, shovels, work with the labor force,

4It would be interesting to search the archives of the monasteries, where the records were kept, to determine exactly

what happened during this religious blackout.
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lay a floor, bricks, ceramics, a compass, straight edge, Euclidean geometry, simple mathematics,

. . . , framing, siding, gutters, . . . , drive ways, plumbing, sewers, and the list goes on.

A short list for mathematics is numbers (N,Z,Q, I,C), algebra, derivatives, anti-derivatives

(i.e., integration), differential equations, vectors and the spaces they define, matrices, matrix al-

gebra, eigen-values and vectors, solutions of systems of equations, matrix differential equations

and their eigen solution. If you try to memorize all these concepts, it is hopeless. They need to

be learned in order, just as the case of building the house. Context is everything. You can’t build

a house if you don’t know about screws or cement (plaster). Likewise in mathematics, you will

not learn to integrate if you have failed to understand the difference between integers, complex

numbers, and roots of polynomials.

Context is everything, and the most important context is physics. Without a physical problem to

solve, at least at the beginning, there can be no mathematics, which began because people wanted

to navigate the earth, or weigh things, namely understand the concept of gravity. Many questions

were deep, such as “Where was the center of the universe?” Actually it was simple, ask the Pope

and he will tell you. But church dogma only goes to the end of the block. Mathematics, along

with a heavy dose of physics, finally answered this huge question. Someone needed to perfect the

telescope, and put satellites into space, and view the cosmos. Without mathematics, none of this

would, or could have happened.

Like any language, the more mathematics you learn, the easier it is to understand, because

mathematics is built from the bottom up. It’s a continuous set of concepts, much like the con-

struction of a house. If you try to learn calculus and differential equations, while skipping simple

number theory, the lessons will be more difficult to understand. You will end up memorizing in-

stead of understanding, and as a result you will forget all of it. When you truly understand some

thing, it can never be forgotten. A nice example is the solution to a quadratic equation: If you learn

how to complete the square (p. 59), you will never forget the quadratic formula. Complex numbers

naturally follow.

Math (the syntax) is a language: It seems strange when people complain that they “can’t learn

math,”5 but then claim to be good at languages. Pre-high-school students tend to confuse arithmetic

with math. One does not need to be good at arithmetic to be good at math (but it doesn’t hurt).

Math is a language, with the symbols taken from various languages, with a bias toward Greek,

obviously due to the popularity of Euclid’s Elements. Learning languages is an advanced social

skill. However the social outcomes are very different between learning a language and math.

Learning a new language is fun because it opens doors to other cultures.

Math is different due to the rigor of the rules of the language, along with the way it is taught

(e.g., not as a language). A third difference between math and language is that math evolved from

physics, with important technical applications.

The rules of math are defined by algebra. For example, the sentence a = b means that the

number a has the same value as the number b. The sentence is spoken as “a equals b.” The

numbers are nouns and the equal sign says they are equivalent, playing the role of a verb, or action

symbol. Following the rules of algebra, this sentence may be rewritten as a − b = 0. Here the

symbols for minus and equal indicate two types of actions.

Sentences can become arbitrarily complex, such as the definition of the integral of a function,

or a differential equation. But in each case, the mathematical sentence is written down, may be read

out loud, has a well defined meaning, and may be manipulated into equivalent forms following the

5“It looks like Greek to me.”
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rules of algebra and calculus. This language of mathematics is powerful, with deep consequences,

known as theorems.

The writer of an equation should always translate (explicitly summarize the meaning of the

expression), so the reader will not miss the main point, as a simply a matter of clear writing.

Just as math is a language, so may language be thought of as mathematics. To properly write

correct English it is necessary to understand the construction of the sentence. It is important to

identify the subject, verb, object, and various types of modifying phrases. Look up the interest-

ing distinction between that and which.6 Thus, like math, language has rules. Most individuals

use what “sounds right,” but if you’re learning English as a second language, it is necessary to

understand the rules, which are arguably easier to master than the foreign speech sounds.

1.1.3 Early physics as mathematics: Back to Pythagoras

The role of mathematics is to summarize algorithms (i.e., sets of rules), and formalize the idea as

a theorem. Pythagoras and his followers, the Pythagoreans, believed that there was a fundamental

relationship between mathematics and the physical world. The Pythagoreans may have been the

first to capitalize on the relationship between science and mathematics, to use mathematics to

design things for profit.7 This may have been the beginning of capitalizing technology, based on

the relationship between physics and math. This impacted commerce in many ways, such as map

making, tools, implements of war (the wheel, gunpowder), art (music), water transport, sanitation,

secure communication, food, etc. Of course the Chinese were the first to master many of these

technologies.

Why is Eq. 1.1 called a theorem, and what exactly needs to be proved? We do not need to prove

that (a, b, c) obey this relationship, since this is a condition that is observed. We do not need to

prove that a2 is the area of a square, as this is the definition of the area of a square. What needs to

be proved is that the relation c2 = a2 + b2 holds if, and only if, the angle between the two shorter

sides is 90◦. The Pythagorean theorem (Eq. 1.1) did not begin with Euclid or Pythagoras, rather

they appreciated its importance, and documented it.

In the end the Pythagoreans, who instilled fear in the neighborhood, were burned out, and

murdered. This may be the fate of mixing technology with politics:

“Whether the complete rule of number (integers) is wise remains to be seen. It is said

that when the Pythagoreans tried to extend their influence into politics they met with

popular resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in

497 BCE.”

–Stillwell (2010, p. 16)

1.1.4 Modern mathematics is born

Modern mathematics (what we practice today) was born in the 15-16th centuries, in the minds

of Leonardo da Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Stillwell, 2010).

Many of these early masters were, like the Pythagoreans, secretive to the extreme about how they

solved problems. This soon changed due to Galileo, Mersenne, Descartes and Newton, causing

mathematics to blossom. During this time the developments were hectic, seemingly disconnected.

6
https://en.oxforddictionaries.com/usage/that-or-which

7It seems likely that the Chinese and Egyptians also did this, but it is more difficult to document.
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Chronological history 16-19th 3 centuries

|1525 |1596 |1643 |1700 |1750 |1800 |1855

|1596

|1601
|1655

|1667

|1564 |1756
|1526

Euler

Newton

d'Alembert

Gauss
Galileo

Daniel Bernoulli

Jacob Bernoulli

Johann Bernoulli
Descartes

Beethoven

Mozart
Fermat

Bombelli

Figure 1.2: Time-line for the development of the theory of calculus, between 16th and 19th CE. Given the time-line,
it seems likely that Bombelli’s discovery of Diophantus’s book “Arithmetic” in the Vatican library triggered many of
the ideas presented by Galileo, Descartes and Fermat, followed by others (i.e., Newton). Bombelli’s discovery might
be considered as a magic moment in mathematics. The vertical red lines indicate mentor-student relationships. See
Fig. 1.1 (p. 19) gives the time-line from 1500BCE to 1650CE, Fig. 1.13 (p. 56) presents the 17-20 CE (Newton–
Einstein) view from 1640–1950, and Fig. 1.24 (p. 103) outlines the full (Bombelli–Einstein, 1525-1925) period.

This is a wrong impression, as the development was dependent on new technologies such as the

telescope (optics) and more accurate time and frequency measurements, due to Galileo’s studies

of the pendulum, and a better understanding of the relation fλ = c, between frequency f and

wavelength λ.

1.1.5 Science meets mathematics

Galileo: In 1589 Galileo famously conceptualized an experiment where he suggested dropping

two different weights from the Leaning Tower of Pisa, and he suggested that they must take the

same time to hit the ground. Conceptually this is a mathematically sophisticated experiment,

driven by a mathematical argument in which he considered the two weights to be connected by

an elastic cord (a spring). His studies resulted in the concept of conservation of energy, one of the

cornerstones of physical theory since that time.

By joining them with an elastic cord, the masses become one. If the velocity were proportional

to the mass, as believed by Archimedes, the sum of the two weights would necessarily fall even

faster. This results in a logical fallacy: How can two masses fall faster than either? This also

violates the concept of conservation of energy, as the total energy of two masses would be greater

than that of the parts. In fact Galileo’s argument may have been the first time that the principle of

conservation of energy was clearly stated.

Mass

Mass

Spring

Mass

Mass

t = 0

t = 1

Figure 1.3: Depiction of the argument of Galileo (unpublished book of 1638) as to why weights of different masses
(i.e., weight) must fall with the same velocity, contrary to what Archimedes had proposed c250 BCE.
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It seems likely that Galileo was attracted to this model of two masses connected by a spring

because he was also interested in planetary motion, which consist of masses (sun, earth, moon),

also mutually attracted by gravity.

Galileo also performed related experiments on pendulums, where he varied the length l, mass

m, and and angle θ of the swing. By measuring the period (periods/unit time) he was able to

formulate precise rules between the variables. This experiment also measured the force exerted

by gravity, so the experiments were related, but in very different ways. The pendulum served as

the ideal clock, as it needed very little energy to keep it going, due to its very low friction (energy

loss).

In a related experiment, Galileo measured the duration of a day by counting the number of

swings of the pendulum in 24 hours, measured precisely by daily period of a star as it crossed the

tip of a church steeple. The number of seconds in a day is precisely an integer (rounded to the

nearest integer). It is the product of 24 [hr/day] ×60×60 [s/hr] = 86400 = 273352 [s/day]. This

number may be reduced many ways, and remain precise, starting with seven factors of 2, 2 factors

of 3 or 1 factor of 5. Factoring the number of days in a year (5*73) is impractical, thus cannot be

easily treated as an integer.

Galileo also extended work on the relationship of wavelength and frequency of a sound wave

in musical instruments. On top of these impressive accomplishments, Galileo greatly improved the

telescope, which he needed for his observations of the planets.

Many of Galileo’s contributions resulted in new mathematics, leading to Newton’s discovery

of the wave equation (c1687), followed 60 years later by its one-dimensional general solution by

d’Alembert (c1747).

Mersenne: Mersenne (1588–1648) also contributed to our understanding of the relationship be-

tween the wavelength and the dimensions of musical instruments. At first Mersenne strongly dis-

agreed with Galileo, partially due to errors in Galileo’s reports of his results. But once Mersenne

saw the significance of Galileo’s conclusion, he being Galileo’s strongest advocate, helping to

spread the word (Palmerino, 1999).

Newton: With the closure of Cambridge University due to the plague of 1665, Newton returned

home to Woolsthorpe-by-Colsterworth (95 [mi] north of London), to worked by himself, for over

a year. It was during this time he did his most creative work.

While Newton (1642–1726) may be best known for his studies on light, he was the first to

predict the speed of sound. However his theory was in error8 by
√
cp/cv =

√
1.4 = 1.183.

This famous error would not be resolved for over two hundred years, awaiting the formulation of

thermodynamics and the equi-partition theorem, by Maxwell and Boltzmann, and others.

Just 11 years prior to Newton’s 1687 Principia, there was a basic understanding that sound and

light traveled at very different speeds, due to the experiments of Ole Rømer.9 10

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (as opposed

to instantaneously) by studying the apparent motion of Jupiter’s moon Io. In 1865,

James Clerk Maxwell proposed that light was an electromagnetic wave, and therefore

traveled at the speed co appearing in his theory of electromagnetism.11

8The square root of the ratio of the specific heat capacity at constant pressure cp to that at constant volume cv.
9https://www.youtube.com/watch?v=b9F8Wn4vf5Y

10https://www.youtube.com/watch?v=rZ0wx3uD2wo
11https://en.wikipedia.org/wiki/Speed_of_light
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Figure 1.4: Above: Jakob (1655–1705) and Johann (1667–1748) Bernoulli. Below: Leonhard Euler (1707-1783)
and Jean le Rond d’Alembert (1717-1783). Euler was blind in his right eye, hence the left portrait view. The figure
numbers are from Stillwell (2010).
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The idea behind Rømer’s discovery was that due to the large distance between earth and Io, there

was a difference between the period of the moon when Jupiter was closest to earth vs. when it was

furthest from earth. This difference in distance caused a delay or advance in the observed eclipse

of Io as it went behind Jupiter, delayed by the difference in time due to the difference in distance.

It is like watching a video of a clock, delayed or speed up. When the video is slowed down, the

time will be inaccurate (it will indicate an earlier time).

Studies of vision and hearing: Since light and sound (music) played such a key role in the

development of the early science, it was important to fully understand the mechanism of our per-

ception of light and sound. There are many outstanding examples where physiology impacted

mathematics. Leonardo da Vinci (1452–1519) is well known for his early studies of the human

body. Exploring our physiological senses requires a scientific understanding of the physical pro-

cesses of vision and hearing, first considered by Newton (1687) (1643–1727), but first properly

researched much later by Helmholtz (1863a)12 (Stillwell, 2010, p. 261). Helmholtz’s (1821–1894)

studies and theories of music and the perception of sound are fundamental scientific contributions

(Helmholtz, 1863a). His best known mathematical contribution is today known as the fundamental

theorem of vector calculus, or simply Helmholtz theorem.

The amazing Bernoulli family: The first individual who seems to have openly recognized

the importance of mathematics, enough to actually teach it, was Jacob Bernoulli (1654–1705)

(Fig. 1.4). Jacob worked on what is now viewed as the standard package of analytic “circular”

(i.e., periodic) functions: sin(x), cos(x), exp(x), log(x).13 Eventually the full details were devel-

oped (for real variables) by Euler (Sections 1.3.1 p. 72 and H.1.1, p. 240).

From Fig. 1.2 we see that Jacob was contemporary with Descartes, Fermat, and Newton.

Thus it seems likely that he was strongly influenced by Newton, who in turn was influenced by

Descartes,14 Vit̀e and Wallis (Stillwell, 2010, p. 175).

Jacob Bernoulli, like all successful mathematicians of the day, was largely self-taught. Yet

Jacob was in a new category of mathematicians, because he was an effective teacher. Jacob taught

his sibling Johann (1667–1748), who then taught his sibling Daniel (1700–1782). But most impor-

tantly, Johann taught Leonhard Euler (1707–1783) (Figs. 1.4 and 1.24, p. 103), the most prolific

(thus influential) of all mathematicians. This teaching resulted in an explosion of new ideas and

understanding. It is most significant that all four mathematicians published their methods and

findings. Much later, Jacob studied with students of Descartes15 (Stillwell, 2010, p. 268-9).

Euler: Euler went far beyond all the Bernoulli family (Stillwell, 2010, p. 315). A special strength

of Euler was the degree to which he published. First he would master a topic, and then he would

publish. His papers continued to appear long after his death (Calinger, 2015). It is also interest-

ing that Leonhard Euler was a contemporary of Mozart (and James Clerk Maxwell of Abraham

Lincoln).

d’Alembert: Another individual of that time of special note, who also published extensively,

was d’Alembert (Fig. 1.4). Some of the most creative ideas were first proposed by d’Alembert.

12https://en.wikipedia.org/wiki/Acoustics
13The log and tan functions are related by Eq. 1.81 p. 104.
14https://en.wikipedia.org/wiki/Early_life_of_Isaac_Newton
15It seems clear that Descartes was also a teacher.
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Unfortunately, and perhaps somewhat unfairly, his rigor was criticized by Euler, and later by Gauss

(Stillwell, 2010). But once the tools of mathematics were finally openly published, largely by

Euler, mathematics grew exponentially.16

Gauss: Figure 1.24 (p. 103) shows the time-line of the most famous mathematicians. It was

one of the most creative times in mathematics. Gauss was born at the end of Euler’s long and

productive life. I suspect that Gauss owed a great debt to Euler: surely he must have been a scholar

of Euler. One of Gauss’s most important achievement may have been his contribution to solving

the open question about the density of prime numbers. Likely the best summary of Gauss’s work

is http://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html.

• The Pythagorean theorem is the mathematical spring which bore the three
streams.

• Several centuries per stream:

1) Numbers:

6thBCE N counting numbers, Q rationals, P primes

5thBCE Z common integers, I irrationals

7thCE zero ∈ Z

2) Geometry: (e.g., lines, circles, spheres, toroids, . . . )

17thCE Composition of polynomials (Descartes, Fermat)

Euclid’s geometry & algebra⇒ analytic geometry

18thCE Fundamental theorem of algebra

3) Infinity: (∞→ Sets)

17-18thCE Taylor series, functions, calculus (Newton, Leibniz)

19thCE R real, C complex 1851

20thCE Set theory

Figure 1.5: Three streams followed from Pythagorean theorem: number systems (Stream 1),
geometry (stream 2) and infinity (stream 3).

1.1.6 Three Streams from the Pythagorean theorem

From the outset of his presentation Stillwell (2010, p. 1) defines “three great streams of math-

ematical thought: Numbers, Geometry and Infinity” that flow from the Pythagorean theorem, as

summarized in Table 1.5. This is a useful concept, based on reasoning not as obvious as one might

think. Many factors are in play here. One of these is the strongly held opinion of Pythagoras that

all mathematics should be based on integers. The rest are tied up in the long, necessarily complex

history of mathematics, as best summarized by the fundamental theorems (Table 1.1, p. 38), each

of which is discussed in detail in a relevant chapter. Stillwell’s concept of three streams, following

from the Pythagorean theorem, is the organizing principle behind the this book:

16There are at least three useful exponential scales: Factors of 2, factors of e ≈ 2.7, and factors of 10. The decibel

uses factors of 2 (6 [dB]) and factors of 10 (20 [dB]). Information theory uses powers of 2 (1 [bit]), 4 (2 [bits]). Circuit

theory uses factors of both e and 10.
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1. Introduction Chapter 1 is intended to be a self-contained survey of basic pre-college mathe-

matics, as a detailed overview of the fundamentals, presented as three streams:

1.2 Number systems (Stream 1)

1.3 Algebraic equations (Stream 2)

1.4 Scalar calculus (Stream 3a)

1.5 Vector calculus (Stream 3b)

If you’re a student, stick to Chapter 1.

Chapters 2-5 are disorganized rambling research ideas that have not yet found a home. Stu-

dents, please stay out of these chapters.

2. Number Systems (Chapter G: Stream 1) Some uncertain ideas of number systems, starting

with prime numbers, through complex numbers, vectors and matrices.

3. Algebraic Equations (Chapter H: Stream 2) Algebra and its development, as we know it

today. The theory of real and complex equations and functions of real and complex variables.

Complex impedance Z(s) of complex frequency s = σ + ω is covered with some care,

developing the topic which is needed for engineering mathematics.

4. Scalar Calculus (Chapter I: Stream 3a) Ordinary differential equations. Integral theorems.

Acoustics.

5. Vector Calculus: (Chapter J: Stream 3b) Vector partial differential equations. Gradient,

divergence and curl differential operators. Stokes’s and Green’s theorems. Maxwell’s equa-

tions.

1.2 Stream 1: Number Systems

Number theory (discrete, i.e., integer mathematics) was a starting point for many key ideas. For

example, in Euclid’s geometrical constructions the Pythagorean theorem for real [a, b, c] was ac-

cepted as true, but the emphasis in the early analysis was on integer constructions, such as Euclid’s

formula for Pythagorean triplets (Eq. 1.9, Fig. 1.9, p. 48).

As we shall see, the Pythagorean theorem is a rich source of mathematical constructions, such

as composition of polynomials, and solutions of Pell’s equation by eigen-vector and recursive

analysis methods. Recursive difference equation solutions predate calculus, going back at least to

the Chinese (c2000 BCE). These are early (pre-limit) forms of differential equations, best analyzed

using an eigen-vector or eigen-function expansion (a geometrical concept from linear algebra), as

an orthogonal set of normalized (unit-length) vectors (Appendix D, p. 199),

The first use of zero and ∞: It is hard to imagine that one would not appreciate the concept

of zero and negative numbers when using an abacus. It does not take much imagination to go

from counting numbers N to the set of all integers Z, including zero. On an abacus, subtraction

is obviously the inverse of addition. Subtraction, to obtain zero abacus beads, is no different than

subtraction from zero, giving negative beads. To assume the Romans who first developed counting
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sticks, or the Chinese who then deployed the concept using beads, did not understand negative

numbers, is impossible.

However, understanding the concept of zero (and negative numbers) is not the same as having

a symbolic notation. The Roman number system has no such symbols. The first recorded use

of a symbol for zero is said to be by Brahmagupta17 in 628 CE.18 19 Defining zero (c628 CE)

depends on the concept of subtraction, which formally requires the creation of algebra (c830 CE,

Fig. 1.1, p. 19). But apparently it takes more than 600 years, i.e., from the time Roman numerals

were put into use, without any symbol for zero, to the time when the symbol for zero is first

documented. Likely this delay is more about the political situation, such as government rulings,

than mathematics.

The concept that caused much more difficulty was ∞, first solved by Riemann in 1851 with

the development of the extended plane, which mapped the plane to a sphere (Fig. 1.19 p. 93). His

construction made it clear that the point at ∞ is simply another point on the open plane, since

rotating the sphere (extended plane) moves the point at ∞ to a finite point on the plane, thereby

closing the plane.

1.2.1 Lec 2: The Taxonomy of Numbers: N,P,Z,Q,F, I,R,C

Once symbols for zero and negative numbers were accepted, progress could be made. To fully

understand numbers, a transparent notation was required. First one must differentiate between

the different classes (genus) of numbers, providing a notation that defines each of these classes,

along with their relationships. It is logical to start with the most basic counting numbers, which

we indicate with the double-bold symbol N. For easy access, double-bold symbols and set-theory

symbols, i.e., {·},∪,∩,∈,��∈,⊥ etc., are summarized in Appendix A.

Counting numbers N: These are known as the “natural numbers” N = 1, 2, 3, · · · , denoted by

the double-bold symbol N. For clarity we shall refer to the natural numbers as counting numbers,

since natural here means integer. The mathematical sentence “2 ∈ N” is read as 2 is a member of

the set of counting numbers. The word set is defined as the collection of any objects that share a

specific property. Typically the set may be defined either as a sentence, or by example.

Primes P: A number is prime (πn ∈ P) if its only factors are 1 and itself.20 The set of Primes P

is a subset of the counting numbers (P ⊂ N). A somewhat amazing fact, well known to the earliest

mathematicians, is that every integer may be written as a unique product of primes. A second key

idea is that the density of primes ρπ(N) ∼ 1/ log(N) (ρπ(N) is inversely proportional to the log

of N (Eq. G.1, p. 226), an observation first made by Gauss (Goldstein, 1973). A third is that there

is a prime between every integer N and 2N , excluding 2N .

Exercise: Write out the first 10 to 20 integers in prime-factored form. Solution: 1, 2, 3, 22, 5, 2 ·
3, 7, 23, 32, 2 · 5, 11, 3 · 22, 13, 2 · 7, 3 · 5, 24, 17, 2 · 32, 19, 22 · 5.

17
http://news.nationalgeographic.com/2017/09/origin-zero-bakhshali-manuscript-video-spd/

18The fall of the Roman Empire has been established as Sept. 4, 476 CE.
19
https://www.nytimes.com/2017/10/07/opinion/sunday/who-invented-zero.html

2040 primes are generated by the quadratic Pk = k2 − k + 41, k = 1 : 40. But why?
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Exercise: Write integers 2 to 20 in terms of πn. Here is a table to assist you:

n 1 2 3 4 5 6 7 8 9 10 11 · · ·
πn 2 3 5 7 11 13 17 19 23 29 31 · · ·

n 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
Ππn π1 π2 π2

1 π3 π1π2 π4 π3
1 π2

2 π1π3 π5 π2
1π2 π6 π1π4 · · ·

We shall use the convenient notation πn for the prime numbers, indexed by N. The first 12

primes (n = 1, . . . , 12) are πn = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37. Since 4 = 22 and 6 = 2 ·3
may be factored, 4, 6 6∈ P (read as: 4 and 6 are not in the set of primes). Given this definition,

multiples of a prime, i.e., [2, 3, 4, 5, . . .] · πk of any prime πk, cannot be prime. It follows that all

primes except 2 must be odd and every integer N is unique in its factorization.

Coprimes are two numbers with no common prime factors. For example, 4 = 2 ·2 and 6 = 2 ·3
are not coprime, as they have 2 as a common factor, whereas 21 = 3 · 7 and 10 = 2 · 5 are. By

definition all pairs of primes are coprime. We shall use the notation m ⊥ n to indicate that m,n
are coprime. The ratio of two coprimes is reduced, as it has no factors to cancel. The ratio of two

numbers that are not coprime may always be reduced by canceling the common factors. This is

called the reduced form, or an irreducible fraction. When doing numerical work, for computational

accuracy it is always beneficial to work with the reduced form.

The fundamental theorem of arithmetic states that each integer may be uniquely expressed as a

product of primes. The Prime Number Theorem estimates the mean density of primes over N.

Integers Z: These include positive and negative counting numbers and zero. Notionally we

might indicate this using set notation as Z = −N, {0},N. Read this as The integers are in the set

composed of the negative of the natural numbers −N, zero, and N. Note that N ⊂ Z.

Rational numbers Q: These are defined as numbers formed from the ratio of two integers.

Given two numbers n, d ∈ N, then n/d ∈ Q. Since d may be 1, it follows that the rationals include

the counting numbers as a subset. For example, the rational number 3/1 ∈ N.

The main utility of rational numbers is that that they can efficiently approximate any number

on the real line, to any precision. For example, the rational approximation π ≈ 22/7, has a relative

error of ≈0.04%.

Fractional number F : A fractional number F is defined as the ratio of coprimes. If n, d ∈ P,

then n/d ∈ F. Given this definition, F ⊂ Q = Z∪F. Because of the powerful approximating power

of rational numbers, the fractional set F has special utility. For example, π ≈ 22/7, 1/π ≈ 7/22
(to 0.04%), e ≈ 19/7 to 0.15%, and

√
2 ≈ 7/5 to 1%.

Irrational numbers I: Every real number that is not rational is irrational (Q ⊥ I). Irrational

numbers include π, e and the square roots of primes. These are decimal numbers that never repeat,

thus requiring infinite precision in their representation. Such numbers cannot be represented on a

computer, as they would require an infinite number of bits (precision).

The rationals Q and irrationals I split the reals (R = Q∪ I, Q ⊥ I), thus each is a subset of the

reals (Q ⊂ R, I ⊂ R). This relation is analogous to that of the integers Z and fractionals F, which

split the rationals (Q = Z ∪ F, Z ⊥ F) (thus each is a subset of the rationals (Z ⊂ Q, F ⊂ Q)).
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Irrational numbers (I) were famously problematic for the Pythagoreans, who incorrectly the-

orized that all numbers were rational. Like∞, irrational numbers required mastering a new and

difficult concept before they could even be defined: It was essential to understand the factorization

of counting numbers into primes (i.e., the fundamental theorem of arithmetic) before the concept

of irrationals could be sorted out. Irrational numbers could only be understood once limits were

mastered.

As discussed in Sect. Lec. 1.2.5 (p. 45), fractionals can approximate any irrational number

with arbitrary accuracy. Integers are also important, but for a very different reason. All numerical

computing today is done with Q = F ∪ Z. Indexing uses integers Z, while the rest of computing

(flow dynamics, differential equations, etc.) is done with fractionals F (i.e., IEEE-754). Computer

scientists are trained on these topics, and computer engineers need to be at least conversant with

them.

Real numbers R: Reals are the union of rational and irrational numbers, namely R = Z ∪ F ∪
I. Lengths in Euclidean geometry are reals. Many people assume that IEEE 754 floating point

numbers (c1985) are real (i.e., ∈ R). In fact they are rational (Q = {F ∪ Z}) approximations to

real numbers, designed to have a very large dynamic range. The hallmark of fractional numbers

(F) is their power in making highly accurate approximations of any real number.

Using Euclid’s compass and ruler methods, one can make line length proportionally shorter

or longer, or (approximately) the same. A line may be made be twice as long, an angle bisected.

However, the concept of an integer length in Euclid’s geometry was not defined.21 Nor can one

construct an imaginary or complex line, as all lines are assumed to be real.

Real numbers were first fully accepted only after set theory was developed by Cantor (1874)

(Stillwell, 2010, pp. 461). At first blush, this seems amazing, given how widely accepted real

numbers are today. In some sense they were accepted by the Greeks, as lengths of real lines.

Complex numbers C: Complex numbers are best defined as ordered pairs of real numbers.22

The word “complex,” as used here, does not mean that the numbers are complicated or difficult.

They are also know as “imaginary” numbers, but this does not mean the numbers disappear. Com-

plex numbers are quite special in engineering mathematics, as roots of polynomials. The most

obvious example is the quadratic formula, for the roots of polynomials of degree 2, having coeffi-

cients ∈ C. All real numbers have a natural order on the real line. Complex numbers do not have

a natural order. For example,  > 1 makes no sense.

Today the common way to write a complex number is using the notation z = a+b ∈ C, where

a, b ∈ R. Here 1 =
√
−1. We also define 1ı = −1 to account for the two possible signs of the

square root. Accordingly 12 = 1ı2 = −1.

Cartesian multiplication of complex numbers follows the basic rules of real algebra, for exam-

ple, the rules of multiplying two polynomials. Multiplication of two first-degree polynomials (i.e.,

monomials) gives

(a+ bx)(c + dx) = ac + (ad+ bc)x+ bdx2

If we substitute 1 for x, and use the definition 12 = −1, we obtain the Cartesian product of the

two complex numbers

(a+ b)(c+ d) = ac− bd + (ad+ bc).

21As best I know.

22A polynomial a+ bx and a 2-vector [a, b]T =

[
a
b

]
are also examples of ordered pairs.
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Thus multiplication and division of complex numbers obey the usual rules of algebra. However

there is a critical extension: Cartesian multiplication only holds when the angles sum to less than

±π, namely the range of the complex plane. When the angles add to more that ±π, one must

use polar coordinates, where the angles add, for angles beyond ±π (Boas, 1987, p. 8). This is

particularly striking for the Laplace transform of a delay (Table F.3, p. 210).

Complex numbers can be challenging, providing unexpected results. For example, it is not

obvious that
√

3 + 4 = ±(2 + ).

Exercise: Verify. Solution: Squaring both sides
√

3 + 4
2

= ±(2 + )2 = 4− 2 + 4 = 3 + 4.
An alternative to Cartesian multiplication of complex numbers is to work in polar coordinates.

The polar form of complex number z = a + b is written in terms of its magnitude ρ =
√
a2 + b2

and angle θ = ∠z = tan−1 z = arctan z, as

z = ρeθ = ρ(cos θ +  sin θ).

From the definition of the complex natural log function

ln z = ln ρeθ = ln ρ+ θ,

which is important, even critical, in engineering calculations.23 When the angles of two complex

numbers are greater that ±π, one must use polar coordinates. It follows that when computing the

phase, this is much different than the single- and double-argument ∠θ = arctan(z) function.

The polar representation makes clear the utility of a complex number: Its magnitude scales

while its angle Θ rotates. The property of scaling and rotating is what makes complex numbers

useful in engineering calculations. This is especially obvious when dealing with impedances,

which have complex roots with very special properties, as discussed in Sect. 1.3.5 (p. 76).

Matrix representation: An alternative way to represent complex numbers is in terms of 2x2

matrices. This relationship is defined by the mapping from a complex number to a 2x2 matrix

a + b↔
[
a −b
b a

]
, 1↔

[
1 0
0 1

]
, 1↔

[
0 −1
1 0

]
, eθ ↔

[
sin(θ) − cos(θ)
cos(θ) sin(θ)

]
. (1.3)

The conjugate of a + b is then defined as a − b ↔
[
a b
−b a

]
. By taking the inverse of the 2x2

matrix (assuming |a + b| 6= 0), one can define the ratio of one complex number by another. Until

you try out this representation, it may not seem obvious, or even that it could work.

This representation proves that 1 is not necessary when defining a complex number. What 1
can do is to conceptually simplify the algebra. It is worth your time to become familiar with the

matrix representation, to clarify any possible confusions you might have about multiplication and

division of complex numbers. This matrix representation can save you time, heartache and messy

algebra. Once you have learned how to multiply two matrices, it’s a lot simpler than doing the

complex algebra. In many cases we will leave the results of our analysis in matrix form, to avoid

the algebra altogether.24 Thus both representations are important. More on this topic may be found

in Chapter G.

23Chapter 2 discusses the definition of the phase, i.e., how is it computed (i.e., arctan(eθ), arctan2(x,y)),

and the importance of the unwrapped phase, as in the example (Table F.3, p. 210) δ(t− τ)↔ e−τ.
24Sometimes we let the computer do the final algebra, numerically, as 2x2 matrix multiplications.
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History of complex numbers: It is notable how long it took for complex numbers to be accepted

(1851), relative to when they were first introduced by Bombelli (16th century CE). One might have

thought that the solution of the quadratic, known to the Chinese, would have settled this question.

It seems that complex integers (aka, Gaussian integers) were accepted before non-integral complex

numbers. Perhaps this was because real numbers (R) were not accepted (i.e., proved to exist, thus

mathematically defined) until the development of set theory in the late 19th century to sort out a

proper definition of the real number, due to the existence of irrational numbers.

Exercise: Using Matlab/Octave, verify that

a + b

c+ d
=
ab+ bd+ (bc− ad)

c2 + d2
←→

[
a −b
b a

] [
c −d
d c

]−1

=

[
a −b
b a

] [
c d
−d c

]
1

c2 + d2
. (1.4)

Solution: The best way may be using numbers. Below is symbolic code, independent of numerics:

syms a b c d A B

A=[a -b;b a];

B=[c -d;d c];

C=A*inv(B)

Numerical taxonomy:

A simplified taxonomy of numbers is given by the mathematical sentence

πk ∈ P ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C.

This sentence says:

1. Every prime number πk is in the set of primes P,

2. which is a subset of the set of counting numbers N,

3. which is a subset of the set of integers Z = −N, 0,N,

4. which is a subset of the set of rationals Q (ratios of counting numbers N),

5. which is a subset of the set of reals R,

6. which is a subset of the set of complex numbers C.

The rationals Q may be further decomposed into the fractionals F and the integers Z (Q = F∪Z),

and the reals R into the rationals Q and the irrationals I (R = I ∪ Q). This classification nicely

defines all the numbers used in engineering and physics.

The taxonomy structure may be summarize with the single compact sentence, starting with the

prime numbers πk and ending with complex numbers C: Add Venn diag!Add Venn diag!

πk ∈ P ⊂ N ⊂ Z ⊂ (Z ∪ F = Q) ⊂ (Q ∪ I = R) ⊂ C.
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As discussed in Appendix A (p. 183), all numbers may be viewed as complex. Namely, every

real number is complex if we take the imaginary part to be zero (Boas, 1987). For example,

2 ∈ P ⊂ C. Likewise every purely imaginary number (e.g., 0 + 1) is complex with zero real part.

Finally, note that complex numbers C, much like vectors, do not have “rank-order,” meaning

one complex number cannot be larger or smaller than another. It makes no sense to say that  > 1
or  = 1 (Boas, 1987). The real and imaginary parts and the magnitude and phase, have order. If

time t were complex, there could be no yesterday and tomorrow.25

Applications of integers

The most relevant question at this point is “Why are integers important?” First, we count with

them, so we can keep track of “how much.” But there is much more to numbers than counting: We

use integers for any application where absolute accuracy is essential, such as banking transactions

(making change), the precise computing of dates (Stillwell, 2010, p. 70) and location (“I’ll meet

you at 34 and Vine at noon on Jan. 1, 2034.”), building roads or buildings out of bricks (objects

built from a unit size).

To navigate we need to know how to predict the tides, the location of the moon and sun, etc.

Integers are important because they are precise: Once a month there is a full moon, easily recogniz-

able. The next day its slightly less than full. If one could represent our position as integers in time

and space, we would know exactly where we are at all times. But such an integral representation

of our position or time is not possible.

The Pythagoreans claimed that all was integer. From a practical point of view, it seems they

were right. Today all computers compute floating point numbers as fractionals. However, in theory

they were wrong. The difference is a matter of precision.

Numerical Representations of I,R,C: When doing numerical work, one must consider how

we may compute within the set of reals (i.e., which contain irrationals). There can be no irrational

number representation on a computer. The international standard of computation, IEEE floating

point numbers,26 are actually rational approximations. The mantissa and the exponent are both

integers, having sign and magnitude. The size of each integer depends on the precision of the

number being represented. An IEEE floating-point number is rational because it has a binary

(integer) mantissa, multiplied by 2 raised to the power of a binary (integer) exponent. For example,

π ≈ a2b with a, b ∈ Z. In summary, IEEE floating-point numbers are not, and cannot, be irrational,

because numerical representations would imply an infinite number of bits.

True floating point numbers contain irrational numbers, which must be approximated by ratio-

nal numbers. This leads to the concept of fractional representation, which requires the definition

of the mantissa, base and exponent, where both the mantissa and the exponent are signed. Nu-

merical results must not depend on the base. One could dramatically improve the resolution of the

numerical representation by the use of the fundamental theorem of arithmetic (Section 1.2.2, page

37). For example, one could factor the exponent into its primes and then represent the number as

a2b3c5d7e (a, b, c, d, e ∈ Z), etc. Such a representation would improve the resolution of the repre-

sentation. But even so, the irrational numbers would be approximate. For example, base ten27 is

25One can define ξ = x+ 1j ct to be complex (x, t ∈ R), with x in meters [m], t is in seconds [s], and the speed of

light co [m/s].
26IEEE 754: http://www.h-schmidt.net/FloatConverter/IEEE754.html.
27Base 10 is the natural world-wide standard simply because we have 10 fingers.
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natural using this representation since 10n = 2n5n. Thus

π · 105 ≈ 314 159.27 . . . = 3 · 2555 + 1 · 2454 + 4 · 2353 + · · ·+ 9 · 2050 + ✁2 ·✟✟2−15−1 · · · .

If we approximate π by 22/7, then according to the Matlab/Octave DEC2BIN() routine, the binary

representation is ck 4 errorsck 4 errors

π · 217 ≈ 13107210 · 22/7 = 110, 0100, 1001, 0010, 01012,

where 1 and 0 are multipliers of powers of 2, which are then added together as follows:

218 + 217 + 214 + 211 + 28 + 25 + 22 + 20.

In base 16 (i.e., hexadecimal) 217 · 22/7 = 218 · 816/716.

Computers keep track of the decimal point using the exponent, which in this case is the factor

217 = 13107210. The concept of the decimal point is replaced by an integer, having the desired

precision, and a scale factor of any base (radix). This scale factor may be thought of as moving the

decimal point to the right (larger number) or left (smaller number). The mantissa “fine-tunes” the

value about a scale factor (the exponent).

Example: x = 217 × 22/7, using IEEE 754 double precision,28 x = 411, 940.562510 =

254 × 1198372 = 0, 10010, 00, 110010, 010010,010010, 0100102 =0x48c9249216. The exponent

is 218 and the mantissa is 4, 793, 49010. The commas in the binary (0,1) string are to help visualize

the quasi-periodic nature of the bit-stream. The numbers are stored in a 32 bit format, with 1 bit

for sign, 8 bits for the exponent and 23 bits for the mantissa. Perhaps a more instructive num-

ber is x = 4, 793, 490.0 = 0, 100, 1010, 100, 100, 100, 100, 100, 100, 100, 1002 = 0x4a92492416,

which has a repeating binary bit pattern of ((100))3, broken by the scale factor 0x4a. Even

more symmetrical is x = 0x24, 924, 92416 = 00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1002

= 6.344, 131, 191, 146, 9×10−17. In this example the repeating pattern is clear in the hex represen-

tation as a repeating ((942))3, as represented by the double brackets, with the subscript indicating

the period, in this case, three digits. As before, the commas are to help with readability and have

no other meaning.

The representation of numbers is not unique. For example, irrational complex numbers have

approximate rational representations (i.e., π ≈ 22/7). A better example is complex numbers

z ∈ C, which have many representations, as a pair of reals (i.e., z = (x, y)), or by Euler’s formula,

and matrices (θ ∈ R)

eθ = cos θ + j sin θ ↔
[
cos θ − sin θ
sin θ cos θ

]
.

At a higher level, differentiable functions, aka, analytic functions, may be represented by a single-

valued Taylor series expansion (Sect. 1.3.3, p. 67), limited by the its region of convergence (RoC).

Pythagoreans, Integers The integer is the cornerstone of the Pythagorean doctrine, so much

so that it caused a fracture within the Pythagoreans when it was discovered that not all numbers

are rational. The famous proof of irrational numbers is known as the spiral of Theodorus: the

short side is 1 and the long side is recursively incremented by one, using a simple compass-ruler

construction to maintain the right triangle.

To form triangles with perfect 90◦ angles, the lengths need to satisfy Eq. 1.1. Such triangles

are useful in constructing buildings or roads made from bricks of uniform size.

28http://www.h-schmidt.net/FloatConverter/IEEE754.html
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Public-key Security: An important application of prime numbers is public-key encryption, es-

sential for internet security applications (e.g., online banking). Most people assume encryption is

done by a personal login and passwords. Passwords are fundamentally insecure, for many reasons.

Decryption depends on factoring large integers, formed from products of primes having thousands

of bits.29The security is based on the relative ease of multiplying large primes, along with the

virtual impossibility of factoring their products.

When a computation is easy in one direction, but its inverse is impossible, it is called a trap-

door function. We shall explore trapdoor functions in Chapter G. If everyone were to switch from

passwords to public-key encryption, the internet would be much more secure.

Puzzles: Another application of integers is imaginative problems that use integers. An exampleProb → HWProb → HW

is the classic Chinese four stone problem: “Find the weight of four stones that can be used with a

scale to weigh anything (e.g., salt, gold) between 0, 1, 2, . . . , 40 [gm].” As with the other problems,

the answer is not as interesting as the method, since the problem may be easily recast into a related

one. This type of problem can be found in airline magazines as amusement on a long flight. This

puzzle is best cast as a linear algebra problem, with integer solutions. Again, once you know the

trick, it is “easy.”30

1.2.2 Lec 3: The role of physics in mathematics

Bells, chimes and eigen-modes: Integers naturally arose in art, music and science. Examples

include the relations between musical notes, the natural eigen-modes (tones) of strings and other

musical instruments. These relations were so common and well studied, it appeared that to un-

derstand the physical world (aka, the Universe), one needed to understand integers. This was a

seductive view, but not actually correct. As will be discussed in Sections 1.3.1 (p. 56) and H.1.1

(p. 239), it is best to view the relationship between acoustics, music and mathematics as historical,

since these topics played such an important role in the development of mathematics. Also inter-

esting is the role that integers play in quantum mechanics, also based on eigen-modes, but in this

case, those of atoms. Eigen-modes follow from solutions of the wave equation, which has natural

delay due to d’Alembert’s solution, along with reflecting boundary conditions (Eq. 1.163, p. 150),

resulting in roots of the characteristic equation.

Engineers are so accustomed to working with real (or complex) numbers, the distinction be-

tween real (i.e., irrational) and fractional numbers is rarely acknowledged. Integers on the other

hand arise in many contexts. One cannot master programming computers without understand-

ing integer, hexadecimal, octal, and binary representations, since all numbers in a computer are

represented in numerical computations in terms of rationals (Q = Z ∪ F).

As discussed in Section 1.2.1 (p. 29), the primary reason integers are so important is their

absolute precision. Every integer n ∈ Z is unique,31 and has the indexing property, which is

essential for making lists that are ordered, so that one can quickly look things up. The alphabet

also has this property (e.g., a book’s index).

29It would seem that public-key encryption could work by having two numbers with a common prime, and then

using the Euclidean algorithm, the greatest common divisor (GCD) could be worked out. One of the integers could be

the public-key and the second could be the private key.
30Whenever someone tells you something is “easy,” you should immediately appreciate that it is very hard, but once

you learn a concept, the difficulty evaporates.
31Check out the history of 1729 = 13 + 123 = 93 + 103.



1.2. STREAM 1: NUMBER SYSTEMS (10 LECTURES) 37

Because of the integer’s absolute precision, the digital computer overtook the analog computer,

once it was practical to make logic circuits that were fast. From 1946 the first digital computer was

thought to be the University of Pennsylvania’s Eniac. We now know that the code-breaking effort

in Bletchley Park, England, under the guidance of Alan Turing, created the first digital computer

(The Colossus) used to break the WWII German “Enigma” code. Due to the high secrecy of this

war effort, the credit was only acknowledged in the 1970s when the project was finally declassified.

There is zero possibility of analog computing displacing digital computing, due to the impor-

tance of precision (and speed). But even with binary representation, there is a non-zero probability

of error, for example on a hard drive, due to physical noise. To deal with this, error correcting codes

have been developed, reducing the error by many orders of magnitude. Today error correction is a

science, and billions of dollars are invested to increase the density of bits per area, to increasingly

larger factors. A few years ago the terabyte drive was unheard of; today it is the standard. In a few

years petabyte drives will certainly become available. It is hard to comprehend how these will be

used by individuals, but they are essential for on-line (cloud) computing.

The role of mathematics in physics

Modern mathematics is built on a hierarchical construct of fundamental theorems, as summarized

in Table 1.1. The importance of such theorems cannot be overemphasized. Gauss’s and Stokes’s

laws play a major role in understanding and manipulating Maxwell’s equations. Every engineering

student needs to fully appreciate the significance of these key theorems. If necessary, memorize

them. But that will not do over the long run, as each and every theorem must be fully understood.

Fortunately most students already know several of these theorems, but perhaps not by name. In

such cases, it is a matter of mastering the vocabulary.

The theorems are naturally organized and may be thought of in terms of Stillwell’s three

streams. For Stream 1 there is the fundamental theorem of arithmetic and the prime number the-

orem. For Stream 2 there is the fundamental theorem of algebra while for Stream 3 there are a

host of theorems on calculus, ordered by their dimensionality. Some of these theorems verge on

trivial (e.g., the fundamental theorem of arithmetic). Others are more challenging, such as the

fundamental theorem of vector calculus and Green’s theorem.

Complexity should not be confused with importance. Each of these theorems is, as stated,

fundamental. Taken as a whole, they are a powerful way of summarizing mathematics.

Stream 1: Prime number theorems

There are three fundamental theorems about primes,

1. The fundamental theorem of arithmetic: This states that every integer n ∈ Z may be uniquely

factored into prime numbers. This raises the question of the meaning of factor (split into a

product). The product of two integers m,n ∈ Z is mn =
∑
m n =

∑
nm. For example,

2 ∗ 3 = 2 + 2 + 2 = 3 + 3.

2. The prime number theorem: One would like to know how many primes there are. That is

easy: |P| =∞ (the size of the set of primes is infinite). One way of asking this questions is

What is the average density of primes, in the limit as n→∞? This question was answered,

for all practical purposes, by Gauss, who in his free time computed the first three million

primes by hand. He discovered that, to a good approximation, the primes are equally likely



38 CHAPTER 1. INTRODUCTION

Table 1.1: The fundamental theorems of mathematics

1. Fundamental theorems of:

(a) Number systems: Stream 1

• arithmetic

• prime number

(b) Geometry: Stream 2

• algebra

(c) Calculus: Stream 3a

• Leibniz R1

• complex C ⊂ R2

• vectors R3,Rn,R∞

– Gauss’s law (divergence theorem)

– Stokes’s law (curl theorem, or Green’s theorem)

– Vector calculus (Helmholtz’s theorem)

2. Other key concepts:

• Complex analytic functions (complex roots are finally accepted!)

– Complex Taylor series (complex analytic functions)

– Region of convergence (RoC) of complex analytic series

(p. 70)

– Laplace transform, and its inverse

– Causal time =⇒ complex frequency s

– Cauchy integral theorem

– Residue integration (i.e., Green’s thm in R2)

• Riemann mapping theorem (Gray, 1994; Walsh, 1973)

• Complex impedance (Ohm’s law) (Kennelly, 1893)

aFlanders, Harley (June–July 1973). “Differentiation under the integral sign.” American

Mathematical Monthly 80 (6): 615-627. doi:10.2307/2319163. JSTOR 2319163.
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on a log scale. This is nicely summarized by the jingle, attributed to the mathematician

Pafnuty Chebyshev (Stillwell, 2010, p. 585)

Chebyshev said, and I say it again: There is always a prime between n and 2n

which nicely summarizes theorem 3.

When the ratio of two frequencies (pitch) is 2, the relationship is called an octave. Thus we might

say, with a slight stretch of terminology, there is at least one prime per octave. Thus one might

wonder about the maximum number of primes per octave. In modern music the octave is further

divided into 12 intervals called semitones (factors), equal to the 12
√

2. The product of 12 semitones

is an octave. Thus one might ask how many primes there are per semitone? In the end, it is a

question of the density of primes on a log (i.e., ratio) scale.

Stream 2: Fundamental theorem of algebra

This theorem states that every polynomial in x of degree N

PN(x) =
N∑

k=0

akx
k (1.5)

has at least one root (Section H.2.1, p. 244). When a common root is factored out, the degree of

the polynomial is reduced by 1. Applied recursively, a polynomial of degree N has N roots. Note

there are N + 1 coefficients (i.e., [aN , aN−1, · · · , a0]).

Stream 3: Fundamental theorems of calculus

In Sections 1.5.13 and 1.5.14 we will deal with each of the theorems for Stream 3, where we

consider the several fundamental theorems of integration, starting with Leibniz’s formula for inte-

gration on the real line (R), then progressing to complex integration in the complex plane (C)

(Cauchy’s theorem), which is required for computing the inverse Laplace transform. Gauss’s

and Stokes’s laws for R2 require closed and open surfaces, respectively. One cannot manipulate

Maxwell’s equations, fluid flow, or acoustics without understanding these theorems. Any problem

that deals with the wave equation in more than one dimension requires an understanding of these

theorems, thus they are the basis of the derivation of the Kirchhoff voltage and current laws. The

∇ symbol is pronounced as “del” (preferred) or “nabla.”

Finally we define the four basic vector operations based on the ∇ “operator:” The gradient

∇(), divergence ∇ ·() curl ∇×() and the Laplacian ∇ ·∇() = ∇2(). The first three operations

are defined in terms of integral operations on a surface in 1, 2 or 3 dimensions, by taking the limit

as that surface, and the volume contained within, goes to zero. These three differential operators

are essential to fully understand Maxwell’s equations, the crown jewel of mathematical physics.

Hence mathematics plays a key role in physics, as does physics in math.

Other key concepts

Besides the widely recognized fundamental theorems for the three streams, there are a number of

equally important theorems that have not yet been labeled as “fundamental.”32

32It is not clear what it takes to reach this more official sounding category.
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The widely recognized Cauchy integral theorem is an excellent example, since it is a stepping

stone to Green’s theorem and the fundamental theorem of complex calculus. In Section 1.4.5

(p. 118) we clarify the contributions of each of these special theorems.

Once these fundamental theorems of integration (Stream 3) have been mastered, the student

is ready for the complex frequency domain, which takes us back to Stream 2 and the complex

frequency plane (s = σ + ω ∈ C). While the Fourier and Laplace transforms are taught in

mathematics courses, the concept of complex frequency is rarely mentioned. The complex fre-

quency domain (p. 112) and causality are fundamentally related (Sects. 1.4.6–1.4.8, p. 120–122),

and are critical for the analysis of signals and systems, and especially for the concept of impedance

(Sect. 1.4.3, p. 109).

Without the concept of time and frequency, one cannot develop an intuition for the Fourier and

Laplace transforms, especially within the context of engineering and mathematical physics. The

Fourier transform covers signals, while the Laplace transform describes systems. Separating these

two concepts, based on their representations as Fourier and Laplace transforms, is an important

starting place for understanding physics and the role of mathematics. However, these methods, by

themselves, do not provide the insight into physical systems necessary to be productive, or better,

creative with these tools. One needs to master the tools of differential equations, and then partial

differential equations to fully appreciate the world that they describe. Electrical and mechanical

networks, composed of inductors, capacitors and resistors, are isomorphic to mechanical systems

composed of masses, springs and dashpots. Newton’s laws are analogous to those of Kirchhoff,

which are the rules needed to analyze simple physical systems composed of linear (and nonlinear)

sub-components. When lumped-element systems are taken to the limit, in several dimensions, we

obtain Maxwell’s partial differential equations, or the laws of continuum mechanics, and beyond.

The ultimate goal of this book is to make you aware of and productive in using these tools.

This material can be best absorbed by treating it chronologically through history, so you can see

how this body of knowledge came into existence, through the minds and hands of Galileo, Newton,

Maxwell and Einstein. Perhaps one day you too can stand on the shoulders of the giants who went

before you.

1.2.3 Lec 4: Prime numbers

If someone asked you for a theory of counting numbers, I suspect you would laugh and start

counting. It sounds like either a stupid question, or a bad joke. Yet integers are a rich topic,

so the question is not even slightly dumb. It is somewhat amazing that even birds and bees can

count. While I doubt birds and bees can recognize primes, cicadas and other insects only crawl

out of the ground in prime number cycles, (e.g., 13 or 17 year cycles). If you have ever witnessed

such an event (I have), you will never forget it. Somehow they know. Finally, there is an analytic

function, first introduced by Euler, based on his analysis of the sieve, now known as the Riemann

zeta function ζ(s), which is complex analytic, with its poles at the logs of the prime numbers. The

exact relationship between the primes and the poles will be discussed in Section H.4.2 (p. 259).

The properties of this function are truly amazing, even fun.33 Many of the questions and answers

about primes go back to at least the early Chinese (c1500 BCE) (Stillwell, 2010).

33The Riemann zeta function is known as the million dollar equation as there is a cash reward for a proof of the

Riemann Hypothesis.
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The importance of prime numbers: Likely the first insight into the counting numbers started

with the sieve, shown in Fig. 1.6. A sieve answers the question “How can one identify the prime

numbers?” The answer comes from looking for irregular patterns in the counting numbers, by

playing the counting numbers against themselves.

A recursive sieve method for finding primes was first devised by the Greek Eratosthenes34

(276-194, BCE), and summarized in Fig. 1.6.

For example, starting from π1 = 2 one strikes out 2·2, 2·3, 2·4, 2·5, · · · , 2 ·
√
N . By definition

the multiples are products of the target prime (2 in our example) and every another integer (n ≥ 2).

In this way all the even numbers are removed in this first iteration. The next remaining integer (3

in our example) is identified as the next (second) prime π2. Then all the (N − 2)/2 multiples of

π2 = 3 are removed. The next remaining number is π3 = 5, so all multiples of π3 = 5 are removed

(i.e.,✚✚10,✚✚15,✚✚25 etc., · · · ). This process is repeated until all the numbers of the list have either been

canceled or identified as prime.

1. Write N integers from 2 to N − 1. Let k = 1. The first element π1 = 2 is a prime. Cross out

n · πn (4, 8, 16, 32, · · · ).

2 3 ��4 5 ��6 7 ��8 9 ✚✚10
11 ✚✚12 13 ✚✚14 15 ✚✚16 17 ✚✚18 19 ✚✚20
21 ✚✚22 23 ✚✚24 25 ✚✚26 27 ✚✚28 29 ✚✚30
31 ✚✚32 33 ✚✚34 35 ✚✚36 37 ✚✚38 39 ✚✚40
41 ✚✚42 43 ✚✚44 45 ✚✚46 47 ✚✚48 49 ✚✚50

2. Let k = 2, π2 = 3. Cross out nπk (9, 15, 21, 27, 33, 39, · · ·).

2 3 ��4 5 ✁6 7 ��8 ��9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 49 ✚✚50

3. Let k = 3, π3 = 5. Cross out nπ3 (25, 35).

2 3 ��4 5 ��6 7 ��8 ��9 ✚✚10
11 ✚✚12 13 ✚✚14 ✚✚15 ✚✚16 17 ✚✚18 19 ✚✚20

✚✚21 ✚✚22 23 ✚✚24 ✚✚25 ✚✚26 ✚✚27 ✚✚28 29 ✚✚30
31 ✚✚32 ✚✚33 ✚✚34 ✚✚35 ✚✚36 37 ✚✚38 ✚✚39 ✚✚40
41 ✚✚42 43 ✚✚44 ✚✚45 ✚✚46 47 ✚✚48 ✚✚49 ✚✚50

4. Finally let k = 4, π4 = 7. Cross out nπ4: (49). Thus there are 15 primes less than N = 50:

πk = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 (highlighted in red).

Figure 1.6: Sieve of Eratosthenes for N = 50.

As the word sieve implies, this process takes a heavy toll on the integers, rapidly pruning the

non-primes. In four iterations of the sieve algorithm, all the primes below N = 50 are identified in

34https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes\#Euler.27s_Sieve
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red. The final set of primes is displayed in step 4 of Fig. 1.6.

Once a prime greater than N/2 has been identified, the recursion stops, since twice that prime

is greater than N , the maximum number under consideration. Once
√
N has been reached all the

primes have been identified (this follows from the fact that the next prime πn is multiplied by an

integer n = 1, . . .N).

When using a computer, memory efficiency and speed are the main considerations. There are

various schemes for making the sieve more efficient. For example, the recursion nπk = (n −
1)πk + πk will speed up the process by replacing the multiply with an addition of πk.

Two fundamental theorems of primes: Early theories of numbers revealed two fundamental

theorems (there are many more than two), as discussed in Section 1.2.2 and G.1.1 (p. 225). The

first of these is the fundamental theorem of arithmetic, which says that every integer greater than 1

may be uniquely factored into a product of primes

n =
K

Π
k=1

πβk

k , (1.6)

where k = 1, . . . , K indexes the integer’s K prime factors πk ∈ P. Typically prime factors appear

more than once, for example 25 = 52. To make the notation compact we define the multiplicity βk
of each prime factor πk. For example 2312 = 23 · 172 = π3

1 π
2
7 (i.e., π1 = 2, β1 = 3; π7 = 17, β7 =

2) and 2313 = 32 · 257 = π2
3 π55 (i.e., π2 = 3, β3 = 2; π55 = 257, β55 = 1). Our demonstration of

this is empirical, using the Matlab/Octave factor(N) routine, which factors N .35

What seems amazing is the unique nature of this theorem. Each counting number is uniquely

represented as a product of primes. No two integers can share the same factorization. Once you

multiply the factors out, the result is unique (N). Note that it’s easy to multiply integers (e.g.,

primes), but expensive to factor them. And factoring the product of three primes is significantly

more difficult than factoring two.

Factoring is much more expensive than division. This is not due to the higher cost of division

over multiplication, which is less than a factor of 2.36 Dividing the product of two primes, given

one, is trivial, slightly more expensive that multiplying. Factoring the product of two primes is

nearly impossible, as one needs to know what to divide by. Factoring means dividing by some

integer and obtaining another integer with remainder zero.

Thus one could factor a product of primes N = πkπl by doing M divisions, where M is theDoes this make sense?Does this make sense?

number of primes less than N . This assumes the list of primes less than N are known.

But the utility has to do with the density of primes (the prime number theorem, i.e., Gauss’s

hypothesis). If we were simply looking up a few numbers from a short list of primes, it would be

easy, but the density of primes among the integers, is logarithmic (>1 per octave, Section G.1.1,

p. 227).

This brings us to the prime number theorem (PNT). The security problem is the reason why

these two theorems are so important: 1) Every integer has a unique representation as a product

of primes, and 2) the density of primes is large (see the discussions on p. 39 and Section G.1.1,

p. 226). Thus security reduces to the “needle in the haystack problem” due to the cost of a search.

The formal way to measure the density is known as Shannon entropy, couched in terms of theRedo exercise to show H is

uniform?

Redo exercise to show H is

uniform?

35If you wish to be a mathematician, you need to learn how to prove theorems. If you’re a physicist, you are happy

that someone else has already proved them, so that you can use the result.
36
https://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/
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expected value of the log-probability of events: “What is the probability of finding a prime between

N and 2N?”37 HW problem?HW problem?

1.2.4 Lec 5: Greatest common divisor (Euclidean algorithm)

The Euclidean algorithm is a method to find the greatest common divisor (GCD) k between two

integers n,m, denoted k = gcd(n,m), where n,m, k ∈ N. For example, 15 = gcd(30, 105) since

when factored (30, 105) = (2 · 3 · 5, 7 · 3 · 5) = 3 · 5 · (2, 7) = 15 · (2, 7). The Euclidean algorithm

was known to the Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41).

Why is the GCD important? The utility of the GCD algorithm arises directly from the funda-

mental difficulty in factoring large integers. Computing the GCD, using the Euclidean algorithm,

is low cost, compared to factoring, which is extremely expensive. This utility surfaces when the

two numbers are composed of very large primes. When two integers have no common factors they

are said to be coprime, thus their GCD is 1. The ratio of two integers which are coprime is automat-

ically in reduced form (they have no common factors). For example, 4/2 ∈ Q is not reduced since

2 = gcd(4, 2) (with no remainder). Canceling out the common factor 2 gives the reduced form

2/1=2 ∈ N. Thus if we wish to form the ratio of two integers, first compute the GCD, then remove

it from the two numbers to form the ratio. This assures the rational number is in its reduced form

(∈ F rather than ∈ Q). If the GCD were 103 digits it is obvious that the common factor must be

removed to greatly simplify further computation. This can make the difference between factoring

it, or not, when using IEEE-754.

Exercise: Divide 10 into 99, and discuss where the GCD is used. Solution: When we divide a

smaller number into a larger one, we must find the GCD and a remainder. For example 99/10 = 9

+ 9/10 has a GCD of 9 and a remainder of 9/10. Thus we all learned how to compute the GCD in

grade school, when we learned long division.

An example: Take the two integers [873, 582]. In factored form these are [π25 · 32, π25 · 3 · 2].
Given the factors, we see that the largest common factor is π25 · 3 = 291 (π25 = 97). When we

take the ratio of the two numbers this common factor cancels

873

582
= ✟✟π25 · ✁3 · 3

✟✟π25 · ✁3 · 2
=

3

2
= 1.5.

Of course if we divide 582 into 873 we will numerically obtain the answer 1.5 ∈ F.

Exercise: Show that in Matlab/Octave rat(873/582) = 1+1/(-2) gives the wrong an-

swer. Solution: Since

factor(873) = 3 · 3 · 97 and factor(582) = 2 · 3 · 97,

3/2 = 1 + 1/2 is the correct answer. But due to rounding methods, it is not 3/2. As an ex-

ample, in Matlab/Octave rat(3/2)=2+1/(-2). One would expect rat(3/2)=1+1/2. Mat-

lab’s rat() command uses rounding rather than the floor function, which explains the difference.

When the rat() function produces negative numbers, rounding is employed.

37When I understand this better, I’ll do a better job of explaining it.
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Greatest common divisor: k=gcd(m,n)

• Examples (m,n, k ∈ Z):

– gcd(13 · 5, 11 · 5) = 5 (The common 5 is the gcd)

– gcd(13 · 10, 11 · 10) = 10 (The gcd(130,110) = 10 = 2 · 5, is not prime)

– gcd(1234,1024) = 2(1234 = 2 · 617, 1024 = 210)

– gcd(πkπm, πkπn) = πk

– k=gcd(m,n) is the part that cancels in the fraction m/n ∈ F
– m/gcd(m,n) ∈ Z

• Coprimes (m ⊥ n) are numbers with no distinct common factors: i.e., gcd(m,n)=1

– The gcd of two primes is always 1: gcd(13,11) = 1, gcd(πm, πn)=1 (m 6= n)

– m = 7 · 13, n = 5 · 19⇒ (7 · 13) ⊥ (5 · 19)

– If m ⊥ n then gcd(m,n) = 1

– If gcd(m,n) = 1 then m ⊥ n

• The GCD may be extended to polynomials: e.g., gcd(ax2 + bx+ c, αx2 + βx+ γ)

– gcd((x− 3)(x− 4), (x− 3)(x− 5))= (x− 3)

– gcd(x2 − 7x+ 12, 3(x2 − 8x+ 15))= 3(x− 3)

– gcd(x2 − 7x+ 12, (3x2 − 24x+ 45)= 3(x− 3)

– gcd( (x− 2π)(x − 4), (x− 2π)(x − 5) )= (x− 2π) (Needs long division)

Figure 1.7: The Euclidean algorithm for finding the GCD of two numbers is one of the oldest algorithms in
mathematics, and is highly relevant today. It is both powerful and simple. It was used by the Chinese during the Han
dynasty (Stillwell, 2010, p. 70) for reducing fractions. It may be used to find pairs of integers that are coprime (their
GCD must be 1), and it may be used to identify factors of polynomials by long division. It has an important sister
algorithm called the continued fraction algorithm (CFA), that generalizes the Euclidean algorithm.

Euclidean algorithm: The algorithm is best explained by a trivial example: Let the two numbers

be 6, 9. At each step the smaller number (6) is subtracted from the larger (9) and the difference

(the remainder) and the smaller numbers are saved. This process continues until the two resulting

numbers are equal, at which point the GCD equals that final number. If we were to take one more

step, the final numbers would be the GCD and zero. For our example step 1 gives 9-6=3, leaving

6 and 3. Step 2 gives 6-3=3 and 3. Since the two numbers are the same, the GCD=3. If we take

one more difference we obtain (3,0). We can easily verify this result since this example is easily

factored (e.g., 3 · 3, 3 · 2) = 3(3, 2). It may be numerically verified using the Matlab/Octave GCD

command gcd(6,9), which returns 3.

Matrix method: The GCD may be written as a matrix recursion given the starting vector (m0, n0)T .

The recursion is then [
mk+1

nk+1

]
=

[
1 −1
0 1

] [
mk

nk

]
.

This recursion continues until mk+1 < nk+1, at which point m and n must be swapped.

The direct method is inefficient because it recursively subtracts nmany times until the resulting

m is less than n, as shown in Fig. G.1 (p. 230). It also must test for m < n at each iteration, and

then swap m and n once that condition is met. This recursion is repeated until mk+1 = 0. At that

stage the GCD is nk+1. Figure G.1 (p. 230), along with the above matrix relation, gives insight

into the Euclidean algorithm.
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Below is a simple Matlab/Octave code to find k=gcd(m,n) based on the strict definition of

the EA as described by Stillwell (2010):

function k = gcd(m,n)

while m ˜=0

A=m; B=n;

m=max(A,B); n=min(A,B); %m>n

m=m-n;

end

This program loops until m = 0. A much more efficient method is described in Section G.1.3,

p. 228, using the floor() function, which is called division with rounding.

1.2.5 Lec 6: Continued fraction algorithm

In its simplest form, the continued fraction algorithm (CFA) starts from a single real decimal

number x ∈ R, and recursively expands it as a fraction x ∈ F. Thus the CFA is used in finding

rational approximations to any real number. For example, π ≈ 22/7, which was well known by

the Chinese mathematicians. The GCD (the Euclidean algorithm) on the other hand operates on a

pair of integers m,n ∈ N and finds their greatest common divisor k ∈ N. Thus m/k, n/k ∈ N,

reducing the ratio to its irreducible form, since m/k ⊥ n/k.

Despite this seemingly large difference between the two algorithms, apparently the CFA is

closely related to the Euclidean algorithm (the GCD), so closely in fact, that (see Fig. 1.7) Gauss

referred to the Euclidean algorithm as the Continued fraction algorithm (Stillwell, 2010, P. 48). At

first glance it is not clear why Gauss would call the Euclidean algorithm the CFA. One must assume

that Gauss had some deeper insight into this relationship. If so, that insight would be valuable to

understand. 38

In the following we refine the description of the CFA and give examples that go beyond the

simple cases of expanding numbers. The CFA of any positive number, say xo ∈ R+, is defined as

follows:

1. Start with n = 0 and a positive input target xo ∈ R+.

2. Define an = round(xn), which rounds to the nearest integer.

3. Define rn = xn − an, thus −0.5 ≤ rn ≤ 0.5. If rn = 0, the recursion terminates.

4. Define xn+1 = 1/rn and return to step 2, with n = n + 1.

The recursion may continue to any desired accuracy, since convergence is guaranteed.

An example: Let xo ≡ π ≈ 3.14159 . . . . Thus ao = 3, ro = 0.14159, x1 = 7.065 ≈ 1/ro, and

a1 = 7. If we were to stop here we would have

π̂2 ≈ 3 +
1

7 + 0.0625 . . .
≈ 3 +

1

7
=

22

7
. (1.7)

This approximation of π ≈ 22/7 has a relative error of 0.04%

22/7− π
π

= 4× 10−4.

38The resolution of this interrelationship is still unresolved.
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For the next approximation we continue by reciprocating the remainder 1/0.0625 ≈ 15.9966
which rounds to 16 giving a negative remainder of ≈ −1/300, resulting in the second approxima-

tion

π̂3 ≈ 3 + 1/(7 + 1/16) = 3 + 16/(7 · 16 + 1) = 3 + 16/113 = 355/113.

Note that if we had truncated 15.9966 to 15, the remainder would have been positive, but much

larger, resulting in a much less accurate rational approximation for the same number of terms.

It follows that there can be a dramatic difference depending on the rounding scheme, which, for

clarity, is best specified rather than inferred.

Rational approximation examples

π̂2 =
22

7
= [3., 7] ≈ π̂2 +O(1.3× 10−3)

π̂3 =
355

113
= [3., 7, 16] ≈ π̂3−O(2.7× 10−7)

π̂4 =
104348

33215
= [3., 7, 16,−249] ≈ π̂4 +O(3.3× 10−10)

Figure 1.8: The expansion of π to various orders, using the CFA, along with the order of the

error of each rational approximation, with rounding. For example, π̂2 =22/7 has an absolute error

(|22/7− π|) of about 0.13%.

Notation: Writing out all the fractions can become tedious. For example, expanding e = 2.7183 · · ·
using the Matlab/Octave command rat(exp(1)) gives the approximation

exp(1) = 3 + 1/(−4 + 1/(2 + 1/(5 + 1/(−2 + 1/(−7)))))−O
(
1.75× 10−6

)
,

= [3.− 4, 2, 5,−2,−7]−O(1.75× 10−6.

Since many entries are negative, we may deduce that rounding arithmetic is being used by Matlab

(but this is not documented). Note that the leading integer part may be noted by an optional decimal

point or semicolon.39 If the process is carried further, the values of an ∈ N give increasingly more

accurate rational approximations.

Rounding schemes: In Matlab/Octave there are five different rounding schemes (i.e., mappings):

round(c), fix(c), floor(c), ceil(c), roundb(c) with c ∈ R. If the rounding-

down (floor()) is used π̂12 = [3., 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1], whereas true rounding to the

nearest integer (round()) gives π̂8 = [3., 7, 16,−294, 3,−4, 5,−15]. Thus round() introduces

negative remainders when a number rounds up to the nearest integer.

Exercise: Based on several examples, which rounding scheme is the most accurate? Explain

why. Solution: Rounding will give a smaller remainder at each iteration, resulting in a smaller net

error and thus faster convergence.

39Unfortunately Matlab/Octave does not support the bracket notation.
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When the CFA is applied and the expansion terminates (rn = 0), the target is rational. When

the expansion does not terminate (which is not always easy to determine, as the remainder may be

ill-conditioned due to small numerical rounding errors), the number is irrational. Thus the CFA

has important theoretical applications regarding irrational numbers. You may explore this using

Matlab’s rats(pi) command.

One of the useful things about the procedure, besides its being so simple, is its generalizations

to complex variables, one of which will be discussed in Section G.1.3 (p. 228).

Besides these five basic rounding schemes, there are two other important R → N functions

(i.e., mappings): mod(x,y), rem(x,y) with x, y ∈ R, which will be needed later. The base

10 numbers may be generated from the counting numbers using y=mod(x,10).

Exercise:

1. Show how to generate a base-10 real number y ∈ R from the counting numbers N using the

m=mod(n,10)+k10 with n, k ∈ N. Solution: Every time n reaches 10, m = 0. Keep track

of this by adding 1 to k.

2. How would you generate binary numbers (base 2) using the mod(x,b) function? Solu-

tion: Use the same method as in the first example above, but with b = 2.

3. How would you generate hexadecimal numbers (base 16) using the mod(x,b) function?

Solution: Use the same method as in the first example above, but with b = 16.

4. Write out the first 19 numbers in hex notation, starting from zero. Solution: 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, . . . .

5. What isFF16 in decimal notation? Solution: Using the Matlab/octave function hex2dec(’ff’)

is 25510.

Symmetry: A continued fraction expansion can have a high degree of symmetry. For example,

the CFA of

R1 ≡
1 +
√

5

2
= 1 +

1

1 + 1
1+···

= 1.618033988749895 · · · . (1.8)

Here an in the CFA is always 1 (R1 ≡ [1., 1, 1, · · · ]), thus the sequence will not terminate, proving

that
√

5 ∈ I. A related example is R2 ≡ rat(1+sqrt(2)), which gives R2 = [2., 2, 2, 2, · · · ].
When expanding a target irrational number (xo ∈ I), and the CFA is truncated, the resulting

rational fraction approximates the irrational target. For the example above, if we truncate at three

coefficients ([1; 1, 1]) we obtain

1 +
1

1 + 1
1+0

= 1 + 1/2 = 3/2 = 1.5 =
1 +
√

5

2
+ 0.118 · · · .

Truncation after six steps gives

[1., 1, 1, 1, 1, 1, 1] = 13/8 ≈ 1.6250 =
1 +
√

5

2
+ .0070 · · · .

Because all the coefficients are 1, this example converges very slowly, When the coefficients are

large (i.e., remainder small), the convergence will be faster. The expansion of π is an example of

faster convergence.
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In summary: Every rational number m/n ∈ F, with m > n > 1, may be uniquely expanded

as a continued fraction, with coefficients ak determined using the CFA. When the target number is

irrational (xo ∈ Q), the CFA does not terminate; thus, each step produces a more accurate rational

approximation, converging in the limit as n→∞.

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is

rational, but with an important caveat: one must determine if the expansion terminates. This

may not be obvious. The fraction 1/3 = 0.33333 · · · is an example of such a target, where the

CFA terminates yet the fraction repeats. It must be that

1/3 = 3× 10−1 + 3× 10−2 + 3× 10−3 + · · · .

Here 3*3=9. As a second example40

1/7 = 0.142857142857142857142857 · · ·= 142857× 10−6 + 142857× 10−12 + · · ·

There are several notations for repeating decimals such as 1/7 = 0.1142857 and 1/7 = 0.1((142857)).
Note that 142857 = 999999/7. Related identities include 1/11 = 0.090909 · · · and 11×0.090909 =
999999. When the sequence of digits repeats, the sequence is predictable, and it must be rational.

But it is impossible to be sure that it repeats, because the length of the repeat can be arbitrarily

long.

1.2.6 Lec 7: Pythagorean triplets (Euclid’s formula)

Euclid’s formula is a method for finding three integer lengths [a, b, c] ∈ N, that satisfy Eq. 1.1. It is

important to ask “Which set are the lengths [a,b,c] drawn from?” There is a huge difference, both

practical and theoretical, if they are from the real numbers R, or the counting numbers N. Given

p, q ∈ N with p > q, the three lengths [a, b, c] ∈ N of Eq. 1.1 are given by

a = p2 − q2, b = 2pq, c = p2 + q2. (1.9)

This result may be directly verified, since

[p2 + q2]2 = [p2 − q2]2 + [2pq]2

or

p4 + q4 +✟✟✟
2p2q2 = p4 + q4 −✟✟✟

2p2q2 +✟✟✟
4p2q2.

Thus, Eq. 1.9 is easily proven, once given. Deriving Euclid’s formula is obviously more difficult.

A well-known example is the right triangle depicted in Fig. 1.9, defined by the integers [3, 4, 5] ∈
N , having angles [0.54, 0.65, π/2] [rad], which satisfies Eq. 1.1 (p. 18). As quantified by Euclid’s

formula (Eq. 1.9), there are an infinite number of Pythagorean triplets (PTs). Furthermore the

seemingly simple triangle, having angles of [30, 60, 90] ∈ N [deg] (i.e., [π/6, π/3, π/2] ∈ I [rad]),

has one irrational (I) length ([1,
√

3, 2]).
The technique for proving Euclid’s formula for PTs [a, b, c] ∈ Q, derived in Fig. G.3 (p. 233)

of Section G.2.1, is much more interesting than the PTs themselves.

40Taking the Fourier transform of the target number, represented as a sequence, could help to identify an underlying

periodic component. The number 1/7 ↔ [[1, 4, 2, 8, 5, 7]]6 has a 50 [dB] notch at 0.8π [rad] due to its 6 digit

periodicity, carried to 15 digits (Matlab/Octave maximum precision), Hamming windowed, and zero padded to 1024

samples.
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Figure 1.9: Beads on a string form perfect right triangles when the number of unit lengths between beads
for each side satisfies Eq. 1.1. For example, when p = 2, q = 1, the sides are [3, 4, 5].

Figure 1.10: “Plimpton-322” is a stone tablet from 1800 [BCE], displaying a and c values of the

Pythagorean triplets [a, b, c], with the property b =
√
c2 − a2 ∈ N. Several of the c values are primes,

but not the a values. The stone is item 322 (item 3 from 1922) from the collection of George A. Plimpton.
–Stillwell (2010)

The set from which the lengths [a, b, c] are drawn was not missed by the Indians, Chinese,

Egyptians, Mesopotamians, Greeks, etc. Any equation whose solution is based on integers is

called a Diophantine equation, named after the Greek mathematician Diophantus of Alexandria

(c250 CE) (Fig. 1.1, p. 19).

A stone tablet having the numbers engraved on it, as shown in Fig. 1.10, was discovered in

Mesopotamia, from the 19th century [BCE], and cataloged in 1922 by George Plimpton.41 42 These

numbers are a and c pairs from PTs [a,b,c]. Given this discovery, it is clear that the Pythagoreans

were following those who came long before them. Recently a second similar stone, dating between

350 and 50 [BCE] has been reported, that indicates early calculus on the orbit of Jupiter’s moons,

the very same moons that Rømer observed to show that the speed of light was finite (p. 24).43

41
http://www.nytimes.com/2010/11/27/arts/design/27tablets.html

42
https://en.wikipedia.org/wiki/Plimpton_322

43
http://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy-jupiter.

html
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1.2.7 Lec 8: Pell’s Equation

There is a venerable history for Pell’s equation

x2
n −Ny2

n = (xn −
√
Nyn)(xn +

√
Nyn) = 1, (1.10)

with non-square N ∈ N specified and x, y ∈ N unknown. It is suspected that Pell’s equation is

directly related to the Euclidean algorithm, as applied to polynomials having integer coefficients

(Stillwell, 2010, 48). For example, withN = 2, one solution is x = 17, y = 12 (i.e., 172−2 ·122 =
1).

A 2x2 matrix recursion algorithm, likely due to the Chinese, was used by the Pythagoreans to

investigate the
√
N , where we move the index outside the vector to save typing:

[
x
y

]

n

=

[
1 N
1 1

] [
x
y

]

n−1

. (1.11)

As in the case of the CFA, xn/yn →
√
N ∈ F. Starting with [xo, yo]

T = [1, 0]T , results in solutions

of Pell’s equations (Stillwell, 2010, p. 44). Their approach was likely motivated by the Euclidean

algorithm (GCD, p. 43), since yn/xn →
√

2 (Stillwell, 2010, p. 37, 55).

Note that this is a composition method, of 2x2 matrices, since the output of one matrix multiply

is the input to the next. They key question what is the relationship between Pell’s equation and the

linear recursion? Is it that Pell’s equation may be trivially factored? There must be some simple

way to prove that Eqs. 1.11 and 1.10 are equivalent, as demonstrated on Section G.2.3 (p. 235).

Asian solutions: The first solution of Pell’s equation was published by Brahmagupta (c628),

who independently discovered the equation (Stillwell, 2010, p. 46). Brahmagupta’s novel solution

introduced a different composition method (Stillwell, 2010, p. 69), and like the Greek result, this

solution was incomplete.

Then in 1150CE, Bhâskara II obtained solutions using Eq. 1.11 (Stillwell, 2010, p.69). This is

the solution method we shall explore here, as summarized in Fig. 1.11.

The best way to see how this recursion results in solutions to Pell’s equation is by example.

Initializing the recursion with the trivial solution [xo, yo]
T = [1, 0]T gives

[
x1

y1

]
=

[
1
1

]
=

[
1 2
1 1

] [
1
0

]
12 − 2 · 12 = −1

[
x2

y2

]
=

[
3
2

]
=

[
1 2
1 1

] [
1
1

]
32 − 2 · 22 = 1

[
x3

y3

]
=

[
7
5

]
=

[
1 2
1 1

] [
3
2

]
(7)2 − 2 · (5)2 = −1

[
x4

y4

]
=

[
17
12

]
=

[
1 2
1 1

] [
7
5

]
172 − 2 · 122 = 1

[
x5

y5

]
=

[
41
29

]
=

[
1 2
1 1

] [
17
12

]
(41)2 − 2 · (29)2 = −1

Thus the recursion results in a modified version of Pell’s equation

x2
n − 2y2

n = (−1)n, (1.12)

where only even values of n are solutions. This sign change had no effect on the Pythagoreans’

goal, since they only cared about the ratio yn/xn → ±
√

2.
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[
x1

y1

]
= 

[
1
1

]

1

= 

[
1 2
1 1

] [
1
0

]

0

2 − 2 · 2 = 1

[
x
y

]

2

= 2
[
3
2

]

2

= 

[
1 2
1 1

]


[
1
1

]

1

32 − 2 · 22 = 1

[
x
y

]

3

= 3
[
7
5

]

3

= 

[
1 2
1 1

]
2
[
3
2

]

2

(7)2 − 2 · (5)2 = 1

[
x
y

]

4

=

[
17
12

]

4

= 

[
1 2
1 1

]
3
[
7
5

]

3

172 − 2 · 122 = 1

[
x
y

]

5

= 

[
41
29

]

5

= 

[
1 2
1 1

] [
17
12

]

4

(41)
2 − 2 · (29)

2
= 1

Figure 1.11: This summarizes the solution (∈ C) of Pell’s equation for N = 2 using a slightly modified

matrix recursion. Note that xn/yn →
√

2 as n→∞, which was what the Pythagoreans were pursuing, and
that the odd solutions are pure-imaginary. Note we have placed the recursion index n outside the brackets
to reduce notional clutter.

Modified recursion: As shown in Fig. 1.11, the recursion may be slightly modified to fix the

(−1)n problem, by multiplying the 2x2 matrix by  =
√
−1. This results in Pell’s equation for

every step of the recursion.

Solution to Pell’s equation: By multiplying the matrix by 1, all the solutions (xk ∈ C) to Pell’s

equation are determined. From Fig. 1.11 we can see that every output of this slightly modified

matrix recursion gives solutions to Pell’s equation. The 1 factor corrects the alternation in sign, so

every iteration yields a solution. For n = 0 (the initial solution) [x0, y0] is [1, 0]0, [x1, y1] = [1, 1]1,

and [x2, y2] = −[3, 2]2. These are easily checked using this recursion.

At each iteration, the ratio xn/yn approaches
√

2 with increasing accuracy, coupling it to the

CFA. The value of 41/29 ≈
√

2, with a relative error of <0.03%. The solution for N = 3 is given

in Appendix E.1.1 (p. 204).

Relations to digital signal processing: Today we recognize Eq. 1.11 as a difference equation,

which is a pre-limit (pre Stream 3) form of a differential equation. The Greek 2x2 form is an early

precursor to 17th and 18th century developments in linear algebra. Thus the Greeks’ recursive

solution for the
√

2 and Bhâskara’s (1030 CE) solution of Pell’s equation are early precursors to

discrete-time processing, as well as to calculus.

There are important similarities between Pell’s equation and the Pythagorean theorem. As

we shall see in Chapter G, Pell’s equation is related to the geometry of a hyperbola, just as the

Pythagorean equation is related to the geometry of a circle. One would assume there is a Euclidean

formula for the case of Pell’s equations, since these are all conic sections with closely related conic

geometry. As we have seen, the solutions involve
√
−1.

Eigen-analysis: The key to the analysis of such equations is called the eigen-analysis, or modal-

analysis method. These are also known as resonant modes in the physics literature. Eigen-modes

describe the naturally occurring “ringing” found in physical wave-dominated boundary value prob-

lems. Each mode’s “eigen-value” quantifies the mode’s natural frequency. Complex eigen-values

result in damped modes, which decay in time due to energy losses. Common examples include tun-

ing forks, pendulums, bell, and strings of musical instruments, all of which have a characteristic
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frequency.

Cauchy’s residue theorem is used to find the time-domain response of each frequency-domain

complex eigen-mode. Thus eigen-analysis and eigen-modes of physics are the same thing (see

Sect. 1.4.3, p. 109), but are described using different (i.e., mutually unrecognizable) notional meth-

ods.44 The eigen-method method is summarized in Appendix D, p. 199.

Taking a simple example of a 2x2 matrix T ∈ C, we start from the definition of the two

eigen-equations

T e± = λ±e±, (1.13)

corresponding to two eigen-values λ± ∈ C and two 2x1 eigen-vectors e± ∈ C. The eigen-values

λ± may be merged into a 2x2 diagonal eigen-value matrix

Λ =

[
λ+ 0
0 λ−

]
,

while the two eigen-vectors e+ and e− are merged into a 2x2 eigen-vector matrix

E = [e+, e−] =

[
e+

1 e−
2

e+
1 e−

2

]
, (1.14)

corresponding to the two eigen-values. Using matrix notation, this may be compactly written as

T E = EΛ. (1.15)

Note that while λ± and E± commute, EΛ 6= ΛE.

From Eq. 1.15 we may obtain two very important forms:

1. the diagonalization of T

Λ = E−1T E, (1.16)

and

2. the eigen-expansion of T

T = E−1ΛE−1, (1.17)

which is useful for computing power of T (i.e., T 100 = E−1Λ100E).

Example: If we take

T =

[
1 1
1 −1

]

then the eigen-values are given by (1 − λ±)(1 + λ±) = −1, thus λ± =
√

2. This method of

eigen-analysis is discussed in Section G.2.2 (p. 232) and Appendix E (p. 203).

The key idea of the 2x2 matrix solution, widely used in modern engineering, can be traced back

to Brahmagupta’s solution of Pell’s equation, for arbitrary N . Brahmagupta’s recursion, identical

to that of the Pythagoreans’ N = 2 case (Eq. 1.11), eventually led to the concept of linear algebra,

defined by the simultaneous solutions of many linear equations. The recursion by the Pythagoreans

44During the discovery or creation of quantum mechanics, two alternatives were developed: Schrödinger’s differ-

ential equation method and Heisenberg’s matrix method. Eventually it was realized the two were equivalent.
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(6th BCE) predated the creation of algebra by al-Khwārizmī (9th CE century) (Fig. 1.1) (Stillwell,

2010, p. 88).

WEEK 4

1.2.8 Lec 9: Fibonacci sequence

Another classic problem, also formulated by the Chinese, was the Fibonacci sequence, generated

by the relation

fn+1 = fn + fn−1. (1.18)

Here the next number fn+1 ∈ N is the sum of the previous two. If we start from [0, 1], this differ-

ence equation leads to the Fibonacci sequence fn = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]. Alternatively,

if we define yn+1 = xn, then Eq. 1.18 may be compactly represented by a 2x2 matrix equation re-

cursion [
x
y

]

n+1

=

[
1 1
1 0

] [
x
y

]

n

. (1.19)

The correspondence of Eqs. 1.18 and 1.19 is easily verified. Starting with [x, y]T0 = [0, 1]T we

obtain for the first few steps
[
1
0

]

1

=

[
1 1
1 0

] [
0
1

]

0

,

[
1
1

]

2

=

[
1 1
1 0

] [
1
0

]

1

,

[
2
1

]

3

=

[
1 1
1 0

] [
1
1

]

2

,

[
3
2

]

4

=

[
1 1
1 0

] [
2
1

]

3

, · · · .

From the above xn = [0, 1, 1, 2, 3, 5, . . .] is the Fibonacci sequence since the next xn is the sum of

the previous two and the next yn is xn.
Repeat eigen-analysis.Repeat eigen-analysis.

Figure 1.12: This construction is called the Fibonacci spiral. Note how it is constructed out of squares having
areas given by the square of the Fibonacci numbers. In this way, the spiral is smooth and the radius increases as the
Fibonacci numbers (e.g., 8=3+5, 13 = 5+8, etc.). (Adapted from https://en.wikipedia.org/wiki/Golden spiral.)

The mean-Fibonacci sequence: Suppose that the Fibonacci sequence recursion is replaced by

the mean of the last two values, namely let

fn+1 =
fn + fn−1

2
. (1.20)

This seems like a small change. But how does the solution differ? To answer this question it is

helpful to look at the corresponding 2x2 matrix.



54 CHAPTER 1. INTRODUCTION

Exercise: Find the 2x2 matrix corresponding to Eq. 1.20. Solution: The 2x2 matrix may be

found using the companion matrix method (p. 65), giving

[
x
y

]

n+1

=
1

2

[
1 1
2 0

] [
x
y

]

n

. (1.21)

The eigen-values of this matrix are [1,−1/2] (i.e., the roots of the binomial equation λ2 − λ/2 −
1/2 = 0). Thus [xn, yn] = [1, 1]T and [xn, yn] = [1, 1]T are both solutions.

Exercise: Starting from [xn, yn]
T = [1, 0]T compute the first 5 values of [xn, yn]

T . Solution: Here

is a Matlab/Octave code for computing xn:

x(1:2,1)=[1;0];

A=[1 1;2 0]/2;

for k=1:10; x(k+1)=A*x(:,k); end

which gives the rational (xn ∈ Q) sequence: 1, 1/2, 3/4, 5/8, 11/24, 21/25, 43/26, 85/27, 171/28,

341/29, 683/210, · · · .

Exercise: Show that the solution to Eq. 1.20 is bounded, unlike that of the Fibonacci sequence,

which diverges. Explain what is going on. Solution: Because the next value is the mean of the

last two, the sequence is bounded. To see this one needs to compute the eigen-values of the matrix

Eq. 1.21.

Exercise: Use the formula for the generalized diagonalization of a matrix to find the general

solution of the mean-Fibonacci sequence. Solution: The eigen-values are given by the roots of

0 = −λ(1/2− λ)− 1/2 = (λ− 1/4)2 − 9/16

which are [1,−1/2].

By studying the eigen-values of Eq. 1.21 one finds that the steady state solution approaches 1.

Namely fn → 1 = (fn−1 + fn−2)/2 is the solution, as n→∞. Namely the average of the last two

values must approach 1 for large n.

Exercise: Show that the geometric series formula holds for 2x2 matrices. Starting with the 2x2

identity matrix I2 and a ∈ C, with |a| < 1, show that

I2(I2 − aI2)
−1 = I2 + aI2 + a2I2

2 + a3I3
2 + · · · .

Solution: Since akIk2 = akI2, we may multiply both sides by I2 − aIk2 to obtain

I2 = I2 + aI2 + a2I2
2 + a3I3

2 + · · · − aI2(aI2 + a2I2
2 + a3I3

2 + · · · )
= [1 + (a + a2 + a3 + · · · )− (a+ a2 + a3 + a4 + · · · )]I2

= I2
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Summary: The GCD (Euclidean algorithm), Pell’s equation and the Fibonacci sequence may all

be written as compositions of 2x2 matrices. Thus Pell’s equation and the Fibonacci sequence are

special cases of 2x2 matrix composition

[
x
y

]

n+1

=

[
a b
c d

] [
x
y

]

n

.

This is an important and common thread of these early mathematical findings. It will turn out that Can CFA be written this way?Can CFA be written this way?

this 2x2 matrix recursion plays a special role in physics, mathematics and engineering, because

such equations are solved using the eigen-analysis method. The first several thousands of years of

mathematical trial and error set the stage for this breakthrough, but this took a long time to fully

be appreciate. Relate to PT, EA & CFARelate to PT, EA & CFA

Is the CFA the inverse of the
GCD?
Is the CFA the inverse of the
GCD?

Discuss importance of eigen-
analysis
Discuss importance of eigen-
analysis

Discuss the development of algebra (Fig 1.1 p. 19) and the discovery of Diophantus’ book on

“Arithmitic” by Bombelli, Fermat and Descarte (p. 23).

1.2.9 Lec 10: Exam I (In class)
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1.3 Algebraic Equations: Stream 2

The era of 1640 to 1900 (Fig. 1.13) produced a continuous stream of fundamental theorems. A

few of the individuals who played a notable role in this development, in chronological (birth) or-

der, include: Galileo, Mersenne, Newton, d’Alembert, Fermat, Huygens, Descartes and Helmholtz.

These individuals were some of the first to develop the basic ideas, in various forms, that were then

later reworked into the proofs, that today we recognize as the fundamental theorems of mathemat-

ics.

Chronological history from the 17th century

17th Newton 1642-1727, Bernoulli, Johann 1667–1748

18th Bernoulli, Daniel, Cauchy 1789–1857, Euler 1707–1783, d’Alembert 1717–1783,
Gauss 1777–1855

19th Kirchhoff 1824–87, Helmholtz 1821–1894, Riemann 1826–1866, Maxwell 1831–
1879, Rayleigh 1842–1919, Heaviside 1850–1925, Poincare 1854–1912,

20th Sommerfeld 1686–1951, Einstein 1879–1955, Brillouin 1889–1969 . . .

Time-Line

|1640 |1700 |1750 |1800 |1850 |1900

Daniel Bernoulli
Euler

dAlembert

Gauss

Cauchy

Helmholtz

Riemann
Maxwell

Poincare

Rayleigh

Kirchhoff

Heaviside

Einstein
Kelvin

Stokes

Sommerfeld

Brillouin

Johann Bernoulli
Newton

Beethoven
Mozart

Figure 1.13: Time-line of the three centuries from the mid 17th to 20th CE, one of the most productive times of
all, because mathematicians were sharing information. Figure 1.2 (p. 23) (Bombelli-Gauss) provides a closer look at
the 16–19 CE, and Fig. 1.24 (p.103) (Bombelli-Einstein) provides the full view 16–20 CE. [fig:TimeLine19CE]

1.3.1 Lec 11 The physics behind nonlinear Algebra (Euclidean geometry)

Following Stillwell’s history of mathematics, Stream 2 is geometry, which led to the merging of

Euclid’s geometrical methods and the 9th century development of algebra by al-Khwarizmi (830

CE). This integration of ideas led Descartes and Fermat to develop analytic geometry. While not

entirely a unique and novel idea, it was late in coming, given what was known at that time.

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served

students of mathematics for more than two thousand years. Algebra and geometry were, at first,

independent lines of thought. When merged, the focus returned to the Pythagorean theorem, gen-

eralized as analytic conic sections rather than as geometry in Euclid’s Elements. With the introduc-
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tion of algebra, numbers, rather than lines, could be used to represent a geometrical length. Thus

the appreciation for geometry grew, given the addition of the rigorous analysis using numbers.

Physics inspires algebraic mathematics: The Chinese used music, art, and navigation to drive

mathematics. Unfortunately much of their knowledge has been handed down either as artifacts,

such as musical bells and tools, or mathematical relationships documented, but not created, by

scholars such as Euclid, Archimedes, Diophantus, and perhaps Brahmagupta. With the invention

of algebra by al-Khwārizmī (830CE), mathematics became more powerful, and blossomed. During

the 16th and 17th century, it had become clear that differential equations (DEs), such as the wave

equation, can characterize a law of nature, at a single point in space and time. This principle

was not obvious. A desire to understand motions of objects and planets precipitated many new

discoveries. This period is illustrated in Fig. 1.2 (p. 23).

The law of gravity was first formulated by Galileo to explain the falling of two objects of

different masses, and how they must obey conservation of energy. Kepler investigated the motion

of the planets. While Kepler was the first to observe that the orbit of planets is described by

ellipses, it seems he under-appreciated the significance of his finding, and continued working on

his incorrect epicycle planetary model. Following up on Galileo’s work, Newton (c1687) went on

to show that there must be a gravitational potential between two masses (m1, m2) of the form

φg(r(t)) ∝
m1m2

r(t)
, (1.22)

where r = |x1 − x2| is the Euclidean distance between the two point masses at locations x1 and

x2. Using algebra and his calculus, Newton formalized the equation of gravity, forces and motion

(Newton’s three laws) and showed that Kepler’s discovery of planetary elliptical motion naturally

follows from these laws. With the discovery of Uranus (1781) “Kepler’s theory was ruined” (i.e.,

proven wrong) (Stillwell, 2010, p. 23).

Once Newton proposed the basic laws of gravity, he proceed to calculate, for the first time, the

speed of sound. This required some form of the pressure wave equation

∂2

∂x2
̺(x, t) =

1

c2
o

∂2

∂t2
̺(x, t), (1.23)

a key equation in mathematical physics. The speed of sound is

co =

√
ηoPo
ρo

= 343, [m/s]

which is a function of the density ρo = 1.12 [kg/m3] and the dynamic stiffness ηPo of air.45

If we substitute for the pressure

̺(x, t) = e(ωt±2πkx), (1.24)

where t is time and x is position, we find that 2πk = 2π/λ = 2πf/co, because fλ = co.

45ηo = Cp/Cv = 1.4 is the ratio of two thermodynamic constants and Po = 105 [Pa] is the barometric pressure of

air.
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Case of dispersive wave propagation: This classic relation λf = c is deceptively simple, thus

confusing, because k = 2π/λ becomes complex (has both real and imaginary parts) in dispersive

media (e.g., acoustic waves in tubes) when losses are considered (Kirchhoff, 1868; Mason, 1927).

A more important example is the case of electron waves in silicon crystals (Brillouin, 1953). In

these more general cases, k(f) = 2πf/c is replaced with the complex analytic function κ(s) of s,
i.e., and the wave becomes the eigen-function of the wave equation

p±(x, t) = Po(s)e
ste±κ(s)x. (1.25)

In these more general cases the wave number κ(s) must be a complex analytic function of the

Laplace frequency s = σ + ω, as used with the Laplace transform. This is because electron

“waves” in a dispersive semi-conductor, such as silicon, are “filtered” in magnitude and phase.

Silicon is a highly dispersive “wave-filter,” forcing the wavelength to be a complex function of

frequency. This view is elegantly explained by Brillouin (1953, Chap. 1), in his historic context.

Modern acoustics contains a rich source of related examples (Morse, 1948; Beranek, 1954; Be-

ranek and Mellow, 2012).

Newton’s Principia was finally published in 1687, and the general solution to Newton’s wave

equation [i.e., p(x, t) = G(t ± x/c)], where G is any function, was first published 60 years later

by d’Alembert (c1747), which showed that for sounds of a single frequency, the wavelength λ and

frequency f were related by

fλ = c. (1.26)

Today d’Alembert’s analytic wave solution must be written as Eq. 1.25 having a complex wave

number κ(s) = 2π/λ(s) [m−1]. This formulation led to the frequency domain concept of the

Laplace analysis, based on the linearity (i.e., superposition) property of the wave equation (Postu-

late P2: Lec. 1.3.15, p. 100).

Newton’s value for the speed of sound in air co was incorrect by the thermodynamic constant√
ηo, a problem that would take more than two hundred years to resolve. What was needed was

the adiabatic process, (the concept of constant-heat). For audio frequencies (0.02-20 [kHz]), the

small temperature gradients cannot diffuse the distance of a wavelength in one cycle (Pierce, 1981;

Boyer and Merzbach, 2011), “trapping” the heat energy in the wave.46 The fix to Newton’s formula

for the sound speed was to define the dynamic stiffness of air ηoPo, where Po (1 [atm] or 105 [Pa])

is the static stiffness of air.

Newton’s success was important because it quantified the physics behind the speed of sound,

and demonstrated that momentum waves (mv), not mass m, was transported by the wave. His

concept was correct, and his formulation using algebra and calculus represented a milestone in

science. In air, assuming no visco-elastic losses, it is constant (i.e., co =
√
ηoPo/ρo). When

including losses the wave number becomes a complex function of frequency, leading to Eq. 1.25.

In periodic structures, again the wave number becomes complex due to diffraction, as commonly

observed in optics (e.g., diffraction gratings) and acoustics. Thus Eq. 1.26 only holds for the most

simple cases, but in general it must be considered as a complex analytic function of s, as κ(s) in

Eq. 1.25.

The corresponding discovery for the formula for the speed of light was made 174 years after

Principia, by Maxwell (c1861). Maxwell’s formulation also required great ingenuity, as it was nec-

essary to hypothesize an experimentally unmeasured term in his equations, to get the mathematics

to correctly predict the speed of light.

46There were other physical enigmas, such as the observation that sound disappears in a vacuum or that a vacuum

cannot draw water up a column by more than 34 feet.
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The first Algebra:

Prior to the invention of algebra, people worked out problems as sentences using an obtuse descrip-

tion of the problem (Stillwell, 2010, p. 93). Algebra changed this approach, resulting in a compact

language of mathematics, where numbers are represented as abstract symbols (e.g., x and α). The

problem to be solved could be formulated in terms of sums of powers of smaller terms, the most

common being powers of some independent variable (i.e., time or frequency). Since we set an = 1

PN(z) ≡ zn + an−1z
n−1 + · · ·+ aoz

0 =
n∑

k=0

akz
k =

n∏

k=0

(z − zk). (1.27)

is called a monic rather than a polynomial. The coefficient an cannot be zero, or the polynomial

would not be of degree n. The solution is to force an = 1, since this simplifies the expression, and

does not change the roots.

The key question is: What values of z = zk result in PN(zk) = 0. In other words, what are the

roots zk of the polynomial? Answering this question consumed thousands of years, with intense

efforts by many aspiring mathematicians. In the earliest attempts, it was a competition to evaluate

mathematical acumen. Results were held as a secret to the death bed. It would be fair to view

this effort as an obsession. Today the roots of any polynomial may be found, to high accuracy, by

numerical methods. Finding roots is limited by the numerical limits of the representation, namely

by IEEE-754 (p. 35). There are also a number of important theorems.

Of particular interest is composing a circle with a line, when the line does not touch the circle,

and finding the roots. There was no solution to this problem using geometry. This question is

addressed in the assignments.

Finding roots of polynomials

The problem of factoring polynomials has a history more than a millennium in the making. While

the quadratic (degree N = 2) was solved by the time of the Babylonians (i.e., the earliest recorded

history of mathematics), the cubic solution was finally published by Cardano in 1545. The same

year, Cardano’s student solved the quartic (N = 4). In 1826 (281 years later) it was proved that

the quintic (N = 5) could not be factored by analytic methods.

As a concrete example we begin with trivial but important case of the quadratic

P2(x) = ax2 + bx+ c. (1.28)

First note that if a = 0, the quadratic reduces to the monomial P1(x) = bx + c. Thus we have

the necessary condition that a 6= 0. The best way to proceed is to divide a out and work directly

with the normalized quadratic P̂2(x) = 1
a
P2(x). In this way we do not need to worry about the

exception, a = 0.

The roots are those values of x such that P̂2(xk) = 0. One of the first results (recorded by the

Babylonians, c2000 BCE) was the factoring of this equation by completing the square (Stillwell,

2010, p. 93). One may isolate x by rewriting Eq. 1.28 as

1

a
P2(x) = (x+ b/2a)2 − (b/2a)2 + c/a. (1.29)

This is easily verified by expanding the squared term and canceling (b/2a)2

1

a
P2(x) = [x2 + (b/a)x+✘✘✘✘(b/2a)2]−✘✘✘✘(b/2a)2 + c/a.
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Setting Eq. 1.29 to zero and solving for the two roots x± gives the quadratic formula

x± =
−b ±

√
b2 − 4ac

2a
. (1.30)

The roots of P̂2(x), with a = 1, greatly simplify to

x± = −1

2
b±

√
(b/2)2 − c. (1.31)

This can be simplified even further. The term b2 − c > 0 under the square root is called the

discriminant, and in physics and engineering problems, 99.9% of the time it is negative. Finally

b/2≪ √c; thus, the most natural way (i.e., corresponding to the most common physical cases) of

writing the solution is47

x± = −1

2
b± 

√
c− (b/2)2 ≈ −b/2± 

√
c. (1.32)

This form separates the real and imaginary parts of the solution in a natural way. The term b/2
is called the damping, which accounts for losses in a resonant circuit, while the term

√
c, for

mechanical, acoustical and electrical networks, is called the resonant frequency, typically written

as ωo. The last approximation ignores the (typically) minor correction to the resonant frequency,

which in engineering practice is typically always ignored. Knowing that there is a correction is

highlighted by this formula, making one aware it exists.

Summary: The quadratic equation and its solution are ubiquitous in physics and engineering. It

seems obvious that instead of memorizing the meaningless Eq. 1.30, one should learn the physi-

cally meaningful solution, Eq. 1.32, obtained via Eq. 1.29, with a = 1. Arguably, the factored and

normalized form (Eq. 1.29) is easier to remember, as a method (completing the square), rather than

as a formula to be memorized.

Additionally, the real (b/2) and imaginary
√
c parts of the roots have physical significance as

the damping and resonant frequency. Equation 1.30 has none.

No insight is gained by memorizing the quadratic formula. To the contrary, an important con-

cept is gained by learning how to complete the square, which is typically easier than identifying

a, b, c and blindly substituting them into Eq. 1.30. Thus it’s worth learning the alternate solu-

tion (Eq. 1.32) since it is more common in practice and requires less algebra to interpret the final

answer.

Exercise: By direct substitution demonstrate that Eq. 1.30 is the solution of Eq. 1.28. Hint: Work

with P̂2(x). Solution: Setting a = 1 the quadratic formula may be written

x± =
−b± 1

√
4c− b2

2
.

47This is the case for mechanical and electrical circuits having small damping. Physically b > 0 is the damping

coefficient and
√
c > 0 is the resonant frequency. One may then simplify the form as x2 + 2bx + c2 = (x + b +

c)(x + b− c).
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Substituting this into P̂2(x) gives

P̂±(x±) = x±
2 + bx± + c

=

(
−b±

√
b2 − 4c

2

)2

+ b

(
−b±

√
b2 − 4c

2

)
+ c

=
1

4

(
��b2
✭✭✭✭✭✭✭
∓2b
√
b2 − 4c+ (��b2 −✚✚4c)

)
+

1

4

(
✟✟✟−2b2 ±✘✘✘✘✘✘

2b
√
b2 − 4c

)
+ ✁c

=0.

Exercise: By direct substitution, show that Eq. 1.32 satisfies Eq. 1.30. Solution: Putting

Eq. 1.30 into Eq. 1.30 in factored form, gives

P̂2(x) = (x− x+)(x− x−)

=
(
x+

1

2
b+ 

√
c− (b/2)2

)(
x+

1

2
b− 

√
c− (b/2)2

)

=

(
x+

b

2

)2

+
(
c− b2/4

)

=
(
x2 + bx+✚

✚✚b2/4
)

+
(
c−✚

✚✚b2/4
)

=x2 + bx+ c.

In third grade I learned the times-table trick for 9:48

9 · n = (n− 1) · 10 + (10− n). (1.33)

With this simple rule I did not need to depend on my memory for the 9 times tables. By expanding

the above, one can see why it works: 9n = n10✟✟✟−10 +✚✚10− n = n(10− 1). Learning an algorithm

is much more powerful than memorization of the 9 times tables. How one thinks about a problem

can have great impact.

Newton’s method for finding roots of PN (s) Newton is well known for an approximate but

efficient method to find the roots of a polynomial.49 Consider polynomial PN(s) ∈ C for s ∈ C

PN(s) = cN (s− s0)N + cN−1(s− s0)
N−1 + · · ·+ c1(s− s0) + c0,

where we may use Taylor’s formula (p. 67) to determine the coefficients

cn =
1

n!

dn

dsn
PN(s)

∣∣∣∣∣
s=s0

.

48E.G.: 9 · 7 = (7− 1) · 10 + (10− 7) = 60 + 3 and 9 · 3 = (3− 1) · 10 + (9− 3) = 20 + 7. As a check, note that

the two terms (n− 1) and (10− n), add to 9.
49
https://en.wikipedia.org/wiki/Newton’s_method
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If our initial guess for the root s0 is close to a roots, then |(s− s0)|n ≪ |(s− s0)| for n ≥ 2 ∈ N.

Thus we may truncate PN(s− so) to its linear term

PN (s) ≈ (s− s0)
d

ds
PN(s)

∣∣∣∣∣
s=s0

+ PN(s0)

= (s− s0)P ′
N(s0) + PN(s0),

where P ′
N(s) is shorthand for dPN(s)/ds.

This equation may be recursively iterated, defining a sequence sn that converges to the root,

such that PN(sn) = 0 as n → ∞. Replacing s by sn and s0 with sn−1, the formula becomes a

recursion for the root sn as n→∞

(sn − sn+1)P
′
N(sn+1) + PN(sn+1) = PN(sn)→ 0.

With every step the expansion point moves closer to the root, converging to the root in the limit.

As it comes closer, the linearity assumption becomes more accurate, ultimately resulting in the

convergence to the root. Solving for sn gives the key formula behind Newton’s famous root-finding

method

sn = sn−1 −
PN(sn−1)

P ′
N(sn−1)

.

Here sn−1 is the old expansion point and sn is the next approximation to the root. This expres-

sion is related to the log-derivative d logP (x)/dx = P ′(x)/P (x). It follows that even for cases

where fractional derivatives of roots are involved, Newton’s method should converge, since the

log-derivative linearizes them.50

ℜ x
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 x
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Figure 1.14: Newton’s method applied to the polynomial having real roots [1, 2, 3, 4] (left) and 5 complex
roots (right). A random starting point was chosen, and each curve shows the values of sn as Newton’s
method converges to the root. Different random starting points converge to different roots. The method
always results in convergence to a root. Claims to the contrary are a result of forcing the roots to be real
(Stewart, 2012, p. 347). For convergence, one must work with sn ∈ C.

Newton’s view: Newton believed that imaginary roots and numbers had no meaning (p. 105)

and only sought real roots. In this case Newton’s relation may be explored as a graph, which

puts Newton’s method in the realm of analytic geometry. The function P ′
N(x) is the slope of the

50https://en.wikipedia.org/wiki/Argument_principle
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polynomial PN (x) at xn. The value of xn ∈ R is the estimate of the root after n iterations, with x0

being the initial guess.

Example: When the polynomial is P2 = 1−x2 and P ′
2(x) = −2x, Newton’s iteration becomes

xn+1 = xn +
1− x2

n

2xn
.

For the case of N = 2 the root of P ′
2(x) is the average of the the roots of P2(x).

To start the iteration (n = 0) we need an initial guess for x0, which is a “best guess” of where

the root will be. If we let x0 = 1/2, then

x1 = x0 −
1− x2

0

2x0

= x0 +
1

2
(x0 − 1/x0) .

1. Let P2(x) = 1 − x2, and x0 = 1/2. Draw a graph describing the first step of the iteration.

Solution: Start with an (x, y) coordinate system and put points at x0 = (1/2, 0) and the

vertex of P2(x), i.e.: (0, 1) (P2(0) = 1). Then draw 1− x2, along with a line from x0 to x1.

2. Calculate x1 and x2. What number is the algorithm approaching? Is it a root of P2? Solu-

tion: First we must find P ′
2(x) = −2x. Thus the equation we will iterate is

xn+1 = xn +
1− x2

n

2xn
=
x2
n + 1

2xn
.

By hand

x0 = 1/2

x1 =
(1/2)2 + 1

2(1/2)
=

1

4
+ 1 = 5/4 = 1.25

x2 =
(5/4)2 + 1

2(5/4)
=

(25/16) + 1

10/4
=

41

40
= 1.025.

These estimates are rapidly approaching x = 1, the positive (real) root of P2(x). Note that if

one starts at the root of P ′(x) = 0 (i.e., x0 = 0), the first step is in-determinant.

3. Write a Matlab script to check your answer for part (a). Solution:

x=1/2;

for n = 1:3

x = x+(1-x*x)/(2*x);

end

(a) For n = 4, what is the absolute difference between the root and the estimate, |xr−x4|?
Solution: 4.6E-8 (very small!)

(b) What happens if x0 = −1/2? Solution: You converge on the negative root, x = −1.

4. Does Newton’s method work for P2(x) = 1 + x2? Why?51 Hint: What are the roots in this

case? Solution: In this case P ′
2(x) = +2x thus the iteration gives

xn+1 = xn −
1 + x2

n

2xn
.

51https://en.wikipedia.org/wiki/Newton’s method#Complex functions
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In this case the roots are x± = ±1, namely purely imaginary. Obviously Newton’s method

fails, because there is no way for the answer to become complex. If like Newton, you didn’t

believe in complex numbers, your method would fail to converge to the complex roots. Real

in, real out.

5. What if you let x0 = (1 + )/2 for the case of P2(x) = 1 + x2? Solution: By starting with

a complex initial value, we fix the Real in = Real out problem.

Fractal diagrams: When the initial guess is real, but the nearest root is complex, Newton’s

iteration fails, as discussed in the exercises above. This failure to converge gives rise to

fractal patterns, called the Mandelbrot set.52

Example: Assume that polynomial P3(s) = (s− a)2(s− b)π . Then

lnP3(s) = 2 ln s− a+ π ln s− b
and

d

ds
lnP3(s) =

2

s− a +
π

s− b.

Reduction by logarithmic derivative to simple poles: As shown by the above trivial example,

any polynomial, having zeros of arbitrary degree (i.e., π in the example), may be reduced to the

ratio of two polynomials, by taking the logarithmic derivative, since

YN(s) =
N(s)

D(s)
=

d

ds
lnPN(s) =

P ′
N (s)

PN (s)
. (1.34)

Here the starting polynomial is the denominatorD(s) = Pn(s) while the numeratorN(s) = P ′
N (s)

is the derivative ofD(s). Thus the logarithmic derivative can play a key role in analysis of complex-

analytic functions, as it reduces higher order poles, even those of irrational degree, to simple poles.

The logarithmic derivative YN(s) has a number of special properties:

1. YN(s) has simple poles sp and zeros sz.

2. The poles of YN(s) are the zeros of PN(s).

3. The zeros of YN(s) (i.e., P ′
N(sz) = 0) are the zeros of P ′

N(s).

4. YN(s) is analytic everywhere other than its poles.

5. Since the zeros of PN(s) are simple (no second-order poles), it is obvious that the zeros of

YN(s) always lie close to the line connecting the two poles. One may easily demonstrate

the truth of the statement numerically, and has been quantified by the Gauss-Lucas theorem

which specifies the relationship between the roots of a polynomial and those of its derivative.

Specifically, the roots of P ′
N−1 lie inside the convex hull of the roots of PN .

6. Newton’s method may be expressed in terms of the logarithmic derivative, since

sk+1 = sk + ǫo/YN(s),

where ǫo is called the step size, which is used to control the rate of convergence of the

algorithm to the zeros of Pn(s). If the step size is too large, the root finding path may jump

to a different domain of convergence, thus a different root of Pn(s).

Further analysis on Newton’s method may be found in Section H.1.1, p. 241.

52https://en.wikipedia.org/wiki/Mandelbrot set
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1.3.2 Matrix formulation of the polynomial

There is a one-to-one relationship between polynomials and matrix analysis. These are best de-

scribe in terms of the companion matrix.

Companion Matrix

The companion matrix

CN =




−cN−1 cN−2 · · · · · · −c0

1 0 · · · 0

0 1 . . .
...

...
...

...
. . .

...

0 0 · · · 1 0




(1.35)

is derived from the monic polynomial of degree N

PN(s) = sN + cN−1s
N−1 · · ·+ c2s

2 + c1s+ co

= sN +
N−1∑

n=0

cns
n,

having coefficient vector having coefficients

cTN−1 = [cN−1, cN−2, · · · co]T .

An alternate form is (Horn and Johnson, 1988, p. 146)

C ′
N =




0 −c0

1 0 0 −c1

0 1 0 −c2
... 0 1 0 · · · ...

· · · . . . 0
...

0 1 0 −cN−2

0 1 −cN−1




. (1.36)

The Companion matrix has the same eigen-values as the roots of the monic polynomial PN (s).
That is, the roots of monic polynomial of degree N are the eigen-values of the companion matrix

CN .

Exercise: Show that the eigen-values of the 3x3 companion matrix are the same as the roots of

P3(s). Solution: Expanding the determinant of C3 − sI3 along the right-most column:

−

∣∣∣∣∣∣∣

−s 0 −c0

1 −s −c1

0 1 −(c2 + s)

∣∣∣∣∣∣∣
= c0 + c1s+ (c2 + s)s2 = s3 + c2s

2 + c1s+ c0.

This is the characteristic polynomial, which is equal to −P3(s). is there a sign error?is there a sign error?
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Exercise: Find the companion matrix for the Fibonacci sequence, defined by the difference equa-

tion

fn+2 = fn+1 + fn

with f0 = 1. Solution: Taking the Z transform gives the polynomial z2 − z1 − z0 = 0, having the

coefficient vector C = [1,−1,−1], resulting in the Fibonacci companion matrix

C =

[
1 1
1 0

]

as discussed on page 53.

Example: Matlab/Octave: A polynomial is represented in Matlab/Octave in terms of its coef-

ficient vector. When the polynomial vector for the poles of a differential equation is

cN = [1, cN−1, cN−2, · · · c0]T ,

the coefficient cN = 1. This normalization guarantees that the leading term is not zero, and the

number of roots (N) is equal to the degree of the monic polynomial.

Working with polynomials in Matlab/Octave:

In Matlab/Octave there are eight functions you need to become familiar with, that work together:

1. R=root(A)Vector A = [aN , aN−1, . . . , ao] ∈ C are the complex coefficients of polynomial

PN(z) =
∑N
n=0 anz

n ∈ C, where N ∈ N is the degree of the polynomial. It is convenient

to force aN = 1, corresponding to dividing the polynomial by this value, when it is not

1, guaranteeing it cannot be zero, as mentioned above. Further R is the vector of roots,

[z1, z2, · · · , zn] ∈ C such that polyval(A,zk)=0.

2. y=polyval(A,x): This evaluates the polynomial defined by vector A ∈ CN evaluated at

x ∈ C, returning vector y(x)∈ C.

3. P=poly(R): This is the inverse of root(), returning a vector of polynomial coefficients P

∈ CN of the corresponding characteristic polynomial, starting from either a vector of roots

R, or a matrix A, for example, defined with the roots on the diagonal. The characteristic

polynomial is defined as the determinant of |A− λI| = 0 having roots R.

Due to IEEE-754 scaling issues, this can give strange results that are numerically correct,

but only within the limits of IEEE-754 accuracy.

4. R=polyder(N) This routine takes the coefficients of a polynomial N and returns the co-

efficients of the derivative of N . This is useful when working with Newton’s method, since

each step is proportional to PN(x)/P ′
N−1(x).

5. [K,R]=residue(N,D): Given the ratio of two polynomials N,D, residue(N,D) re-

turns vectors K,R such that
N(s)

D(s)
=
∑

k

Kk

s− sk
, (1.37)

where sk ∈ C are the roots of the denominator D polynomial and K ∈ C is a vector

of residues, which characterize the roots of the numerator polynomial N(s). The use of

residue() will be discussed in Sect. 1.3.5 (p. 76), and in greater detail in Sect. 1.5.6

(p. 142), and in Appendix F.1, p. 211.
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6. C=conv(A,B): Vector C∈ CN+M−1 contains the polynomial coefficients of the convolu-

tion of the two vector of coefficients of polynomials A,B∈ CN and B∈ CM . For example

[1, 2, 1]=conv([1, 1], [1, 1]).

7. [C,R]=deconv(N,D): Vectors C, N, D ∈ C. This operation uses long division of

polynomials to find C(s) = N(s)/D(s) with remainderR(s), where N = conv(D,C)+R,

namely

C =
N

D
remainder R (1.38)

8. A=compan(D): Vector D = [1, dN−1, dN−2, · · · , d0]
T contains the coefficients of polyno-

mial

D(s) = sN +
N∑

k=1

dN−ks
k,

and A is the companion matrix, of vector D (Eq. F.3, p. 212). The eigen-values of A are the

roots of monic polynomial D(s).

Exercise: Practice the use of Matlab’s/Octave’s related functions, which manipulate roots, poly-

nomials and residues: root(), conv(), deconv(), poly(), polyval(), polyder(),

residue(), compan().

Solution: Try Newton’s method for various polynomials. Use N=poly(R) to provide the co-

efficients of a polynomial given the roots R. Then use root() to factor the resulting polynomial.

Then use Newton’s method and show that the iteration converges to the nearest root.53

1.3.3 Taylor series

The definition of an analytic function is one that

1. may be expanded in a series (called a Taylor series expansion)

P (x) =
∞∑

n=0

cn(x− xo)n, (1.39)

2. converges for |x − xo| < 1, called the RoC, with coefficients cn that are determined by the

derivatives of P (x), evaluated at the expansion point x = xo.

3. The Taylor series representation of P (x) has special applications for solving differential

equations because 1) it is single valued, and

4. all its derivatives are uniquely defined.

5. it may be trivially continued by making x ∈ C, making its LT −1 causal.

53A Matlab/Octave program that does this may be downloaded from http://jontalle.web.engr.

illinois.edu/uploads/493/M/NewtonJPD.m.
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A limitation of the Taylor series expansion is that it is not valid outside of the RoC. One method

for avoiding this limitation is to move the expansion point. But this analytic continuation is a

non-trivial exercise because it requires working with the derivatives of P (x) at the new expansion

point, where P (x) may not even have derivatives, due to a possible singularity.

The Taylor series coefficients cn are defined by taking derivatives of P (x) and evaluating them

at the expansion point x0, namely

cn =
1

n!

dn

dxn
P (x− xo)

∣∣∣∣∣
x=xo

. (1.40)

The Taylor formula is a prescription for how to uniquely define the coefficients cn. Without the

Taylor series formula, we would have no way of determining cn. The proof of the Taylor formula

is transparent, simply by taking successive derivative of Eq. 1.39, and then evaluating the result at

the expansion point. If P (x) is analytic then this procedure will always work. If P (x) fails to have

a derivative of any order, then the function is not analytic and Eq. 1.39 is not valid for P (x). For

example, if P (x) has a pole at xo then it is not analytic at that point.

Example: The trivial (corner) case is the geometric series P (x) = 1/(1− x) about the expan-

sion point x = 0. The function P (x) is defined everywhere, except at the singular point x = 1,

whereas the geometric series is only valid for |x| < 1.

Exercise: Verify that co and c1 of Eq. 1.39 follow from Eq. 1.40. Solution: To obtain c0, for

n = 0, there is no derivative (d0/dx0 indicates no derivative is taken), so we must simply evaluate

P (x− xo) = c0 + c1(x− xo) + · · · at x = xo, leaving co. To find c1 we take one derivative which

results in P ′(x) = c1 + 2c2(x− x0)) · · · . Evaluating this at x = x0 leaves c1. Each time we take a

derivative we reduce the degree of the series by 1, leaving the next constant term.

The Taylor series plays an important role in mathematics, as the coefficients of the series

uniquely determine the analytic series representation via its derivatives. The implications and

limitations of the power series representation are very specific. First, if the series fails to converge

(i.e., outside the RoC), it is essentially meaningless.

The Taylor series does not need to be infinite to converge to the function it represents, since it

obviously works for any polynomial PN(x) of degree N . But in the finite case (N <∞), the RoC

is infinite, and the series is the function PN(x) exactly, everywhere. Of course PN(x) is called a

polynomial, of degree N . When N →∞, the Taylor series is only valid within the RoC, and it is

(typically) the representation of the reciprocal of a polynomial.

These properties are both the curse and the blessing of the analytic function. On the positive

side, analytic functions are the ideal starting point for solving differential equations, which is

exactly how they were used by Newton and others. Analytic functions are “smooth” since they are

infinitely differentiable, with coefficients given by Eq. 1.40. They are single valued, so there can

be no ambiguity in their interpretation.

Two well-known analytic functions are the geometric series

1

1− x = 1 + x+ x2 + x2 + . . . =
∞∑

n=0

xn (1.41)

and exponential series

ex = 1 + x+
1

2
x2 +

1

3 · 2x
3 +

1

4 · 3 · 2x
4 + . . . =

∞∑

n=0

1

n!
xn. (1.42)
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Brune impedance: A third very special family of functions are formed from ratios of polynomi-

als, typically used to define impedances. Impedance functions as a class of functions are special

because they must have a positive real part, so as to obey conservation of energy. A physical

impedance cannot have a negative resistance (the real part); otherwise it would act like a power

source, violating conservation of energy. Most impedances are in the class of Brune impedances,

defined by the ratio of two polynomials, of degrees M and N

ZBrune(s) =
PN(s)

PM(s)
=
sN + a1S

N−1 · · ·a0

sM + b1SM−1 · · · b0
, (1.43)

where M = N ± 1 (i.e., N = M ± 1). This fraction of polynomials is sometimes known as a

“Padé approximation,” but more specifically this ratio is a Brune impedance, with poles and zeros,

defined as the complex roots of the two polynomials. The key propriety of the Brune impedance is

that the real part of the impedance is non-negative (positive or zero) in the right s half-plane

ℜZ(s) = ℜ [R(σ, ω) + jX(σ, ω)] = R(σ, ω) ≥ 0 for ℜs = σ ≥ 0. (1.44)

Since s = σ + ω, the complex frequency (s) right half-plane (RHP) corresponds to ℜs = σ ≥ 0).

This condition defines the class of positive-real functions, also known as the the Brune condition,

which is frequently written in abbreviated form as ℜZ(ℜs ≥ 0) ≥ 0.

As a result of this positive-real constraint on impedance functions, the subset of Brune impedances

(those given by Eq. 1.43 satisfying Eq. 1.44) must be complex analytic in the entire right s half-

plane. This is a powerful constraint that places strict limitations on the locations of both the poles

and the zeros of every Brune impedance.

Exercise: Find the RoC of the following by application of Eq. 1.40.

1. w(x) = 1
1−x . Solution: From a straightforward expansion we know the coefficients are

1

1− x = 1 + x+ (x)2 + (x)3 · · · = 1 + x− x2 +−x3 · · · .

Working this out using Eq. 1.40 is more work:

c0 = 1
0!
w
∣∣∣
0

= 1; c1 = 1
1!
dw
dx

∣∣∣∣
0

= − −
(1−x)2

∣∣∣∣
x=0

= ; c2 = 1
2!
d2w
dx2

∣∣∣∣
0

= 1
2!

−2
(1−x)3

∣∣∣∣
0

= −1;

c3 = 1
3!
d3w
dx3

∣∣∣∣
0

= −
(1−x)4

∣∣∣∣
0

= −j.

However, if we take derivatives of the series expansion it is much easier, and one can even

figure out the term for cn:

c0 = 1; c1 = d
dx

∑
(x)n

∣∣∣∣
0

= j; c2 = 1
2!

d2

dx2

∑
(jx)n

∣∣∣∣
0

= 2()2;

c3 = 1
3!

d3

dx3

∑
(jx)n

∣∣∣∣
0

= ()3 = −;
· · · ,
cn = 1

n!
nn! = n.

2. w(x) = ex Solution: cn = 1
n!
n.
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Determining the region of convergence (RoC): Determining the RoC for a given analytic

function is quite important, and may not always be obvious. In general the RoC is a circle whose

radius extends from the expansion point out to the nearest pole. Thus when the expansion point is

moved, the RoC changes since the location of the pole is fixed.

Example: For the geometric series (Eq. 1.41), the expansion point is xo = 0, and the RoC

is |x| < 1, since 1/(1 − x) has a pole at x = 1. We may move the expansion point by a linear

transformation, for example, by replacing x with z+3. Then the series becomes 1/((z+3)−1) =
1/(z + 2), so the RoC becomes 2, because in the z plane the pole has moved to −2.

Example: A second important example is the function 1/(x2 + 1), which has the same RoC

as the geometric series, since it may be expressed in terms of its residue expansion (aka, partial

fraction expansion)

1

x2 + 1
=

1

(x+ 1)(x− 1)
=

1

2

(
1

x− 1
− 1

x+ 1

)
.

Each term has an RoC of |x| < |1| = 1. The amplitude of each pole is called the residue, defined

in Section 1.4.5 Eq. 1.107, p. 119. The residue for the pole at 1 is 1/2.
In summary, the function 1/(x2 + 1) is the sum of two geometric series, with poles at ±1

which are not as obvious because the roots are complex, and conjugate. Once factored, it becomes

clear what is going on.

Exercise: Verify the above expression is correct, and show that the residues are ±1/2. Solu-

tion: Cross-multiply and cancel, x cancels out and we are left with 1, as required.

Exercise: Find the residue of d
dz
zπ . Solution: Taking the derivative gives zπ−1 which has a pole

at z = 0. Applying the formula for the residue (Eq. 1.107, p. 119) we find

c−1 = lim
z→0

zzπ−1 = lim zπ = 0.

Thus the residue is zero. The exponential series converges for every finite value of x ∈ R (the RoC

is the entire real line), thus the exponential is called an entire function.

Analytic functions:

Any function that has a Taylor series expansion is called an analytic function. Within the RoC,

the series expansion defines a single-valued function. Polynomials 1/(1− x) and ex are examples

of analytic functions that are real functions of their real argument x. This is not the entire story.

Because analytic functions are easily manipulated term by term, they may be used to find solutions

of differential equations since the derivatives of a series are uniquely determined within the RoC,

due to Eq. 1.40.

Every analytic function has a corresponding differential equation, that is determined by the

coefficients ak of the analytic power series. An example is the exponential, which has the property

that it is the eigen-function of the derivative operation

d

dx
eax = aeax,

which may be verified using Eq. 1.42. This relationship is a common definition of the exponential

function, which is very special because it is the eigen-function of the derivative.
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The complex analytic power series (i.e.: complex analytic functions) may also be integrated,

term by term, since ∫ x

f(x)dx =
∑ ak

k + 1
xk+1. (1.45)

Newton took full advantage of this property of the analytic function and used the analytic series

(Taylor series) to solve analytic problems, especially for working out integrals, allowing him to

solve differential equations. To fully understand the theory of differential equations, one must

master single-valued analytic functions and their analytic power series.

Single- vs. multi-valued functions: Polynomials and their∞-degree extensions (analytic func-

tions) are single valued: for each x there is a single value for PN(x). The roles of the domain and

codomain may be swapped to obtain an inverse function, with properties that can be quite different

from those of the function. For example, y(x) = x2 + 1 has the inverse x = ±√y − 1, which

is double valued, and complex when y < 1. Periodic functions such as y(x) = sin(x) are even

more “exotic” since x(y) = arcsin(x) = sin−1(x) has an infinite number of x(y) values for each

y. This problem was first addressed in Riemann’s 1851 PhD thesis, written while he was working

with Gauss.

Exercise: Let y(x) = sin(x). Then dy/dx = cos(x). Show that dx/dy = −1/
√

1− x2. Hint:

x(y) = cos−1(y) = arccos(y). Solution: See the implicit function theorem (D’Angelo, 2017,

p. 104). Add solution.

Exercise: Let y(x) = sin(x). Then dy/dx = cos(x). Show that dx/dy = −/
√

1 + x2. Solu-

tion: Add solution.

Exercise: Find the Taylor series coefficients of y = sin(x) and x = sin−1(y). Solution: Add

solution.

Complex analytic functions: When the argument of an analytic function F (x) is complex, that

is, x ∈ R is replaced by s = σ + ω ∈ C (recall that R ⊂ C)

F (s) =
∞∑

n=0

cn(s− so)n, (1.46)

with cn ∈ C, that function is said to be a complex analytic.

For example, when the argument of the exponential becomes complex, it is periodic on the ω
axis, since

est = e(σ+ω)t = eσteωt = eσt [cos(ωt) +  sin(ωt)] . (1.47)

Taking the real part gives

ℜ{est} = eσt
eωt + e−ωt

2
= eσt cos(ωt),

and ℑ{est} = eσtsin(ωt). Once the argument is allowed to be complex, it becomes obvious

that the exponential and circular functions are fundamentally related. This exposes the family

of entire circular functions [i.e., es, sin(s), cos(s), tan(s), cosh(s), sinh(s)] and their inverses

[ln(s), arcsin(s), arccos(s), arctan(s), cosh−1(s), sinh−1(s)], first fully elucidated by Euler (c1750)
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(Stillwell, 2010, p. 315). Note that because a function, such as sin(ωt), is periodic, its inverse must

be multi-valued. What is needed is some systematic way to account for this multi-valued property.

Given a complex analytic function of a complex variable, one must resort to the extended com-

plex plane, Riemann sheets and branch cuts, as discussed in Section 1.3.11 (p. 92). The extended

complex plane is a tool that extends the domain of complex analytic to include the point at infinity.

This topic is critically important in engineering mathematics and will be discussed at length in

Sections 1.3.11-1.3.14 (pp. 92-98).

Definition of the Taylor series of a complex analytic function: However there is a fundamental

problem: we cannot formally define the Taylor series for the coefficients ck until we have defined

the derivative with respect to the complex variable dF (s)/ds, with s ∈ C. Thus simply substituting

s for x in an analytic function leaves a major hole in one’s understanding of the complex analytic

function.

To gain a feeling of the nature of the problem, we make take derivatives of a function with

respect to various variables. For example,

d

dt
est = sest,

eωt
d

dσ
eσt = σest,

and

eσt
d

dω
eω = ωest.

It was Cauchy (1814) (Fig. 1.13) who uncovered much deeper relationships within complex

analytic functions (Sect. 1.3.12, p. 95) by defining differentiation and integration in the complex

plane, leading to several fundamental theorems of complex calculus, including the fundamental

theorem of complex integration, and Cauchy’s formula. We shall explore this and several funda-

mental theorems in Sect. 1.4.1 (p. 105).

There seems to be some disagreement as to the status of multi-valued functions: Are they

functions, or is a function strictly single valued? If so, then we are missing out on a host of

interesting possibilities, including all the inverses of nearly every complex analytic function. For

example, the inverse of a complex analytic function is a complex analytic function (e.g., es and

log(s)).

Impact of complex-analytic mathematics on physics: It seems likely, if not obvious, that the

success of Newton was his ability to describe physics by the use of mathematics. He was inventing

new mathematics at the same time he was explaining new physics. The same might be said for

Galileo. It seems likely that Newton was extending the successful techniques and results of Galileo

(Galileo, 1638). Galileo died on Jan 8, 1642, and Newton was born Jan 4, 1643, just short of one

year later. Certainly Newton was well aware of Galileo’s great success, and naturally would have

been influenced by it.

The application of complex analytic functions to physics was dramatic, as may be seen in the

six volumes on physics by Arnold Sommerfeld (1868-1951), and from the productivity of his many

(36) students (e.g., Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg54 and Seebach, to

54https://www.aip.org/history-programs/niels-bohr-library/oral-histories/

4661-1
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name a few), notable coworkers (i.e., Leon Brillouin) and others (i.e., John Bardeen) upon whom

Sommerfeld had a strong influence. Sommerfeld is famous for training many students who were

awarded the Nobel Prize in Physics, yet he never won a Nobel (the prize is not awarded in math-

ematics). Sommerfeld brought mathematical physics (the merging of physical and experimental

principles via mathematics) to a new level with the use of complex integration of analytic functions

to solve otherwise difficult problems, thus following the lead of Newton who used real integration

of Taylor series to solve differential equations (Brillouin, 1960, Ch. 3 by Sommerfeld, A.).

1.3.4 Lec 12: Polynomial root classification by convolution

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem

was being formulated by d’Alembert. The idea behind this theorem is that every polynomial of

degree N (Eq. 1.27) has at least one root. This may be written as the product of the root and a

second polynomial of degree of N− 1. By the recursive application of this concept, it is clear that

every polynomial of degree N has N roots. Today this result is known as the fundamental theorem

of algebra:

Every polynomial equation P (z) = 0 has a solution in the complex numbers. As

Descartes observed, a solution z = a implies that P (z) has a factor z − a. The

quotient

Q(z) =
P (z)

z − a =
P (z)

a

[
1 +

z

a
+
(
z

a

)2

+
(
z

a

)3

+ · · ·
]

(1.48)

is then a polynomial of one lower degree. . . . We can go on to factorize P (z) into n
linear factors.

—Stillwell (2010, p. 285).

The ultimate expression of this theorem is given by Eq. 1.27 (p. 59), which indirectly states

that an nth degree polynomial has n roots. We shall use the term degree when speaking of polyno-

mials and the term order when speaking of differential equations. A general rule is order applies

to the time domain and degree to the frequency domain, since the Laplace transform of a differ-

ential equation, having constant coefficients, of order N , is a polynomial of degree N in Laplace

frequency s.

Exercise: Explore expressing Eq. 1.48 in terms of real 2x2 matrices, as described in Section

1.2.1, p. 32.

Today this theorem is so widely accepted we fail to appreciate it. Certainly about the time you

learned the quadratic formula, you were prepared to understand the concept of polynomials having

roots. The simple quadratic case may be extended a higher degree polynomial. The Matlab/Octave

command roots([1, a2, a1, ao]) provides the roots [s1, s2, s3] of the cubic equation, defined by

the coefficient vector [1, a2, a1, ao]. The command poly([s1, s2, s3]) returns the coefficient

vector. I don’t know the largest degree that can be accurately factored by Matlab/Octave, but I’m

sure its well over N = 103. Today, finding the roots numerically is a solved problem.

Factorization versus convolution: The best way to gain insight into the polynomial factoriza-

tion problem is through the inverse operation, multiplication of monomials. Given the roots xk,

there is a simple algorithm for computing the coefficients ak of PN(x) for any n, no matter how
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large. This method is called convolution. Convolution is said to be a trap-door since it is easy,

while the inverse, factoring (deconvolution), is hard, and analytically intractable for degree N ≥ 5
(Stillwell, 2010, p. 102).

Convolution of monomials

As outlined by Eq. 1.27, a polynomial has two descriptions, first as a series with coefficients an and

second in terms of its roots xr. The question is “What is the relationship between the coefficients

and the roots?” The simple answer is that they are related by convolution.

Let us start with the quadratic

(x+ a)(x+ b) = x2 + (a + b)x+ ab, (1.49)

where in vector notation [−a,−b] are the roots and [1, a+ b, ab] are the coefficients.

To see how the result generalizes, we may work out the coefficients for the cubic (N = 3).

Multiplying the following three factors gives (p. 244)

(x−1)(x−2)(x−3) = (x2−3x+2)(x−3) = x(x2−3x+2)−3(x2−3x+2) = x3−6x2+11x−6.

When the roots are [1, 2, 3] the coefficients of the polynomial are [1,−6, 11,−6]. To verify, sub-

stitute the roots into the polynomial, and show that they give zero. For example, r1 = 1 is a root

since P3(1) = 1− 6 + 11− 6 = 0.

As the degree increases, the algebra becomes more difficult. Imagine trying to work out the

coefficients for N = 100. What is needed is a simple way of finding the coefficients from the

roots. Fortunately, convolution keeps track of the book-keeping, by formalizing the procedure.

Convolution of two vectors: To get the coefficients by convolution, write the roots as two vec-

tors [1, a] and [1, b]. To find the coefficients we must convolve the root vectors, indicated by

[1, a] ⋆ [1, b], where ⋆ denotes convolution. Convolution is a recursive operation. The convolution

of [1, a] ⋆ [1, b] is done as follows: reverse one of the two monomials, padding unused elements

with zeros. Next slide one monomial against the other, forming the local dot product (element-wise

multiply and add):

a 1 0 0
0 0 1 b
= 0

a 1 0
0 1 b
= x2

a 1 0
1 b 0
= (a+ b)x

0 a 1
1 b 0
= abx0

0 0 a 1
1 b 0 0
= 0

,

resulting in coefficients [· · · , 0, 0, 1, a+ b, ab, 0, 0, · · · ].
By reversing one of the polynomials, and then taking successive dot products, all the terms in

the sum of the dot product correspond to the same power of x. This explains why convolution of

the coefficients gives the same answer as the product of the polynomials.

As seen by the above example, the positions of the first monomial coefficients are reversed, and

then slid across the second set of coefficients, the dot-product is computed, and the result placed

in the output vector. Outside the range shown, all the elements are zero. In summary,

[1,−1] ⋆ [1,−2] = [1,−1− 2, 2] = [1,−3, 2].

In general

[a, b] ⋆ [c, d] = [ac, bc+ ad, bd],
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Convolving a third term [1,−3] with [1,−3, 2] gives (p. 244)

[1,−3] ⋆ [1,−3, 2] = [1,−3− 3, 9 + 2,−6] = [1,−6, 11,−6],

which is identical to the cubic example, found by the algebraic method.

By convolving one monomial factor at a time, the overlap is always two elements, thus it is

never necessary to compute more than two multiplies and an add for each output coefficient. This

greatly simplifies the operations (i.e., they are easily done in your head). Thus the final result

is more likely to be correct. Comparing this to the algebraic method, convolution has the clear

advantage.

Exercise:

1. What are the three nonlinear equations that one would need to solve to find the roots of a

cubic? Solution: From our formula for the convolution of three monomials we may find

the nonlinear “deconvolution” relations between the roots55 [−a,−b,−c] and the cubic’s

coefficients [1, α, β, γ]

(x+ a) ⋆ (x+ b) ⋆ (x+ c) = (x+ c) ⋆ (x2 + (a+ b)x+ ab)

= x · (x2 + (a+ b)x+ ab) + c · (x2 + (a+ b)x+ ab)

= x3 + (a+ b+ c)x2 + (ab+ ac + cb)x+ abc

= [1, a+ b+ c, ab+ ac + cb, abc].

It follows that the nonlinear equations must be

α = a + b+ c

β = ab+ ac+ bc

γ = abc.

Clearly these are solve by the classic cubic solution which appears to be a deconvolution

problem, also know as long division of polynomials. It follows that the following long-

division of polynomials must be true:

x3 + (a+ b+ c)x2 + (ab+ ac+ bc)x+ abc

x+ a
= x2 + (b+ c)x+ bc

The product of monomial P1(x) with a polynomial PN(x) gives PN+1(x): This statement is

another way of stating the fundamental theorem of algebra. Each time we convolve a monomial

with a polynomial of degree N , we obtain a polynomial of degree N + 1. The convolution of two

monomials results in a quadratic (degree 2 polynomial). The convolution of three monomials gives

a cubic (degree 3). In general, the degree k of the product of two polynomials of degree n,m is

the sum of the degrees (k = n+m). For example, if the degrees are each 5 (n = m = 5), then the

resulting degree is 10.

55By working with the negative roots we may avoid an unnecessary and messy alternating sign problem.
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In summary, the product of two polynomials of degree m,n having m and n roots, gives a

polynomial of degree m + n. This is an analysis process, of merging polynomials, by coefficient

convolution. Multiplying polynomials is a merging process, into a single polynomial.

Note that the degree of a polynomial is one less than the length of the vector of coefficients.This seems in conflict with
H.2!

This seems in conflict with
H.2!

The coefficient on the leading term should always be set to 1 since it cannot be zero or the

polynomial would not have degree N .

While you already know this theorem from high school algebra class, it is important to explic-

itly identify the fundamental theorem of algebra.

Composition of polynomials: Convolution is not the only important operation between two

polynomials. Another is composition, which may be defined for two functions f(z), g(z). Then

the composition c(z) = f(z) ◦ g(z) = f(g(z)). As a specific example, suppose f(z) = 1 + z + z2

and g(z) = e2z . With these definitions

f(z) ◦ g(z) = 1 + e2z + (e2z)2 = 1 + e2z + e4z .

Note that f(z) ◦ g(z) 6= g(z) ◦ f(z).

Exercise: Find g(z) ◦ f(z). Solution: e2f(z) = e2(1+z+z2) = e2e(1+z+z2) = e3ezez
2

.

1.3.5 Lec 13 Residue expansions of rational functions

As discussed in Section 1.3.1, p. 66, there are 5 important Matlab/Octave routines that are closely

related: conv(), deconv(), poly(), polyder(), polyval(), residue(),

root(). Several of these are complements of each other, or do a similar operation in a slightly

different way. Routines conv, poly build polynomials from the roots while root solves for

the roots given the polynomial coefficients. The operation residue() converts the ratio of two

polynomials and expands it in a partial fraction expansion, with poles and residues.

When lines and planes are defined, the equations are said to be linear in the independent vari-

ables. In keeping with this definition of linear, we say that the equations are non-linear when the

equations have degree greater than 1 in the independent variables. The term bilinear has a spe-

cial meaning, in that both the domain and codomain are linearly related by lines (or planes). As

an example, impedance is defined in frequency as the ratio of the voltage over the current, but it

frequently has a representation as the ratio of two polynomials N(s) and D(s)

Z(s) =
N(s)

D(s)
= sLo +Ro +

K∑

k=0

Kk

s− sk
. (1.50)

Here Z(s) is the impedance and V and I are the voltage and current at radian frequency ω.56

Such an impedance is typically specified as a rational or bilinear function, namely the ratio of

two polynomials, PN(s) = N(s) = [aN , an−1, · · · , ao] and PK(s) = D(s) = [bK , bK−1, · · · , bo]
of degrees N,K ∈ N, as functions of complex Laplace frequency s = σ+ ω, having simple roots.

Most impedances are rational functions since they may be written as D(s)V = N(s)I . Since D(s)
and N(s) are both polynomials in s, rational functions are also called bilinear transformation or in

56Note that the relationship between the impedance and the residues Kk is a linear one, best solved by setting up a

linear system of equations in the unknown residues. Methods for doing this will be discussed in Appendix F.1 (p. 211).
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the mathematical literature as Möbius transformation, which comes from a corresponding scalar

differential equation, of the form

K∑

k=0

bk
dk

dtk
i(t) =

N∑

n=0

an
dn

dtn
v(t) ↔ I(ω)

K∑

k=0

bks
k = V (ω)

N∑

n=0

ans
n. (1.51)

This equation, as well as 1.50, follow from the Laplace transform (See Section 1.3.14, p. 98) of the

differential equation (on left), by forming the impedance Z(s) = V/I = A(s)/B(s). This form of

the differential equation follows from Kirchhoff’s voltage and current laws (KCL, KVL) or from

Newton’s laws (for the case of mechanics).

The physical properties of an impedance: Based on d’Alembert’s observation that the solution

to the wave equation is the sum of forward and backward traveling waves, the impedance may be

rewritten in terms of forward and backward traveling waves

Z(s) =
V

I
=
V + + V −

I+ − I− = ro
1 + Γ(s)

1− Γ(s)
, (1.52)

where ro = P+/I+ is called the surge impedance of the transmission line (e.g., wire) connected to

the load impedance Z(s), and Γ(s) = P−/P+ = I−/I+ is the reflection coefficient corresponding

to Z(s). Any impedance of this type is called a Brune impedance due to its special properties

(discussed on p. 284) (Brune, 1931a). Like Z(s), Γ(s) is causal and complex analytic. Note that

the impedance and the reflectance function must both be complex analytic, since the are connected

by the bilinear transformation, which assures the mutual complex analytic properties.

Due to the bilinear transformation, the physical properties of Z(s) and Γ(s) are very different.

Specifically, the real part of the load impedance must be non-negative (ℜ{Z(ω)} ≥ 0), if and

only if |Γ(s)| ≤ 1|. In the time domain, the impedance z(t) ↔ Z(s) must have a value of ro at

t = 0. Correspondingly, the time domain reflectance γ(t)↔ Γ(s) must be zero at t = 0.

This is the basis of conservation of energy, which may be traced back to the properties of the

reflectance Γ(s).

Exercise: Show that if the ℜ{Z(s)} ≥ 0 then |Γ(s)| ≤ 1. Solution: Their two equivalent

proofs, both of which start from the relation between Z(s) and Γ(s). Taking the real part of

Eq. 1.52, which must be ≥ 0, we find Lots to do here, with Log-

derivative analysis.

Lots to do here, with Log-

derivative analysis.

ℜ{Z(s)} =
ro
2

[
1 + Γ(s)

1− Γ(s)
+

1 + Γ∗(s)

1− Γ∗(s)

]
= ro

1− |Γ(s)|2
|1 + Γ(s)|2 ≥ 0.

Thus |Γ| ≤ 1.

1.3.6 Lec 14: Introduction to Analytic Geometry

Analytic geometry came about with the merging of Euclid’s geometry with algebra. The combi-

nation of Euclid’s (323 BCE) geometry and al-Khwarizmi’s (830 CE) algebra resulted in a totally

new powerful tool, analytic geometry, independently worked out by Descartes and Fermat (Still-

well, 2010). The addition of matrix algebra during the 18th century, allow an analysis in more than

3 dimensions, which today is one of the most powerful tools used in artificial intelligence, data
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|1596 |1650 |1700 |1750 |1800 |1855

Daniel Bernoulli

Euler

dAlembert

Gauss

Cauchy

LagrangeNewton

Descartes

Fermat

Johann Bernoulli

Figure 1.15: Exploded time-line of the two centuries from 1596 to 1855CE during the development of the modern
theories of analytic geometry, calculus, differential equations and linear algebra. The vertical red lines connect mentor-
student relationships. Lagrange had a special role in the development of linear algebra. Note the overlap between
Newton and Johann and his son Daniel Bernoulli, and Euler. Gauss had the advantage of input from Newton, Euler,
d’Alembert and Lagrange. Likely Cauchy had an influence on Gauss as well.

science and machine learning. The utility and importance of these new tools cannot be overstated.

The time-line for this period is provided in Fig. 1.15

There are many important relationships between Euclidean geometry and 16th century algebra.

An attempt at a detailed comparison is summarized in Table 1.2. Important similarities include

vectors, their Pythagorean lengths [a, b, c]

c =
√

(x2 − x1)2 + (y2 − y1)2, (1.53)

a = x2 − x1 and b = y2 − y1, and the angles. Euclid’s geometry had no concept of coordinates,

thus of vectors. One of the main differences of analytic geometry is that one may compute with

real, and soon after, complex numbers.

There are several new concepts that come with the development of analytic geometry:

1. Composition of functions: If y = f(x) and z = g(y) then the composition of functions f
and g is denoted z(x) = g ◦ f(x) = g(f(x)).

2. Elimination: Given two functions f(x, y) and g(x, y), elimination removes either x or y.

This procedure, known to the Chinese, is called Gaussian elimination.

3. Intersection: While one may speak of the intersection of two lines to give a point, or two

planes to give a line, the term intersection is also an important but very different concept in

set theory. This is a special case of elimination when the functions f(x, y), g(x, y) are linear

in their arguments.

4. Vectors: Analytic geometry provides the new concept of a vector, as a line with length and

orientation (i.e., direction). Analytic geometry defines vectors in any number of dimensions,

as ordered sets of points.

5. Analytic geometry extends the ideas of Euclidean geometry with the introduction of the

scalar (dot) product of two vectors f ·g, and the vector (cross) product f×g (see Fig. 1.16,

p. 80).

What algebra also added to geometry was the ability to compute with complex numbers. For

example, the length of a line (Eq. 1.53) was measured in Geometry with a compass: numbers
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Table 1.2: An ad-hoc comparison between Euclidean geometry and analytic geometry. I am uncertain as
to the classification of the items in the third column.

Euclidean geometry: R3 Analytic geometry: Rn Uncertain

1. Proof

2. Line length

3. Line intersection

4. Point

5. Projection (e.g.

scalar product)

6. Line direction

7. Vector (sort of)

8. Conic section

9. Square roots (e.g.,

spiral of Theodorus)

1. Numbers

2. Algebra

3. Power series

4. Analytic functions

5. Complex analytic

functions: e.g.,

sin θ, cos θ, eθ, log z

6. Composition

7. Elimination

8. Integration

9. Derivatives

10. Calculus

11. Polynomial ∈ C

12. Fund. thm. algebra

13. Normed vector spaces

14. . . .

1. Cross product (R3)

2. Recursion

3. Iteration ∈ C2 (e.g.,

Newton’s method)

4. Iteration ∈ Rn

played no role. Once algebra was available, the line’s Euclidean length could be computed numer-

ically, directly from the coordinates of the two ends, defined by the 3-vector

e = xx̂ + yŷ + zẑ = [x, y, z]T ,

which represents a point at (x, y, z) ∈ R3 ⊂ C3 in three dimensions, having direction, from the

origin (0, 0, 0) to (x, y, z). An alternative matrix notation is e = [x, y, z]T , a column vector of

three numbers. These two notations are different ways of representing exactly the same thing. I

view them as equivalent notations.

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative,

beyond the physical drawing of an object (e.g., a sphere, triangle or line). With analytic geometry

we have the Euclidean concept of a vector, a line having a magnitude (length) and direction, but

analytic defined in terms of physical coordinates (i.e., numbers). The difference between two

vectors defines a third vector, a concept already present in Euclidean geometry. For the first time,

complex numbers were allowed into geometry (but rarely used until Cauchy and Riemann).

As shown in Fig. 1.16, there are two types of products, the 1) scalar A ·B and 2) vector A×B

products.

Scalar product of two vectors: When using algebra, many concepts, obvious with Euclid’s

geometry, may be made precise. There are many examples of how algebra extends Euclidean
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θ

L∗

A ·B = ||A||||B|| cos θ

C = A×B = ||A||||B|| sin θ ẑ

A
×

B

A

B

Vector product: ⊥ AB plane

Scalar product: In AB plane

ŷ

x̂

ẑ

Figure 1.16: Vectors A,B,C are used to define the scalar product A·B, vector (cross) product A×B and
triple product C · (A×B). The two vector products complement each other, one proportional to the sin θ
of the angle θ between them and the other to the cos θ. It follows that ||A ·B||2 + ||A×B||2 = ||A||2||B||2
The scalar product computes the projection of one vector on the other. The vector product A×B computes
the area of the trapezoid formed by the two vectors, while the triple product C · (A×B) defines the volume
of the formed parallelepiped (i.e., prism). When all the angles are 90◦, the volume becomes a cuboid.

geometry, the most basic being the scalar product (aka dot product) between vectors

x · κ = (xx̂ + yŷ + zẑ) · (αx̂ + βŷ + γẑ), ∈ C

= αx+ βy + γz.

In matrix notation the scalar product is written as

x · κ =



x
y
z




T 

α
β
γ


 =

[
x, y, z

]


α
β
γ


 = αx+ βy + γz. (1.54)

The dot product takes the character of κ. For example, if κ(s) ∈ C is a function of complex

frequency s, then the dot product is complex. If ζ ∈ R is real, then the dot product is real.

Norm (length) of a vector: The norm of a vector

||e|| ≡ +
√

e · e ≥ 0.

is defined as the positive square root of the scalar product of the vector with itself. This is a

generalization of the length, in any number of dimensions, forcing the sign of the square-root to be

non-negative. The length is a concept of Euclidean geometry, and it must always be positive and

real. A complex (or negative) length is not physically meaningful. More generally, the Euclidean

length of a line is given as the norm of the difference between two real vectors e1, e2 ∈ R

||e1 − e2||2 = (e1 − e2) · (e1 − e2)

= (x1 − x2)2 + (y1 − y2)
2 + (z1 − z2)2 ≥ 0.

From this formula we see that the norm of the difference of two vectors is simply a compact

expression for the Euclidean length. A zero-length vector, such as is a point, is the result of the

fact that

||x− x||2 = (x− x) · (x− x),

is zero.
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Integral definition of a scalar product: Up to this point, following Euclid, we have only con-

sidered a vector to be a set of elements {xn} ∈ R, index over n ∈ N, as defining a linear vector

space with scalar product x · y, with the scalar product defining the norm or length of the vector

||x|| = √x · x. Given the scalar product, the norm naturally follows.

At this point an obvious question presents itself: Can we extend our definition of vectors to

differentiable functions (i.e., f(t) and g(t)), indexed over t ∈ R, with coefficients labeled by

t ∈ R, rather than by n ∈ N? Clearly, if the functions are analytic, there is no obvious reason

why this should be a problem, since analytic functions may be represented by a convergent series

having Taylor coefficients, thus integrable term by term.

Specifically, under certain conditions, the function f(t) may be thought of as a vector, defining

a normed vector space. This intuitive and somewhat obvious idea is powerful. In this case the

scalar product must be defined in terms of the integral

f(t) · g(t) =
∫

t
f(t)g(t)dt (1.55)

summed over t ∈ R, rather than a sum over n ∈ N.

This definition of the vector scalar product allows for a significant but straightforward gener-

alization of our vector space, which will turn out to be both useful and an important extension of

the concept of a normed vector space. In this space we can define the derivative of a norm with

respect to t, which is not possible for the case of the discrete case, indexed over n. The distinction

introduces the concept of continuity in the index t, which does not exist for the discrete index

n ∈ N.

Pythagorean theorem and the Schwarz inequality: Regarding Fig. 1.16, suppose we compute

the difference between vector A ∈ R and αB ∈ R as L = ||A − αB|| ∈ R, where α ∈ R

is a scalar that modifies the length of B. We seek the value of α, which we denote as α∗, that

minimizes the length of L. From simple geometrical considerations, L(α) will be minimum when

the difference vector is perpendicular to B, as shown in the figure by the dashed line from the tip

of A ⊥ B.

To show this algebraically we write out the expression for L(α) and take the derivative with

respect to α, and set it to zero, which gives the formula for α∗. The argument does not change,

but the algebra greatly simplifies, if we normalize A,B to be unit vectors a = A/||A|| and

b = B/||B||, which have norm = 1.

L2 = (a− αb) · (a− αb) = 1− 2αa · b + α2. (1.56)

Thus the length is shortest (L = L∗, as shown in Fig. 1.16) when

d

dα
L2

∗ = −2a · b + 2α∗ = 0.

Solving for α∗ we find α∗ = a · b. Since L∗ > 0 (a 6= b), Eq. 1.56 becomes

1− 2|a · b|2 + |a · b|2 = 1− |a · b|2 > 0.

In conclusion cos θ ≡ |a · b| < 1. In terms of A,B this is |A ·B| < ||A|| ||B|| cosθ, as shown

next to B in Fig. 1.16. Thus the scalar product between two vectors is their direction cosine.

Furthermore since this forms a right triangle, the Pythagorean theorem must hold. The triangle

inequality says that the lengths of the two sides must be greater than the hypotenuse. Note that

Θ ∈ R 6∈ C.

This derivation is an abbreviated version of a related discussion in Section H.2.1 (p. 85).
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Vector (×) product of two vectors: As shown in Fig. 1.16, the vector product (aka, cross-

product) a × b is the second type of product between two vectors. The vector product defines

a vector, perpendicular (⊥) to the plane of the two vectors being multiplied. The formula for

computing the cross product is

a× b = (a1x̂ + a2ŷ + a3ẑ)× (b1x̂ + b2ŷ + b3ẑ) =

∣∣∣∣∣∣∣

x̂ ŷ ẑ
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
.

For example, if the two vectors are in x̂ and ŷ, then the cross-product is ẑ. It is strictly in ẑ if

the two vectors are perpendicular to each other (i.e., ẑ = x̂× ŷ = −ŷ× x̂). The vector product of

a vector with itself (or the difference between two vectors) is zero. For example, x̂× x̂ = ŷ× ŷ =
ẑ× ẑ = 0. Typically a, b ∈ R. If they are complex, the definition must be modified to be consistent

with the physics.

The scalar product of a third vector c with the vector product a× b, with a, b, c ∈ R,

c · (a× b) =

∣∣∣∣∣∣∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
(∈ R3),

is called the triple product, which represents the volume of a parallelepiped.

Impact of Analytic Geometry: The most obvious impact of analytic geometry, was a detailed

analysis of the conic sections, using algebra, rather than drawings via a compass and ruler. An

important example is the composition of the line and circle, a venerable construction, presumably

going back to before Diophantus (250CE). Once algebra was invented, the composition could be

done using formulas. With this analysis came complex numbers.

The first two mathematicians to appreciate this mixture of Euclid’s geometry and the new

algebra were Fermat and Descartes (Stillwell, 2010, p. 111-115); soon Newton contributed to this

effort, by the addition of physics (calculations in acoustics, orbits of the planets, and the theory of

gravity and light Stillwell (2010, p. 115-117)), significant concepts for 1687.

Given these new methods, many new solutions to problems emerged. The complex roots

of polynomials continued to appear, without any obvious physical meaning. Complex numbers

seem to have been viewed as more of an inconvenience than a problem. Newton’s solution to this

dilemma was to simply ignore the imaginary cases (Stillwell, 2010, p. 119).

Development of Analytic Geometry

wording neededwording needed

Intersection and Gaussian elimination: The first “algebra” (al-jabr) is credited to al-Khwarizmi

(830 CE). Its invention advanced the theory of polynomial equations in one variable, Taylor series,

and composition versus intersections of curves. The solution of the quadratic equation had been

worked out thousands of year earlier, but with algebra a general solution could be defined. The

Chinese had found the way to solve several equations in several unknowns, for example, finding

the values of the intersection of two circles. With the invention of algebra by al-Khwarizmi, a

powerful tool became available to solve the difficult problems.
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Composition and Elimination In algebra there are two contrasting operations on functions:

composition and elimination.

Composition: Composition is the merging of functions, by feeding one into the other. If the two

functions are f, g then their composition is indicated by f ◦ g, meaning the function y = f(x) is

substituted into the function z = g(y), giving z = g(f(x)).
Composition is not limited to linear equations, even though that is where it is most frequently

applied. To compose two functions, one must substitute one equation into the other. That requires

solving for that substitution variable, which is not always possible in the case of nonlinear equa-

tions. However many tricks are available that may work around this restrictions. For example,

if one equation is in x2 and the other in x3 or
√
x, it may be possible to multiply the first by x

or square the second. The point is that one of the variables must be isolated so that when it is

substituted into the other equations, the variable is removed from the mix.

Examples: Let y = f(x) = x2 − 2 and z = g(y) = y + 1. Then

g ◦ f = g(f(x)) = (x2 − 2) + 1 = x2 − 1. (1.57)

In general composition does not commute (i.e., f ◦g 6= g ◦f ), as is easily demonstrated. Swapping

the order of composition for our example gives

f ◦ g = f(g(y)) = z2 − 2 = (y + 1)2 − 2 = y2 + 2y − 1. (1.58)

Intersection: Complimentary to composition is intersection (i.e., decomposition) (Stillwell, 2010,

pp. 119,149). For example, the intersection of two lines is defined as the point where they meet. Not sure ref is right.Not sure ref is right.

This is not to be confused with finding roots. A polynomial of degree N has N roots, but the

points where two polynomials intersect has nothing to do with the roots of the polynomials. The

intersection is a function (equation) of lower degree, implemented with Gaussian elimination.

Intersection of two lines Unless they are parallel, two lines meet at a point. In terms of linear

algebra this may be written as 2 linear equations57 (on the left), along with the intersection point

[x1, x2]
T , given by the inverse of the 2x2 set of equations (on the right)

[
a b
c d

] [
x1

x2

]
=

[
y1

y2

] [
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
. (1.59)

By substituting the expression for the intersection point [x1,x2]
T into the original equation, we

see that it satisfies the equations. Thus the equation on the right is the solution to the equation on

the left.

Note the structure of the inverse: 1) The diagonal values (a, d) are swapped, 2) the off-diagonal

values (b, c) are negated and 3) the 2x2 matrix is divided by the determinant ∆ = ad − bc. If

∆ = 0, there is no solution. When the determinant is zero (∆ = 0), the slopes of the two lines

slope =
dx2

dx1

=
b

a
=
d

c

are equal, thus the lines are parallel. Only if the slopes differ can there be a unique solution.

57When writing the equationAx = y in matrix format, the two equations are ax1 + bx2 = y1 and dx1 + ex2 = y2

with unknowns (x1, x2), whereas in the original equations ay + bx = c and dy + ex = f , they were y, x. Thus in

matrix format, the names are changed. The first time you see this scrambling of variables, it can be confusing.
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Exercise: Show that the equation on the right is the solution of the equation on the left. Solu-

tion: By a direct substitution of the right equation into the left equation
[
a b
c d

]
· 1

∆

[
d −b
−c a

] [
y1

y2

]
,=

1

∆

[
ad− bc −ab + ab
cd− cd −cb+ ad

]
=

1

∆

[
∆ 0
0 ∆

]
,

which gives the identity matrix.

Algebra will give the solution when geometry cannot. When the two curves fail to intersect

on the real plane, the solution still exists, but is complex valued. In such cases, geometry, which

only considers the real solutions, fails. For example, when the coefficients [a, b, c, d] are complex,

the solution exists, but the determinant can be complex. Thus algebra is much more general than

geometry. Geometry fails when the solution has a complex intersection.

A system of linearAx = y equations has many interpretations, and one should not be biased by

the notation. As engineers we are trained to view x as the input and y as the output, in which case

then y = Ax seems natural, much like the functional relation y = f(x). But what does the linear

relation x = Ay mean, when x is the input? The obvious answer is that y = A−1x. But when

working with systems of equations, there are many uses of equations, and we need to become more

flexible in our interpretation. For example y = A2x has a useful meaning, and in fact we saw this

type of relationship when working with Pell’s equation (p. 50) and the Fibonacci sequence (p. 53).

As another example consider [
z1

z2

]
=

[
a1x a1y

a2x a2y

] [
x
y

]

which is reminiscent of a three-dimensional surface z = f(x, y). We shall find that such general-

izations are much more than a curiosity.

1.3.7 Scalar products and its applications

Another important example of algebraic expressions in mathematics is Hilbert’s generalization ofPerhaps move after Gaussian
Elim?
Perhaps move after Gaussian
Elim?

14a14a

Eq. 1.1, known as the Schwarz inequality, shown in Fig. 1.17. What is special about this general-

ization is that it proves that when the vertex is 90◦, the length of the leg is minimum.

Vectors may be generalize to have∞ dimensions: ~U, ~V = [v1, v2, · · · , v∞]). The inner product

(i.e., dot product) between two such vectors generalizes the finite dimensional case

~U · ~V =
∞∑

k=1

ukvk.

As with the finite case, the norm ||~U || =
√
~U · ~U =

√∑
u2
k is the dot product of the vector

with itself, defining the length of the infinite component vector. Obviously there is an issue of

convergence, if the norm for the vector is to have a finite length.

It is a somewhat arbitrary requirement that a, b, c ∈ R for the Pythagorean theorem (Eq. 1.1).

This seems natural enough since the sides are lengths. But, what if they are taken from the complex

numbers, as for the lossy vector wave equation, or the lengths of vectors in Cn? Then the equation

generalizes to

c · c = ||c||2 =
n∑

k=1

|ck|2,

where ||c||2 = (c, c) is the inner (dot) product of a vector c with itself, where |ck| is the magnitude

the complex ck. As before, ||c|| =
√
||c||2 is the norm of vector c, akin to a length.

Triangle inequality proofTriangle inequality proof
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V + 0.5UE
(α

)
=
V
−
α
U

|V · U |/||V ||
UE

(α
∗ )

=
V
−
α
∗
U

V

α∗U αU

Figure 1.17: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the

two vectors. ||U || =
√
U · U as the dot product of that vector with itself.

Schwarz inequality The Schwarz inequality58 says that the magnitude of the inner product of

two vectors is less than or equal to the product of their lengths

|U · V | ≤ ||U || ||V ||.

This may be simplified by normalizing the vectors to have unit length (Û = U/||U ||, V̂ = V/||V ||),
in which case −1 < Û · V̂ ≤ 1. Another simplification is to define the scalar product in terms of

the direction cosine

cos θ = |Û · V̂ | ≤ 1.

A proof of the Schwarz inequality is as follows: From these definitions we may define the

minimum difference between the two vectors as the perpendicular from the end of one to the

intersection of the second. As shown in Fig. 1.17, U ⊥ V may be found by minimizing the length

of the vector difference:

min
α
||V − αU ||2 = ||V ||2 + 2αV · U + α2||U ||2 > 0

0 = ∂α (V − αU) · (V − αU)

= V · U − α∗||U ||2
∴ α∗ = V · U/||U ||2.

The Schwarz inequality follows:

Imin = ||V − α∗U ||2 = ||V ||2 − |U · V |
2

||U ||2 > 0

0 ≤ |U · V | ≤ ||U || ||V ||
An important example of such a vector space includes the definition of the Fourier transform,

where we may set

U(ω) = e−ω0t V (ω) = eωt U · V =
∫

ω
eωte−ω0t

dω

2π
= δ(ω − ω0).

It seems that the Fourier transform is a result that follows from a minimization, unlike the Laplace

transform that follows from causal system parameters. This explains the important differences

between the two, in terms of their properties (unlike the LT, the FT is not complex analytic). We

also explored this topic in Lecture 1.3.13 (p. 97).

58A simplified derivation is provided in Sect. 1.3.6 (p. 77).
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Power vs. power series, linear vs. nonlinear

Another place where equations of second degree appear in physical applications is in energy and

power calculations. The electrical power is given by the product of the voltage v(t) and current

i(t) (or in mechanics as the force times the velocity). For example if we define P = v(t)i(t) to

be the power P [watts], then the total energy [joules] at time t is (Van Valkenburg, 1964a, Chapter

14)

E(t) =
∫ t

0
v(t)i(t)dt.

From this observe that the power is the rate of change of the total energy

P(t) =
d

dt
E(t),

reminiscent of the fundamental theorem of calculus [Eq. 1.86, (p. 106)].

Ohm’s law and impedance: The ratio of voltage over the current is called the impedance which

has units of [ohms]. For example given a resistor of R = 10 [ohms],

v(t) = R i(t).

Namely 1 amp flowing through the resistor would give 10 volts across it. Merging the linear

relation due to Ohm’s law with the definition of power, shows that the instantaneous power in a

resistor is quadratic in voltage and current

P(t) = v(t)2/R = i(t)2R. (1.60)

Note that Ohm’s law is linear in its relation between voltage and current whereas the power and

energy are nonlinear.

Ohm’s law generalizes in a very important way, allowing the impedance (e.g., resistance) to

be a linear complex analytic function of complex frequency s = σ + ω (Kennelly, 1893; Brune,

1931a). Impedance is a fundamental concept in many fields of engineering. For example:59 New-
is a vector, pressure and volt-

are a potentials. ton’s second law F = ma obeys Ohm’s law, with mechanical impedance Z(s) = sm. Hooke’s

law F = kx for a spring is described by a mechanical impedance Z(s) = k/s. In mechanics a

“resistor” is called a dashpot and its impedance is a positive and real constant.60

Kirchhoff’s laws KCL, KVL: The laws of electricity and mechanics may be written down using

Kirchhoff’s laws current and voltage laws (KCL, KVL), which lead to linear systems of equations

in the currents and voltages (velocities and forces) of the system under study, with complex coef-

ficients having positive real parts.

Points of major confusion are a number of terms that are misused, and overused, in the fields of

mathematics, physics and engineering. Some of the most obviously abused terms are linear/non-

linear, energy, power, power series. These have multiple meanings, which can, and are, funda-

mentally in conflict.

59In acoustics the pressure is a potential, like voltage. The force per unit area is given by f = −∇p thus F =
−
∫
∇p dS. Velocity is analogous to a current. In terms of the velocity potential, the velocity per unit area is

v = −∇φ.
60https://en.wikipedia.org/wiki/Impedance_analogy
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Transfer functions (transfer matrix): The only method that seems to work, to sort this out, is

to cite the relevant physical application, in specific contexts. The most common standard reference

is a physical system that has an input x(t) and an output y(t). If the system is linear, then it may

be represented by its impulse response h(t). In such cases the system equation is

y(t) = h(t) ⋆ x(t)↔ Y (ω) = H(s)|σ=0 X(ω);

namely, the convolution of the input with the impulse response gives the output. From Fourier

analysis this relation may be written in the real frequency domain as a product of the Laplace

transform of the impulse response, evaluated on the ω axis and the Fourier transform of the input

X(ω)↔ x(t) and output Y (ω)↔ y(t).
If the system is nonlinear, then the output is not given by a convolution, and the Fourier and

Laplace transforms have no obvious meaning.

The question that must be addressed is why is the power said to be nonlinear whereas a power

series of H(s) is said to be linear: Both have powers of the underlying variables. This is massively

confusing, and must be addressed. The question will be further addressed in Section H.5.1 in terms

of the system postulates of physical systems.

Whats going on? The domain variables must be separated from the codomain variables. In

our example, the voltage and current are multiplied together, resulting in a nonlinear output, the

power. If the frequency is squared, this is describing the degree of a polynomial. This is not

nonlinear because it does not impact the signal output; it characterizes the Laplace transform of

the system response.
Perhaps move Lec 36 (p. 146)
here, or before Lec 16?
Perhaps move Lec 36 (p. 146)
here, or before Lec 16?

1.3.8 Lec 15 Gaussian Elimination

Perhaps move 2 p.87?Perhaps move 2 p.87?

The method for finding the intersection of equations is based on the recursive elimination of

all the variables but one. This method, known as Gaussian elimination, works across a broad

range of cases, but may be defined as a systematic algorithm when the equations are linear in the

variables.61 Rarely do we even attempt to solve problems in several variables of degree greater

than 1. But Gaussian eliminations may still work in such cases (Stillwell, 2010, p. 90).

In Appendix B.3 (p. 194) the inverse of a 2x2 linear system of equations is derived. Even for a

2x2 case, the general solution requires a great deal of algebra. Working out a numeric example of

Gaussian elimination is more instructive. For example, suppose we wish to find the intersection of

the two equations

x− y = 3

2x+ y = 2.

This 2x2 system of equations is so simple that you may immediately visualize the solution: By

adding the two equations, y is eliminated, leaving 3x = 5. But doing it this way takes advantage of

the specific example, and we need a method for larger systems of equations. We need a generalized

(algorithmic) approach. This general approach is called Gaussian elimination.

Start by writing the equations in matrix format (note this is not in the standard form Ax = y)
[
1 −1
2 1

] [
x
y

]
=

[
3
2

]
. (1.61)

61
https://en.wikipedia.org/wiki/System_of_linear_equations.
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Next, eliminate the lower left term (2x) using a scaled version of the upper left term (x). Specifi-

cally, multiply the first equation by -2, add it to the second equation, replacing the second equation

with the result. This gives
[
1 −1
0 3

] [
x
y

]
=

[
3

2− 3 · 2

]
=

[
3
−4

]
. (1.62)

Note that the top equation did not change. Once the matrix is “upper triangular” (zero below the

diagonal) you have the solution. Starting from the bottom equation, y = −4/3. Then the upper

equation gives x− (−4/3) = 3, or x = 3− 4/3 = 5/3.

In principle, Gaussian elimination is easy, but if you make a calculation mistake along the way,

it is very difficult to find the error. The method requires a lot of mental labor, with a high probability

of making a mistake. Thus you do not want to apply this method every time. For example, suppose

the elements are complex numbers, or polynomials in some other variable such as frequency. Once

the coefficients become more complicated, the seemingly trivial problem becomes highly error

prone. There is a much better way, that is easily verified, which puts all the numerics at the end, in

a single step.

The above operations may be automated by finding a carefully chosen upper-diagonalization

matrix U that does the same operation. For example, let

U =

[
1 0
−2 1

]
. (1.63)

Multiplying Eq. 1.61 by U , we find
[

1 0
−2 1

] [
1 −1
2 1

] [
x
y

]
=

[
1 −1
0 3

] [
x
y

]
=

[
3
−4

]
(1.64)

we obtain Eq. 1.62. At this point we can either back-substitute and obtain the solution, as we did

above, or find a matrix L that finishes the job, by removing elements above the diagonal.

Exercise: Show that det(U) = det(UA) = 1. Solution: Since

det

[
a b
c d

]
= ad− bc,

and det(UA) = detU · det(A), and det(U) = 1 − 0 = 1, the result follows naturally. Common

notation is to let det(A) = |A|.
In Appendix B.3 the inverse of a general 2x2 matrix is summarized in terms of three steps: 1)

swap the diagonal elements, 2) reverse the signs of the off-diagonal elements and 3) divide by the

determinant ∆ = ab− cd. Specifically
[
a b
c d

]−1

=
1

∆

[
d −b
−c a

]
. (1.65)

There are very few things that you must memorize, but the inverse of a 2x2 is one of them. It needs

to be in your tool-bag, like the quadratic formula.

While it is difficult to compute the inverse matrix from scratch (Appendix ??), it takes only a

few seconds to verify it (steps 1 and 2)
[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc −ab + ab
cd− cd −bc + ad

]
=

[
∆ 0
0 ∆

]
. (1.66)
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Thus dividing by the determinant gives the 2x2 identity matrix. A good strategy, when you don’t

trust your memory, is to write down the inverse as best you can, and then verify.

Using the 2x2 matrix inverse on our example (Eq. 1.61), we find

[
x
y

]
=

1

1 + 2

[
1 1
−2 1

] [
3
2

]
=

1

3

[
5

−6 + 2

]
=

[
5/3
−4/3

]
. (1.67)

If you use this method, you will rarely (never) make a mistake, and the solution is easily verified.

Either you can check the numbers in the inverse, as was done in Eq. 1.66, or you can substitute the

solution back into the original equation.

1.3.9 Lec 16: Transmission (ABCD) matrix composition method

L = ρ
A(x)

V2V1 +

−

+

−

I2I1

C = ηP
A(x)

Figure 1.18: A a single LC cell of the LC transmission line (see Fig. G.2 (p. 231). Every cell of any transmission
line may be modeled by the ABCD method, as the product of two matrices. For the example shown here, the inductance
L of the coil and the capacitance C of capacitor are in units of [henry/m] and [farad/m], thus they depend on length
∆x [m] that the cell represents. Note the flows are always defined as into the + node.

Matrix composition: Matrix multiplication represents a composition of 2x2 matrices, because

the input to the second matrix is the output of the first (this follows from the definition of compo-

sition: f(x) ◦ g(x) = f(g(x))). Thus the ABCD matrix is also known as the transmission matrix

method, or occasionally the chain matrix. The general expression for an transmission matrix T (s)
is [

V1

I1

]
=

[
A(s) B(s)
C(s) D(s)

] [
V2

−I2

]
. (1.68)

The four coefficients A(s),B(s), C(s),D(s) are all complex functions of the Laplace frequency

s = σ + jω (p. 1.4.3). The derivation is repeated with more detail in Section H.3.2 (p. 252).

It is a standard convention to always define the current into the node, but since the input current

(on the left) is the same as the output current on the right (I2), hence the negative sign on I2, to

meet the convention of current into every node. When transmission matrices are cascaded, all the

signs then match.

We have already used 2x2 matrix composition in representing complex numbers (p. 32), and for

computing the gcd(m,n) of m,n ∈ N (p. 43), Pell’s equation (p. 50) and the Fibonacci sequence

(p. 53).

Definitions of A,B, C,D: The definitions of the four functions of Eq. 1.68 are easily read off of

the equation, as

A(s) =
V1

V2

∣∣∣∣
I2=0

, B(s) = −V1

I2

∣∣∣∣
V2=0

, C(s) =
I1

V2

∣∣∣∣
I2=0

, D(s) = −I1

I2

∣∣∣∣
V2=0

. (1.69)
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These definitions follow trivially from Eq. 1.68. These relations have general names. A,D are

called voltage and current transfer functions, since they are the ratio of an output over an input,

whereas B, C are known as the transfer impedance and transfer conductance. Each expresses an

output (port 2) in terms of an input at port 1.

Exercise: Explain why C is given as above. Solution: Writing out the lower equation I1 =
CV2 −DI2. Setting I2 = 0, we obtain the equation for C.

Thévenin parameters of a source: A very important concept in circuit theory is that of the

Thévenin parameters (p. 89), the open-circuit voltage and the short-circuit current, the ratio of

which define the Thévenin impedance. The open circuit voltage is defined as the voltage when

the current is zero. In mechanics this is called the isometric force, the maximum force given zero

velocity.

It trivially follows that the Thévenin voltage (open circuit voltage) is

VThév =
1

C
≡ V2

I1

∣∣∣∣
I2=0

.

For example, the voltage measured across a battery having no load is its Thévenin voltage.

We may find the impedance Z1 = V1

I1

∣∣∣
I2=0

that would be seen looking into port 1, with nothing

connected to port 2 (I2 = 0) by taking the ratio of the upper and lower equations

Z1 =
AV2 − BI2

CV2 −DI2

∣∣∣∣
I2=0

=
A
C = AVThév.

Using this relation we may find a second expression for the Thévenin voltage in terms of the source

voltage V1 rather than in terms of the source current.

VThev =
Z1

A ≡ Z1
V2

V1

∣∣∣∣
I2=0

.

The choice of the appropriate expression depends on the physics of the actual source.

Exercise: Show that the Thévenin source impedance is

ZThév =
b

C
.

Hint: Use the fact that V1 = −BI2|V2=0. Solution: MISSING SOL

Properties of the transmission matrix: The transmission matrix is always constructed from the

product of elemental matrices of the form
[
1 Z(s)
0 1

]
or

[
1 0

Y (s) 1

]
.

Thus for the case of reciprocal systems (P6, p. 101)

det

[
A(s) B(s)
C(s) D(s)

]
= 1,

since the determinant of each of these matrices is 1, the determinant, the product of many elemental

matrices being 1, must be one. An anti-reciprocal system may be synthesized by the use of a

gyrator, and in these cases ∆T = −1.
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1.3.10 The impedance matrix

With a bit of algebra, one may find the impedance matrix in terms of A,B, C,D (Van Valkenburg,

1964a, p. 310) [
V1

V2

]
=

[
z11 z12

z21 z22

] [
I1

I2

]
=

1

C

[
A ∆T

1 D

] [
I1

I2

]
. (1.70)

For reciprocal systems (P6, p. 101) z12 = z21 since ∆T = 1. For anti-reciprocal systems, such

as dynamic loudspeakers and microphones (Kim and Allen, 2013), z21 = −z12 = 1/C, since

∆T = −1.

Impedance is a very general concept, closely tied to the definition of power P(t) (and energy).

Power is defined as the product of the effort (force) and the flow (current). As described in Fig. 1.3,

these concepts are very general, applying to mechanics, electrical circuits, acoustics, thermal cir-

cuits, or any other case where conservation of energy applies. Two basic variables are defined,

generalized force and generalized flow, also called conjugate variables. The product of the con-

jugate variables is the power, and the ratio is the impedance. For example, for the case of voltage

and current,

P(t) ≡
∫ t

v(t)i(t)dt, Z(s) ≡ V (ω)

I(ω)
.

Ohm’s law In general, impedance is defined as the ratio of a force over a flow. For electrical

circuits, the voltage is the ‘force’ and the current is the ‘flow.’ Ohm’s law states that the voltage

across and the current through a circuit element are related by the impedance of that element (which

is typically a function of the Laplace frequency s = σ + ω). For resistors, the voltage over the

current is called the resistance, and is a constant (e.g. the simplest case, V/I = R). For inductors

and capacitors, the impedance depends on the Laplace frequency s [e.g. V/I = Z(s)]).

Table 1.3: Impedance is defined as the ratio of a force over a flow, a concept that also holds in mechanics and
acoustics. In mechanics, the ‘force’ is equal to the mechanical force on an element (e.g. a mass, dashpot, or spring),
and the ‘flow’ is the velocity. In acoustics, the ‘force’ is pressure, and the ‘flow’ is the volume velocity or particle
velocity of air molecules.

Case Force Flow Impedance units

Electrical voltage (V) current (I) Z = V/I ohms [Ω]

Mechanics force (F) velocity (U) Z = F/U mechanical ohms [Ω]

Acoustics pressure (P) particle velocity (V) Z = P/V acoustic ohms [Ω]

Thermal temperature (T) heat-flux (J) Z = T/J thermal ohms [Ω]

As discussed in Fig. 1.3, the impedance concept also holds for mechanics and acoustics. In

mechanics, the ‘force’ is equal to the mechanical force on an element (e.g. a mass, dashpot, or

spring), and the ‘flow’ is the velocity. In acoustics, the ‘force’ is pressure, and the ‘flow’ is the

volume velocity or particle velocity of air molecules.

In this section we shall derive the method of linear composition of systems, also known as

the ABCD transmission matrix method, or in the mathematical literature as the Möbius (bilinear)

transformation. Using the method of matrix composition, a linear system of 2x2 matrices can

represent a large and important family of networks. By the application of Ohm’s law to the circuit

shown in Fig. 1.18, we can model a cascade of such cells.
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Example of the use of the ABCD matrix composition: In Fig. 1.18 we see the network is

composed of a series inductor (mass) having an impedance Zl = sL, and a shunt capacitor (com-

pliance) having an impedance Zc = 1/sC, where s ∈ C. As determined by Ohm’s law, each

impedance is describe by a linear relation between the current and the voltage. For the inductive

impedance, applying Ohm’s law, we find

V1 − V2 = ZlI1

where Zl is the complex impedance of the inductor. For the capacitive impedance, applying Ohm’s

law we find

V2 = (I1 + I2)Zc,

where Zc is the complex impedance of the capacitor.

Each of these linear impedance relations may be written in matrix form. The series inductor

equation gives (note I1 = −I2) [
V1

I1

]
=

[
1 Zl
0 1

] [
V2

−I2

]
, (1.71)

while the shunt capacitor equation yields (note V1 = V2)

[
V2

I1

]
=

[
1 0
Yc 1

] [
V2

−I2

]
, (1.72)

where Yc = 1/Zc is called the admittance.

When the second matrix equation for the shunt admittance (Eq. 1.72) is substituted into the

series impedance equation (Eq. 1.71), we find the ABCD matrix (T1 ◦ T2), for the cell is simply

the product of two matrices

[
V1

I1

]
=

[
1 Zl
0 1

] [
1 0
Yc 1

] [
V2

I2

]
=

[
1 + ZlYc Zl

Yc 1

] [
V2

−I2

]
. (1.73)

Note that the determinant of the matrix ∆ = AD − BC = 1.

Thus A(s) = 1 + ZLuc = 1 + s2LC, B(s) = Zl, C(s) = Yc and D = 1. This equation

characterizes every possible relation between the input and output voltage and current of the cell.

For example, the ratio of the output to input voltage with the output unloaded (I2 = 0), known

as the voltage divider relation may be found from the upper equation with I2 = 0. Writing this out

gives
V2

V1

∣∣∣∣
I2=0

=
1

A(s)
=

1

1 + ZlYc
=

Zc
Zc + Zl

.

To derive the formula for the current divider equation, use the lower equation and set V2 = 0.

−I2

I1

∣∣∣∣
V2=0

=
1

D = 1.

1.3.11 Lec 17: Riemann Sphere: 3d extension of chord and tangent method

Once algebra was formulated by c830 CE, mathematicians were able to expand beyond the limits

set by geometry on the real plane, and the verbose descriptions of each problem in prose (Stillwell,

2010, p. 93). The geometry of Euclid’s Elements had paved the way, but after 2000 years, the
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addition of the language of algebra changed everything. The analytic function was a key develop-

ment, heavily used by both Newton and Euler. Also the investigations of Cauchy made important

headway with his work on complex variables. Of special note was integration and differentiation

in the complex plane of complex analytic functions, which is the topic of stream 3.

It was Riemann, working with Gauss in the final years of Gauss’s life, who made the break-

through, with the concept of the extended complex plane.62 This concept was based on the com-

position of a line with the sphere, similar to the derivation of Euclid’s formula for Pythagorean

triplets (Fig. G.3, p. 233). While the importance of the extended complex plane was unforeseen, it

changed analytic mathematics forever, along with the physics it supported. It unified and thus sim-

plified many important integrals, to the extreme. This idea is captured by the fundamental theorem

of complex integral calculus (Table 1.6 p. 159) and 1.4, p. 103.

Figure 1.19: The left panel shows how the real line may be composed with the circle. Each real x value maps to
a corresponding point x′ on the unit circle. The point x → ∞ maps to the north pole N . This simple idea may be
extended with the composition of the complex plane with the unit sphere, thus mapping the plane onto the sphere. As
with the circle, the point on the complex plane z → ∞ maps onto the north pole N . This construction is important
because while the plane is open (does not include z → ∞), the sphere is analytic at the north pole. Thus the sphere
defines the closed extended plane. Figure from Stillwell (2010, pp. 299-300).

The idea is outlined in Fig. 1.19. On the left is a circle and a line. The difference between this

case and the derivation of the Pythagorean triplets is that the line starts at the north pole, and ends

on the real x ∈ R axis at point x. At point x′, the line cuts through the circle. Thus the mapping

from x to x′ takes every point on R to a point on the circle. For example, the point x = 0 maps to

the south pole (not indicated). To express x′ in terms of x one must compose the line and the circle,

similar to the composition used in Fig. G.3 (p. 233). The points on the circle, indicated here by x′,
require a traditional polar coordinate system, having a unit radius and an angle defined between the

radius and a vertical line passing through the north pole. When x→∞ the point x′ → N , known

as the point at infinity. But this idea goes much further, as shown on the right half of Fig. 1.19.

Here the real tangent line is replaced by a tangent complex plane z ∈ C, and the complex

puncture point z′ ∈ C, in this case on the complex sphere, called the extended complex plane. This

is a natural extension of the chord/tangent method on the left, but with significant consequences.

The main difference between the complex plane z and the extended complex plane, other than the

coordinate system, is what happens at the north pole. The point at |z| = ∞ is not defined on the

plane, whereas on the sphere, the point at the north pole is simply another point, like every other

point on the sphere.

62“Gauss did lecture to Riemann but he was only giving elementary courses and there is no evidence that

at this time he recognized Riemann’s genius.” http://www-groups.dcs.st-and.ac.uk/˜history/

Biographies/Riemann.html “In 1849 he [Riemann] returned to Göttingen and his Ph.D. thesis, supervised by

Gauss, was submitted in 1851.” http://www-groups.dcs.st-and.ac.uk/˜history/Biographies/

Riemann.html
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Open vs. closed sets: Mathematically the plane is said to be an open set, since the limit z →∞
is not defined, whereas on the sphere, the point z′ is a member of a closed set, since the north pole

is defined. The distinction between an open and closed set is important, because the closed set

allows the function to be complex-analytic at the north pole, which it cannot be on the plane (since

the point at infinity is not defined).

The z plane may be replaced with another plane, say the w = F (z) ∈ C plane, where w is

some function F of z ∈ C. For the moment we shall limit ourselves to complex analytic functions

of z, namely w = F (z) = u(x, y) + v(x, y) =
∑∞
n=0 cnz

n.

In summary, given a point z = x+y on the open complex plane, we map it to w = F (z) ∈ C,

the complex w = u + v plane, and from there to the closed extended complex plane w′(z). The

point of doing this is that it allows us to allow the function w′(z) to be analytic at the north pole,

meaning it can have a convergent Taylor series at the point at infinity z → ∞. Since we have not

yet defined dw(z)/dz, the concept of a complex Taylor series remains undefined.

Bilinear transformation

In mathematics the bilinear transformation has special importance because it is linear in its action

on both the input and output variables. Since we are engineers we shall stick with the engineering

terminology. But if you wish to read about this on the internet, be sure to also search for the

mathematical term, Möbius transformation.

When a point on the complex plane z = x + y is composed with the bilinear transform

(a, b, c, d ∈ C), the result is w(z) = u(x, y) + v(x, y)

w =
az + b

cz + d
. (1.74)

The transformation from z → w is a cascade of four independent compositions:

1. translation (w = z + b: a = 1, b ∈ C, c = 0, d = 1),

2. scaling (w = |a|z: a ∈ R, b = 0, c = 0, d = 1),

3. rotation (w = a
|a|z: a ∈ C, b = 0, c = 0, d = |a|) and

4. inversion (w = 1
z
: a = 0, b = 1, c = 1, d = 0).

Each of these transformations is a special case of Eq. 1.74, with the inversion the most complicated.

A wonderful video showing the effect of the bilinear (Möbius) transformation on the plane is

available that I highly recommend: https://www.youtube.com/watch?v=0z1fIsUNhO4

The bilinear transformation is the most general way to move the expansion point in a complex

analytic expansion. For example, starting from the harmonic series, the bilinear transform gives

1

1− w =
1

1− az+b
cz+d

=
cz + d

(c− a)z + (d− b) .

The RoC is transformed from |w| < 1 to |(az− b)/(cz−d)| < 1. An interesting application might

be in moving the expansion point until it is on top of the nearest pole, so that the RoC goes to zero.

This might be a useful way of finding a pole, for example.

When the extended plane (Riemann sphere) is analytic at z =∞, one may take the derivativesnot yet defined.not yet defined.
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there, defining the Taylor series with the expansion point at∞. When the bilinear transformation

rotates the Riemann sphere, the point at infinity is translated to a finite point on the complex plane,

revealing the analytic nature at infinity. A second way to transform the point at infinity is by the

bilinear transformation ζ = 1/z, mapping a zero (or pole) at z = ∞ to a pole (or zero) at ζ = 0.

Thus this construction of the Riemann sphere and the Mb̈ious (bilinear) transformation allows us

to understand the point at infinity, and treat it like any other point. If you felt that you never

understood the meaning of the point at∞ (likely), this should help.

1.3.12 Lec 18: Complex analytic mappings (Domain-coloring)

Move AE3 #2 discussion hereMove AE3 #2 discussion here

u+jv = s

σ

-2 -1  0  1  2

jω
 2

 1

 0

-1

-2

u+jv = (x+jy)-sqrt(i)

x
-2 -1  0  1  2

jy

 2

 1

 0

-1

-2

Figure 1.20: Left: Domain–colorized map showing the complex
mapping from the s = σ+ω plane to thew(s) = u(σ, ω)+v(σ, ω)
plane. This mapping may be visualized by the use of intensity (light/-
dark) to indicate magnitude, and color (hue) to indicate angle (phase)
of the mapping. Right: This shows the w(z) = z − √j plane, shift

to the right and up by
√

2/2 = 0.707. The white and black lines are
the iso-real and iso-imaginary contours of the mapping.

One of the most difficult aspects

of complex functions of a complex

variable is understanding the mapping

from z = x + y to w(z) = u + v.
For example, w(z) = sin(x) is trivial

when z = x + y is real (i.e., y = 0),

because sin(x) is real. Likewise for the

case where x = 0, where

sin(y) =
e−y − ey

2
=  sinh(y)

is purely imaginary. But the general

case, w(z) = sin(z) ∈ C

sin(z) = sin(x− y) =  sinh(z),

is not easily visualized. Thus when u(x, y) and v(x, y) are not well known functions, w(z) can be

much more difficult to visualize. u+jv = sin(0.5*pi*((x+jy)-i))

x
-2 -1  0  1  2

jy

 2

 1

 0

-1

-2

Figure 1.21: Plot of sin(0.5π(z − i)).

Fortunately with computer software today, this

problem can be solved by adding color to the chart.

A Matlab/Octave script zviz.m has been used to

make the make the charts shown here.63 This tool is

also known as domain-coloring.64 Rather than plot-

ting u(x, y) and v(x, y) separately, domain-coloring

allows us to display the entire function on one chart.

Note that for this visualization we see the com-

plex polar form of w(s) = |w|e∠w, rather than

the four-dimensional Cartesian graph w(x + y) =
u(x, y) + v(x, y).

Visualizing complex functions: The mapping from z = x + iy to w(z) = u(x, y) + iv(x, y) is

a 2 · 2 = 4 dimensional graph. This is difficult to visualize, because for each point in the domain

z, we would like to represent both the magnitude and phase (or real and imaginary parts) of w(z).
A good way to visualize these mappings is to use color (hue) to represent the phase and intensity

63http://jontalle.web.engr.illinois.edu/uploads/298/zviz.zip
64This is also called ‘domain coloring’: https://en.wikipedia.org/wiki/Domain_coloring
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u+jv = exp((x+jy))

x
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u+jv = log((x+jy))
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Figure 1.22: This domain–color map allows one to visualize complex mappings by the use of intensity (light/dark)
to indicate magnitude, and color (hue) to indicate angle (phase). The white and black lines are the iso-real and iso-
imaginary contours of the mapping. Left: This figure shows the domain–color map for the complex mapping from the
z = x + y plane to the w(z) = u + v = ex+y plane, which goes to zero as x → −∞, causing the domain–color
map to become dark for x < −2. The white and black lines are always perpendicular because ez is complex analytic
everywhere. Right: This shows the principal value of the inverse function u(x, y) + v((x, y) = log(x + y), which
has a zero (dark) at z = 1, since there log(1) = 0 (the imaginary part is zero). Note the branch cut from x = 0 to
x = −∞. On branches other than the one shown, there is are no zeros, since the phase (∠z = 2πn) is not zero.

(dark to light) to represent the magnitude. The Matlab program zviz.m has been provided to do

this (see Lecture 17 on the class website).

To use the program in Matlab/Octave, use the syntax zviz <function of z> (for exam-

ple, type zviz z.ˆ2). Note the period between z and ˆ2. This will render a ‘domain coloring’

(aka colorized) version of the function. Examples you can render with zviz are given in the com-

ments at the top of the zviz.m program. A good example for testing is zviz z-sqrt(j),

which should show a dark spot (a zero) at (1 + 1)/
√

2 = 0.707(1 + 1).

Example: Figure 1.21 shows a colorized plot of w(z) = sin(π(z − i)/2) resulting from the

Matlab/Octave command zviz sin(pi*(z-i)/2). The abscissa (horizontal axis) is the real

x axis and the ordinate (vertical axis) is the complex iy axis. The graph is offset along the ordinate

axis by 1i, since the argument z−i causes a shift of the sine function by 1 in the positive imaginary

direction. The visible zeros of w(z) appear as dark regions at (−2, 1), (0, 1), (2, 1). As a function

of x, w(x+1) oscillates between red (phase is zero degrees), meaning the function is positive and

real, and sea-green (phase is 180◦), meaning the function is negative and real.

Along the vertical axis, the function is either a cosh(y) or sinh(y), depending on x. The

intensity becomes lighter as |w| increases, and white as w →∞. The intensity becomes darker as

|w| decreases, and black as w → 0.

Mathematicians typically use the more abstract (i.e., non–physical) notation w(z), where w =
u+ vı and z = x+ yı. Engineers think in terms of a physical complex impedance Z(s) = R(s) +
X(s), having resistance R(s) and reactance X(s) [ohms], as function of the complex Laplace

radian frequency s = σ+ω [rad], as used, for example, with the Laplace transform (Sect. 1.3.14,

p. 98). In Fig. 1.20 we use both notations, with Z(s) = s on the left and w(z) = z −√j on the

right, where we show this color code as a 2x2 dimensional domain-coloring graph. Intensity (dark

to light) represents the magnitude of the function, while hue (color) represents the phase, where

(see Fig. 1.20) red is 0◦, sea-green is 90◦, blue-green is 135◦, blue is 180◦, and violet is −90◦ (or
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270◦). The function w = s has a dark spot (a zero) at s = 0, and becomes brighter away from the

origin. On the right is w(z) = z − √j, which shifts the zero to z =
√
j. Thus domain–coloring

gives the full picture of the complex analytic function mappings w(x, y) = u(x, y) + v(x, y) in

colorized polar coordinates.

Two additional examples are given in Fig. 1.22 to help you interpret the two complex mappings

w = es (left) and its inverse s = ln(w). The exponential is relatively easy to understand because

w(s) = |eσeω| = eσ . The red region is where ω ≈ 0 in which case w ≈ eσ. As σ becomes large

and negative, w → 0, thus the entire field becomes dark on the left. The field is becoming light on

the right where w = eσ → ∞. If we let σ = 0 and look along the ω axis, we see that the function

is changing phase, sea-green (90◦) at the top and violet (-90◦) at the bottom.

In the right panel note the zero for ln(w) = ln |w|+ ω at w = 1. The root of the log function

is log(wr) = 0 wr = 1, φ = 0, since log(1) = 0. More generally, the log of w = |w|eφ is

s = ln |w|+ φ. Thus s(w) can be zero only when the angle of w is zero.

The ln(w) function has a branch cut along the φ = 180◦ axis. As one crosses over the cut, the

phase goes above 180◦, and the plane changes to the next sheet of the log function. The only sheet

with a zero is the principle value, as shown. For all others, the log function is either increasing or

decreasing monotonically, and there is no zero, as seen for sheet 0 (the one showing in Fig. 1.22).

1.3.13 Lec 19: Signals: Fourier transforms

Two basic transformations in engineering mathematics are the Fourier and the Laplace transforms,

which deal with time–frequency analysis.

Notation: The Fourier transform takes a time domain signal f(t) ∈ R and transforms it to the

frequency domain ω ∈ R, where it is complex (F (ω) ∈ C). For the Fourier transform, both the

time −∞ < t < ∞ and frequency∞ < ω < ∞ are strictly real. The relationship between f(t)
and its transform F (ω) is indicated by the double arrow symbol

f(t)↔ F (ω).

Since the FT obeys superposition, it is possible to define a FT of a complex time function f(t) ∈
C, t ∈ R. This is useful in certain engineering applications (i.e., Hilbert envelope, Hilbert trans-

forms). It is accepted in the engineering and physics literature to use the case of the variable to

indicate the type of argument. A time function is f(t), where t has units of seconds [s] and is

in lower case, whereas its Fourier transform, a function of frequency, having units of either hertz

[Hz] or radians [2πHz] is written using upper case F (ω). This helps the reader parse the type of

variable under consideration. This is a helpful piece of notation, but not entirely in agreement with

notation used in mathematics.

Definition of the Fourier transform: The forward transform takes f(t) to F (ω) while the in-

verse transform takes F (ω) to f̃(t). The tilde symbol indicates that in general the recovered inverse

transform signal can be slightly different from f(t). We give examples of this in Table F.2.

F (ω) =
∫ ∞

−∞
f(t)e− ωtdt f̃(t) =

1

2π

∫ ∞

−∞
F (ω)eωtdω (1.75)

F (ω)↔ f(t) f̃(t)↔ F (ω). (1.76)
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Periodic signals: Besides these two basic types of time–frequency transforms, there are several

variants that depend on the symmetry in time and frequency. For example, when the time signal is

sampled (discrete in time), the frequency response becomes periodic, leading to the discrete-time

Fourier transform (DTFT). When a time response is periodic, the frequency response is sampled

(discrete in frequency), leading to the Fourier series. These two symmetries may be simply char-

acterized as periodic in time⇒ discrete in frequency, and periodic in frequency⇒ discrete in time.

When a function is both discrete in time and frequency, it is necessarily periodic in time and fre-

quency, leading to the discrete Fourier transform (DFT). The DFT is typically computed with an

algorithm called the fast Fourier transform (FFT), which can dramatically speed up the calculation

when the data is a power of 2 in length.

A very important symmetry is when functions that are causal (in time) and periodic (in fre-

quency). The best known example is the class of signals that have z transforms, which are causal

(one-sided in time) discrete-time signals. The harmonic series (Eq. 1.41, p. 68) is the z-transform

of the discrete-time step function, thus, by symmetry, analytic within the RoC in the complex

frequency (z) domain.

The double brackets on f((t))To
indicate that f(t) is periodic in t with period To, i.e., f(t) =

f(t+ kTo) for all k ∈ N. Averaging over on period and dividing by the To gives the average value

of f(t).

Exercise: Consider the FT as a scalar (dot) product (Eq. 1.54, p. 80) between “vectors” f(t)
and e−ωkt

f(t) · e−ωkt ≡ 1

To

∫ To

0
f(t)e−ωktdt,

where ω0 = 2π/To and ωk = kωo. If f(t) = eωnt what is the value of the scalar product?

Solution: Evaluating the scalar product we find

eωnt · e−ωkt =
1

To

∫ To

0
eωnte−ωktdt. =

1

To

∫ To

0
e2π(n−k)t/Todt =





1 n = k

0 n 6= k
.

The two signals (vectors) are orthogonal.

1.3.14 Lec 20: Systems: Laplace transforms

The Laplace transform takes a real signals f(t) ∈ R, as a function of real time t ∈ R, that are

causal, i.e., strictly zero for negative time (f(t) = 0 for t < 0), and transforms them into complex

functions F (s) ∈ C of complex frequency s = σ + ω. As for the Fourier transform, there is the

notation f(t)↔ F (s).
When a signal is zero for negative time f(t < 0) = 0, it is said to be causal, and the resulting

transform F (s) is then complex analytic over significant regions of the s plane. For a function

of time to be causal, time must be real (t ∈ R), since if it were complex, it would lose the order

property (thus it could not be causal). It is helpful to emphasize the causal nature of f(t)u(t) by

indicating the causal nature, using the Heaviside step function u(t).
Restrictions on a function (e.g., real, causal, periodic, positive real part, etc.) are called a

symmetry property. There are many forms of symmetry (Section 1.3.15, p. 100). The concept

of symmetry is very general and widely used in both mathematics and physics, where it is more

generally known as group theory. We shall restrict ourselves to only a few very basic symmetries

(Section H.5.1, p. 268).
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Definition of the Laplace transform: The forward and inverse Laplace transforms are

F (s) =
∫ ∞

0−

f(t)e−stdt f(t) =
1

2π

∫ σo+∞

σo−∞
F (s)estds (1.77)

F (s)↔ f(t) f(t)↔ F (s) (1.78)

Here s = σ + jω ∈ C [2πHz] is the complex Laplace frequency in radians and t ∈ R [s] is the

time in seconds.

When dealing with engineering problems it is convenient to separate the signals we use from

the systems that process them. We do this by treating signals, such as a music signal, differently

from a system, such as a filter. In general signals may start and end at any time. The concept of

causality has no mathematical meaning in signal space. Systems, on the other hand, obey very

rigid rules (to assure that they remain physical). These physical restrictions are described in terms

of the network postulates, which are first discussed in Sect. 1.3.15, and then in greater detail in

Sect. H.5.1. There is a question as to why postulates are need, and which are the best postulates.65

There may be no answer to this question, but having a set of postulates is a way of thinking about

physics.66

As discussed in Section 1.4.8 (p. 122), we must use the Cauchy residue theorem (CRT), requir-

ing closure of the contour C at ω→ ±j∞
∮

C
=
∫ σ0+j∞

σ0−j∞
+
∫

⊂∞

where the path represented by ‘⊂∞’ is a semicircle of infinite radius. For a causal, ‘stable’

(e.g. doesn’t “blow up” in time) signal, all of the poles of F (s) must be inside of the Laplace

contour, in the left half s-plane.
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Figure 1.23: This three-element mechanical resonant circuit consisting of a spring, mass and dashpot (e.g., viscous
fluid).

Hooke’s law for a spring states that the force f(t) is proportional to the displacement x(t), i.e.,

f(t) = Kx(t). The formula for a dashpot is f(t) = Rv(t), and Newton’s famous formula for mass

is f(t) = d[Mv(t)]/dt, which for constant M is f(t) = Mdv/dt.
The equation of motion for the mechanical oscillator in Fig. 1.23 is given by Newton’s second

law; the sum of the forces must balance to zero

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t). (1.79)

These three constants, the mass M , resistance R and stiffness K are all real and positive. The

dynamical variables are the driving force f(t)↔ F (s), the position of the mass x(t)↔ X(s) and

its velocity v(t)↔ V (s), with v(t) = dx(t)/dt↔ V (s) = sX(s).

65https://www.youtube.com/watch?v=JXAfEBbaz_4
66https://www.youtube.com/watch?v=YaUlqXRPMmY
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Newton’s second law (c1650) is the mechanical equivalent of Kirchhoff’s (c1850) voltage law

(KCL), which states that the sum of the voltages around a loop must be zero. The gradient of the

voltage results in a force on a charge (i.e., F = qE).

Equation 1.79 may be re-expressed in terms of impedances, the ratio of the force to velocity,

once it is transformed into the Laplace frequency domain.

Example: The divergent seriesMoved here from p 60Moved here from p 60

etu(t) =
∞∑

0

1

n!
tn ↔ 1

s− 1

is a valid description of etu(t), with an unstable pole at s = 1. For values of |x − xo| < 1,

the analytic function P (x) has a region of convergence (RoC). For cases where the argument is

complex (x ∈ C), this is called the radius of convergence (RoC). We call the region |x − xo| > 1
the region of divergence (RoD), and |x − xo| = 0, the singular circle. Typically the underlying

function P (s), defined by the series, has a pole on the singular circle for s ∈ C. One may isolate

such poles by moving the expansion point so until the RoC approaches zero.

This is in conflict with the example of eatu(t), which has a divergent series, that agrees with the

unstable function. I’m not sure how to justify this conflict, other than to point out that t ∈ R, thus

the series expansion of the diverging exponential is real-analytic, not complex analytic. It does

have a Laplace transform, with a pole at s = 1, in agreement with its unstable nature. Second, the

analytic function must be single valued. This follows from the fact that each term in Eq. 1.39 is

single valued. Third, analytic functions are very “smooth,” since they may be differentiated an∞
number of times, and the series still converges. There can be no jumps or kinks in such functions.

The key idea that every impedance must be complex analytic and ≥ 0 for σ > 0 was first

proposed by Otto Brune in his PhD at MIT, supervised by a student of Arnold Sommerfeld, Ernst

Guillemin, an MIT ECE professor, who played a major role in the development of circuit theory.

Brune’s primary (non-MIT) advisor was Cauer, who was also well trained in 19th century German

mathematics (Brune, 1931b).67

Summary: While the definitions of the FT (FT ) and LT (LT ) transforms appear superficially

similar, they are not. The key difference is that the time response of the Laplace transform is

causal, leading to a complex analytic frequency response. The frequency response of the Fourier

transform is real, thus typically not analytic. These are not superficial differences. The concept of

symmetry is helpful in understanding the many different types of time-frequency transforms. Two

fundamental types of symmetry are causality and periodicity.

The Fourier transform FT characterizes the steady-state response while the Laplace transform

LT characterizes both the transient and steady-state response. Given a system response H(s) ↔
h(t) with input x(t), the output is

y(t) = h(t) ⋆ x(t)↔ Y (ω) = H(s)
∣∣∣∣
s=ω

X(ω).

1.3.15 Lec 21: Ten network postulates

Solutions of differential equations, such as the wave equation, are conveniently described in terms

of mathematical properties, which we present here in terms of 10 network postulates:

67It must be noted that Prof. ‘Mac’ Van Valkenburg from the University of Illinois, was arguably more influential in

circuit theory, during the same period. Mac’s book are certainly more accessible, but perhaps less widely cited.
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(P1) causality (non-causal/acausal): Causal systems respond when acted upon. Virtually all phys-

ical systems obey causality. An example of a causal system is an integrator, which has a

response of a step function. Filters are also examples of causal systems. Signals represent

acausal responses. They do not have a clear beginning or end, such as the sound of the wind

or traffic noise.

(P2) linearity (nonlinear): Linear systems obey superposition. Two signals x(t) and y(t) are the

inputs to a linear system, producing outputs x′(t) and y′(t). When the inputs are presented

together as ax(t) + by(t) with weights a, b ∈ C, the output will be ax′(t) + by′(t). If either

a or b is zero, the corresponding signal is removed from the output.

Nonlinear systems mix the two inputs, thereby producing signals not present in the input.

For example, if the inputs to a nonlinear system are two sine waves, the output will contain

distortion components, having frequencies not present at the input. An example of a nonlin-

ear system is one that multiplies the two inputs. A second is a diode, which rectifies a signal,

letting current flow only in one direction. Most physical systems have some degree of non-

linear response, but this is not always desired. Other systems are designed to be nonlinear,

such as the diode example.

(P3) passive (active): An active system has a power source, such as a battery, while a passive

system has no power source. While you may consider a transistor amplifier to be active, it is

only so when connected to a power source.

(P4) real (complex) time response : Typically systems are “real in, real out.” They do not naturally

have complex responses (real and imaginary parts). While a Fourier transform takes real

inputs and produces complex outputs, this is not an example of a complex time response. P4

is a characterization of the input signal, not its Fourier transform.

(P5) time-invariant (time varying): For a system to be a time varying system the output must

depend on when the input signal starts or stops. If the output, relative to the input, is inde-

pendent of the starting time, then the system is said to be time-invariant (static).

(P6) reciprocal (non- or anti-reciprocal): In many ways this is the most difficult propriety to Sect. H.5.1, p. 268.Sect. H.5.1, p. 268.

characterize and thus understand. It is characterized by the ABCD matrix. If B = C, the

system is said to be reciprocal. If B = −C, it is said to be anti-reciprocal. The impedance

matrix is reciprocal while a loudspeaker is anti-reciprocal and modeled by the gyrator rather

than a transformer. All non-reciprocal systems are modeled by gyrators, which swap the

force and flow variables.

(P7) reversibility (non-reversible): If swapping the input and output of a system leaves the system

invariant, it is said to be reversible. WhenA = D the system is reversible. Note the similarity

and differences between reversible and reciprocal.

(P8) space-invariant (space-variant): If a system operates independently as a function of where it

physically is in space, then it is space-invariant. When the parameters that characterize the

system depend on position, it is space-variant.

(P9) Deterministic (random): Given the wave equation, along with the boundary conditions, the

system’s solution may be deterministic, or not, depending on its extent. Consider a radar or
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sonar wave propagating out into uncharted territory. When the wave hits an object, the re-

flection can return waves that are not predicted, due to unknown objects. This is an example

where the boundary condition is not known in advance.

(P10) Quasi-static (ka < 1) Quasi-statics follows from systems that have dimensions that are

small compared to the local wavelength. This assumption fails when the frequency is raised

(the wavelength becomes short). Thus this is also known as the long-wavelength approx-

imation. Quasi-statics is typically stated as ka < 1, where k = 2π/λ = ω/co and a is

the smallest dimension of the system. See p. 169 for a detailed discussion of the role of

quasi-statics in acoustic horn wave propagation.

Postulate (P10) is closely related to the Feynman (1970c, Ch. 12-7) titled The “underlying

unity” of nature, where Feynman asks Why do we need to treat the fields as smooth? The

answer is related to the wavelength of the probing signal relative to the dimensions of the

object being probed. This raises the fundamental question: Are Maxwell’s equations a band-

limited approximation to reality? I have no idea what the answer is.

Summary discussion of the 10 network postulates: Each postulate has two (or more) cate-

gories. For example, (P1) is either causal, non-causal or acausal while (P2) is either linear or

non-linear. (P6) and (P9) only apply to 2-port algebraic networks (those having an input and an

output). The others apply to both a 2– or 1–port networks (e.g., an impedance is a 1-port). An

interesting example is the anti-reciprocal transmission matrix of a loudspeaker, shown in Fig. H.7

(p. 268).

Related forms of these postulates may be found in the network theory literature (Van Valken-

burg, 1964a,b; Ramo et al., 1965). Postulates (P1-P6) were introduced by Carlin and Giordano

(1964) and (P7-P9) were added by Kim et al. (2016). As noted by Carlin and Giordano (1964,

p. 5), while linearity (P2), passivity (P3), realness (P4) and time-invariance (P5) are independent,

causality (P1) is a consequence of linearity (P2) and passivity (P3).

1.3.16 Lec 22: Exam II (Evening Exam)
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1.4 Stream 3a: Scalar (i.e., Ordinary) Differential Equations

Stream 3 is ∞, a concept which typically means unbounded (immeasurably large), but in the

case of calculus,∞ means infinitesimal (immeasurably small), since taking a limit requires small

numbers. Taking a limit means you may never reach the target, a concept that the Greeks called

Zeno’s paradox (Stillwell, 2010, p. 76).

When speaking of the class of ordinary (versus vector) differential equations, the term scalar is

preferable, since the term “ordinary” is vague, if not a meaningless label. There are a special subset

of fundamental theorems for scalar calculus, all of which are about integration, as summarized in

Table 1.6 (p. 159), starting with Leibniz’s theorem. These will be discussed below, and more

extensively in Lec. 1.4.1 (p. 105) and Chapters I (p. 275) and J (p. 275).

Following the integral theorems on scalar calculus, are those on vector calculus, without which

there could be no understanding of Maxwell’s equations. Of these, the fundamental theorem of

complex calculus (aka, Helmholtz decomposition), Gauss’s law and Stokes’s theorem, form the

cornerstone of modern vector field analysis. These theorems allow one to connect the differential

(point) and macroscopic (integral) relationships. For example, Maxwell’s equations may be written

as either vector differential equations, as shown by Heaviside (along with Gibbs and Hertz),68

or in integral form. It is helpful to place these two forms side-by-side, to fully appreciate their

significance. To understand the differential (microscopic) view, one must understand the integral

(macroscopic) view. These are presented in Sections 1.5.13 (p. 154) and Fig. 1.36 (p. 159).

Chronological history post 16th century

16th Bombelli 1526–1572

17th Galileo 1564–1642, Kepler 1571–1630, Newton 1642–1727 Principia 1687; Mersenne;
Huygen; Pascal; Fermat, Descartes (analytic geometry); Bernoullis Jakob, Johann &
son Daniel

18th Euler 1707–1783 Student of Johann Bernoulli; d’Alembert 1717–1783; Kirchhoff; La-
grange; Laplace; Gauss 1777–1855

19th Möbius, Riemann 1826–1866,

Cauchy 1789–1857, Helmholtz 1821–1894, Maxwell 1831–1879, Heaviside 1850–
1925, Rayleigh 1842–1919

20th Hilbert; Einstein; . . .

Time-Line

|1525 |1600 |1700 |1800 |1875 |1925

Mersenne

Fermat

Hilbert

US Civil War

Descartes

Mozart

Johann Bernoulli

Jacob Bernoulli
Daniel Bernoulli

Einstein
Huygens

Euler

Newton

d'Alembert

Gauss

Galileo Cauchy
Helmholtz

Maxwell

Riemann

Bombelli

Rayleigh

Figure 1.24: Final overview of the time-line for the four centuries from the 16th and 20th CE covering Bombelli
to Einstein. Mozart and the US Civil War are indicated along the bottom, for orientation. .

68https://en.wikipedia.org/wiki/History_of_Maxwell\%27s_equations
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The beginning of modern mathematics

As outlined in Fig. 1.24, mathematics as we know it today began in the 16th to 18th centuries, ar-

guably starting with Galileo, Descartes, Fermat, Newton, the Bernoulli family, and Euler. Galileo

was formidable, due to his fame, fortune, and his “successful” stance against the powerful Catholic

establishment. His creativity in scientific circles was certainly well known due to his many skills

and accomplishments. Descartes and Fermat were at the forefront of merging algebra and geome-

try. While Fermat kept meticulous notebooks, he did not publish, and tended to be secretive. Thus

Descartes’s contributions were more widely acknowledged, but not necessarily deeper.

Regarding the development of calculus, much was yet to be done by Newton and Leibniz,

using term by term integration of functions based on Taylor series representation. This was a

powerful technique, but as stated earlier, incomplete because the Taylor series can only represent

single-valued functions, within the RoC. But more importantly, Newton (and others) failed to

recognize the powerful generalization to complex analytic functions. The first major breakthrough

was Newton’s publication of Principia (1687), and a second was Riemann (1851), advised by

Gauss.

Following Newton’s lead, the secretive and introverted behavior of the typical mathematician

dramatically changed with the Bernoulli family (Fig. 1.24). The oldest brother, Jacob, taught his

much younger brother Johann, who then taught his son Daniel. But Johann’s star pupil was Euler.

Euler first mastered all the tools and then published, with a prolifically previously unknown.

Euler and the circular functions: The first major task was to understand the family of analytic

circular functions, ex, sin(x), cos(x), and log(x), a task begun by the Bernoulli family, but mastered

by Euler. Euler sought relations between these many functions, some of which may not be thought

of as being related, such as the log and sin functions. The connection that may “easily” be made

is through their complex Taylor series representation (Eq. 1.40, p. 68). By the manipulation of

the analytic series representations, the relationship between ex, and the sin(x) and cos(x), was

precisely captured with the relation

ejω = cos(ω) +  sin(ω), (1.80)

and its analytic inverse (Greenberg, 1988, p. 1135)

tan−1(z) =
1

2
ln

(
1− z
1+ z

)
. (1.81)

Exercise: Starting from Eq. 1.80, derive Eq. 1.81. Solution: Solution: Let z(ω) = tanω, then

z(ω) =
sinω

cosω
= tan(ω) = −e

ω − e−ω

eω + eω
= −e

2ω − 1

e2ω + 1
. (1.82)

Solving this for e2ω gives

e2ω =
1 + z

1− z . (1.83)

Taking the square root results in the analytic relationship between eω and  tanω

eω = ±
√

1 + z

1− z .
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Taking the log, and using the definition of ω(z) = tan−1(z), we obtain Eq. 1.81.

These equations are the basis of transmission lines (TL) and the Smith chart. Here z(ω) is the

TL’s input impedance and Eq. 1.83 is the reflectance.

u+jv = atan((x+jy))

x
-2 -1  0  1  2

jy

 2

 1

 0

-1

-2

u+jv = (i/2)*log((1-i*(x+jy))./(1+i*(x+jy)))

x
-2 -1  0  1  2

jy

 2

 1

 0

-1

-2

Figure 1.25: Colorized plots of ω(z) = tan−1(z) and ω(z) = i
2 ln(1 − iz)/(1 + iz), verifying they are the same

complex analytic function.

While many high school student memorize Euler’s relation, it seems unlikely they appreciate

the significance of complex analytic functions (Eq. 1.47, p. 71).

A brief history of complex analytic functions: Newton famously ignored imaginary numbers,

and called them imaginary in a disparaging (pejorative) way. Given Newton’s prominence, his view

certainly must have attenuated interest in complex algebra, even though it had been previously

quantified by Bombelli in 1525, likely based on his serendipitous finding of Diophantus’s book

Arithmetic in the Vatican library.

Euler derived his relationships using real power series (i.e., real analytic functions). While

Euler was fluent with  =
√
−1, he did not consider functions to be complex analytic. That

concept was first explored by Cauchy almost a century later. The missing link to the concept of

complex analytic is the definition of the derivative with respect to the complex argument

F ′(s) =
dF (s)

ds
(1.84)

where s = σ + ω, without which the complex analytic Taylor coefficients may not be defined.

Euler did not appreciated the role of complex analytic functions, because these were first dis-

covered well after his death (1783), by Augustin-Louis Cauchy (1789–1857).

1.4.1 Lec 23: Fundamental theorems of calculus

History of the fundamental theorem of calculus: It some sense, the story of calculus begins

with the fundamental theorem of calculus (FTC), also known generically as Leibniz’s formula. The

simplest integral is the length of a line L =
∫ L

0 dx. If we label a point on a line as x = 0 and wish

to measure the distance to any other point x, we form the line integral between the two points. If

the line is straight, this integral is simply the Euclidean length given by the difference between the

two ends (Eq. 1.3.6, p. 80).
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If F (χ) ∈ R describes a height above the line χ ∈ R, then f(x)

f(x)− f(0) =
∫ x

x=0
F (χ)dχ, (1.85)

may be viewed as the anti-derivative of F (χ). Here χ is a dummy variable of integration. Thus the

area under F (χ) only depends on the difference of the area evaluated at the end points. It makes

intuitive sense to view f(x) as the anti-derivative of F (χ).

This property of the area as an integral over an interval, only depending on the end points,

has important consequences in physics in terms of conservation of energy, allowing for important

generalizations. For example, as long as χ ∈ R, one may let F (χ) ∈ C with no loss of generality,

due to the linear propriety (P1, p. 101) of the integral.

If f(x) is analytic (Eq. 1.39, p. 67), then

F (x) =
d

dx
f(x), (1.86)

is an exact real differential. It follows that F (x) is analytic. This is known as the fundamental

theorem of (real) calculus (FTC). Thus Eq. 1.86 may be viewed as an exact real differential. This

is easily shown by evaluating

d

dx
f(x) = lim

δ→0

f(x+ δ)− f(x)

δ
= F (x),

starting from the anti-derivative Eq. 1.85. If f(x) is not analytic then the limit may not exist, so

this is a necessary condition.

There are many important variations on this very basic theorem (i.e., Sect. 1.4, p. 103). For

example, the limits could depend on time. Also when taking Fourier transforms, the integrand

depends on both time t ∈ R and frequency ω ∈ R via a complex exponential “kernel” function

e±ωt ∈ C, which is analytic in both t and ω.

The fundamental theorems of complex calculus:

The fundamental theorem of complex calculus (FTCC) states (Greenberg, 1988, p. 1197) that for

any complex analytic function F (s) ∈ C with s = σ + ω ∈ C

f(s)− f(so) =
∫ s

so

F (ζ)dζ. (1.87)

Equations 1.85 and 1.87 differ because the path of the integral is complex. Thus the line integral

is over s ∈ C rather than a real integral over χ ∈ R. The fundamental theorem of complex calculus

(FTCC) states that the integral only depends on the end points, since

F (s) =
d

ds
f(s). (1.88)

Comparing exact differentials Eq. 1.88 (FTCC) and Eq. 1.86 (FTC), we see that f(s) ∈ C must be

complex analytic, and have a Taylor series in powers in s ∈ C. It follows that F (s) is also complex

analytic.
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Complex analytic functions: The definition of a complex analytic function F (s) of s ∈ C is that

the function may be expanded in a Taylor series (Eq. 1.46, p. 71) about an expansion point so ∈ C.

This definition follows the same logic as the FTC. Thus we need a definition for the coefficients

cn ∈ C, which most naturally follow from Taylor’s formula

cn =
1

n!

dn

dsn
F (s)

∣∣∣∣∣
s=so

. (1.89)

The requirement that F (s) have a Taylor series naturally follows by taking derivatives with respect

to s at so. The problem is that both integration and differentiation of functions of complex Laplace

frequency s = σ + ω have not yet been defined.

Thus the question is: What does it mean to take the derivative of a function F (s) ∈ C, s =
σ + ω ∈ C, with respect to s, where s defines a plane rather than a real line? We learned how to

form the derivative on the real line. Can the same derivative concept be extended to the complex

plane?

The answer is affirmative. The question may be resolved by applying the rules of the real

derivative when defining the derivative in the complex plane. However for the complex case,

there is an issue, regarding direction. Given any analytic function F (s), is the partial derivative

with respect to σ different from the partial derivative with respect to ω? For complex analytic

functions, the FTCC states that the integral is independent of the path in the s plane. Based on the

chain rule, the derivative must also be independent of direction at so. This directly follows from

the FTCC. If the integral of a function of a complex variable is to be independent of the path, the

derivative of a function with respect to a complex variable must be independent of the direction.

This follows from Taylor’s formula, Eq. 1.89, for the coefficients of the complex analytic formula.

The Cauchy-Riemann conditions: The FTC defines the area as an integral over a real differ-

ential (dx ∈ R), while the FTCC relates an integral over a complex function F (s) ∈ C, along a

complex interval (i.e., path) (ds ∈ C). For the FTC the area under the curve only depends on the

end points of the anti-derivative f(x). But what is the meaning of an “area” along a complex path?

The Cauchy-Riemann conditions provide the answer.

1.4.2 Lec 24: Cauchy-Riemann conditions

For the integral of Z(s) = R(σ, ω) + X(σ, ω) to be independent of the path, the derivative of

Z(s) must be independent of the direction of the derivative. As we show next, this leads to a pair

of equations known as the Cauchy-Riemann conditions. This is an important generalization of

Eq. 1.1, p. 18 which goes from real integration (x ∈ R) to complex integration (s ∈ C), based on

lengths, thus on area.

To define
d

ds
Z(s) =

d

ds
[R(σ, ω) + X(σ, ω)]

take partial derivatives of Z(s) with respect to σ and ω, and equate them:

∂Z

dσ
=
∂R

∂σ
+ 

∂X

∂σ
≡ ∂Z

dω
=

∂R

∂ω
+ 

∂X

∂ω
.

This says that a horizontal derivative, with respect to σ, is equivalent to a vertical derivative, with

respect to ω. Taking the real and imaginary parts gives the two equations

CR-1:
∂R(σ, ω)

∂σ
= ✁

∂X(σ, ω)

∂ω✁
and CR-2:

∂R(σ, ω)

∂ω✁
= −✁

∂X(σ, ω)

∂σ
, (1.90)
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known as the Cauchy-Riemann (CR) conditions. The  cancels in CR-1, but introduces a 2 = −1
in CR-2. They may also be written in polar coordinates (s = reθ) as

∂R

∂r
=

1

r

∂X

∂θ
and

∂X

∂r
= −1

r

∂R

∂θ
.

If you are wondering what would happen if we took a derivative at 45 degrees, then we only need

to multiply the function by eπ/4. But doing so will not change the derivative. Thus we may take

the derivative in any direction by multiplying by eθ, and the CR conditions will not change.

The CR conditions are necessary conditions that the integral of Z(s), and thus its derivative,

be independent of the path, expressed in terms of conditions on the real and imaginary parts of Z.

This is a very strong condition on Z(s), which follows assuming that Z(s) may be written as a

Taylor series in s

Z(s) = Zo + Z1s+
1

2
Z2s

2 + · · · , (1.91)

where Zn ∈ C are complex constants given by the Taylor series formula (Eq. 1.89, p. 107). As

with the real Taylor series, there is the convergence condition, that |s| < 1, called the radius of

convergence (RoC). This is an important generalization of the region of convergence (R0C) for

real s = x.

Every function that may be expressed as a Taylor series in s − so about point so ∈ C is

said to be complex analytic at so. This series, which must be single valued, is said to converge

within a radius of convergence (RoC). This highly restrictive condition has significant physical

consequences. For example, every impedance function Z(s) obeys the CR conditions over large

regions of the s plane, including the entire right half-plane (RHP) (σ > 0). This condition is

summarized by the Brune condition ℜ{Z(σ > 0)} ≥ 0 (Section 1.4.3, Eq. 1.99, p. 112). When

the CR condition is generalized to volume integrals, it is called Green’s theorem, used heavily in

the solution of boundary value problems in engineering and physics (Kusse and Westwig, 2010).

Sections 1.4 (p. 103) and 1.5 (p. 126) depend heavily on these concepts.

We may merge these equations into a pair of second-order equations by taking a second round

of partials. Specifically, eliminating the real part R(σ, ω) of Eq. 1.90 gives

∂2R(σ, ω)

∂σ∂ω
=
∂2X(σ, ω)

∂2ω
= −∂

2X(σ, ω)

∂2σ
, (1.92)

which may be compactly written as ∇2X(σ, ω) = 0. Eliminating the imaginary part gives

∂2X(σ, ω)

∂ω∂σ
=
∂2R(σ, ω)

∂2σ
= −∂

2R(σ, ω)

∂2ω
, (1.93)

which may be written as ∇2R(σ, ω) = 0.

In summary, for a function Z(s) to be complex analytic, the derivative dZ/ds must be inde-

pendent of direction (path), which requires that the real and imaginary parts of the function obey

Laplace’s equation, i.e.,

CR-3: ∇2R(σ, ω) = 0 and CR-4: ∇2X(σ, ω) = 0. (1.94)

The CR equations are easier to work with because they are first-order, but the physical intuition is

best understood by noting fact 1) the derivative of a complex analytic function is independent of
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its direction, and fact 2) the real and imaginary parts of the function each obey Laplace’s equation.

Such relationships are known as harmonic functions.69

As we shall see in the next few lectures, complex analytic functions must be smooth since every

analytic function may be differentiated an infinite number of times, within the RoC. The magnitude

must attain its maximum and minimum on the boundary. For example, when you stretch a rubber

sheet over a jagged frame, the height of the rubber sheet obeys Laplace’s equation. Nowhere can

the height of the sheet rise above or below its value at the boundary.

Harmonic functions define conservative fields, which means that energy (like a volume or area)

is conserved. The work done in moving a mass from a to b in such a field is conserved. If you

return the mass from b back to a, the energy is retrieved, and zero net work has been done.

1.4.3 Lec 25: Complex Analytic functions and Brune Impedance

It is rarely stated that the variable that we are integrating over, either x (space) or t (time), is

real (x, t ∈ R), since that fact is implicit, due to the physical nature of the formulation of the

integral. But this intuition must be refined once complex numbers are included with s ∈ C, where

s = σ + ω.
That time and space are real variables is more than an assumption: it is a requirement, that

follows from the real order property. Real numbers have order. For example, if t = 0 is now (the

present), then t < 0 is the past and t > 0 is the future. The order property of time and space allows

one to order these along a real axis. To have time travel, time and space would need to be complex

(they are not), since if the space axis were complex, as in frequency s, the order property would be

invalid. It follows that if we require order, time and space must be real (t, x ∈ R). Interestingly, it

was shown by d’Alembert (1747) that time and space are related by the pure delay due to the wave

speed co. To obtain a solution to the governing wave equation, that d’Alembert first proposed for

sound waves, x, t ∈ R3 may be combined as functions of

ζ± = t± x/co,

where c [m/s] is the phase velocity of the waves. The d’Alembert solution to the wave equation,

describing waves on a string under tension, is

u(x, t) = F (t− x/co) +G(t+ x/co), (1.95)

which describes the transverse velocity (or displacement) of two independent waves F (ζ−), G(ζ+)
on the string, which represent forward and backward traveling waves.70 For example, starting with

a string at rest, if one displaces the left end, at x = 0, by a step function u(t), then that step

displacement will propagate to the right as u(t− x/co), arriving at location xo [m], at time xo/co
[s]. Before this time, the string will not move to the right of the wave-front, at xo [m], and after to
[s] it will have displacement 1. Since the wave equation obeys superposition (postulate P1, p. 100),

it follows that the “plane-wave” eigen-functions of the wave equation for x,k ∈ R3 are given by

ψ±(x, t) = δ(t∓ k · x)↔ est±k·x, (1.96)

where |k| = 2π/|λ| = ω/co is the wave number, |λ| is the wavelength, and s = σ + ω.

69When the function is the ratio of two polynomials, as in the cases of the Brune impedance, they are also related

to Möbius transformations, also know as bi-harmonic operators.
70D’Alembert’s solution is valid for functions that are not differentiable, such as δ(t− cox).
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When propagation losses are considered, we must replace k with a complex analytic wave

number κ(s) = kr(s) + k(s), which is denoted as either the complex propagation function,

propagation function, or the dispersion relation. Forms of loss include viscosity and radiation.

Important examples include acoustic plane waves, electromagnetic wave propagation, antenna the-

ory, and the more complex case of 3D electron wave propagating in crystals (i.e., silicon), where

electrons and EM waves are in a state of equilibrium.

Electrons and photons are simply different EM states, where κ(x, s) describes the crystal’s

dispersion relations as functions of both frequency and direction, famously known as Brillouin

zones. Dispersion is a property of the medium such that the wave velocity is a function of frequency

and direction, as in silicon.71 Informed discussions on the history of this topic may be found in

Brillouin (1953).

Complex impedance functions

Conservation of energy (or power) is a cornerstone of modern physics. It may have first been under

consideration by Galileo Galilei (1564-1642). Today the question is not if it is true, the questions

is, why. Specifically, what is the physics behind conservation of energy? Surprisingly, the answer

is straight forward, based on its definition, and the properties of impedance. Recall that the power

is the product of the force and flow, and impedance is their ratio.

The power is given by the product of two variables, sometimes called conjugate variables, the

force and the flow. In electrical terms, these are voltage (force) (v(t) ↔ V (ω)) and current (flow)

(i(t)↔ I(ω)), thus the electrical power at any instant of time is

P(t) = v(t)i(t). (1.97)

The total energy w(t) is the integral of the power, sinceP(t) = dw/dt. Thus if we start with all the

elements at rest (no currents or voltages), then the energy as a function of time is always positive

w(t) =
∫ t

0
P(t)dt ≥ 0, (1.98)

and is simply the total energy applied to the network (Van Valkenburg, 1964a, p. 376). Since the

voltage and current are related by either an impedance or an admittance, conservation of energy

depends on the property of impedance. From Ohm’s law and P1 (every impedance is causal)

v(t) = z(t) ⋆ i(t) =
∫ t

τ=0
z(τ)i(t − τ)dτ ↔ Z(s)I(s).

From the expression for the energy, in terms of Ohm’s lawVerify!Verify!

71In case you missed it, I’m suggesting is that photons (propagating waves) and electrons (evanescent waves) are

different wave “states.” The difference is the medium, which determines the dispersion relation (Papasimakis et al.,

2018).
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w(t) = u(t) ⋆ (v(t)i(t))

= u(t) ⋆ i(t) ⋆ z(t) ⋆ i(t)

=
∫ t

t=0
i(t)

( ∫ t

τ=0
z(τ)i(t − τ)dτ

)
dt

=
∫ t

τ=0
z(τ)

( ∫ t

t=0
i(t)i(t− τ)dt

)
dτ

≤
∫ t

τ=0
z(τ)|w|2(τ)]dτ

↔ 1

s
Z(s)|I(ω)|2 ≥ 0.

The step from time to frequency follows from the fact that

|w|2(τ) = i(t) ⋆ i(t) =
∫ t

τ=0
i(τ)i(t− τ)→ |I(τ, ω)|2 > 0

always has a positive Fourier transform for every possible i(t)
Example: Let i(t) = δ(t). Then |w|2(τ) = i(t) ⋆ i(t) = δ(τ). Thus

w(t) =
∫ t

τ=0
z(τ)|w|2(τ)dτ =

∫ t

τ=0
z(τ)δ(τ)dτ =

∫ t

0
z(τ)dτ.

The Brune impedance always has the form z(t) = roδ(t) + ζ(t). The surge impedance is defined

as

ro =
∫ ∞

0−

z(t)dt.

The integral of the reactive part (ζ(t)) is always zero, since the reactive part cannot not store energy.

Perhaps easier to visualize is when working in the frequency domain where the total energy,

equal to the integral of the real part of the power, is

1

s
ℜV I =

1

2s
(V ∗I + V I∗) =

1

2s
(Z∗I∗I + ZII∗) =

1

s
ℜZ(s)|I|2 ≥ 0.

Formally this is related to a positive definite operator where the positive resistance forces the

definiteness, which is sandwiched between the current.

In conclusion conservation of energy is totally dependent on the properties of the impedance.

Thus of the most important and obvious applications of complex functions of a complex variable

is the impedance function. This seems to be the ultimate example of the FTC, applied to z(t), in

the name of conservation of energy.

Poles and zeros of PR functions must be first degree: We conjecture that this proof also re-

quires that the poles and the zeros of the impedance function be simple (only first degree). Second

degree poles would have a reactive “secular” response of the form h(t) = t sin(ωkt + φ)u(t), and

these terms would not average to zero, depending on the phase, as is required of an impedance.

As a result, only single degree poles would be possible.72 Furthermore, when the impedance is

the ratio of two polynomials, where the lower degree polynomial is the derivative of the higher

degree one, then the poles and zeros must alternate. This is a well-known property of the Brune

72Secular terms result from second degree poles since u(t) ⋆ u(t) = tu(t).
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impedance, that has never been adequately explained except for very special cases (Van Valken-

burg, 1964b, p. 104-107). I suspect that no one has ever reported an impedance having second

degree poles and zeros as that would be rare impedance. Network analysis books never report 2nd

degree poles and zeros in their impedance functions. Nor has there ever been any guidance as to

where the poles and zeros might lie in the left hand s plane. Understanding the exact relationships

between pairs of poles and zeros to assure that the real part of the impedance is real, would resolve

a long-standing unsolved problem (Van Valkenburg, 1964b).

Every impedance must obey conservation of energy (P3): Every impedance is defined by a

Laplace transform pair

z(t)↔ Z(s) = R(σ, ω) + X(σ, ω)

with R,X ∈ R. According to Postulate (P3) Sect. 1.3.15 (p. 100), a system is passive if it does not

contain a power source. Drawing power from an impedance violates conservation of energy. This

propriety is also called positive real, which is defined as (Brune, 1931b,a)

ℜ{Z(s ≥ 0)} ≥ 0. (1.99)

or R(ω, ω) ≥ 0. In words: the real part of every impedance must be non-negative for σ ≥ 0.

When this condition holds, one cannot draw more power than is stored in the impedance.73 A

second condition requires that the impedance has simple poles. If there were a pole in the region

σ > 0, then the first condition would not be met. Therefore, there can only be simple poles

(degree of 1) in the region σ ≤ 0. The region σ ≤ 0 is called the left half s plane (LHP, and the

complementary region, σ > 0, is called the right half s plane (RHP). The condition on the simple

poles is sufficient, but not necessary, as Z(s) = 1/
√
s is a physical impedance, but is not a first-

degree pole. The impedance function Z(s) = R(σ, ω) + X(σ, ω) has resistance R and reactance

X as a function of complex frequency s = σ + ω. From the causality postulate (P1) of Sections

1.3.15 and H.5.1 (p. 268), z(t < 0) = 0.

As an example, a series resistor Ro and capacitor Co has an impedance given by (Table F.3,

p. 210)

Z(s) = Ro + 1/sCo ↔ Roδ(t) +
1

Co
u(t) = z(t), (1.100)

with constants Ro, Co ∈ R > 0. In mechanics an impedance composed of a dashpot (damper) and

a spring has the same form. A resonant system has an inductor, resistor and a capacitor, with an

impedance given by (Table F.4, p. 211)

Z(s) =
sCo

1 + sCoRo + s2CoMo
↔ Co

d

dt

(
c+e

s+t + c−e
s−t
)

= z(t), (1.101)

which is a second degree polynomial with two complex resonant frequencies s±. When Ro > 0
these roots are in the left half s plane, with z(t)↔ Z(s).

Systems (networks) containing many elements, and transmission lines can be much more com-

plicated, yet still have a simple frequency domain representation. This is the key to understanding

how these physical systems work, as will be described below.

73Does this condition hold for the LHP σ < 0? It does for Eq. 1.101.
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Complex analytic functions: To solve a differential equation, or integrate a function, Newton

used the Taylor series to integrate one term at a time. However, he only used real functions of a

real variable, due to the fundamental lack of appreciation of the complex analytic series. This same

method is how one finds solutions to scalar differential equations today, but using an approach that

makes the solution method less obvious. Rather than working directly with the Taylor series,

today we use the complex exponential, since the complex exponential is an eigen-function of the

derivative
d

dt
est = sest.

Since est may be expressed as a Taylor series, having coefficients cn = 1/n!, in some real sense

the modern approach is a compact way of doing what Newton did. Thus every linear constant

coefficient differential equation in time may be simply transformed into a polynomial in complex

Laplace frequency s, by looking for solutions of the form A(s)est, transforming the differential

equation into a polynomial A(s) in complex frequency. For example

d

dt
f(t) + af(t)↔ (s+ a)F (s).

The root of A(sr) = sr + a = 0 is the eigen-value of the differential equation. A powerful tool

for understanding the solutions of differential equations, both scalar and vector, is to work in the

Laplace frequency domain. The Taylor series has been replaced by est, transforming Newton’s

real Taylor series into the complex exponential eigen-function. In some sense, these are the same

method, since

est =
∞∑

n=0

(st)n

n!
. (1.102)

Taking the derivative with respect to time gives

d

dt
est = sest = s

∞∑

n=0

(st)n

n!
, (1.103)

which is also complex analytic. Thus if the series for F (s) is valid (i.e., it converges), then its

derivative is also valid. This was a very powerful concept, exploited by Newton for real functions

of a real variable, and later by Cauchy and Riemann for complex functions of a complex variable.

The key here is “Where does the series fail to converge?” in which case, the entire representation

fails. This is the main message behind the FTCC (Eq. 1.87).

The FTCC (Eq. 1.88) is formally the same as the FTC (Eq. 1.86) (Leibniz formula), the key

(and significant) difference being that the argument of the integrand s ∈ C. Thus this integration

is a line integral in the complex plane. One would naturally assume that the value of the integral

depends on the path of integration.

But, according to FTCC, it does not. In fact they are clearly distinguishable from the FTC.

And the reasoning is the same. If F (s) = df(s)/ds is complex analytic (i.e., has a power series

f(s) =
∑
k cks

k, with f(s), ck, s ∈ C), then it may be integrated, and the integral does not depend

on the path. At first blush, this is sort of amazing. The key is that F (s) and f(s) must be complex

analytic, which means they are differentiable. This all follows from the Taylor series formula

Eq. 1.89 (p. 107) for the coefficients of the complex analytic series. For Eq. 1.87 to hold, the

derivatives must be independent of the direction, as discussed in Section 1.4.2. The concept of a

complex analytic function therefore has eminent consequences, in the form of several key theorems

on complex integration discovered by Cauchy (c1820).
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The use of the complex Taylor series generalize the functions it describes, with unpredictable

consequences, as nicely shown by the domain coloring diagrams presented in Section 1.3.12

(p. 95). Cauchy’s tools of complex integration were first exploited in physics by Sommerfeld

(1952), to explain the onset transients in waves, as explained in detail in Brillouin (1960, Chap. 3).

Up to 1910, when Sommerfeld first published his results using complex analytic signals and

saddle point integration in the complex plane, there was a poor understanding of the implications

of the causal wave-front. It would be reasonable to say that his insights changed our understanding

of wave propagation, for both light and sound. Sadly this insight has not been fully appreciated,

even to this day. If you question my summary, please read Brillouin (1960, Chap. 1).

The full power of the complex analytic function was first appreciated by Bernard Riemann

(1826-1866), in his University of Göttingen PhD Thesis of 1851, under the tutelage of Carl

Friedrich Gauss (1777-1855), and drawing heavily on the work of Cauchy.

The key definition of a complex analytic function is that it has a Taylor series representation

over a region of the complex frequency plane s = σ+jω, that converges in a region of convergence

(RoC) about the expansion point, with a radius determined by the nearest pole of the function.

A further surprising feature of all analytic functions is that within the RoC, the inverse of that

function also has a complex analytic expansion. Thus given w(s), one may also determine s(w) to

any desired accuracy, critically depending on the RoC.

1.4.4 Lec 26: Multi-valued functions

In the field of mathematics there seems to have been a tug-of-war regarding the basic definition

of the concept of function. The accepted definition today seems to be a single-valued mapping

from the domain to the codomain (or range). This makes the discussion of multi-valued functions

somewhat tedious. In 1851 Riemann (working with Gauss) seems to have resolved this problem for

the natural set of multi-valued functions by introducing the concept of the branch-cut and sheets.

Two simple examples of multi-valued functions are the circle z2 = x2 + y2 and w = log(z).
For example, assuming z is the radius of the circle, solving for y(x) gives the multi-valued function

y(x) = ±
√
z2 − x2.

If we accept the modern definition of a function as the mapping from one set to a second, then y(x)
is not a function, or even two functions. For example, what if x > z? Or worse, what if z = 2
with |x| < 1? Riemann’s construction, using branch cuts for multivalued function, resolves all

these difficulties (as best I know).

To proceed we need definitions and classifications of the various types of complex singularities:

1. Poles of degree 1 are called simple poles. Their amplitude called the residue (e.g. α/s has

residue α). Simple poles are special (Eq. 1.106, p. 119)74 and play a key role in mathematical

physics. Consider the function y(s) = α
√

1− sα with α ∈ Z,F,R and C.

2. When the numerator and denominator of a rational function have a common root (i.e., factor),

that root is said to be removable.

3. A singularity that is not 1) removable, 2) a pole or 3) a branch point, is called essential.

74
https://en.wikipedia.org/wiki/Pole_(complex_analysis)
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4. When the first derivative of a function Z(s) has a simple pole at so, then so is said to be a

branch point of Z(s) (e.g., d ln(sα)/ds = α/s). However, the converse does not necessarily

hold.

5. A complex function which is analytic, except for isolated poles, is called metamorphic.75

Metamorphic functions can have any number of poles, even an infinite number.

More complex typologies are being researched today, and progress is expected to accelerate due

to modern computing technology.76 It is helpful to identify the physical meaning of these more

complex surfaces, to guide us in their interpretation and possible applications.77

Branch cuts: Up to this point we have only considered poles of degree k, of the form 1/sk,
with k ∈ Z. The concept of a branch cut allows one to manipulate (and visualize) multi-valued

functions, for which k ∈ F. This is done by breaking each region into a single-valued sheets.

The concepts of the branch cut, the sheets, and the extended plane, were first devised by Riemann,

working with Gauss (1777-1855), and first described in his thesis of 1851. Of course it was these

three mathematical and geometrical constructions that provide the deep insight to complex analytic

functions, supplementing the important earlier work of Cauchy (1789-1857) on the calculus of

complex analytic functions. For an intuitive discussion of Riemann sheets and branch cuts, see

Boas (1987, Section 29, pp. 221-225).

Figure 1.26: FIX figure Here we see the mapping for the square root function w(z) = ±√z which has two single-
valued sheets, corresponding to the two signs of the square root. The plot at the bottom represents the z plane while
the two interleaved plots on top represent the two sheets of ±√z. The lower sheet is +

√
z while the upper sheet is

−√z. The branch cut runs from z = 0 along the real axis out to ∞. The location of the branch cut may be moved
by rotating the z coordinate system. For example, w(z) = ±√z and w(z) = ±

√
−z have a different branch cuts,

as may be easily verified using the Matlab/Octave commands j*zviz(z) and zviz(-z), as shown in Fig. 1.28.
Every function is analytic on the branch cut, since the cut may be moved. If a Taylor series is formed on the branch
cut, it will describe the function on the two different sheets. Thus the complex analytic series (i.e., the Taylor formula,
Eq. 1.89) does not depend on the location of a branch cut, as it only describes the function uniquely (as a single-valued
function), valid in its local region of convergence. This figure has been taken from Stillwell (2010, p. 303). A more
comprehensive view is presented in the text. The branch cut lies in the domain (x ∈ C), not in the codomainw(x) ∈ C
(Kusse and Westwig, 2010). This becomes clear by studying how zviz.m works, and understanding its output. A
example that shows this is Fig. 1.28, where the axes are s and ω, with the branch cut along the negativeσ axis (θ = π).

Square root function: The branch cut is a line that separates the various single-valued parts of

a multi-valued function. For example, in Fig. 1.26 we see the single-valued function w(z) = s2

(left), and on the right, its inverse, the double-valued mapping of s(w) = ±√w.

75
https://en.wikipedia.org/wiki/Meromorphic_function

76
https://www.maths.ox.ac.uk/about-us/departmental-art/theory

77
https://www.quantamagazine.org/secret-link-uncovered-between-pure-math-and-physics-20171201
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The multi-valued nature of the square root is best understood by working with the function in

polar coordinates. Let

sk = reθe2πk,

where k is the sheet-index, and

w = ρeψ =
√
reθ/2eπk,

where r, ρ ∈ R are the magnitudes and θ, ψ ∈ R are the angles. The domain-coloring program

zviz.m assumes that the angles go from−π < θ < π, with θ = 0 being a light red and±π a blue

color. This angle to color map is shown in the left panel of Fig. 1.28. The first Riemann sheet for

k = 0 −π < θ < π is shown in Fig. 1.28 (MIDDLE), which differs from the Principle cut shown

in Fig. 1.27 (Right). u+jv = s.^2

σ

-2 -1  0  1  2

jω

 2

 1

 0

-1

-2

u+jv = -sqrt(-s)

σ

-2 -1  0  1  2

jω

 2

 1

 0

-1

-2

Figure 1.27: Here we use Cartesian coordinates from the domain
s = σ+ω to the rangew(σ, ω) = u+ v. Left: Mapping: w(s) = s2.
Right: Mapping of the principal branch from −s to w(s) = −

√
−s

(i.e., the rotated inverse of s2). Here the branch cut is along the positive
σ axis.

The second sheet (k = 1)

(Fig. 1.28) picks up at θ = π and con-

tinues on to π + 2π = 3π. The first

sheet maps the angle of w (i.e., φ =
∠w = θ/2) from −π/2 < φ < π/2
(w =

√
reθ/2). This corresponds to

u = ℜ{w(s)} > 0. The second sheet

maps π/2 < ψ < 3π/2 (i.e., 90◦ to

270◦), which is ℜ{w} = u < 0. In

summary, twice around the s plane

is once around the w(s) plane, be-

cause the angle is half due to the
√
s.

This then describes the multi-valued

nature of the square root function.

This concept of analytic inverses becomes important only when the function is multi-valued.

For example, if w(s) = s2 then s(w) = ±√w is multivalued. Riemann dealt with such extensions

with the concept of a branch-cut with multiple sheets, labeled by a sheet number. Each sheet

describes an analytic function (Taylor series) that converges within some RoC, having a radius

out to the nearest pole. Thus Riemann’s branch cuts and sheets explicitly deal with the need to

define unique single-valued inverses of multi-valued functions. Since the square root function has

two overlapping regions, corresponding to the ± due to the radical, there must be two connected

regions, sort of like mathematical Siamese-twins: distinct, yet the same.

Branch cuts emanate and terminate at branch points, defined as singularities (poles), that can

even have fractional degree, as for example 1/
√
s, and terminate at one of the matching roots,

which includes the possibility of∞.78 For example, suppose that in the neighborhood of the pole,

at so the function is

f(s) =
w(s)

(s− so)k
,

where w, s, so ∈ C and k ∈ Q. When k = 1, so = σo + ωo is a first degree “simple pole”,

having degree 1 in the s plane, with residue w(so).
79 Typically the order (and degree) are positive

integers, but fractional degrees and orders are not uncommon in modern Engineering applications

(Kirchhoff, 1868; Lighthill, 1978). Here we shall allow both the degree and order to be fractional

(∈ F). When k ∈ F ⊂ R (a real fraction), it defines the degree of a fractional pole. In such cases

78This presumes that poles appear in pairs, one of which may be at∞.
79We shall refer to the order of a derivative, or differential equation, and the degree of a polynomial, as commonly

used in Engineering applications (https://en.wikipedia.org/wiki/Differential_equation#Equation_order).
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u+jv = s
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Figure 1.28: Colorized plots of two sheets of w(s) = ±√s with the branch cut at θ = π. Left: Color map
reference plane (z = s). Center: eπ

√
s = −√s. This sheet was generated by rotating w by 180°. This should be

compared to the right panel of Fig. 1.27 which shows −
√
−s, and to the upper sheet of Fig. 1.26. Note how the panel

on the right of Fig. 1.27 matches the right half of s (purple = -90°, yellow/green = +90°) while the middle panel above
comes from the left side of s (green to purple). The center panel is green at -180°, and purple at +180°, which matches
the right panel at ±180°respectively (i.e., eπ

√
s). Right: The lower sheet of Fig. 1.26.

there must be a branch cut, of degree k. For example, if k = 1/2, the singularity (branch cut) is of

degree 1/2, and there are two Riemann sheets, as shown in Figs. 1.26 and 1.27.

An important example is the Bessel function

δ(t) +
1

t
J1(t)u(t)↔

√
s2 + 1,

which is related to the solution to the wave equation in two-dimensional cylindrical coordinates

(Table F.3, p. 210). Bessel functions are the solutions to guided acoustic waves in round pipes, or

surface waves on the earth (seismic waves), or waves on the surface of a pond.

u+jv = sqrt(pi./s)
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u+jv = sqrt(s.^2+1)
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Figure 1.29: Colorized plot of two LT pairs: Left:
√
π/s↔ u(t)/

√
t. Right:

√
s2 + 1↔ δ(t) + 1

t
J1(t)u(t).

It is important to understand that the function is analytic on the branch cut, but not at the branch

point. One is free to move the branch cut (at will). It does not need to be on a line: it could be cut

in almost any connected manner, such as a spiral. The only rule is that it must start and stop at the

matching branch points, or at∞, which must have the same degree.

There are a limited number of possibilities for the degree, k ∈ Z or ∈ F. If the degree is drawn

from R 6∈ F, the pole cannot not have a residue. According to the definition of the residue, k ∈ F
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will not give a residue. But there remains open the possibility of generalizing the concept of the

Riemann integral theorem, to include k ∈ F. One way to do this is to use the logarithmic derivative

which renders fractional poles to simple poles with fractional residues.

If the singularity had an irrational degree (k ∈ x̂), the branch cut has the same “irrational

degree.” Accordingly there would be an infinite number of Riemann sheets, as in the case of the

log function. An example is k = π, for which

F (s) =
1

sπ
= e− log(sπ) = e−π log(s) = e−π log(ρ)e−πθ,

where the domain is expressed in polar coordinates s = ρeθ. When k ∈ F it may be maximally

close (e.g., π152 = 881 and π153 = 883)80 the branch cut could be very subtle (it could even be

unnoticed), but it would have a significant impact on the nature of the function, and of course, on

the inverse Laplace transform.

Multivalued functions: The two basic functions we review, to answer the questions about multi-

valued functions and branch cuts, are w(s) = s2 and w(s) = es, along with their inverse functions

w(s) =
√
s and w(s) = log(s). For uniformity we shall refer to the complex abscissa (s = σ+ω)

and the complex ordinate w(s) = u+ v. When the complex abscissa and domain are swapped, by

taking the inverse of a function, multi-valued functions are a common consequence. For example,

f(t) = sin(t) is single valued, and analytic in t, thus has a Taylor series. The inverse function t(f)
is not so fortunate as it is multivalued.

The modern terminology is the domain and range, or alternatively the co-domain.81

Log function: Next we discuss the multi-valued nature of the log function. In this case there are

an infinite number of Riemann sheets, not well captured by Fig. 1.22 (p. 96), which only displays

the principal sheet. However if we look at the formula for the log function, the nature is easily

discerned. The abscissa s may be defined as multi-valued since

sk = re2πkeθ.

Here we have extended the angle of s by 2πk, where k is the sheet index ∈ Z. Taking the log

log(s) = log(r) + (θ + 2πk).

When k = 0 we have the principal value sheet, which is zero when s = 1. For any other value of

k w(s) 6= 0, even when r = 1, since the angle is not zero, except for the k = 0 sheet.

1.4.5 Lec 27: Three Cauchy Integral Theorems

Cauchy’s theorems for integration in the complex plane

There are three basic definitions related to Cauchy’s integral formula. They are closely related, and

can greatly simplify integration in the complex plane.

80Since there are no even primes other than π1 = 2, the minimum difference is 2. Out of 106 primes, 5 have a

spacing of 80, with a uniform distribution on a log scale.
81The best way to create confusion is to rename something. The confusion grows geometrically with each renaming.

I suspect that everyone who cares knows the terms abscissa and ordinate, and some fraction know the equivalent terms

domain and range.
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1. Cauchy’s (Integral) Theorem: ∮

C
F (s)ds = 0, (1.104)

if and only if F (s) is complex-analytic inside of a simple closed curve C (Boas, 1987,

p. 45),(Stillwell, 2010, 319). The FTCC (Eq. 1.87) says that the integral only depends on the

end points if F (s) is complex-analytic. By closing the path (contour C) the end points are

the same, thus the integral must be zero, as long as F (s) is complex analytic.

2. Cauchy’s Integral Formula:

1

2πj

∮

B

F (s)

s− so
ds =




F (so), so ∈ C (inside)

0, so 6∈ C (outside).
(1.105)

Here F (s) is required to be analytic everywhere within (and on) the contour C (Greenberg,

1988, p. 1200),(Boas, 1987, p. 51), (Stillwell, 2010, p. 220). The value F (so) ∈ C is the

residue of the pole so of F (s)/(s− so).

3. The (Cauchy) Residue Theorem (Greenberg, 1988, p. 1241), (Boas, 1987, p. 73)

∮

C
F (s)ds = 2πj

K∑

k=1

ck =
K∑

k=1

∮
F (s)

s− sk
ds, (1.106)

where the residues ck ∈ C, corresponding to the kth poles of f(s), enclosed by the contour

C. By the use of Cauchy’s integral formula, the last form of the residue theorem is equivalent

to the residue form.82

How to calculate the residue: The case of first degree poles, while special, is important, since

the Brune impedance only allows simple poles and zeros, increasing the utility of this special case.

The residues for simple poles are F (sk), which is complex analytic in the neighborhood of the

pole, but not at the pole.

Consider the function f(s) = F (s)/(s− sk), where we have factored f(s) to isolate the first-

order pole at s = sk, with F (s) analytic at sk. Then the residue of the poles at ck = F (sk). This

coefficient is computed by removing the singularity, by placing a zero at the pole frequency, and

taking the limit as s→ sk, namely

ck = lim
s→sk

[(s− sk)F (s)] (1.107)

(Greenberg, 1988, p. 1242), (Boas, 1987, p. 72).

When the pole is an N th degree, the procedure is much more complicated, and requires taking

N − 1 order derivatives of f(s), followed by the limit process (Greenberg, 1988, p. 1242). Higher

degree poles are rarely encountered: thus it is good to know that this formula exists, but perhaps it

is not worth the effort to memorize it.

Summary and examples: These three theorems, all attributed to Cauchy, collectively are related

to the fundamental theorems of calculus. Because the names of the three theorems are so similar,

they are easily confused.

82This theorem is the same as a 2D version of Stokes’s thm (citations).
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1. In general it makes no sense to integrate through a pole, thus the poles (or other singularities)

must not lie on C.

2. The Cauchy integral theorem (Eq. 1.104), follows trivially from the fundamental theorem

of complex calculus (Eq. 1.87, p. 106), since if the integral is independent of the path, and

the path returns to the starting point, the closed integral must be zero. Thus Eq. 1.104 holds

when F (s) is complex analytic within C.

3. Since the real and imaginary parts of every complex analytic function obey Laplace’s equa-

tion (Eq. 1.94, p. 108), it follows that every closed integral over a Laplace field, i.e., one

defined by Laplace’s equation, must be zero. In fact this is the property of a conservative

system, corresponding to many physical systems. If a closed box has fixed potentials on the

walls, with any distribution whatsoever, and a point charge (i.e., an electron) is placed in the

box, then a force equal to F = qE is required to move that charge, and thus work is done.

However if the point is returned to its starting location, the net work done is zero.

4. Work is done in charging a capacitor, and energy is stored. However when the capacitor is

discharged, all of the energy is returned to the load.

5. Soap bubbles and rubber sheets on a wire frame obey Laplace’s equation.

6. These are all cases where the fields are Laplacian, thus closed line integrals must be zero.

Laplacian fields are commonly observed because they are so basic.

7. We have presented the impedance as the primary example of a complex analytic function.

Physically, every impedance has an associated stored energy, and every system having stored

energy has an associated impedance. This impedance is usually defined in the frequency s
domain, as a force over a flow (i.e., voltage over current). The power P(t) is defined as the

force times the flow and the energy E(t) as the time integral of the power

E(t) =
∫ t

−∞
P(t)dt, (1.108)

which is similar to Eq. 1.85 (p. 106) [see Section H.2.1, Eq. 1.60 (p. 86)]. In summary,

impedance and power and energy are all fundamentally related.

1.4.6 Lec 28: Cauchy Integral Formula & Residue Theorem

The Cauchy integral formula (Eq. 1.105) is an important extension of the Cauchy integral theorem

(Eq. 1.104) in that a pole has been explicitly injected into the integrand at s = so. If the pole

location is outside of the curve C, the result of the integral is zero, in keeping with Eq. 1.104. When

the pole is inside of C, the integrand is no longer complex analytic at the enclosed pole. When this

pole is simple, the residue theorem applies. By a manipulation of the contour in Eq. 1.105, the pole

can be isolated with a circle around the pole, and then taking the limit, the radius may be taken to

zero, in the limit, isolating the pole.

For the related Cauchy residue theorem (Eq. 1.106) the same result holds, except it is assumed

that there are K simple poles in the function F (s). This requires the repeated application of

Eq. 1.105, K times, so it represents a minor extension of Eq. 1.105. The function F (s) may be

written as f(s)/PK(s), where f(s) is analytic in C and PK(s) is a polynomial of degree K, with

all of its roots sk ∈ C.
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Non-integral degree singularities: The key point is that this theorem applies when n ∈ x̂,

including fractionals n ∈ F, but for these cases the residue is always zero, since by definition, the

residue is the amplitude of the 1/s term (Boas, 1987, p. 73).

Examples:

1. When n ∈ F (e.g., n = 2/3), the residue is, by definition, zero.

2. The function 1/
√
s has a zero residue (apply the definition of the residue Eq. 1.107).

3. When n 6= 1 ∈ x̂, the residue is, by definition, zero.

4. When n = 1, the residue is given by Eq. 1.107).

5. This method is necessary when computing the inverse Laplace transform.

1.4.7 Lec 29: Inverse Laplace transform & Cauchy residue theorem

The inverse Laplace transform Eq. 1.78 transforms a function of complex frequency F (s) and

returns a causal function of time f(t)

f(t)↔ F (s),

where f(t) = 0 for t < 0. Examples are provided in Table F.3 (p. 210). We next discuss the

details of finding the inverse transform by use of the Cauchy residue theorem, and how the causal

requirement f(t < 0) = 0 comes about.

The integrand of the inverse transform is F (s)est and the limits of integration are−σo∓ω. To

find the inverse we must close the curve, at infinity, and show that the integral at ω → ∞. There

are two ways to close these limits – to the right σ > 0 (RHP), and to the left σ < 0 (LHP) – but

there needs to be some logical reason for this choice. That logic is the sign of t. For the integral

to converge the term est must go to zero as ω → ∞. In terms of the real and imaginary parts of

s = σ + ω, the exponential may be rewritten as eσteωt. Note that both t and ω go to∞. So it is

the interaction between these two limits that determines how we pick the closure, RHP vs. LHP.

Case for causality (t < 0): Let us first consider negative time, including t → −∞. If we were

to close C in the left half-plane (σ < 0), then the product σt is positive (σ < 0, t < 0, thus σt > 0).

In this case as ω → ∞, the closure integral |s| → ∞ will diverge. Thus we may not close in the

LHP for negative time. If we close in the RHP σ > 0 then the product σt < 0 and est will go to

zero as ω →∞. This then justifies closing the contour, allowing for the use the Cauchy theorems.

If F (s) is analytic in the RHP, the FTCC applies, and the resulting f(t) must be zero, and the

inverse Laplace transform must be causal. This argument holds for any F (s) that is analytic in the

RHP (σ > 0).

Case of unstable poles: An important but subtle point arises: If F (s) has a pole in the RHP, then

the above argument still applies if we pick σo to be to the right of the RHP pole. This means that

the inverse transform may still be applied to unstable poles (those in the RHP). This explains the

need for the σo in the limits. If F (s) has no RHP poles, then σo = 0 is adequate, and this factor

may be ignored.
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Case for zero time (t = 0): When time is zero, the integral does not, in general, converge,

leaving f(t) undefined. This is most clear in the case of the step function u(t) ↔ 1/s, where the

integral may not be closed, because the convergence factor est = 1 is lost for t = 0.

The fact that u(t) does not exist at t = 0 explains the Gibbs phenomenon in the inverse Fourier

transform. At times where a jump occurs, the derivative of the function does not exist, and thus

the time response function is not analytic. The Fourier expansion cannot converge at places where

the function is not analytic. A low pass filter may be used to smooth the function, but at the cost

of temporal resolution. Forcing the function to be analytic at the discontinuity, by smoothing the

jumps, is an important computational method.

1.4.8 Lec 30: Inverse Laplace transform (t > 0)

Case of t > 0: Next we investigate the convergence of the integral for positive time t > 0. In

this case we must close the integral in the LHP (σ < 0) for convergence, so that st < 0 (σ ≤ 0
and t > 0). When there are poles on the ω = 0 axis, σo > 0 assures convergence by keeping the

on-axis poles inside the contour. At this point the Cauchy residue theorem (Eq. 1.106) is relevant.

If we restrict ourselves to simple poles (as required for a Brune impedance), the residue theorem

may be directly applied.

The most simple example is the step function, for which F (s) = 1/s and thus

u(t) =
∮

LHP

est

s

ds

2π
↔ 1

s
,

which is a direct application of the Cauchy Residue theorem, Eq. 1.106 (p. 119). The forward

transform of u(t) is straight forward, as discussed in Section 1.3.14 (p. 98). This is true of most

if not all of the elementary forward Laplace transforms. In these cases, causality is built into the

integral by the limits, so is not a result, as it must be in the inverse transform. An interesting

problem is proving that u(t) is not defined at t = 0.

u+jv = besselj(0,pi*(x+jy))
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Figure 1.30: Left: Colorized plot of w(z) = Jo(πz). The first zero is at 2.405, and thus appears at 0.7655 =
2.405/π, somewhat larger than the root of cos(π/2). Right: Note the similarity to w(z) = sin(z). The LT ’s have
similar characteristics, as documented in Table F.3 (p. 210).

The inverse Laplace transform of F (s) = 1/(s + 1) has a residue of 1 at s = −1, thus that is
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the only contribution to the integral. More demanding cases are Laplace transform pairs

1√
t
u(t)↔

√
π

s
and Jo(t)u(t)↔ 1√

s2 + 1
,

and more on p. 210. Many of these are easily proved in the forward direction, but are much more

difficult in the inverse direction, due to the properties at t = 0, unless of course the residue theorem

(Eq. 1.106, p. 119) is invoked. The last LT -pair helps us understand the basic nature of the Bessel

functions J0(z), and H
(1)
0 (z2), with a branch cut along the negative axis (see Fig. H.2, p. 259).

Some open questions: Without the use of the CRT (Eq. 1.106) it is difficult to see how to evaluate

the inverse Laplace transform of 1/s directly. For example, how does one show that the above

integral is zero for negative time (or that it is 1 for positive time)? The CRT neatly solves this

difficult problem by the convergence of the integral for negative and positive time. Clearly the

continuity of the integral at ω → ∞ plays an important role. Perhaps the Riemann sphere plays a

role in this, that has not yet been explored.

1.4.9 Lec 31: Properties of the LT (e.g., Linearity, convolution, time-shift,

modulation, etc.)

As shown in the table of Laplace transforms, there are integral (i.e., integration, not integer) rela-

tionships, or properties, that are helpful to identify. The first of these is a definition, not a prop-

erty:83

f(t)↔ F (s).

When taking the LT, the time response is given in lower case (e.g., f(t)) and the frequency domain

transform is denoted in upper case (e.g., F (s)). It is required, but not always explicitly specified,

that f(t < 0) = 0, that is, the time function must be causal (P1: Section 1.3.15).

Linearity: A key property so basic that it almost is forgotten, is the linearity property of the LT.

These properties are summarized as P2 of Section 1.3.15, p. 101).

Convolution property: One of the most basic and useful properties is that the product of two

LTs in frequency, results in convolution in time

f(t) ⋆ g(t) =
∫ t

0
f(τ)g(t− τ)dτ ↔ F (s)G(s),

where we use the ⋆ operator as a shorthand for the convolution of two time functions.

A key application of convolution is filtering, which takes on many forms. The most basic filter

is the moving average, the moving sum of data samples, normalized by the number of samples.

Such a filter has very poor performance. It also introduces a delay of half the length of the average,

which may or may not constitute a problem, depending on the application. Another important

example is a low-pass filter that removes high frequency noise, or a notch filter that removes line-

noise (i.e., 60 [Hz] in the US, and its 2nd and 3d harmonics, 120 and 180 [Hz]). Such noise is

typically a result of poor grounding and ground loops. It is better to solve the problem at its root

than to remove it with a notch filter. Still, filters are very important in engineering.

83Put this notional property in Appendix A.
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By taking the LT of the convolution we can derive this relationship

∫ ∞

0
[f(t) ⋆ g(t)]e−stdt =

∫ ∞

t=0

[∫ t

0
f(τ)g(t− τ)dτ

]
e−stdt

=
∫ t

0
f(τ)

(∫ ∞

t=0
g(t− τ)e−stdt

)
dτ

=
∫ t

0
f(τ)

(
e−sτ

∫ ∞

t′=0
g(t′)e−st′dt′

)
dτ

= G(s)
∫ t

0
f(τ)e−sτdτ

= G(s)F (s).

We first encountered this relationship in Section 1.3.5 (p. 76)) in the context of multiplying

polynomials, which was the same as convolving their coefficients. Hopefully the parallel is ob-

vious. In the case of polynomials, the convolution was discrete in the coefficients, and here it is

continuous in time. But the relationships are the same.

Time-shift property: When a function is time-shifted by time To, the LT is modified by esTo,

leading to to the property

f(t− To)↔ e−sTo F (s).

This is easily shown by applying the definition of the LT to a delayed time function.

Time derivative: The key to the eigen-function analysis provided by the LT is the transformation

of a time derivative on a time function, that is,

d

dt
f(t)↔ sF (s).

Here s is the eigen-value corresponding to the time derivative of est. Given the definition of the

derivative of est with respect to time, this definition seems trivial. Yet that definition was not

obvious to Euler. It needed to be extended to the space of complex analytic function est, which did

not happen until at least Riemann (1851).

Given a differential equation of order K, the LT results in a polynomial in s, of degree K. It

follows that this LT property is the corner-stone of why the LT is so important to scalar differential

equations, as it was to the early analysis of Pell’s equation and the Fibonacci sequence, as presented

in earlier chapters. This property was first uncovered by Euler. It is not clear if he fully appreciated

its significance, but by the time of his death, it certainly would have been clear to him. Who first

coined the terms eigen-value and eigen-function? The word eigen is a German word meaning of

one.

Initial and final value theorems: There are much more subtle relations between f(t) and F (s)
that characterize f(0+) and f(t → ∞). While these properties can be very important in certain

application, they are beyond the scope of the present treatment. These relate to so-called initial

value theorems. If the system under investigation has potential energy at t = 0, then the voltage

(velocity) need not be zero for negative time. An example is a charged capacitor or a moving mass.

These are important situations, but better explored in a more in-depth treatment.
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1.4.10 Solving differential equations: Method of Frobenius

Many differential equations may be solved by assuming a power series (i.e., Taylor series) solution

of the form

y(x) = xr
∞∑

n=0

cnx
n (1.109)

with coefficients cn ∈ C. The method of Frobenius is quite general (Greenberg, 1988, p. 193).

Example: When a solution of this form is substituted into the differential equation, a recursion

relation in the coefficients results. For example, if the equation is

y′′(x) = λ2y(x)

the recursion is cn = cn−1/n. The resulting equation is

y(x) = eλx = x0
∞∑

n

1

n!
xn,

namely cn = 1/n!, thus ncn = 1/(n− 1)! = cn−1.

Exercise: Find the recursion relation for Bessel’s equation of order ν

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0.

Solution: If we assume a complex analytic solution of the form Eq. 1.109, we find the Bessel

recursion relation for coefficients ck to be

ck = − 1

k(k + 2ν)
ck−2

(Greenberg, 1988, p. 231).

1.4.11 Lec 32: Review for Exam III
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1.5 Vector Calculus (Stream 3b)

1.5.1 Lec 33 Properties of Fields and potentials

Before we can define the vector operations ∇(),∇ ·(),∇×(),∇2(), we must define the objects

they operate on, scalar84 and vector85 fields.86 The word field has two very different meanings, a

mathematical definition, which defines an algebraic structure,87 and a physical one, discussed next.

Ultimately we wish to integrate in ∈ R3,Rn and ∈ Cn. Integration is quantified by several

fundamental theorems of calculus, each about integration.88

Scalar fields: We use the term scalar field interchangeably with analytic in a connected region of

the spatial vector x = [x, y, z]T ∈ R3. In mathematics, functions that are piece-wise differentiable

are called smooth, which is quite different from analytic. Since an analytic function may be written

as a power series, it is both single valued and infinitely differentiable. A smooth function has at

least one or more derivatives, but need not be single valued.

Example: The function tu(t) is smooth, and has one derivative d/dt (tu(t)) = u(t), but does

not have a second derivative at t = 0. Thus tu(t) is not analytic at t = 0. The function φ(r) =
±
√
x2 + y2 + z2 is analytic everywhere except at r = 0, yet is double-valued, thus requiring a

branch cut to fully describe it.

Initially we simplify the field by limiting the definition to an analytic surface S(x), as shown

in Fig. 1.31, having height z(x, y) ∈ R, as a function of x, y ∈ R2 (a plane)

z(x, y, t) = φ(x, y, t),

where z(x, y, t) describes a surface that is analytic in x. We must allow the field to optionally be a

single-valued function of time t ∈ R, since that is the nature of the solutions of the equations we

wish to solve. Examples will be given below.

For example, picture of a smooth single-valued mountain (Fig. 1.31), having isoclines (lines

on a surface with constant slope).89

n̂ ⊥ dS

Tangent plane
S Area (open)

B Boundarydl

This figure shows an open surface S(x), formed

by bifurcating the closed volume V with a plane

(not shown), creating the boundary B. Only the

upper half of the bifurcated volume is shown. A

unit vector n̂ is defined as perpendicular (⊥) to

the shaded tangent plane.

Figure 1.31: Figure defining the analytic open surface S, having boundary B.

84https://en.wikipedia.org/wiki/Scalar_field
85https://en.wikipedia.org/wiki/Vector_field
86https://www.grc.nasa.gov/www/k-12/airplane/vectors.html
87https://en.wikipedia.org/wiki/Field_(mathematics)
88https://en.wikipedia.org/wiki/Line_integral
89https://en.wikipedia.org/wiki/Euler_method
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Vector fields: A vector field is composed of three scalar fields. For example, the electric field

used in Maxwell’s equations E(x, t) = [Ex, Ey, Ez]
T [V/m] has three components, each of which

is a scalar field. When the magnetic flux vector B(x) is static (P5, p. 101), the potential φ(x) [V]

uniquely defines E(x, t), via the gradient.

E(x, t) = −∇φ(x, t). [V/m] (1.110)

The electric force on a charge q is F = qE.

Scalar potentials: The above discussion shows the importance of the potential in defining a

vector field (Eq. 1.110). The difference between a potential and a scalar field is that potentials have

units, and thus have a physical meaning. Scalar potentials (i.e., voltage φ(x, t) [V], temperature

T (x, t) [°C] and pressure ̺(x, t) [Pascals]) are examples of physical scalar fields. All potentials are

composed of scalar fields, but not all scalar fields are potentials. For exampleEy(x, t) = ŷ·E(x, t)
[V/m], the ŷ component of E, is not a potential. While∇Ey is mathematically reasonable, as the

gradient of one component of a vector field, it has no physical meaning (as best I know).

Example: The step function u(t) ↔ 1/s is not analytic at t = 0 in time. In the Laplace

frequency domain, 1/s is not complex analytic at s = 0, due to the pole.

Vector potentials: Vector potentials, like scalar potentials, are vector fields with a physical

meaning (have physical units). Thus they are more complicated than scalar potentials because

they are composed of three scalar fields, rather than one. But in every other way the are just as

important. This follows from the fundamental theorem of vector calculus or simply Helmholtz’

decomposition theorem.

If you found it useful to set up (analyze) problems using a potential, such as voltage, and then

take the gradient to find E(x, t), the same utility holds when using the vector potential to determine

the magnetic field B(x, t). When operating on a scalar potential we use a gradient, whereas for

the vector potential, we must operate with the curl. In Eq. 1.110 we assumed that the magnetic

flux vector B(x) was static, thus E(x, t) is the gradient of the time-dependent voltage φ(x, t).
However when the magnetic field is dynamic (not static), Eq. 1.110 is not valid due to magnetic

induction: A voltage induced into a loop of wire is proportional to the time-varying flux cutting

across that loop of wire. This is known as Ampere’s law. In the static case the induced voltage

is zero. Lets explore just how useful the potentials can be in terms of quantifying Maxwell’s

equations. When the magnetic field is time-varying, Eq. 1.110 must be extended to include both

the scalar φ(x, t) and vector potentials A(x, t)

E(x, t) = −∇φ(x, t)− ∂A

∂t
, [V/m] (1.111)

(Sommerfeld, 1952, p. 146), (Feynman, 1970b, p. 18-10).

The magnetic flux B(x, t) may also be written in terms of potential

B(x, t) = ∇×A(x, t)+ǫo
∂

∂t
∇φ, [Wb/m] (1.112)

where the term in red is a wild guess on an additional electrical current term (that needs justifi-

cation) (Jackson, 1967, p. 179-181), (Feynman, 1970b, p. 18-9).90 Equation 1.112 is equivalent

90To be consistent with the Helmholtz theorem, I boldly speculate that the expression for B is missing a term, that

depends on the electrical potential φ(x, t), such as ∇∂tΦ. Obviously the units must agree, and ∇·B = 0 must hold.

The units of B are [webers/m] and A are [Wb/m2]. The units of permittivity ǫo are [Farads/m].
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to

H(x, t) =
1

µo
∇×A(x, t)+

ǫo
µo

∂

∂t
∇φ. [A/m]

Thus the electric field strength includes both the scalar potential φ(x, t) and magnetic flux vec-

tor potential A(x, t) components, while the magnetic field strength only depends on the magnetic

potential.91

To better understand the difference between scalar and vector potentials, I recommend the first

chapters of Feynman (1970b, Chapter 1.1). The two discussions have a similar presentation style.

1.5.2 Lec 34: Gradient ∇, divergence ∇·, curl ∇×, and Laplacian ∇2

There are three key vector differential operators that are required for understanding linear partial

differential equations, such as the wave and diffusion equations. All of these begin with the ∇
operator:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

The official name of this operator is nabla. It has three basic uses: 1) the gradient of a scalar field,

the 2) divergence of a vector field, and 3) the curl of a vector field. If properly noted, the shorthand

notation∇φ(x, t) = (x̂∂x + ŷ∂x + ẑ∂x)φ(x, t) is convenient.

Table 1.4: The three vector operators manipulate scalar and vector fields, as indicated here. The gradient converts
scalar fields into vector fields. The divergence maps vector fields to scalar fields. Finally the curl maps vector fields
to vector fields. It is helpful to have a name for second-order operators (e.g., DoG, GoD: mnemonics defined in
Sect. 1.5.13, p. 160).

Name Input Output Operator Mnemonic

Gradient Scalar Vector ∇() grad

Divergence Vector Scalar ∇ · () div

Curl Vector Vector ∇× () curl

Laplacian Scalar Scalar ∇·∇ = ∇2() DoG

Vector Laplacian Vector Vector ∇∇·= ∇2() GoD

Basic differential vector operator definitions: The basic definitions of each of the vector oper-

ators are summarized in Table 1.4.

Gradient: The gradient transforms a scalar field into vector field. In R3 the gradient of a scalar

field ∇φ(x) is defined as

∇φ(x) =

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)
φ(x),=

∂φ

∂x
x̂ +

∂φ

∂y
ŷ +

∂φ

∂z
ẑ. (1.113)

The gradient may be factored into a unit vector n̂ , as defined in Fig. 1.31, defining the direction of

the gradient, and the gradient’s length ||∇()||, defined in terms of the norm. Thus the gradient of

91As will be discussed in Section 1.5.14, based on a symmetry argument, it seems likely that Eq. 1.112 should

include a current, such as a capacitive∇φ̇(x, t).
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φ(x) may be written in “polar coordinates” as ∇Φ(x) = ||∇(Φ)|| n̂ , useful for defining n̂ as

n̂ =
∇(Φ(x))

||∇(Φ)|| .

Important examples of the use of the gradient include the electric field vector E(x) = −∇φ(x)
[V/m], which is the gradient of a voltage [V], and the force density f (x) = −∇̺(x) [N/m], which

is the gradient of a pressure [Pa].

Divergence: The divergence of a vector field results in a scalar field. For example, the divergence

of the electric field flux vector D(x) [Col/m2] equals the scalar field charge density ρ(x) [Col/m3]

∇·D(x) ≡
(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)
·D(x) =

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= ρ(x). (1.114)

Thus it is analogous to the scalar (dot) product between two vectors.

When working with guided waves (narrow tubes of flux), when the diameter is small compared

with the wavelength (P10, p. 102), the divergence is

∇ ·D(x) = ∇rDr =
1

A(r)

∂

∂r
A(r)Dr(r), (1.115)

where r is the distance down the horn (range variable), A(r) is the area of the iso-response surface

as a function of range r, and Dr(r) is the radial component of vector D as a function of range r.

For example, in spherical coordinates the area A(r) = Aor
2 is proportional to the square of the

range. This expression reduces to the radial component of the divergence of D(x) in spherical

coordinates. In cylindrical coordinates A(r) = Aor, and in rectangular coordinates the area A =
πr2

o is independent of the range r. A general and detailed derivation of these cases may be found

in Section 1.5.6, p. 142.

Curl: The curl transforms a vector field into a vector field. For example, the curl of the magnetic

intensity H(x) [A/m] vector is equal to the vector current density C(x) [A/m2]:

∇×H(x) ≡

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣∣
= C(x). (1.116)

The notation | · | indicates the determinant (Appendix A, p. 183), ∂x is shorthand for ∂/∂x and

H = [Hx, Hy, Hz]
T .

Laplacian: The Laplacian (∇2 ≡∇·∇) is

∂2

∂x2
+

∂2

∂y2
+

∂2

∂x2
, (1.117)

and takes a scalar field onto a scalar field.

Example: Starting from a scalar field, the gradient produces a vector, which is then operated

on by the divergence to take the output of the gradient back to a scalar field. One of the classic



130 CHAPTER 1. INTRODUCTION

cases is the Laplacian of a voltage field. The gradient of the scalar voltage Φ(x) [V] results in the

electric field vector E

E(x) = [Ex(x), Ey(x), Ez(x)]T = −∇V (x), [V/m]

which in free space is proportional to the electric flux D = ǫoE [C/m2], the divergence of

which gives the charge density ρ(x) [C/m3]. Here ǫo [F/m] is the vacuum permittivity, which

is ≈ 8.8542× 10−12 [F/m].

Example: The simplest example of a scalar field is the voltage between two very large (think

∞) conducting parallel planes, or plates (large so that we may ignore the edge effects). In this case

the voltage varies linearly (the voltage is complex analytic) between the two plates. For example

V (x, y, z) = Vo(1− x) (1.118)

is a scalar field. At x = 0 the voltage is Vo and at x = 1 the voltage is zero. Between 0 and 1 the

voltage varies linearly. Thus V (x, y, z) defines a scalar field.

If the same setup is used, but the two plates were 1 × 1 [cm2], with a 1 [mm] air gap, there

will be a small “fringe” effect at the boundary that would (slightly) modify the ideal fields. This

effect can be made small by changing the air gap to area ratio, so that the sides do not significantly

impact the capacitor’s value.

Example: A second classic example is an acoustic pressure field ̺(x, t) [Pa], which defines

a vector force density f(x, t) = −∇̺(x, t) [N/m2] (Eq. 1.133, p. 140). When this force density

[N/m2] is integrated over an area, the net radial force [N] is

Fr = −
∫

S
∇̺(x)||dS||. [N] (1.119)

An inflated balloon with a static internal pressure of 3 [atm], in an ambient pressure of 1 [atm]

(sea level), forms a sphere due to the elastic nature of the rubber, which acts as a stretched spring

under tension. The net force on the surface of the balloon is its area times the pressure drop of 2

atm across the surface. Thus the static pressure is

̺(x) = 3u(ro − r) + 1, [Pa]

where u(r) is a step function of the radius r = ||x|| > 0, centered at the center of the balloon,

having radius ro.
Taking the gradient gives the negative92 of the radial force density (i.e., perpendicular to the

surface of the balloon)

−fr(r) = ∇̺(x) =
∂

∂r
3u(ro − r) + 1 = −2δ(ro − r). [Pa]

This describes a static pressure that is 3 atmospheres inside the balloon, and 1 atmosphere [atm] (1

[atm] = 105 [Pa]) outside. Note that the net positive force density is the negative of the gradient of

the static pressure.

Taking the divergence of this radial force gives the Laplacian of the scalar pressure field

∇2̺(x) = ∇·∇̺(x) = −∇·f(x).

92The force is pointing out, stretching the balloon.
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Laplacian operator in N dimensions

In general it may be shown that in N = 1, 2, 3 dimensions (Sommerfeld, 1949, p. 227)

∇2
rP ≡

1

rN−1

∂

∂r

(
rN−1∂P

∂r

)
. (1.120)

For each value of N , the area A(r) = Aor
N−1. This will turn out to be useful when working with

the Laplacian in 1, 2, and 3 dimensions.

Example: When N = 3 (i.e., spherical geometry)

∇2
rP ≡

1

r2
∂rr

2∂rP (1.121)

=
1

r

∂2

∂r2
rP (1.122)

resulting in the general d’Alembert solutions (Eq. 1.95 p. 109) for the spherical wave equation

P±(r, s) =
1

r
e∓κ(s)r.

for the spherical geometry.

Exercise: Prove this last result by expanding Eq. 1.121, 1.122 using the chain rule. Solu-

tion: Expanding Eq. 1.121:

1

r2
∂rr

2∂rP =
1

r2

(
2r + r2∂r

)
∂rP

=
2

r
Pr + Prr.

Expanding Eq. 1.122:

1

r
∂rrrP =

1

r
∂r (P + rPr)

=
1

r
(Pr + Pr + rPrr)

=
2

r
Pr + Prr.

Summary: The Laplacian in spherical coordinates (Eq. 1.121, p. 131) simplifies to

∇2̺(x) =
1

r2

∂

∂r
r2 ∂

∂r
̺(x) =

1

r

∂2

∂r2
r̺(x).

Since ∇2 = ∇ ·∇, it follows that the net force f (x) = [Fr, 0, 0]T , (Eq. 1.119) in spherical

coordinates has a radial component Fr, and angular components of zero. Thus the force across a

balloon may be approximated by a delta function across the thin sheet of stretched rubber.

Example: The previous example may be extended in an interesting way to the case of a rigid

hose, a rigid tube, terminated on the right in an elastic medium (the above example of a balloon),
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for example an automobile tire. On the far left let’s assume there is a pump injecting the fluid into

the hose. Consider two different fluids: air and water. Air may be treated as a compressible fluid,

whereas water is incompressible. However such a classification is a relative, being determined by

the relative compliance of the balloon (i.e., tire) at the relatively rigid pump and hose.

This is a special case of a more general situation: When the fluid is treated as incompressible

(rigid) the speed of sounds becomes infinite, and the wave equation is not the best describing

equation, and the motion is best approximated using Laplace’s equation. This is the transition

from short to long wavelengths, from wave propagation, with delay, to quasi-statics, having no

apparent delay.

This example may be modeled as either an electrical or mechanical system. If we take the

electrical analog, the pump is a current source, injecting charge (Q) into the hose, which being

rigid cannot expand (has a fixed volume). The hose may be modeled as a resistor, and the tire as a

capacitor C, which fills with charge as it is delivered via the resistor, from the pump. A capacitor

obeys the same law as a spring F = KV , or in electrical terms, Q = CV . Here V is the voltage,

which acts as a force F , Q is the charge, which acts like the mass of the fluid. The charge is

conserved, just as the mass of the fluid is conserved, meaning they cannot be created or destroyed.

The flow of the fluid is called the flux, which is the general term for the mass or charge current.

The two equations may be rewritten directly in terms of the force F, V and flow, as an electrical

current I = dQ/dt of mass flux J = dM/dt, giving two impedance relations:

I =
d

dt
CV [A] (1.123)

for the electrical analogue, and

J =
d

dt
CF. [kgm/m2] (1.124)

It is common to treat the stiffness of the balloon, which acts as a spring with compliance C (stiff-

nessK = 1/C), in which case the equations reduce to the same equation, in terms of an impedance

Z, typically defined in the frequency domain as the ratio of the generalized force over the general-

ized flow

Z(s) =
1

sC
. [ohms].

In the case of the mechanical system Zm(s) ≡ F/J , and for the electrical system Ze(s) ≡ V/I . It

is conventional to use the unit [ohms] when working with any impedance. It is convenient to use a

uniform terminology for different physical situations and forms of impedance, greatly simplifying

the notation.

While the two systems are very different in their physical realization, they are mathematically

equivalent, forming a perfect analogue. The formula for the impedance is typically expressed in

the Laplace frequency domain, which of course is the Laplace transform of the time variables. In

the frequency domain Ohm’s law becomes Eq. 1.124 for the case of a spring and Eq. 1.123 for the

capacitor.

The final solution of this system is solved in the frequency domain. The impedance seen by the

source is the sum of the resistance R added to the impedance of the load, giving

Z = R +
1

sC
.

The solution is simply the relation between the force and the flow, as determined by the action of the

source on the load Z(s). The final answer is given in terms of the voltage across the compliance in
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terms of the voltage Vs (or current Is) due to the source. Once the algebra is done, in the frequency

domain, the voltage across the compliance Vc divided by the voltage of the source is given as

Vc
Vsource

=
R

R + 1/sC
.

Thus the problem reduces to some algebra in the frequency domain. The time domain response

is found by taking the inverse Laplace transform, which in this case has a simple pole at sp =
1/RC. Cauchy’s residue formula gives the final answer, which describes how the voltage across

the compliance builds exponentially with time, from zero to the final value. Given the voltage,

the current may also be computed as a function of time. This then represents the entire process

of either blowing up a balloon, or charging a capacitor, the difference only being the physical

notation, the math being identical.

Note that the differential equation is first-order in time, which in frequency means the imped-

ance has a single pole. This means that the equation for the charging of a capacitor, or pumping

up a balloon, describes a diffusion process. If we had taken the impedance of the mass of the fluid

in the hose into account, we would have a lumped-parameter model of the wave equation, with a

second-order system. This is mathematically the same as the homework problem about train cars

(masses) connected together by springs (Fig. H.1 p. 254).

Example: The voltage

φ(x, t) = e−κ·xu(t− x/c)↔ 1

s
e−κ·x [V] (1.125)

is an important case since it represents one of d’Alembert’s two solutions (Eq. 1.95, p. 109) of the

wave equation (Eq. 1.24, p. 57), as well as an eigen-function of the gradient operator∇. From the

definition of the scalar (dot) product of two vectors (Fig. 1.16, p. 80),

κ · x = κxx+ κyy + κzz = ||κ|| ||x|| cos θκx,

where ||κ|| =
√
κ2
x + κ2

y + κ2
z and ||x|| =

√
x2 + y2 + z2 are the lengths of vectors κ, and x and

θκx is the angle between them. As before, s = σ + ω is the Laplace frequency.

To keep things simple let κ = [κx, 0, 0]T so that κ · x = κxxx̂. We shall soon see that

||κ|| = 2π/λ follows from the basic relationship between a wave’s radian frequency ω = 2πf and

its wavelength λ
ωλ = co. (1.126)

As frequency increases, the wavelength becomes shorter. This key relationship may have been first

researched by Galileo (c.1564), followed by (c.1627) Mersenne93 (Fig. 1.2, p. 23).

Exercise: Show that Eq. 1.125 is an eigen-function of the gradient operator∇. Solution: Taking

the gradient of φ(x, t) gives

∇e−κ·xu(t) = −∇κ · x e−κ·xu(t)

= −κ e−κ·xu(t),

93
http://www-history.mcs.st-and.ac.uk/Biographies/Mersenne.html

“In the early 1620s, Mersenne listed Galileo among the innovators in natural philosophy whose views should be rejected. How-
ever, by the early 1630s, less than a decade later, Mersenne had become one of Galileo’s most ardent supporters.”

–D Garber, Perspect. Sci. 12 (2) (2004), 135-163.
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or in terms of φ(x, t)

∇φ(x, t) = −κ φ(x, t)↔ −s
c
e−κ·x.

Thus φ(x, t) is an eigen-function of∇, having the vector eigen-value κ. As before, ∇φ is propor-

tional to the current since φ is a voltage, and the ratio, i.e., the eigen-value may be thought of as a

mass. In general the units provide the physical interpretation of the eigen-values and their spectra.

A famous example is the Rydberg spectrum of the Hydrogen atom.

Exercise: Compute n̂ for φ(x, t) (Eq. 1.125). Solution: n̂ = κ/||κ||. This represents a unit

vector in the direction of the current.

Exercise: If the sign of κ is negative, what are the eigen-vectors and eigen-values of ∇φ(x, t)?
Solution:

∇e−κ·xu(t) = −κ · ∇(x)e−κ·xu(t)

= −κ e−κ·xu(t).

Nothing changes other than the sign of κ. Physically this means the wave is traveling in the

opposite direction, corresponding to the forward and retrograde d’Alembert waves.

Prior to this section, we have only considered the Taylor series in one variable, such as for

polynomials Pn(x), x ∈ R (Sect. 1.3.1, Eq.1.27 p. 59) and Pn(s), s ∈ C (Sect. 1.4.2, Eq.1.46

p. 71). The generalization from real to complex analytic functions led to the Laplace transform, an

the hosts of integration theorems (FTCC, Cauchy I, II, III). What is in store when we generalize

from one spatial variable (R) to three (R3)?

Exercise: If E(x, t) = Exx̂, express E(x, t) in terms of the voltage potential φ(x, t) [V].

Solution: The electric field strength may be found from the voltage as

E(x, t) = −∇φ(x, t) = −x̂
∂

∂x
φ(x, t). [V/m]

Exercise: Find the velocity v(t) of an electron in a field E. Solution: From Newton’s 2nd law,

−qE = mev̇(t) [Nt], where me is the mass of the electron. Thus we must solve this first-order

differential equation to find v(t). This is easily done in the frequency domain v(t)↔ V (ω).

Role of Potentials: Note that the scalar fields (e.g., temperature, pressure, voltage) are all scalar

potentials, summarized in Fig. 1.3 (p. 91). In each case the gradient of the potential results in a

vector field, just as in the electric case above (Eq. 1.110).

It is important to understand the physical meaning of the gradient of a potential, which is

typically a generalized force (electric field, acoustic force density, temperature flux), which in turn

generates a flow (current, velocity, heat flux). The ratio of the gradient over the flow determines

the impedance.

1. Example 1: The voltage drop across a resistor causes a current to flow, as described by

Ohm’s law. Taking the difference in voltage between two points is a crude form of gradient

when the frequency f [Hz] is low, such that the wavelength is much larger than the distance

between the two points. This is the essence of the quasi-static approximation P10 (102).
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2. Example 2: The gradient of the pressure gives rise to a force density in the fluid medium

(air, water, oil, etc.), which causes a flow (velocity vector) in the medium.

3. Example 3: The gradient of the temperature also causes a flow of heat, which is proportional

to the thermal resistance, given Ohm’s law for heat (Feynman, 1970c, p. 3-7).94

4. Example 4: Nernst potential: When a solution contains charged ions, it is called an electro-

chemical Nernst potential N(x, t).95 This electro-chemical field is similar to a voltage or

temperature field, the gradient of which defines a virtual force on the charged ions.

Thus in the above examples there is a potential, the gradient of which is a force, which when

applied to the medium (an impedance) causes a flow (flux or current) proportional to that imped-

ance, due to the medium. This is a very general set of concepts, worthy of some thought. In every

case there is a force and a flow. The product of the force and flow is a power, while the ratio may

be modeled using 2x2 ABCD impedance matrices (Eq. 1.68, p. 89).

Exercise: Show that the integral of Eq. 1.110 is an anti-derivative. Solution: The solution uses

the definition of the anti-derivative, defined by the FTC (Eq. 1.86, p. 106):

φ(x, t)− φ(xo, t) =
∫ x

xo

E(x, t) · dx

= −
∫ x

xo

∇φ(x, t) · dx

= −
∫ x

xo

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
φ(x, t) · dx

= −
∫ x

xo

(
x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z

)
· (x̂dx+ ŷdy + ẑdz)

= −
∫ x

xo

∂φ

∂x
dx−

∫ y

yo

∂φ

∂y
dy −

∫ z

zo

∂φ

∂z
dz

= −
∫ x

xo

dφ(x, t)

= −
(
φ(x, t)− φ(xo, t)

)
.

This may be verify by taking the gradient of both sides

∇φ(x, t)−✚
✚✚❃

0
∇φ(xo, t) = −∇

∫ x

xo

E(x, t) · dx = E(x, t).

Applying the FTC (Eq. 1.86, p. 106), the anti-derivative must be φ(x, t) = Exxx̂ + 0ŷ + 0ẑ. This

very same point is made by Feynman (1970c, p. 4-1, Eq. 4.28).

Given that the force on a charge is proportional to the gradient of the potential, from the above

exercise showing that the integral of the gradient only depends on the end points, the work done in

moving a charge only depends on the limits of the integral, which is the definition of a conservative

field, but which only holds in the ideal case where E is determined by Eq. 1.110, i.e., the medium

has no friction (i.e., there are no other forces on the charge).

94
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier’s_law

95
https://en.wikipedia.org/wiki/Nernst_equation
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The conservative field: An important question is: “When is a field conservative?” A field is

conservative when the work done by the motion is independent of the path of motion. Thus the

conservative field is related to the FTC, which states that the integral of the work only depends on

the end points.

A more complete answer must await the introduction of the fundamental theorem of vector

calculus, discussed in Sect. 1.5.14 (Eq. 1.183, p. 163). A few specific examples provide insight:

Example: The gradient of a scalar potential, such as the voltage (Eq. 1.110), defines the electric

field, which drives a current (flow) across a resistor (impedance). When the impedance is infinite,

the flow will be zero, leading to zero power dissipation. When the impedance is lossless, the

system is conservative.

Example: At audio frequencies the viscosity of air is quite small and thus, for simplicity, it

may be taken as zero. However when the wavelength is small (e.g., at 100 [kHz] λ = co/f =
345/105 = 3.45 [mm]) the lossless assumption breaks down, resulting in a significant propagation

loss.96 When the viscosity is taken into account, the field is lossy, thus the field is no longer

conservative.

Example: If a temperature field is a time-varying constant (i.e., T (✚x, t) = To(t)), there is no

“heat flux,” since ∇To(t) = 0. When there is no heat flux (i.e., flux, or flow), there is no heat

power, since the power is the product of the force times the flow.

Example: The force of gravity is given by the gradient of Newton’s gravitational potential

(Eq. 1.22, p. 57)

F = −∇φg(r).

Historically this was the first conservative field, used to explain the elliptic orbits of the planets

around the sun.

1.5.3 Lec 35 (I): Partial differential equations and field evolution:

In all cases the space operator is the Laplacian ∇2, the definition of which depends on the dimen-

sionality of the waves, thus on the coordinate system being used. There are three main categories

of partial differential equations (PDEs): parabolic, elliptic and hyperbolic, distinguished by the

order of the derivative with respect to time:

1. Diffusion equations (Eq. 1.131), describe the evolution of the scalar temperature T (x, t)
(a scalar potential), gradients of solution concentrations (i.e., ink in water) and Brownian

motion. Diffusion is first-order in time, which is categorized as parabolic (first-order in

time, second-order in space). When these equations are Laplace transformed, diffusion has

a single real root, resulting in a real solution (e.g., T ∈ R). There is no wave-front for the

case of the diffusion equation. As soon as the source is turned on, the field is non-zero at

every point in the bounded container.

2. Poisson’s equation: In the steady state the diffusion equation degenerates to either Poisson’s

or Laplace’s equation, which are classified as elliptic equations (2nd order in space, 0th order

in time). Like the diffusion equation, the evolution has a wave velocity that is functionally

infinite.

3. Wave equations

96https://en.wikipedia.org/wiki/Laminar_flow#Examples
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(a) scalar wave equations (Eq. 1.23) describe the evolution of a scalar potential field such

as pressure ̺(x, t) (sound), or the displacement of a string or membrane under tension.

The wave equation is second-order in time. When transformed into the frequency do-

main, the solution has pairs of complex conjugate roots, leading to two real solutions

(i.e, ̺(x, t ∈ R). The wave equation is classified as hyperbolic (second-order in time

and space).

(b) vector wave equations (i.e., Maxwell’s equations) describe the propagation of electric

E(x, t) and D(x, t) and magnetic B(x, t) and H(x, t) vector fields.

These three classifications, elliptic, parabolic and hyperbolic, are simply labels, with little mathe-

matical utility (the categories fail to generalize in any useful way).

Related partial differential equations

The Laplacian ∇2: We first discussed the Laplacian as a 2D operator in Section 1.4.2 (p. 107),

when we studied complex analytic functions. Then an approximation for horns was presented as

Eq. 1.5.2 p. 129. In 3D rectangular coordinates it is defined as

∇2T (x) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
T (x). (1.127)

In summary, the Laplacian operator is ubiquitous in mathematical physics, starting with simple

complex analytic functions (Laplace’s equation) and progressing to Poisson’s equation, the dif-

fusion equation, and finally the wave equation. Only the wave equation expresses delay. The

diffusion equation “wave” has an instantaneous spread (the effective “wave” velocity is infinite,

i.e., it’s not a wave).

Historically the wave equation was seen to be related to several other important partial differ-

ential equations, as the theory evolved, resulting in the following:

1. Fourier diffusion equation

∇2T (x, t),= Do
∂T (x, t)

∂t
↔ sDoT (x, s) (1.128)

which describes, for example, the temperature T (x, t) ↔ T (x, ω), as proposed by Fourier

in 1822, or the diffusion of two miscible liquids (Fick, 1855) and Brownian motion (Ein-

stein, 1905). The diffusion equation is not a wave equation since the temperature wave front

propagates instantaneously.

2. Poisson’s equation

∇2Φ(x, t) = ρ(x, t), (1.129)

which holds for gravitational fields, or the voltage around a charge.

3. Laplace’s equation

∇2Φ(x, t) = 0, (1.130)

which describes, for example, the voltage inside a closed chamber with various voltages

on the walls, or the steady state temperature within a closed container, given a specified

temperature distribution on the walls.

Each of these three equations has properties that may be simply explained, and visualized, for

N = 1, 2, 3 geometries, and all contain the Laplacian∇2(·) = ∇·∇(·) (p. 131).
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Solution evolution: The partial differential equation defines the “evolution” of the scalar field

(pressure ̺(x, t) and temperature T (x, t), or vector field (E,D,B,H), as functions of space x

and time t. There are two basic categories of field evolution, diffusion and propagation.

1. Diffusion: The simplest and easiest PDE example, easily visualized, is a static97 (time invari-

ant) scalar temperature field T (x) [°C]). Just like an impedance or admittance, a field has

regions where it is analytic, and for the same reasons, T (x, t) satisfies Laplace’s equation

∇2T (x, t) = 0.

Since there is no current when the field is static, such systems are lossless, and thus are

conservative.

When T (x, t) depends on time (is not static), it is described by the diffusion equation

∇2T (x, t) = κ
∂

∂t
T (x, t), (1.131)

a rule for how T (x, t) evolves with time from its initial state T (x, 0). Constant κ is called the

thermal conductivity which depends on the properties of the fluid in the container, with sκ
being the admittance per unit area. The conductivity is a measure of how the heat gradients

induce heat currents J = κ∇T , analogous to Ohm’s Law for electricity.

Note that if T (x,∞) reaches steady state J = 0 as t→∞, it evolves into a static state, thus

∇2T = 0. This depends on what is happening at the boundaries. When the wall temperature

of a container is a function of time, then so will the internal temperature continue to change,

but with a delay, that depends on the thermal conductivity κ.

Such a system is analogous to an electrical resistor-capacitor series circuit, connected to a

battery. The wall temperature and the voltage on the battery represent the potential driving

the system, the thermal conductivity κ and the electrical resistor are analogous, and the fluid

(like the electrical capacitor), are being heated (charged) by the heat (charge) flux. In both

cases Ohm’s law defines the ratio of the potential and the flux. How this happens can only

be understood once the solution to the equations has been established.

2. Propagation Pressure and electromagnetic waves are described by a scalar potential (pres-

sure) (Eq. 1.23, p. 57) and a vector potential (electromagnets) (Eq. 1.188, p. 167) resulting

in scalar and vector wave equations.

All these partial differential equations, scalar and vector wave equations, and the diffusion

equation, depend on the Laplacian ∇2, which we first saw with the Cauchy-Riemann conditions

(Eq. 1.94, p. 108).

The vector Taylor series: Next we shall expand the concept of the one-dimensional Taylor se-

ries, a function of one variable, to x ∈ R3. Just as we generalized the derivative with respect to

the real frequency variable ω ∈ R to the complex analytic frequency s = σ + ω ∈ C, here we

generalize the derivative with respect to x ∈ R, to the vector x ∈ R3.

97Postulate (P3), p. 101.
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Since the scalar field is analytic in x, it is a perfect place to start. Assuming we have carefully

defined the Taylor series 1.40 (p. 68) in one and two (Eq. 1.91, p. 108) variables, the Taylor series

of f(x) in x = 0 ∈ R3 may be defined as

f(x + δx) = f(x) +∇f(x) · δx +
1

2!

∑

k

∑

l

∂2f(x)

∂xk∂xl
δxkδxl + HOT. (1.132)

From this definition it is clear that the gradient is the generalization of the second term in the 1D

Taylor series expansion.

Vector field: A vector field is an ordered set of scalar fields. For example

A(x) = [φ(x), ψ(x), θ(x)]T

is a vector field in R3 when each of the three functions is differentiable (i.e., analytic). For example,

A(x) = [x, xy, xyz]T is a legal vector field (the components are analytic in x).

Taking an example from Maxwell’s equations, the magnetic flux vector is given by

B(x, t) = −∇×A(x, t).

We shall see that this is always true because the magnetic charge ∇·B(x, t) is always 0.

To verify that a field is a potential, check out the units [V, A, °C]. However a proper mathemat-

ical definition is that the potential must be an analytic function of x and t, so that one may operate

on it with∇() and ∇×(). The divergence of a scalar field is not a legal operation.

An important discussion of vector potentials, with extensive examples, may be found in Feyn-

man (1970c, p. 14-1 to 14.3). If you need to master vector potentials, read Ch. 14.1 of Feynman

(1970c).

Summary: For every potential φ(x, t) there exists a force density f (x, t) = −∇φ(x, t), propor-

tional to the potentials, which drives a generalized flow u(x, t). If the normal component of the

force and flow are averaged over a surface, the mean-force and volume-flow (i.e, volume-velocity

for the acoustic case) are define. In such cases the impedance is the net force through the surface

force over the net flow, and Gauss’s Law and quasi-statics (P10) come into play (Feynman, 1970a)

Assuming linearity linear (P2, p. 101), the product of the force and flow is the power, and

the ratio (force/flow) is an impedance (Fig. 1.3, p. 91). This impedance statement is called either

Ohm’s law, Kirchhoff’s laws, Laplace’s law, or Newton’s laws. In the simplest of cases, they are all

linearized (proportional) complex relationships between a force and a flow. Very few impedance

relationships are inherently linear over a large range of force or current, but for physically useful

levels, they can be treated as linear. Nonlinear interactions require a more sophisticated approach,

typically involving numerical methods.

Note that it is the difference in the potential (i.e., voltage, temperature, pressure) that is propor-

tional to the flux. This can be viewed as a major simplification of the gradient relationship, justified

by the quasi-static assumption P10 (p. 102). is the physical basis of the fundamental theorem of

algebra (p. 73), since the roots of the impedance are key to the finding the eigen-modes of the

system equations.

In electrical circuits it is common to define a zero potential ground point that all voltages use

as the referenced potential. This results in abstracting away (hiding) the difference in voltage. The

ground is a useful convention, as a simplifying rule, but it obscures the physics, and obscures the
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fact that the voltage is not the force. Rather the force is the voltage drop, referenced to the ground,

which is defined as zero volts. It seems misleading (more precisely it is wrong) to state Ohm’s law

as the voltage over the current, since Ohm’s law actually says that the voltage drop (i.e., voltage

gradient) over the current defines the impedance. Like a voltage, the pressure is the potential, the

gradient of which is a force density, which drives the flow. More on this in section 1.5.14 (p. 160),

where we introduce the fundamental theorem of vector calculus (aka Helmholtz’ decomposition

theorem), which generalizes Ohm’s law to include circulation (e.g., angular momentum, vorticity

and the related EM magnetic effects). To understand these generalizations in flow one needs to

understand compressible and rotational fields, complex analytic functions, and a lot more history

of mathematical-physics (Table 1.7, p. 164).

1.5.4 Lec 35 (II): Scalar Wave Equations (Acoustics)

In this section we discuss the general solution to the wave equation. The wave equation has two

forms: scalar waves (acoustics) and vector waves (electromagnetics). These have an important

mathematical distinction, but have a similar solution space, one scalar and the other vector. To

understand the differences we start with the scalar wave equation.

The scalar wave equation: A good starting point for understanding PDEs is to explore the scalar

wave equation (Eq. 1.23, p. 57). Thus, we shall limit our analysis to acoustics, the classic case of

scalar waves. Acoustic wave propagation was first analyzed mathematically by Isaac Newton (elec-

tricity had yet to be discovered) in his famous book Principia (1687), in which he first calculated

the speed of sound based on the conservation of mass and momentum.

Early history: The study of wave propagation begins at least as early as Huygens (ca. 1678),

followed soon after (ca. 1687) by Sir Isaac Newton’s calculation of the speed of sound (Pierce,

1981). To obtain a wave, one must include two basic components: the stiffness of air, and its

mass. These two equations shall be denoted (1) Newton’s 2nd law (F = ma) and (2) Hooke’s law

(F = kx), respectively. In vector form these equations are (1) Euler’s equation (i.e., conservation

of momentum density)

−∇̺(x, t) = ρo
∂

∂t
u(x, t)↔ ρosV(x, s), (1.133)

which assumes the density ρo is independent of time and position x, and (2) the continuity equation

(i.e., conservation of mass density)

−∇·u(x, s) =
1

ηoPo

∂

∂t
̺(x, t)↔ s

ηoPo
P(x, s) (1.134)

(Pierce, 1981, page 15). Here Po = 105 [Pa], is the barometric pressure, ηo = 1.4 and ηoPo is the

dynamic (adiabatic) stiffness. Combining Eqs. 1.133 and 1.134 (removing u(x, t)) results in the

3-dimensional (3D) scalar pressure wave equation

∇2̺(x, t) =
1

c2
o

∂2

∂t2
̺(x, t)↔ s2

c2
o

P(x, s) (1.135)

with co =
√
ηoPo/ρo is the sound velocity. Because the merged equations describe the pressure,

which is a scalar field, this is an example of the scalar wave equation
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Figure 1.32: Experimental setup showing a large
pipe on the left terminating the wall containing a small
hole with a balloon, shown in green. At time t = 0
the balloon is pricked and a pressure pulse is cre-
ated. The baffle on the left is meant to represent a
semi-∞ long tube having a large radius compared to
the horn input diameter 2a, such that the acoustic ad-
mittance looking to the left (A/ρoco with A → ∞)
is very large compared to the horn’s throat admit-
tance (Eq. 1.153). At time T the outbound pressure
pulse p(r, T ) = δ(t − x/co)/r has reached a radius
x = r − ro = coT where r = x is the location of
the source at the throat of the horn and r is measured
from the vertex.

Exercise: Show that Eqs. 1.133 and 1.134 can be reduced to Eq. 1.135. Solution: Taking the

divergence of Eq. 1.133 gives

−∇·∇̺(x, t) = ρo
∂

∂t
∇·u(x, t). (1.136)

Note that ∇ ·∇ = ∇2. Next, substituting Eq. 1.134 into the above relation results in the scalar

wave equation Eq. 1.135, since co =
√
ηoPo/ρo.

1.5.5 Lec 36a: The Webster horn equation (I)

There is an important generalization of the problem of loss-less plane-wave propagation in 1-

dimensional (1D) uniform tubes (e.g., transmission line theory). By allowing the area A(r) of the

horn to vary along the range axis r (the direction of wave propagation), as depicted in Fig. 1.32

for a conical horn (i.e., A(r) = Ao(r/ro)
2), general solutions to the wave equation may be ex-

plored. Classic applications of horns include vocal tract acoustics, loudspeaker design, cochlear

mechanics, the hydrogen atom, and cases having wave propagation in periodic media (Brillouin,

1953).

For the 1D scalar wave equation (guided waves, aka, acoustic horns), the Webster Laplacian is

∇2
r ̺(r, t) =

1

A(r)

∂

∂r
A(r)

∂

∂r
̺(r, t). (1.137)

The Webster Laplacian is based on the quasi-static approximation (P10: p. 101) which requires

that the frequency lies below the critical value fc = co/2d, namely that a half wavelength is greater

than the horn diameter d (i.e., d < λ/2).98 For the case of the adult human ear canal, d = 7.5 [mm]

and fc = (343/2 · 7.5)× 10−3 ≈ 22.87 [kHz].

The term on the right of Eq. 1.137, which is identical to Eq. 1.120 (p. 131), is also the Laplacian

for thin tubes (e.g., rectangular, spherical, and cylindrical coordinates). Thus the Webster horn

“wave” equation is

1

A(r)

∂

∂r
A(r)

∂

∂r
̺(r, t) =

1

c2
o

∂2

∂t2
̺(r, t)↔ s2

c2
o

P(r, s) (1.138)

98This condition may be written several ways, the most common being ka < 1, where k = 2π/λ and a is the horn

radius. This may be expressed in terms of the diameter as 2π
λ

d
2 < 1, or d < λ/π < λ/2. Thus d < λ/2 may be

a more precise metric, by the factor π/2 ≈ 1.6. This is call this the half-wavelength assumption a synonym for the

quasi-static approximation.
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where ̺(r, t)↔ P(r, s) is the average pressure (Hanna and Slepian, 1924; Mawardi, 1949; Morse,

1948), Olson (1947, p. 101), Pierce (1981, p. 360). Extensive experimental analysis for various

types of horns (conical, exponential, parabolic) along with a review of horn theory may be found

in Goldsmith and Minton (1924).

The limits of the Webster horn equation: It is frequently (i.e., always) stated that the Webster

horn equation (WHEN) is fundamentally limited, thus is an approximation that only applies to

frequencies much lower than fc. However in all these discussions it is assumed that the area

functionA(r) is the horn’s cross-sectional area, not the area of the iso-pressure wave-front (Morse,

1948; Shaw, 1970; Pierce, 1981).

In the next section it is shown that this “limitation” may be totally avoided (subject to the

f < fc quasi-static limit (P10, p. 102)), making the Webster horn theory an “exact” solution for

the lowest order “plane-wave” eigen-function. The nature of the quasi-static approximation is

that it “ignores” higher order evanescent modes, which are naturally small since they are in cutoff

(evanescent modes do not propagate). This is the same approximation that is required to define an

impedance, since every eigen-mode defines an impedance.

To apply this theory, the acoustic variables (eigen-functions) are redefined for the average pres-

sure and its corresponding volume velocity, each defined on the iso-pressure wave-front boundary

(Webster, 1919; Hanna and Slepian, 1924). The resulting impedance is then the ratio of the average

pressure over the volume velocity. This approximation is valid up to the frequency where the next

mode begins to propagate (f > fc), which may be estimated from the roots of the Bessel eigen-

functions (Morse, 1948). Perhaps it should be noted that these ideas, that come from acoustics, ap-

ply equally well to electromagnetics, or any other wave phenomena described by eigen-functions.

The best known examples of wave propagation are electrical and acoustic transmission lines.

Such systems are loosely referred to as the telegraph or telephone equations, referring back to

the early days of their discovery (Brillouin, 1953; Heaviside, 1892; Campbell, 1903b; Feynman,

1970a). In acoustics, guided waves are called horns, such as the horn connected to the first phono-

graphs from around the turn of the century (Webster, 1919). Thus the names reflect the historical

development, to a time when the mathematics and the applications were running in close parallel.

1.5.6 Lec 36b: Webster horn equation (II): Derivation

Here we transform the acoustic equations Eq. 1.133 and 1.134 (p. 140) into their equivalent integral

form Eq. 1.138 (p. 141). This derivation is similar (but not identical) to that of Hanna and Slepian

(1924) and Pierce (1981, p. 360).

Conservation of momentum: The first step is an integration of the normal component of Eq. 1.133

(p. 140) over the iso-pressure surface S, defined by∇p = 0

−
∫

S
∇p(x, t) · dA = ρo

∂

∂t

∫

S
u(x, t) · dA.

The average pressure ̺(x, t) is defined by dividing by the total area

̺(x, t) ≡ 1

A(x)

∫

S
p(x, t) n̂ · dA. (1.139)
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Figure 1.33: Derivation of horn equation using
Gauss’s law: The divergence of the velocity ∇ · u,
within δx, shown as the filled shaded region, is in-
tegrated over the enclosed volume. Next the di-
vergence theorem is applied, transforming the inte-
gral to a surface integral normal to the surface of
propagation. This results in the difference of the
two volume velocities δν = ν(x + δx) − ν(x) =
[u(x+ δx) ·A(x+ δx)−u(x) ·A(x)]. The flow is

always perpendicular to the iso-pressure contours.

From the definition of the gradient operator

∇p =
∂p

∂x
n̂, (1.140)

where n̂ is a unit vector perpendicular to the iso-pressure surface S. Thus the left side of Eq. 1.133

reduces to ∂̺(x, t)/∂x.

The integral on the right side defines the volume velocity

ν(x, t) ≡
∫

S
u(x, t) · dA. (1.141)

Thus the integral form of Eq. 1.133 becomes

− ∂

∂x
̺(x, t) =

ρo
A(x)

∂

∂t
ν(x, t)↔ Z (x, s)V (1.142)

where

Z (s, x) = sρo/A(x) = sM(x) (1.143)

and M(x) = ρo/A(x) [kgm/m5] is the per-unit-length mass density of air.

Conservation of mass: Integrating Eq. 1.134 (p. 140) over the volume V gives

−
∫

V
∇ · u dV =

1

ηoPo

∂

∂t

∫

V
p(x, t)dV.

Volume V is defined by two iso-pressure surfaces between x and x + δx (Fig. 1.33). On the

right-hand side we use our definition for the average pressure (i.e., Eq. 1.139), integrated over the

thickness δx.

Applying Gauss’s law to the left-hand side,99 and using the definition of ̺ (on the right), in the

limit δx→ 0, gives
∂ν

∂x
= −A(x)

ηoPo

∂̺

∂t
↔ −Y (x, s)P (1.144)

where

Y (s, x) = sA(x)/ηoPo = sC(x).

C(x) = A(x)/ηoPo [m4/N] is the per-unit-length compliance of the air. These two equations

Eq. 1.142 and 1.144 accurately characterize the Webster plane-wave mode up to the frequency

where the higher order eigen-modes begin to propagate (i.e, f > fc).

99As shown in Fig. 1.33, we convert the divergence into the difference between two volume velocities, namely

ν(x + δx)− ν(x), and ∂ν/∂x as the limit of this difference over δx, as δx→ 0.
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Speed of sound co: In terms of M(x) and C(x), the speed of sound and the acoustic admittance

are

co =
1√

C(x)M(x)
=

√
ηoPo
ρo

=
1√

stiffness · mass
. (1.145)

Characteristic admittance Y(x): Since the horn equation (Eq. 1.138) is 2d order, it has pressure

eigen-function solutions P+ and P− and their corresponding velocity eigen-functions V+ and V−,

related through Eq. 1.142, which defines the characteristic admittance Y(x)

Y(x) =

√
stiffness

mass
=

√√√√ C(x)

M(x)
=
A(x)

ρoco
=
V+

P+
=
V−

P− (1.146)

(Campbell, 1903a, 1910, 1922). The characteristic impedanceZ(x) = 1/Y(x). Based on physical

requirements that the admittance must be positive, thus only the positive square root is allowed.

Since the horn (Eq. 1.138) is loss less, Y(x) must be real and positive. If losses are introduced,

the propagation function κ(s) (p. 110) and the characteristic impedance Y(x, s) would become

complex analytic functions of the Laplace frequency s (Kirchhoff, 1974; Mason, 1928; Ramo

et al., 1965; Pierce, 1981, p. 532-4).

One must be carefully in the definition the area A(x). This area is not the cross-sectional area

of the horn, rather it is the wave-front area, as discussed in Section 1.5.7 (p. 144). Since A(x) is

independent of frequency, it is independent the wave direction.

1.5.7 Matrix formulation of WHEN (III)

Newton’s conservation of momentum law (Eq. 1.133), along with conservation of mass (Eq. 1.134),

are modern versions of Newton’s starting point for accurately calculating the horn lowest order

plane-wave eigen-mode. Following the simplification of averaging the normal component of the

particle velocity over the iso-pressure wave front, Eqs. 1.142, 1.144 may be rewritten as a 2x2

matrix in the acoustic variables, average pressure P(r, ω) and volume velocity V(r, ω) (here we

replace the range-variable x by r)

− d

dr

[
P(r, ω)
V(r, ω)

]
=

[
0 sM(r)

sC(r) 0

] [
P(r, ω)
V(r, ω)

]
, (1.147)

where M(r) = ρo/A(r) and C(r) = A(r)/ηoPo are the unit-length mass and compliance of

the horn (Ramo et al., 1965, p. ???). The acoustic variables Pc(r, ω) and V(r, ω) are sometimes

referred to as conjugate variables.100

To obtain the Webster horn pressure equation Eq. 1.138 (p. 141) from Eq. 1.147 take the partial

derivative of the top equation

−∂
2P
∂r2

= s
∂M(r)

∂r
V + sM(r)

∂V
∂r
.

Use the lower equation to remove ∂V/∂r
∂2P
∂r2

+ s
∂M(r)

∂r
V = s2M(r)C(r)P =

s2

c2
o

P,

100https://en.wikipedia.org/wiki/Conjugate_variables_(thermodynamics) The product

of conjugate variables defines an intensity while their ratio defines an impedance (Pierce, 1981, p. 37-41).
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and the upper equation a second time to remove V . Thus Eq. 1.147 reduces to

∂2

∂r2
P(r, s) +

1

A(r)

∂A(r)

∂r
Pr =

s2

c2
o

P(r, s). (1.148)

Equations of this form may be directly integrated by parts by use of the chain rule

1

A(r)

∂

∂r
A(r)

∂

∂r
P(r, s) =

∂2

∂r2
P(r, s) +

1

A(r)

∂A(r)

∂r
Pr(r, s), (1.149)

where the integration factor is the horn area function A(r).
Merging Eqs. 1.148 and 1.149 results in the Webster horn equation (Eq. 1.138, p. 141):

1

A(r)

∂

∂r
A(r)

∂

∂r
P(r, s) =

s2

c2
o

P(r, s).

Equations having this integrated form are known as Sturm-Liouville equations. This important

class of differential equations follow from the use of separation of variables on the Laplacian, in

any (i.e., every) separable coordinate system (Morse and Feshbach, 1953, Ch. 5.1, p. 494-523).

Summary: Applying Gauss’s law to the 3D wave equation (Eq. 1.135, p. 140) results in a 1D

Webster horn equation (WHEN, Eq. 1.138, p. 141), which is a non-singular Sturm-Liouville equa-

tion, where the area function is the integration factor A(r).
Thus Eqs. 1.135 and 1.147 are equivalent to the WHEN (Eq. 1.138).

1.5.8 Lec 37a: d’Alembert’s eigen-vector superposition principle

Since the Webster horn equation (Eq. 1.138) is second order in time, it has two unique pressure

eigen-functions P+(r, s) and P−(r, s). The general solution may always be written as the super-

position of pressure eigen-functions, with amplitudes determined by the boundary conditions.

Based on d’Alembert’s superposition principle, the pressure P and velocity V may be decom-

posed in terms of the pressure eigen-functions P+ and P−

[
P(r, ω)
V(r, ω)

]
=

[
1 1
Y(r) −Y(r)

] [
P+(r, ω)
P−(r, ω)

]
. (1.150)

This equation has several applications.

Generalized admittance/impedance: The generalize admittance101 Yin(r, s) looking into the

horn is

Yin(r, s) ≡ V(r, ω)

P(r, ω)
=
V+ − V−

P+ + P− =
V+

P+

(
1− V−/V+

1 + P−/P+

)
= Y(r)

1− Γ(r, s)

1 + Γ(r, s)
. (1.151)

Here we have factored out the forward traveling eigen-function V+ and P+, and re-expressed Yin
in terms of two ratios, the characteristic admittance Y(r, s) (Eq. 1.146) and the reflectance Γ(r, s).
Yin(s) depends on the entire horn. In the case of a finite length horn, it depends on the terminating

101It is “generalize” in the sense that it is not a Brune, rational function, impedance.
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admittance. When the horn is terminated, reflections occur, resulting in the horn having poles and

zeros at frequencies sk ∈ C, where Γ(r, sk) = ±1.

The reflectance is defined as

Γ(r, s) ≡ V
−(r, ω)

V+(r, ω)
=
P−(r, ω)

P+(r, ω)
, (1.152)

which follows by a rearrangement of terms in Eq. 1.146. The magnitude of the reflections depends

|Γ|, which must be between 0 and 1. Alternatively this equation may be obtained by solving

Eq. 1.151 for Γ(r, s).

Horn radiation admittance: A horn’s acoustic radiation admittance Y ±
rad(r, s) is the input ad-

mittance (Eq. 1.151) when there is no terminating load102

Y ±
rad(r, s) = lim

r→∞
Y ±
in (r, s) = − lim

r=→∞
A(r)

sρo

d

dr
lnP±(r, s). (1.153)

The input admittance becomes the radiation admittance when the horn is infinite in length, namely

it is the input admittance for an eigen-function. A table of properties is given in Table 1.5 for four

different simple horns.

Table 1.5: Table of horns and their properties forN = 1, 2 or 3 dimensions, along with the exponential horn
(EXP). In this table the horn’s range variable is x, having area A(x), radius ro(x) =

√
A(x)/π. F (x) is the

coefficient on Px, κ(s) ≡ s/co, where co is the speed of sound and s = σ+ω is the Laplace frequency. The
range variable x may be rendered dimensionless (see Fig. 1.34) by normalizing it as x ≡ (ξ− ξo)/(L− ξo),
with ξ the linear distance along the horn axis, from x = ξo to L corresponding to x = 0 to 1. The horn’s
eigen-functions are P±(x, ω) ↔ ̺±(x, t). When ± is indicated, the outbound solution corresponds to the
negative sign. Eigen function H±

o (x, s) are outbound and inbound Hankel functions. The last column is the
radiation admittance normalized by the characteristic admittance Y(x) = A(x)/ρoco.

N Name radius Area/Ao F (x) P±(x, s) ̺±(x, t) Y ±
in/Y

1D uniform 1 1 0 e±κ(s)x δ(t∓ x/c) 1

2D parabolic
√
x/xo x/xo 1/x H±

o (−jκ(s)x) — −jxH±
1 /H

±
o

3D conical x x2 2/x e±κ(s)x/x δ(t∓ x/c)/x 1± c/sx
EXP exponential emx e2mx 2m e−(m±

√
m2+κ2)x e−mxE(t) —

1.5.9 Lec37b: Complex-analytic Γ(s) and Zin(s)

When defining the complex reflectance Γ(s) as a function of the complex frequency s = σ+ jω, a

very important assumption has been made: even though Γ(s) is defined by the ratio of two functions

of real (radian) frequency ω, like the impedance, the reflectance must be causal (postulate P1,

p. 101). Namely Γ(s) ↔ γ(t) is zero for t < 0. The same holds for the time-domain impedance

ζ(t)↔ Zin(s). That γ(t) and ζ(t) are causal is required by the physics.

The forward and retrograde waves are functions of frequency ω, as they depend on the source

pressure (or velocity) and the point of horn excitation. The reflectance is a transfer function (thus

the source term cancels) that depends only on the Thévenin impedance (or reflectance) looking

into the system (at any position r).

102To compute the radiation impedance Y ±

rad one must know the eigen-functionsP±(r, s).
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Figure 1.34: Throat acoustical resistance r
A

and acoustical reactance x
A

, frequency character-
istics of infinite eigen-functions of the parabolic,
conical, exponential, hyperbolic and cylindrical
horns,having a throat area of 1 square centimeter.
Note how the “critical” frequency (defined here as
the frequency where the reactive and real parts of
the radiation impedance are equal) of the horn re-
duces dramatically with the type of horn. For the
uniform horn, the reactive component is zero, so
there is no cutoff frequency. For the parabolic horn
(1) the cutoff is around 3 kHz. For the conical horn
(2) the cutoff is at 0.6 [kHz]. For the exponen-
tial horn (3) the critical frequency is around 0.18
[kHz], which is one 16th that of the parabolic horn.
For each horn the cross-sectional area is defined as
100 [cm2] at a distance of 1 [m] from the throat
(Olson, 1947, p. 101).

To specify Γ(r, s) we invert d’Alembert’s supperposition equation (Eq. 1.150)
[
P+(r, s)
P−(r, s)

]
=

1

2Y(r)

[
Y(r) 1
Y(r) −1

] [
P
V

]
=

1

2

[
1 Z(r)
1 −Z(r)

] [
P
V

]
. (1.154)

The reflectance is defined as the ratio of the two pressure eigen-functions

Γ(r, s) =
P−

P+
=
P − ZV
P + ZV =

Zin − Z
Zin + Z , (1.155)

which is equivalent to Eq. 1.151.

Given some experience with Zin(r, s) and Γ(r, s), one soon appreciates the advantage of work-

ing with the reflectance over the radiation impedance/admittance Zrad(s) (aka immittance). The

impedance has complicated properties, all of which are difficult to verify, whereas the reflectance

is easily understood (it is closer to the physics). For example, we know that for a physical passive

impedance ℜZ ≥ 0. The corresponding property for the reflectance is |Γ(ω)| ≤ 1, with equality

when the input resistance is zero.

Exercise:

1. Show that ℜYin(s) ≥ 0 if and only if |Γ ≤ 1|. Hint: Use Eq 1.155 (or 1.151).

2. Showing that the unit circle in the Γ(s) plane maps onto the ω axis in the impedance plane.

Solution: To prove this take the real part of Yin(s) (Eq. 1.151) and show that it is greater than zero

if |Γ(s)| ≤ 1

2

Y(r)
ℜYin(s) =

1− Γ

1 + Γ
+

1− Γ∗

1 + Γ∗

=
(1− Γ)(1 + Γ∗) + (1 + Γ)(1− Γ∗)

|1 + Γ|2

=
2(1− |Γ|2)
|1 + Γ|2 ≥ 0.

In conclusion:
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1. if |Γ| < 1, then ℜZin > 0.

2. if |Γ| = 1, then ℜZin = 0.

1.5.10 Lec 37c Finite length horns

For a horn of finite length L the acoustic variables P(x, s),V(x, s) may be expressed in terms of

pressure eigen-functions. If we define the forward wave P+(x, ω) as launched from x = 0 and the

retrograde wave P−(x, ω) as launched from x = L, we may write the pressure and velocity as

[
P(x)
V(x)

]
=

[
P+(x) P−(x− L)

Y(x)P+(x) −Y(x)P−(x− L)

] [
α
β

]
. (1.156)

Here α(x, ω) scales the forward wave and β(x, ω) scales the retrograde wave. Thus the reflectance

Γ(L, ω) = β/α is defined at the site of reflection (x = L). Typically the characteristic admittance

Y(x) = A(x)/ρoco only depends on both the location x, and not on the Laplace frequency s. This

formula may not be correct if the horn has losses (Yc ∈ C), as discussed in Kirchhoff (1868);

Mason (1927, 1928); Robinson (2017).

To evaluate the coefficients α(ω) and β(ω) we must invert Eq. 1.156. α, β are determined at

the cite of reflection x = L.

Notation: Adopting subscript notation: P±
x ≡ P±(x), V±

x ≡ V±(x). Yx = Y(x) and inverting

Eq. 1.156 givesProof read redProof read red

[
α
β

]

x

=
−1

∆x

[
−YxP−(x− L) −P−(x− L)
−YxP+(x) P+(x)

]

x

[
P
V

]

x

(1.157)

where the determinant is

∆x = −2YxP+
x P−(x− L).

Simplifying with x = L gives

[
α
β

]

L

=
1

YLP+
LP−(L− L)

[
YLP−(L− L) P−(L− L)
YLP+

L −P+
L

]

L

[
P
−V

]

L

. (1.158)

Defining P−
L = P−(x− L)|x=L and ZL = 1/YL, it simplifies to

[
α
β

]

L

=
1

P+
LP−

L

[
P−
L ZLP−

L

P+
L −ZLP+

L

]

L

[
P
−V

]

L

. (1.159)

Typically the eigen-functions at x = 0 are normalize to 1 (i.e., P+
0 = 1 and P−

L = 1), thus

[
α
β

]

L

=
1

P+
L

[
1 ZL
P+
L −ZLP+

L

]

L

[
P
−V

]

L

(1.160)

This is a general expression for the eigenfunction amplitudes α, β at the reflection site x = L,

where the two mix for the first time. The reflection coefficient is given by the ratio of β/α, which

depends on the load impedance

Zload(x = L, s) = −PL/VL.
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The sign of VL must be negative to satisfy the definition of every ABCD matrix (i.e., the output

velocity must equal the input velocity of the next cell).

Substituting Eq. 1.160 into Eq. 1.156 results in an expression for the input acoustic variables

at x = 0 in terms of those at x = L:must agree with

given below.

must agree with

given below. [
P
V

]

0

=

[
P+

0 P−
−L

Y0P+
0 −Y0P−

−L

]
× 1

P+
L

[
1 ZL
P+
L −ZLP+

L

]

L

[
P
−V

]

L

. (1.161)

Thus
[
P
V

]

0

=
1

∆L

[
−Y−(L)P−

L − Y+(L)P+
L P+

L − P−
L

−Y+(0)Y−(L)P−
L + Y−(0)Y+(L)P+

L −Y+(0)P−
L + Y−(0)P+

L

] [
P
V

]

L

, (1.162)

It may be more visual to leave this expression in terms of Γ(s) than to substitute Eq. 1.157 into

Eq. 1.156.

1.5.11 Lec 37d Three examples of horns

Here we give three examples of the horn equation for the 1) uniform (A(x) = Ao), 2) Conical

(spherical) (A(r) = Aor
2) and 3) Exponential (A(r) = Aoe

2mr) horns. The input impedance for

each of these horns is shown in the classic figure reproduced here, from Olson (1947, p. 101).

Summary of four classic horns: The radiation impedance Zrad(r, ω) for five different horns is

shown in Fig. 1.34. The same information is given in Table 1.5 is a summary of the properties for

four different horns, as numerically identified in the figure 5-uniform: 1-parabolic, 2-conical and

3-exponential horns.

1) The uniform horn

The 1D wave equation [A(r) = Ao]
d2

dr2
P =

s2

c2
o

P.

Solutions: The two eigen-functions of this equation are the two d’Alembert waves (Eq. 1.95,

p. 109)

̺(x, t) = ̺+(t− x/c) + ̺−(t+ x/c) ↔ P+(x, s) + P−(x, s)

where P±(x, s) are Laplace transform pairs representing the causal forward and retrograde travel-

ing wave pressure amplitudes. It is convenient to normalize P±(x = 0, s) = 1. Doing so gives the

normalized primary solutions

̺+(x, t) = δ(t− x/co)↔ P+(0, s)e−κ(s)x

and

̺−(x, t) = δ(t+ x/co)↔ P−(0, s)eκ(s)x

where κ(s) = s/co = ω/c is called the wave-evolution function, propagation constant, or wave

number. Note that for the uniform horn ω/co = 2π/λ. When the area is not constant, λ is

a complex function of frequency, resulting in a complex input impedance (admittance), internal

standing waves and wave propagation loss.

The characteristic admittance (Eq. 1.146) is independent of direction. The signs must be “phys-

ically chosen,” with the velocity V± into the port, to assure that Y > 0, for both waves.
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Applying the boundary conditions: The general solution is compactly formulated as an ABCD

matrix (i.e., Section 1.3.9, p. 89), starting from

[
P(x)
V(x)

]
=

[
e−κx eκx

Ye−κx −Yeκx
] [
α
β

]

x

, (1.163)

where α, β are the relative weights on the two unknown eigen-functions, to be determined by the

boundary conditions at x = 0, L, and κ = s/c, Y = 1/Z = Ao/ρoc.
Solving Eq. 1.163 for α and β (with Z = 1/Y and determinant ∆ = −2Y), at x = L

[
α
β

]

L

=
−1

2Y

[
−Y eκL −eκL
−Ye−κL e−κL

] [
P
−V

]

L

=
1

2

[
eκL ZeκL
e−κL −Ze−κL

] [
P
−V

]

L

. (1.164)

We may uniquely determine these two weights given the pressure and velocity at the boundary

x = L, which is typically determined by the load impedance (PL/VL).

Once the weights have been determined, they may be substituted back into Eq. 1.163, to deter-

mine the pressure and velocity amplitudes at any point 0 ≤ x ≤ L.

[
P
V

]

x

=
1

2

[
e−κx eκx

Ye−κx −Yeκx
] [

eκL ZeκL
e−κL −Ze−κL

] [
P
−V

]

L

. (1.165)

Multiplying these out gives the final transmission matrix

[
P
V

]

x

=
1

2

[
eκ(L−x) + e−κ(L−x) Z(eκ(L−x) − e−κ(L−x))
Y(eκ(L−x) − e−κ(L−x)) eκ(L−x) + e−κ(L−x)

] [
P
−V

]

L

. (1.166)

Applying the last boundary condition, we evaluate Eq. 1.164 to obtain the ABCD matrix at the

input (x = 0) (Pipes, 1958)

[
P
V

]

0

=

[
cosh(κL) Z sinh(κL)
Y sinh(κL cosh(κL)

] [
P
−V

]

L

. (1.167)

Exercise: Evaluate this expression in terms of the load impedance. Solution: Since Zload =
PL/VL, [

P
V

]

0

=

[
Zload cosh(κL) −Z sinh(κL)
ZloadY sinh(κL − cosh(κL)

]
. (1.168)

Impedance matrix: Expressing Eq. 1.168 as an impedance matrix gives (algebra required)

[
Po
PL

]
. =

Z
sinh(κL)

[
cosh(κL) 1

1 cosh(κL)

] [
Vo
VL

]
.

Input admittance Yin: Given the input admittance of the horn, it is possible to determine if it is

uniform, without further analysis. Namely, if the horn is uniform and infinite in length, the input

impedance at x = 0 is

Yin(0, s) ≡ V(0, ω)

P(0, ω)
= Y ,

since α = 1 and β = 0. That is, for an infinite uniform horn, there are no reflections.
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When the horn is terminated with a fixed impedance ZL at x = L, one may substitute pressure

and velocity measurements into Eq. 1.164 to find α and β, and given these, one may calculate the

reflectance at x = L (see Eq. ??, ??)

ΓL(s) ≡ P
−

P+

∣∣∣∣∣
x=L

=
β

α
=
P(L, ω)− ZV(L, ω)

P(L, ω) + ZV(L, ω)
=
ZL −Z
ZL + Z

given sufficiently accurate measurements of the throat pressure P(0, ω), velocity V(0, ω), and the

characteristic impedance of the input Z = ρoc/A(0).

2) Conical horn

For each horn we must find the natural normalization from the range variable to the normalized

range variable x. For the conical horn the radius is proportional to the range variable r, thus

A(r) = 4π sin2 (Θ/2) r2. [m2]

The angle Θ is a measure of the solid (cone) angle. When Θ = π we have the case of the entire

sphere, so the solid angle is 4π [steradian] and the area is 4πr2. The formula for the area may be

simplified by defining Aθ ≡ 4π sin2(Θ/2) r2
o [m2], resulting in the more convenient relation

A(r) = Aθ (r/ro)
2. [m2].

This is a bit tricky because Aθ is not a constant since it depends on the place where the area was

normalized, in this case ro.

Using the conical horn area A(r) ∝ r2 in Eq. 1.138, p. 141 [or Eq. 1.147 (p. 144)] results in

the spherical wave equation (Appendix 1.5.2 p. 131)

Prr(r, ω) +
2

r
Pr(r, ω) = κ2P(r, ω). (1.169)

Here F (r) = ∂r lnA(r) = 2
r

(see Table 1.5, p. 146). Remember to apply the steradian scale factor

Aθ.

3) Exponential horn: The case of the exponential horn

P±(r, ω) = e−mre∓j
√
ω2−ω2

c r/c (1.170)

is of special interest because the radiation impedance is purely reactive below the horn’s cutoff

frequency (ω < ωc = mco), as may be seen from curves 3 and 4 of Fig. 1.34, since no energy can

radiate from an open horn below ωc, because

κ(s) = −m± 

co

√
ω2 − ω2

c

becomes purely real for ω < ωc (non-propagating evanescent waves).
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1.5.12 Lec 38: Solution methods

There are two distinct mathematical methods used to describe physical systems: lumped models

(i.e., quasi-statics) and differential equations. We shall describe these methods for the case of the

scalar wave equation, which describes the evolution of a scalar field, such as the average pressure

or voltage, or equivalently, the flow (e.g., the volume velocity).

1. Lumped-element method: A system may be represented in terms of lumped elements, such

as electrical inductors, capacitors and resistors, or their mechanical counterparts, masses,

springs and dashpots. Such systems are represented by transmission-matrices rather than by

differential equations, the number of which is equal to the number of elements in the net-

work. When the system of lumped element networks contains only resistors and capacitors,

it does not support waves, and is related to the diffusion equation in its solution. Depending

on the elements in the system of equations, there can be an overlap between a diffusion pro-

cess and scalar waves, represented as transmission lines, both modeled as lumped networks

of 2x2 matrices (Section 1.3.9, Eq. 1.68, p. 89).

When lumped elements are used, the equations accurately approximate the transmission line

equations below a critical frequency fc which depends on the density of model-elements.

When the wavelength is longer than the physical distance between the elements (one per

matrix), the approximation is equivalent to a transmission line. As the frequency increases,

the wavelength eventually becomes equal to (f = fc), and then shorter than the element

spacing, where the quasi-static (lumped element) model breaks down. This is under the con-

trol of the modeling process, as more elements are required to represent higher frequencies

(shorter wavelengths). If the nature of the solution at high frequencies is desired, the lumped

parameter model fails and one must use the differential equation method. However for many

(perhaps most) problems, lumped elements are easy to use, and accurate, for frequencies

below the cutoff (where the wavelength approaches the element spacing). These relations

are elegantly explained in Brillouin (1953).

2. Separable coordinate systems: Classically PDEs are often solved by a technique called

separation of variables, which is limited to a few coordinate systems such as rectangular,

cylindrical and spherical coordinates (Morse, 1948, p. 296-7). Even a slight deviation from

separable specific coordinate systems represents a major barrier to further understanding,

blocking insight into more general cases. These few separable coordinate systems are special

cases, which have high degrees of symmetry, while the wave equation is not tied to a specific

coordinate system. Thus lumped-parameter methods (quasi-statics) provides solutions over

a much wider class of geometries.

When the coordinate system is separable the resulting PDE is called a Sturm-Liouville equa-

tion, and its eigen-functions are the basis functions for solutions to these equations. Webster

horn theory (Webster, 1919; Morse, 1948; Pierce, 1981) is a generalized Sturm-Louville

equation which adds physics to the mathematical 19th century approach of Sturm-Liouville,

in the form of the area-function of the horn.

As is common in mathematical physics, it is the physical applications, not the mathematics,

that make a theory powerful. Mathematics provides rigor, while physics provides a physical

rational. Both are important: however, the relative importance depends on ones view point,

and the nature of the problem being solved.
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Eigen-solutions ̺±(r, t)

Because the wave equation (Eq. 1.135) is 2nd order in time, there are two causal independent

eigen-solutions of the homogeneous (i.e., un-driven) Webster horn equation: an outbound (right-

traveling) ̺+(r, t) and an inbound (left-traveling) ̺−(r, t) wave. The causal eigen-solutions may

be Laplace transformed

̺±(r, t)↔ P±(r, s) =
∫ ∞

0−

̺±(r, t)e−stdt,

into the frequency-domain, also sometimes called the time-independent representation.

These eigen-functions may be normalized so that P±(ro, s) = 1, where ro is the source excita-

tion reference point. Other normalizations are possible.

These eigen-functions critically depend on the area function A(r). Because the characteristic

impedance of the wave in the horn changes with location, the must be local reflections due to the

area variations. Thus there is a basic relationship between the area change dA(r)/dr, the eigen-

functions P±(r, s) and their eigen-modes.103

Complex vs. real frequency: We shall continue to maintain the distinction that functions of ω
are Fourier transforms and functions of Laplace frequency s correspond to Laplace transforms,

which, because they are causal, are necessarily complex analytic in s in the right half-plane (RHP)

region of convergence (ROC). This distinction is critical since we typically describe impedance

Z(s) and admittance Y (s), which must be causal, in terms of their poles and zeros, as complex

analytic functions in s.104 Likewise the eigen-functions of Eq. 1.138 are complex analytic and thus

causal.

Eigen-function solutions for plane-waves: Huygens (1690) was the first to gain insight into

wave propagation, today known as “Huygens’s principle.” While his concept showed a deep in-

sight, we now know it was seriously flawed as it ignored the backward traveling wave (Miller,

1991). In 1747 d’Alembert, published the first correct solution for the plane-wave scalar wave

equation

̺(x, t) = f(t− x/co) + g(t+ x/co), (1.171)

where f(·) and g(·) are quite general functions of their argument. That this is the solution may

be easily shown by use of the chain rule, by taking partials with respect to x and t. Surprisingly,

this is the solution even when the functions are not differentiable. For example, u(t ∓ x/co) and

δ(t∓ x/co) are valid solutions, even though the proof is more difficult.

In terms of the physics, d’Alembert’s general solution describes two arbitrary wave-forms f(·),
g(·), traveling at a speed co, one forward and one reversed. Thus his solution is quite easily visu-

alized. As previously discussed, Newton (1687) was the first to calculate the speed of sound co,
albeit with an error of

√
1.4. This error was not corrected for over 200 years, following the creation

of thermodynamics and the concept of an adiabatic process.

103These relationships will be explored further in Chapter J.
104When an analytic function of complex variable s includes the pole it is called a Laurent series in s. For example,

the impedance of a capacitor C is Zc(s) = 1/sC, which is analytic in s everywhere other than s = 0. The capacitor

has a voltage time response given by the integral of the current, i.e., v(t) = 1
C

∫ t
i(t)dt = 1

C
u(t) ⋆ i(t), where u(t) is

the Heaviside step function and ⋆ represents convolution.
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Exercise: By the use of the chain rule, prove that d’Alembert’s formula satisfies the 1D wave

equation. Solution: Taking a derivative with respect to t and r gives

• ∂t̺(r, t) = −cof ′(r − cot) + cog
′(r + cot)

• ∂r̺(r, t) = f ′(r − cot) + g′(r + cot),

and a second derivative gives

• ∂tt̺(r, t) = c2
of

′′(r − cot) + c2
og

′′(r + cot)

• ∂rr̺(r, t) = f ′′(r − cot) + g′′(r + cot).

From these last two equations we have the 1D wave equation

∂rr̺(r, t) =
1

c2
o

∂tt̺(r, t),

having solutions Eq. 1.171, in disagreement with Huygens’s 1690 “principle” (Miller, 1991).

Example: Assuming f(·), g(·) are δ(·), find the Laplace transform of the solution. Solu-

tion: Using Table F.3 (p. 210) of Laplace transforms on Eq. 1.171 gives

̺(x, t) = δ(t− x/co) + δ(t+ x/co)↔ e−sx/co + esx/co. (1.172)

Note that the delay is To = ±x/co.

3D d’Alembert spherical eigen-functions: The d’Alembert solution generalizes to 3D waves

by changing the area function in Eq. 1.138 with the 3D area A(r) = Aor
2 (Table 1.5, p. 146)105

∇2
r̺(r, t) =

1

r

∂2

∂r2
r̺(r, t) =

1

c2
o

∂2

∂t2
̺(r, t).

Multiplying by r results in the general spherical (3D) d’Alembert wave equation solution

̺(r, t) =
f(t− r/co)

r
+
g(t+ r/co)

r
,

for arbitrary wave-forms f(·) and g(·). These are the eigen-functions for the spherical scalar wave

equation.

1.5.13 Lec 39: Integral forms of ∇(), ∇·() and ∇×()

The vector wave equation describes the evolution of a vector field, such as Maxwell’s electric field

vector E(x, t). When these fields are restricted to a one dimensional domain they are known as

guided waves constrained by wave guides.
Nathan suggested

· v.
Nathan suggested

· v.

There are two definitions for each operator: the point, or differential form, and the integral

limit form. The integral form gives an intuitive view of what the operator does, and in the limit,

converges to the differential form. These two definitions are discussed next.

The divergence and the curl each have fundamental theorems: Gauss’s law (divergence theo-

rem) and Stokes’s law (curl theorem). Without the use of these very fundamental vector calculus

theorems, Maxwell’s equations cannot be understood. The history of these important theorems is

discussed in the caption of Fig. 1.13, p. 56.

105This form of the spherical Laplacian is discussed in Appendix 1.5.2, Eq. 1.120, p. 131.
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Gradient: E = −∇φ(x, y, z) [V/m]

As briefly summarized on page 128, the differential definition of the gradient maps R1 7→
∇

R3. For

example, the electric field strength is the gradient of the voltage

E(x) = − [∂x, ∂y, ∂z]
T φ(x) = −

[
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

]T
(x).

The negative sign is optional.

The gradient is the slope of the tangent plane of the potential φ(x) at x pointing in the direction

of the maximum slope. The gradient (i.e., E(x)) is ⊥ of the constant potential contours of φ(x)
(the iso-potential lines), since derivatives along any iso-contours must be zero.

As a specific example, consider the paraboloid z = 1 − (x2 + y2) as the potential, with iso-

potential circles of constant z that have radius of zero at z = 1, and unit radius at z = 0. The

negative gradient

E(x) = −∇z(x, y) = 2(xx̂ + yŷ + 0ẑ)

is ⊥ to the circles of constant radius (constant z), and thus points in the direction of the radius.

If one were free-fall skiing this surface, they would be the first one down the hill. Normally

skiers try to stay close to the iso-clines (not in the direction of the gradient), so they can stay in

control. If you ski an iso-cline, you must walk, since there is no pull due to gravity.

The integral definition of the gradient: The gradient may be defined in terms of the integral

∇φ(x, y, z) ≡ lim
|S|→0

{∫
S φ(x, y, z) n̂ d|S|

|S|

}
, (1.173)

over a closed surface S, having area |S| and volume ||S||, centered at (x, y, z)(Greenberg, 1988,

p. 773).106 Here n̂ is the unit vector perpendicular to the surface S

n̂ =
∇φ
||∇φ|| .

The dimensions of Eq. 1.173 are in the units of the potential times the area, divided by the volume,

as needed for a gradient (e.g., [V/m]).

The natural way to define the surface and volume is to place the surface on the iso-potential

surfaces, forming either a cube or pill-box shaped volume. As the volume goes to zero, so must

the area. One must avoid irregular volumes such that the area is finite as the volume goes to

zero.(Greenberg, 1988, footnote p. 762).

A well-known example is the potential

φ(x, y, z) =
Q

ǫo
√
x2 + y2 + z2

=
Q

ǫoR
[V]

around a point charge Q [SI Units of Coulombs]. The constant ǫo is the permittivity [farad/m2].

106See further discussions on pages Greenberg (1988, pp. 778, 791, 809).
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How does this work? To better understand what Eq. 1.173 means, consider a three-dimensional

Taylor series expansion of the potential in x about the limit point xo To compute the higher order

terms (HOT) one needs the Hessian matrix107

φ(x) ≈ φ(xo) +∇φ(x) · (x− xo) + HOT.

We could define the gradient using this relationship as

∇φ(xo) = lim
x→xo

φ(x)− φ(xo)

x− xo
.

For this definition to apply, x must approach xo along n̂ .

The natural form for the surface |S| is to lie along the iso-potential surfaces as much as possible,

so that the integral is a constant (the potential) times the area. The remainder of the surface must be

perpendicular to these iso-potential surfaces, in the direction of the gradient, or maximum change

of the potential. The secret to the integral definition is in taking the limit. As the volume ||S||
shrinks to zero, the HOT terms are small, and the integral reduces to the first-order term in the

Taylor expansion, since the constant term integrates to zero. Such a construction is used in the

proof of the Webster horn equation (1.5.6, p. 142; Fig. 1.33, p. 143).

Divergence: ∇·D = ρ [Col/m3]

As briefly summarized on page 129, the differential definition of the gradient which maps R3 7→
∇·

R1

is

∇·D ≡ [∂x, ∂y, ∂z ] ·D =

[
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z

]
= ρ(x, y, z).

The divergence is a direct measure of the flux (flow) of the vector field it operates on (D), coming

from x. A vector field is said to be incompressible if the divergence of that field is zero. It is

therefore compressible when the divergence is non-zero. Compared to air, water is considered to

be incompressible. However at very low frequencies, air can also be considered as incompressible.

Thus the definition of compressible depends on the wavelength in the medium, so the terms must

be used with some awareness of the circumstances.

Models of the electron: It is helpful to consider the physics of the electron, a negatively charged

particle that is frequently treated as a single point in space. If the size were truly zero, there could

be no magnetic spin moment. One size estimate is the Lorentz radius, 2.810−15 [m]. One could

summarize the Lorentz radius as follows: Here lie many unsolved problems in physics. More

specifically, at dimensions of the Lorentz radius, what exactly is the structure of the electron?

Ignoring the difficulties, if one integrates the charge density of the electron over the Lorentz

radius and places the total charge at a single point, then one may make a grossly oversimplified

model of the electron. For example, the electric displacement (D = ǫoE) (flux density) around a

point charge is

D = −ǫo∇φ(R) = −Q∇
{

1

R

}
= −Qδ(R).

This is a formula taught in many classic texts, but one should remember how crude a model of

an electron it is. But it does describe the electric flux in an easily remembered form. However,

107Hi,j = ∂2(x)φ/∂xi∂xj , which will exist if the potential is analytic in x at xo.
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δx

x

A
(x

)

n̂

A
(x

+
δx

)

Figure 1.35: Derivation of Gauss’s
law: The divergence of the velocity
∇ · u, within δx, shown as the filled
shaded region, is integrated over the
closed volume. Then the divergence
theorem is applied, transforming the
integral to a surface integral normal to
the surface, resulting in the difference
of the two volume velocities δν =
ν(x + δx) − ν(x) = [u(x + δx) ·
A(x+ δx)−u(x) ·A(x)], as the limit
of δx→ 0. Because the ends are in the
direction of u, the contribution to the
volume velocity from the ends is zero.

computationally, it is less nice, due to the delta function. The main limitation of this model is that

the electron has a magnetic dipole moment (aka, spin), which a simple point charge model does

not capture. When placed in a magnetic field, due to the dipole, the electron will align itself with

the field.

Divergence and Gauss’s law

Like the gradient, the divergence of a vector field may be defined as the surface integral of a

compressible vector field, as a limit as the volume enclosed by the surface goes to zero. As for

the case of the gradient, for this definition to make sense, the surface S must be a closed, defining

volume V . The difference is that the surface integral is over the normal component of the vector

field being operated on. Specifically (Greenberg, 1988, p. 762-763),

∇·D = lim
|S|→0

{∫
S D · n̂ d|S|
|S|

}
= ρ(x, y, z). (1.174)

As with the case of the gradient we have defined the surface as S, its area as |S| and the volume

within as ||S||. As the area |S| goes to zero, so does the volume ||S||. This is a necessary condition

for the integral to converge to the divergence.

Here n̂ is a unit vector normal to the surface S. The limit, as the volume goes to zero, defines

the total flux across the surface. Thus the surface integral is a measure of the total flux ⊥ to the

surface. It is helpful to compare this formula with that for the gradient Eq. 1.173.

Gauss’s law: The above definitions resulted in a major breakthrough in vector calculus, the

fundamental theorem of vector calculus (aka, Gauss’s law):

The surface integral over the normal component of the flux (i.e., the total flux) is equal

to the volume integral over the divergence of the flux.

For the electrical case this is equivalent to the observation that the total flux across the surface is

equal to the net charge enclosed by the surface. Since the volume integral over charge density

ρ(x, y, z) is total charge enclosed Qenc [Col],

Qenc =
∫∫∫

||S||
∇·D ||dS|| =

∫∫

|S|
D ·n̂ d|S|. (1.175)
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When the surface integral over the normal component of D(x) is zero, the charge density ∇·D =
ρ(x) and total charge, are both zero.

Taking the derivative with respect to time, Eq. 1.175 evaluates the total component of the

current, normal to the surface:

I =
∫∫

|S|
D ·n̂ d|S| = Q̇enc =

∫∫∫

||S||
ρ̇enc d||S||. (1.176)

As summarized by Feynman (1970c, p. 13-2):

The current leaving the closed surface |S| equals the rate of the charge leaving that

volume ||S||, defined by that surface.

Of course the surface must be closed to define the volume, a necessary condition for Gauss’s law.

This reduces to a common sense summary that can be grasped intuitively, an example of the beauty

in Feynman’s understanding.

Integral definition of the curl: ∇×H = C

As briefly summarized on page 129 (p. 129), the differential definition of the curl maps R3 7→
∇×

R3.

For example, the curl of the magnetic field strength H(x) is equal to the total current C

∇×H ≡

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣∣
= C. [A]

As we shall see in Sect. 1.5.15 (p. 165), the curl and the divergence are both key when writing

out Maxwell’s four equations. Without a full understanding of these two differential operators

(∇·,∇×), there is no hope of understanding Maxwell’s basic result, typically viewed as the most

important equations of mathematical physics, and the starting point for Einstein’s relativity theo-

ries. Some will say that quantum mechanics falls outside the realm of MEs, but this is at least open

to debate, if not hotly debated.

The curl is a measure of the rotation of a vector field. If this were water, it would correspond

to the angular momentum of the water, such as water going down the drain, as in a whirlpool,

or with wind, a tornado. A spinning top is another an excellent example, given a spinning solid

body. While a top (aka gyroscope) will fall over if not spinning, once it is spinning, it can stably

stand on its pointed tip. These systems are stable due to conservation of angular momentum: Once

something is spinning, it will continue to spin.

Example: When H = −yx̂ + xŷ + 0ẑ, ∇×H = 2ẑ, and thus has a constant rotation; when

H = 0x̂ + 0ŷ + z2ẑ, ∇×H = 0 has a curl of zero, and thus is irrotational. There are rules

that precisely govern when a vector field is rotational versus irrotational, and compressible versus

incompressible. These classes are dictated by Helmholtz’s theorem, the third fundamental theorem

of vector calculus (Eq. 1.183, p. 163).

Curl and Stokes’s law: As in the cases of the gradient and divergence, the curl also may be

written in integral form, allowing for the physical interpretation of its meaning.

Surface integral definition of ∇×H = C where the current C is ⊥ to the rotation plane of

H . Stokes’s law states that the open surface integral over the normal component of the curl of the



1.5. STREAM 3B: VECTOR CALCULUS (10 LECTURES) 159

n̂ ⊥ dS

Tangent plane
S Area (open)

B Boundarydl

∇×H ≡ lim
|S|→0

{∫
S n̂ ×H d|S|

|S|

}

Ienc =
∫∫

|S|
(∇×H) ·n̂ d|S| =

∮

B
H ·dl [A]

Figure 1.36: The integral definition of the curl is related to that of the divergence (Greenberg, 1988, p. 774), as an
integration over the tangent to the surface, except: 1) the curl is defined as the cross product n̂ ×H [A/m2], of n̂ with
the current density H, and 2) the surface is open, leaving a boundary B along the open edge. As with the divergence,
which leads to Gauss’s law, this definition leads to a second fundamental theorem of vector calculus: Stokes’s law
(aka the curl theorem).

magnetic field strength (n̂ ∇̇×H [A/m2]) is equal to the line integral
∮

B H · dl along the boundary

B. As summarized in Fig. 1.36, Stokes’s law is

Ienc =
∫∫

|S|
(∇×H) ·n̂ d|S| =

∮

B
H ·dl [A], (1.177)

namely

The line integral of H along the open surface’s boundaryB is equal to the total current

enclosed Ienc [A].

Table 1.6: Summary of the fundamental theorems of integral calculus, each of which deals with integration.
There are at least two main theorems related to scalar calculus, and three more for vector calculus.

Name Mapping p. Description

Leibniz (FTC) R1 → R0 105 Area under a real curve

FTCC R1 → R0 105 Area under a complex curve

Cauchy’s Theorem C1 → C0 119 Close integral over analytic region is zero

Cauchy’s Integral Formula C1 → C0 119 Residue integration and complex analytic functions

residue Theorem C1 → C0 119 Residue integration and complex analytic functions

Summing it up: As mentioned earlier (Fig. 1.13, p. 56), the history of the discovery and proof

of this theorem is both complex and interesting.

Since integration is a linear process (sums of smaller elements), one may tile, or tessellate, the

surface, breaking it up into smaller surfaces and their boundaries, the sum of which is equal to

the integral over the original boundary. This is an important concept, which leads to the proof of

Stokes’s law.

The integral formulations of Gauss’s and Stokes’s laws use n̂ ·D and H×n̂ in the integrands.

The key distinction between the two laws naturally follows from the properties of the scalar (A·B)

and vector (A ×B) products, as discussed in Sect. 1.3.6, p. 77, and detailed in Fig. 1.16, p. 80.

To fully appreciate the differences between Gauss’s and Stokes’s laws, these two types of vector

products must be mastered.

Paraphrasing Feynman (1970c, 3-12),
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1. V2 = V1 +
∫ 2

1 ∇Φ · dS

2.
∮

D ˙̂n d|S| = ∮
∇·D d||S||

3.
∮

B E dl =
∮

|S|(∇×E) · n̂ d|S|

1.5.14 Lec 40 Second-order operators: Terminology

Besides the above first-order vector derivatives, second-order combinations exist, the most com-

mon being the scalar Laplacian ∇·∇() = ∇2() (Table 1.4, p. 128; Appendix 1.5.2, p. 131).
book ”Div, grad, curl and

that”
book ”Div, grad, curl and

that”

There are other important second-order combinations of∇, enough that we need a memory aid

to remember them. Thus I define mnemonics DoC, DoG, CoG CoC and GoD as follows:

1. DoG: Divergence of the gradient (∇·∇ = ∇2), i.e., Laplacian,

2. DoC∗: Divergence of the curl (∇·∇×),

3. CoG∗: Curl of the gradient (∇×∇),

4. CoC: Curl of the curl (∇×∇×), and

5. GoD: Gradient of the Divergence (GoD)∇∇·and the vector Laplacian GoD∗ ∇2.

DoC∗() and CoG∗() are special because they are always zero:

∇×∇φ = 0; ∇ ·∇×A = 0,

a property that makes them useful in proving the fundamental Theorem of Vector Calculus (Helmholtz’

decomposition, Eq. 1.183, p. 163). A third key vector identity CoC may be expanded as

∇×∇×A = ∇(∇·A)−∇
2A, (1.178)

defining the vector Laplacian (i.e., GoD∗=GoD-CoC): ∇2() = ∇∇·()−∇×∇×().
When using second-order differential operators one must be careful with the order of opera-

tions, which can be subtle in a few cases. Most of this is common sense. For example, don’t

operate on a scalar field with ∇×, and don’t operate on a vector field with∇. The vector Laplacian

GoD∗ must not be thought of as∇(∇·A), rather it acts as the Laplacian on each vector component

∇2A = ∇2Axx̂ +∇2Ayŷ +∇2Azẑ.

Exercise: Show that GoD and GoD∗ differ. Solution: Use CoC on a A to explore this relation-

ship.

Helmholtz’s decomposition

We may now restate everything defined above in terms of two types of vector fields that decom-

pose every analytic vector field. The irrotational field is defined as one that is “curl free.” An

incompressible field is one that is “diverge free.” According to Helmholtz’s decomposition, every

analytic vector field may be decomposed into independent rotational and a compressible compo-

nents. Another name for Helmholtz decomposition is the fundamental theorem of vector calculus

(FTVC); Gauss’s and Stokes’s laws, along with Helmholtz’s decomposition, form the three key
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fundamental theorems of vector calculus. Images of Helmholtz and Kirchhoff are provided in

Fig. 1.37, p. 163.

A magnetic solenoidal field is one that is generated by a solenoidal coil, and is an excellent

approximation, uniform inside the coil. As a result, the curl of a solenoidal field is, to a good

approximation, zero. I recommend you know this term (it is widely used), but suggest the preferred

term irrotational. Strictly speaking, the term “solenoidal field” only applies to a magnetic field

produced by a solenoid, thus the term is specific to that case.

The decomposition of differentiable vector fields: This theorem is easily stated (and proved),

but less easily appreciated (Heras, 2016). A physical description facilitates: Every vector field

may be split into two independent parts: dilation and rotation. We have seen this same idea

appear in vector algebra, where the scalar and cross products of two vectors are perpendicular

(Fig. 1.16, p. 80). Also think of linear and angular momentum, which are independent in that they

represent different ways of absorbing and delivering kinetic energy, leading to independent degrees

of freedom. Thus the idea of the linear and rotational parts being independent is a common theme,

rooted in geometry. In the same sense, a vector field may be split into a dilation and rotational

parts, which are independent (but can interact under certain conditions). An object with mass

can be moving along a path, and independently be rotating. The two modes of motion define

different types of kinetic energy: translational (compressional) and rotational. In some real sense,

Helmholtz decomposition quantifies these degrees of freedom: one DoF for translation and three

DoFs for rotation. Each eigen-mode of vibration can be viewed as a DoF. The role of the FTVC

is especially powerful when applied to Maxwell’s Eqs.

Solving Maxwell’s equations

The application of FTVC is not as obvious as it might seem when applied to Maxwell’s equations,

due to DoC and Cog. In Section 1.5.1 we defined the electric and magnetic field strengths in terms

of the scalar and vector potentials φ(x, t) and A(x, t), repeated here for convenience. The electric

field strength is (Eq. 1.111, p. 127)

E = −∇φ− ∂

∂t
A (1.111)

while the magnetic field strength is (Eq. 1.112, p. 127)

B = ∇×A (1.112)

which are the solutions to Maxwell’s equations in terms of the two potentials (Sommerfeld, 1952,

p. 146). Note these relations are invariant to the addition of a constant to each potential, and by the

application of DoC and CoG, they are equivalent to Maxwell’s equations.

Helmholtz theorem and the potential representation: Taking the curl of Eq. 1.111, and using

CoG=0, recovers Maxwell’s electric equation

∇×E = −✘✘✘✘✘✿0
∇×∇Φ + ∇×∂A

∂t

= −∂B

∂t
, (1.179)
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while taking the divergence along with DoC=0

✘✘✘✘✘✘✿0
∇·∇×E = −∂∇·B(x, t)

∂t
= 0, (1.180)

requires that ∇·B is independent of time, and therefore that

∇·B(x) = 0. (1.181)

We would like to recover Maxwell’s magnetic equation ∇×H = C from the potential solution.

Taking the curl of Eq. 1.112 gives

1

µo
∇×µoH = C = ∇×∇×A = ∇∇·A−∇

2A.

This says that the current C only depends on A, which follows directly from Eq. 1.112 forward.

Since A must satisfy the wave equation,

∇
2A =

1

c2
o

A−C,

which requires that

∇∇·A =
1

c2
o

A.

Taking the divergence of Eq. 1.111 gives an expression for ∇·A:

1

ǫo
∇·D = ρ/ǫo = −∇2φ− ∂t∇·A.

Here ǫ0 [Col/m] and µo [H/m].

Exercise: Starting from the values of the speed of light co = 3× 108 [m/s] and the characteristic

resistance of light waves ro = 377 [ohms], use the formula for c0 = 1/
√
µoǫo and ro =

√
ǫo/µo to

find values for ǫo and µo. Solution: Squaring c2
o = 1/µoǫo and r2

o = µo/ǫo we may solve for the

two unknowns: c2
or

2
o = 1

✚✚µoǫo

✚✚µo

ǫo
= 1/ǫ2o, thus ǫo = 1/coro = 10−8

3·377
= 8.84× 10−12 [Fd/m]. Likewise

µo = ro/co = (377/3)× 10−8 ≈ 125.67× 10−8. The value of µo is defined in the international SI

standard as 4π10−7 ≈ 12.56610−7 [H/m].

In conclusion, Eq. 1.111, along with DoC=0 and CoG=0, give Maxwell’s Eq. 1.179 and

Eq. 1.181 result. It would appear that Eq. 1.111 is the key. This equation defines the magnetic

component of the field, expressed in terms of its vector potential, in the same way as Eq. 1.110

describes E(x, t) in terms of the scalar potential (voltage). Does the same argument apply for

Eq. 1.112?

Exercise: Take the divergence of Maxwell’s equation for the magnetic intensity

∇×H(x, t) = J(x, t) +
∂

∂t
D(x, t)

and explain what results. Solution: The divergence of the curl is always zero (DoC=0), thus

✘✘✘✘✘✘✿0
∇·∇×H(x, t) = ∇·J(x, t) +

∂

∂t
ρ(x, t) = 0, (1.182)
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which is conservation of charge.

Helmholtz’s decomposition is expressed as the linear sum of a scalar potential φ(x, y, z) (thinkcareful evaluationcareful evaluation

voltage) and a vector potential (think magnetic vector potential). Specifically

E(x, s) = −∇φ(x, s) +∇×A(x, s), (1.183)

where φ is the scalar and A is the vector potential, as a function of the Laplace frequency s. Of

course this decomposition is general (not limited to the electro-magnetic case). It applies to linear

fluid vector fields, which include most liquids and air. When the rotational and dilation become

coupled, this relation must break down.108

Figure 1.37: Left: von Helmholtz portrait taken from the English translation of his 1858 paper “On integrals
of the hydrodynamic equations that correspond to Vortex motions” (in German) (Helmholtz, 1978). Right: Gustav
Kirchhoff.

To show how this relationship splits the vector fields E into its two parts, we need DoC and

CoG, the two key vector identities that are always zero for analytic fields: the curl of the gradient

(CoG)

∇×∇φ(x) = 0, (1.184)

and the divergence of the curl109 (DoC)

∇·(∇×A) = 0. (1.185)

The above identities are easily verified by working out a few specific examples, based on the def-

initions of the three operators, gradient, divergence and curl, or in terms of the operator’s integral

definitions, defined in Sect. 1.5.13, p. 154. The identities have a physical meaning, as stated above:

every vector field may be split into its translational and rotational parts. If E is the electric field

[V/m], φ is the voltage and A is the induced rotational part, induced by a current. We shall explore

this in our discussion of Maxwell’s equations in Sect. 1.5.15 and Chapter J.

By applying these two identities to Helmholtz’s decomposition, we can better appreciate the

theorem’s significance. It is a form of proof actually, once you have satisfied yourself that the

vector identities are true. In fact one can work backward using a physical argument, that rotational

108The nonlinear Navier–Stokes equations may be an example.
109Helmholtz was the first person to apply mathematics in modeling the eye and the ear (Helmholtz, 1863a).
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momentum (rotational energy) is independent of the translational momentum. Once these forces

are made clear, the vector operations all take on a very well defined meaning, and the mathemat-

ical constructions, centered around Helmholtz’s theorem, begin to provide some common-sense

meaning. One could conclude that the physics is simply related to the geometry via the scalar and

vector product.

Specifically, if we take the divergence of Eq. 1.183, and use the DoG, then

∇·E = ∇·{−∇φ+✘✘✘✘✿0
∇×A} = −∇·∇φ = −∇2φ,

since the DoG zeros the vector potential A(x, y, z). If instead we use the CoG, then

∇×E = ∇×{✟✟✟✟✯0
−∇φ+ ∇×A} = ∇×∇×A = ∇(∇·A)−∇

2A,

since the CoG zeros the scalar field φ(x, y, z). The last expression requires GoD.

Table 1.7: The four possible classifications of scalar and vector potential fields: rotational/irrotational. compress-
ible/incompressible. Rotational fields are generated by the vector potential (e.g., A(x, t)), while compressible fields
are generated by the scalar potentials (e.g., voltage φ(x, t), velocity ψ, pressure ̺(x, t) or temperature T (x, t)).

Field: Compressible Incompressible

v(x, t) ∇·v 6= 0 ∇·v = 0

Rotational v = ∇φ+ ∇×ω v = ∇×w

∇×v 6= 0 Vector wave Eq. (EM) Lubrication theory

∇2v = 1
c2 v̈ Boundary layers

Irrotational Acoustics Statics

Conservative v = ∇ψ ∇2φ = 0
∇×v = 0 ∇2̺(x, t) = 1

c2 ¨̺(x, t) Laplace’s Eq. (c→∞)

The four categories of linear fluid flow: The following is a summary of the four cases for fluid

flow, as summarized in Fig. 1.7:

1,1 Compressible and rotational fluid (general case): ∇φ 6= 0, ∇×w 6= 0. This is the case of

wave propagation in a medium where viscosity cannot be ignored, as in the case of acoustics

close to the boundaries, where viscosity contributes to losses (Batchelor, 1967).

1,2 Incompressible, rotational, fluid (Lubrication theory): v = ∇×w 6= 0,∇·v = 0,∇2φ = 0.

In this case the flow is dominated by the walls, while the viscosity and heat transfer introduce

shear. This is typical of lubrication theory.

2,1 Fluid compressible irrotational flow (acoustics): v = ∇φ, ∇×w = 0. Here losses (viscosity

and thermal diffusion) are small (assumed to be zero). One may define a velocity potential ψ,

the gradient of which gives the air particle velocity, thus v = −∇φ. Thus for an irrotational

fluid ∇×v = 0 (Greenberg, 1988, p. 826). This is the case of the conservative field, where∫
v · n̂ dR only depends on the end points, and

∮
B v · n̂ dR = 0. When a fluid may be treated

as having no viscosity, it is typically assumed to be irrotational, since it is the viscosity that

introduces the shear (Greenberg, 1988, p. 814). A fluid’s angular velocity is Ω = 1
2
∇×v = 0,

thus irrotational fluids have zero angular velocity (Ω = 0).
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2,2 Incompressible and irrotational fluid (statics): ∇ ·v = 0 and ∇×v = 0 thus v = ∇φ
and ∇2φ = 0. An example of such a case is water in a small space at low frequencies,

where the wavelength is long compared to the size of the container, the fluid may be treated

as incompressible. When ∇×v = 0, the effects of viscosity may be ignored, as it is the

viscosity that creates the shear leading to rotation. This is the case of modeling the cochlea,

where losses are ignored and the quasi-static limit is justified.

In summary, each of the cases is some sort of approximation that best applies in the low fre-

quency limit. This is why it is called quasi-static, meaning low, but not zero frequency, where the

wavelength is large compared with the dimensions (e.g., diameter).

1.5.15 Lec 41 Maxwell’s Equations: The unification of electricity and mag-

netism

Once you have mastered the three basic vector operations, the gradient, divergence and curl, you

are ready to appreciate Maxwell’s equations. Like the vector operations, these equations may be

written in integral or vector form. An important difference is that with Maxwell’s equations, we

are dealing with well defined physical quantities. The scalar and vector fields take on meaning,

and units. Thus to understand these important equations, one must master the names of the four

fields E,H ,B,D.

Figure 1.38: A solenoid is a uniform coil of wire. When a current is passed through the

wire, a uniform magnetic field intensity H is created. From a properties point of view, this coil
is indistinguishable from a permanent bar magnet, having north and south poles. Depending on
the direction of the current, one end of a finite solenoidal coil is the north pole of the magnet,
and the other end is the south pole. The uniform field inside the coil is called solenoidal, a
confusing synonym for irrotational. (Figure from Wikipedia.)

Field strengths E,H: As summarized in Fig. 1.8 there are two field strengths, the electric E,

with units of [V/m] and the magnetic H having units of [A/m]. Their the ratio |E|/|H| is in

[ohms].

To understand the meaning of E, if two conducting plates are placed 1 [m] apart, with 1 [V]

across them, the electric field is E = 1 [V/m]. If a charge (i.e., and electron) is placed in an electric

field, it feels a force f = qE, where q is the magnitude of the charge [Col].

To understand the meaning of H , consider the solenoid made of wire, as shown in Fig. 1.38,

which carries a current of 1 [A]. The magnetic field H inside such a solenoid is uniform and is

pointed along the long axis, with a direction that depends on the polarity of the applied voltage

(i.e., direction of the current in the wire).

Flux: Flux is a flow, such as the mass flux of water flowing in a pipe [kg/s], driven by a force

(pressure drop) across the ends of the pipe, or the heat flux in a thermal conductor, having a

temperature drop across it (i.e., a window or a wall). The flux is the same as the flow, be it

current, mass or heat. In Maxwell’s equations there are also two fluxes, the electric flux D, and

the magnetic flux B. The flux density units for D are [A/m2] (flux in [A]) and the magnetic flux

B is measured in Webers [Wb] [A/m2]) or [Tesla] (Henry-amps/area) [H-A/m2].
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Table 1.8: The variables of Maxwell’s equations have names (e.g., EF, MI) and units (in square brackets [SI Units]).
The units are required to gain a full understanding of each of the four variable and their corresponding equation. For
example, Eq. EF has units [V/m]. When you integrate E from x = a, b, you obtain the voltage difference between
those two points. The speed of light in vacuo is c = 3 × 108 = 1/

√
µoǫo [m/s], and the characteristic resistance of

light ro = 377 =
√
µo/ǫo [Ω] (i.e., ohms). The dot over a vector is shorthand for the partial with respect to time (i.e.,

Ḃ = ∂B/∂t).

Symbol Name Units Maxwell’s Eq.

E EF: Electric Field strength [V/m] ∇×E = −∂tB
D = ǫoE ED: Electric Displacement (flux density) [Col/m2] ∇ ·D = ρ
H MF: Magnetic Field strength [A/m] ∇×H = ∂tD
B = µoH MI: Magnetic Induction (flux density) [Wb/m2] ∇ ·B = 0

Maxwell’s equations

As shown in Fig. 1.8, Maxwell’s equations consist of two curl equations, operating on the field

strengths EF E and MF H , and two divergence equations, operating of the field fluxes ED D and

MI B. Stokes’s law may be applied to the curl equations and Gauss’s law may be used on the

divergence equations. This should be logically obvious.

Example: When a static current is flowing in a wire in the ẑ direction, the magnetic flux iserifyerify

determined by Stokes’s theorem (Fig. 1.36). Thus just outside of the wire we have

Ienc =
∫∫

S
(∇×H) ·n̂ d|S| =

∮

B
H ·dl. [A] (1.186)

For this simple geometry, of the current in a wire is related to H(x, t) by

Ienc =
∮

B
H ·dl = Hθ2πr.

Here Hθ is perpendicular to both the radius r and the direction of the current ẑ. Thus

Hθ =
Ienc
2πr

,

and we see that H , and thus B = µoH , drop off as the reciprocal of the radius r.
erifyerify

Exercise: Explain how Stokes’s law may be applied to ∇×E = −Ḃ, and explain what it means.

Hint: This is the identical argument given above for the current in a wire, but for the electric case.

Solution: Integrating the left side of equation EF over an open surface results in a voltage (emf)

induced in the loop closing the boundary B of the surface

φinduced =
∫∫

S
(∇×E) ·n̂ d|S| =

∮

B
E ·dl [V].

The emf (electromagnetic force) is the same as the Thévenin source voltage induced by the rate of

change of the flux. Integrating the Eq. 1.5.15 over the same open surface S results in the source oferifyerify

the induced voltage φinduced, which is proportional to the rate of change of the flux [webers]

φinduced = − ∂

∂t

∫∫

S
B ·n̂ dA = Lψ̇, [Wb/s].



1.5. STREAM 3B: VECTOR CALCULUS (10 LECTURES) 167

where L is the inductance of the wire. The area integral on the left is in [Wb/m2] resulting in the

total flux crossing normal to the surface ψ [Wb].

If we apply Gauss’s law to the divergence equations, we find the total flux crossing the closed VerifyVerify

surface.

Exercise: Apply Gauss’s law to equation ED and explain what it means in physical terms. So-

lution: The area of the normal component of D is equal to the volume integral over the charge

density: thus, Gauss’s law says that the total charge within the volume Qenc, found by integrat-

ing the charge density ρ(x) over the volume V , is equal to the normal component of the flux D

crossing the surface S
Qenc =

∫∫∫

V
∇·D dV =

∫∫

S
D ·n̂ dA.

Summary: Maxwell’s four equations relate the field strengths to the flux densities. There are

two types of variables: field strengths (E,H) and flux densities (D,B). There are two classes:

electric (E,D) and magnetic H ,B. One might naturally view this as a 2x2 matrix, with rows

being electric and magnetic strengths, and columns being electric and magnetic and flux densities,

defining a total of four variables:

Strength Flux

Electric E [V/m] D [Col/m2]

Magnetic H [A/m] B [Wb/m2]

.

Applying Stokes’s curl law to the forces induces a Thévein voltage (emf) or Norton current source.

Applying Gauss’ divergence law to the flows gives the total charge enclosed. The magnetic charge

is always zero since ∇ ·B = 0, because magnetic mono-poles do not exist. However, magnetic

dipoles do exist, as in the example of the electron which contains a magnetic dipole.

The wave equation: When Maxwell’s equations are combined, the vector wave equation results.

There is the famous story that Maxwell introduced the displacement current Ḋ to make the equa-

tions symmetric, allowing him to predict the formula for the speed of light. The displacement

current was not verified by the experiments of Faraday and Ampere.

Taking the curl of Maxwell’s electric field strength equation for the ∇×E (Fig. 1.8, p. 166),

and using the expression for ∇×B gives

∇×∇×E = −∇×Ḃ = −µo∇×Ḣ = −µoǫoË. (1.187)

Applying the GoD identity (Eq. 1.178) gives

∇
2E − 1

ǫo
∇(∇·D) = µoǫoË. (1.188)

In a charge-free region ∇·D = 0 and since 1/c2 = µoǫo, one obtains the vector wave equation

∇
2E(x, t) =

1

c2
Ë(x, t)↔ s2

c2
o

E(x, ω). (1.189)

It is important to distinguish the vector Laplacian from the scalar Laplacian.
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Recall the d’Alembert solutions of the scalar wave equation (Eq. 1.95, p. 109)

E(x, t) = f (x− ct) + g(x + ct),

where f, g are arbitrary vector fields. This result applies to the vector case since it represents three

identical, yet independent, scalar wave equations, in the three dimensions.

In a like manner one may derive the wave equation in terms of H

∇
2H(x, t) =

1

c2
Ḧ(x, t)↔ s2

c2
o

H(x, ω). (1.190)

This equation does not have the restriction that there is no free charge, because ∇·B = 0. Thus

both E,H obey the wave equation (thus they are locked together in space-time if we assume no

free charge) (Sommerfeld, 1952).

Poynting’s theorem: The energy flux density P [W/m2] is perpendicular to E and B, denoted

as

P =
1

µo
E ×B.

Electrical impedance seen by an electron: Up to now we have only considered the Brune im-

pedance which is a special case with no branch points or branch cuts. We can define impedance for

the case of diffusion, as in the case of the diffusion of heat. There is also the diffusion of electrical

and magnetic fields at the surface of a conductor, where the resistance of the conductor dominates

the dielectric properties, which is called the electrical skin effect, where the conduction currents are

dominated by the conductivity of the metal rather than the displacement currents. In such cases the

impedance is proportional to
√
s, implying that it has a branch cut. Still in this case the real part of

the impedance must be positive in the right s half-plane, the required condition of all impedances,

such that postulate P3 (p. 101) is satisfied.

Example: When we deal with Maxwell’s equations the force is defined by the Lorentz force

f = qE + qv∇×B) = qE + C ×B,

which is the force on a charge (e.g., electron) due to the electric E and magnetic B fields. The

magnetic field plays a role when the charge has a velocity v. When a charge is moving with

velocity v, it may be viewed as a current C = qv.

In this case the impedance in a wire, where the current is constrained, the complex impedance

density is

Z(s) = σ + sǫo, [Ω/m2]

which when integrated over an area is the impedance in ohms (Feynman, 1970c, p. 13-1). Here σ
is the electrical conductivity and ǫo is the electrical permittivity. Since σ ≫ ωǫo this reduces to the

resistance of the wire, per unit length.

1.5.16 Lec 42 The Quasi-static approximation

There are a number of assumptions and approximations that result in special cases, many of which

are classic. These manipulations are all done at the differential equation level, by making assump-

tions that change the basic equations that are to be solved. These approximations are distinct from

assumptions made while solving a specific problem.110

110https://www.youtube.com/watch?v=_pEiA0-r5A8
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A few and important examples include

1. In vacuo waves (free-space scalar wave equation)

2. Expressing the vector wave equation in terms of scalar and vector potentials

3. Quasi-statics

(a) scalar wave equation

(b) Kirchhoff’s low-frequency lumped approximation (LRC networks)

(c) Transmission line equations (telephone and telegraph equations)

One of the very first insights into wave propagation was due to Huygens (c1640) (Fig. 1.24).

Quasi-statics and its implications: Quasi-statics (Postulate (P10), p. 102) is an approximation

used to reduce a partial differential equations to a scalar (one-dimensional) equation (Sommerfeld,

1952). Quasi-statics is a way of reducing a three-dimensional problem to a one–dimensional prob-

lem. So that it is not miss-applied, it is important to understand the nature of this approximation,

which goes to the heart of transmission line theory. The quasi-static approximation states that

the wavelength λ is greater than the dimensions of the object ∆ (e.g., λ ≫ ∆). The best known

examples, Kirchhoff’s current and voltage laws, KCL and KVL, almost follow from Maxwell’s

equations given the quasi-static approximation (Ramo et al., 1965). These laws, based on ohm’s

law, state that the sum of the currents at a node must be zero (KCL) and the sum of the voltages

around a loop must be zero (KCL).

These well-known laws are the analogues of Newton’s laws of mechanics. The sum of the

forces at a point is the analogue of the sum of the loop voltages. Voltage φ is the force potential,

since the electric field E = −∇φ. The sum of the currents is the analogue of the vector sum of

velocities (mass) at a point, which is zero.

The acoustic wave equation describes how the scalar field pressure p(x, t) and the vector force

density potential (f(x, t) = −∇p(x, t) [N/m2]) propagate in three dimensions. The net force is

the integral of the pressure gradient over an area. If the wave propagation is restricted to a pipe

(e.g., organ pipe), or to a string (e.g., an guitar or lute), the transverse directions may be ignored,

due to the quasi-static approximation. What needs to be modeled by the equations is the wave

propagation along the pipe (string). Thus we may approximate the restricted three-dimensional

wave by a one-dimensional wave.

However if we wish to be more precise about this reduction in geometry (R2 → R), we need

to consider the quasi-static approximation, as it makes assumptions about what is happening in

the other directions, and quantifies the effect (λ ≫ ∆). Taking the case of wave propagation in

a tube, say the ear canal, there is the main wave direction, down the tube. But there is also wave

propagation in the transverse direction, perpendicular to the direction of propagation. As shown

in Table H.2 (p. 273), the key statement of the quasi-static approximation is that the wavelength

in the transverse direction is much larger that the radius of the pipe. This is equivalent to saying

that the radial wave reaches the walls and is reflected back, in a time that is small compared to the

distance propagated down the pipe. Clearly the speed of sound down the pipe and in the transverse

direction is the same if the medium is homogeneous (i.e., air or water). Thus the sound reaches

the walls and is returned (reflected) to the center line in a time that the axial wave traveled about

1 diameter along the pipe. So if the distance traveled is several diameters, the radial parts of the

wave have time to come to equilibrium. So the question one must ask is: What are the properties
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of this equilibrium? The most satisfying answer is provided by looking at the internal forces on

the air, due to the gradients in the pressure.

The pressure ̺(x, t) is a potential, thus its gradient is a force density f(x, t) = −∇̺(x, t). This

equation tells us how the pressure wave evolves as it propagates down the horn. Any curvature in

the pressure wave-front induces stresses, which lead to changes (strains) in the local wave velocity,

in the directions of the force density. The main force is driving the wave-front forward (down the

horn), but there are radial (transverse) forces as well, which tend to rapidly go to zero.

For example, if the tube has a change in area (or curvature), the local forces will create radial

flow, which is immediately reflected by the walls, due to the small distance to the walls, causing

the forces to average out. After traveling a few diameters, these forces will come to equilibrium

and the wave will trend towards a plane wave (or satisfy Laplace’s equation if the distortions of the

tube are sever). The internal stress caused by this change in area will quickly equilibrate.

There is a very important caveat, however: only at low frequencies, such that ka < 1, can the

plane wave mode can dominate. At higher frequencies (ka ≥ 1) where the wavelength is small

compared to the diameter, the distance traveled between reflections is much greater than a few

diameters. Fortunately the frequencies where this happens are so high that they play no role in

frequencies that we care about in the ear canal. This effect is describes as cross-modes, which

imply some sort of radial standing waves.

Of course such modes exist in the ear canal. However the are much more obvious on the

eardrum where the sound wave speed is much slower than that in air (Parent and Allen, 2010;

Allen, 2014). Because of the slower speed, the ear drum has low-frequency cross-modes, and

these may be seen in the ear canal pressure, and are easily observable in ear canal impedance

measurements. Yet they seem to have a negligible effect on our ability to hear sound with high

fidelity. The point here is that the cross modes are present, but we call upon the quasi-static

approximation as a justification for ignoring them, to get closer to the first-order physics.

Quasi-statics and Quantum Mechanics

It is important to understand the meaning of Planck’s constant h, which appears in the relations of

both photons (light “particles”) and electrons (mass particles). If we could obtain a handle on what

exactly Planck’s constant means, we might have a better understanding of quantum mechanics, and

physics in general. By cataloging the dispersion relations (the relation between the wavelength

λ(ν) and the frequency ν), between electrons and photons, this may be attainable.

Basic relations from quantum mechanics for photons and electrons include:

1. Photons (mass=0, velocity = c)

(a) c = λν: The speed of light c is the product of its wavelengths λ times its frequency ν.
This relationship is only for mono-chromatic (single frequency) light.

(b) The speed of light is

c =
1√
µoǫo

= 0.3× 106 [m/s]

(c) The characteristic resistance of light ro =
√
µo/ǫo = |E|/|H| = 377 [ohms] is defined

as the magnitude of the ratio of the electric E and magnetic H field, of a plane wave

in-vacuo.

(d) E = hν: the photon energy is given by Planck’s constant h ≈ 6.623 × 10−34 [m2

kgm/s], times the frequency (or bandwidth) of the photon)
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2. Electrons (mass = me, velocity V = 0):

(a) Ee = mec
2 ≈ 0.91 · 10−30 · 0.32 · 1012 = 8.14 × 10−20 [J] is the electron rest energy

(velocity V = 0) of every electron, of mass me = 9.1 × 10−31 [kgm], where c is the

speed of light.

(b) p = h/λ: The momentum p of an electron is given by Planck’s constant h divided by

the wavelength of an electron λ. It follows that the bandwidth of the photon is given by

νe =
Ee
h

and the wavelength of an electron is

λe =
h

pe
.

One might reason that QM obeys the quasi-static (long wavelength) approximation. If we

compare the velocity of the electron V to the speed of light c, then we see that

c = E/p≫ V = E/p = mV 2/V

Conjecture on photon energy:

Photons are seen as quantized because they are commonly generated by atoms, which produce

light-particles having the difference in two energy (quantum, or eigen-states) levels. The relation

E = hν does not inherently depend on ν being a fixed frequency. Planck’s constant h is the EM

energy density over frequency, and E(νo) is the integral over frequency

E(νo) = h
∫ νo

−νo

dν = 2hνo.

When the photon is generated by an atom, νo is quantized by the energy level difference that

corresponds to the frequency (energy level difference) of the photon jump.

1.5.17 Lec 43: Summary and Overview

Summary: Mathematics began as a simple way of keeping track of how many things there were.

But eventually physics and mathematics evolved together as tools to help us navigate our environ-

ment, both locally and globally, to solve daily problems such as food, water and waste manage-

ment, to understand the solar system and the stars, to defend ourselves using tools of war, etc.

Based on the historical record of the abacus, one can infer that people precisely understood the

concepts of counting, addition, subtraction and multiplication (recursive addition).

There is some evidence that the abacus, a simple counting tool formalizing the addition of very

large numbers, was introduced to the Chinese by the Romans, where it was used for trade.

However, this working knowledge of arithmetic did not to show up in written number systems.

The Roman numerals were not useful for doing calculations done on the abacus. The final answer

would then be expressed in terms of the Roman number system.

According to the known written record, the number zero (null) had no written symbol until the

time of Brahmagupta (628 CE). One should not assume the concept of zero was not understood

simply because there was no symbol for it in the Roman numeral system. Negative numbers and
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zero would be obvious when using the abacus. Numbers between the integers would be repre-

sented as rational numbers Q since any number may be approximated with arbitrary accuracy with

rational numbers.

Mathematics is the science of formalizing a repetitive method into a set of rules, and then gen-

eralizing it as much as possible. Generalizing the multiplication and division algorithm to different

types of numbers becomes increasingly more complex as we move from integers to rational num-

bers, irrational numbers, real and complex numbers and ultimately, vectors and matrices. How

do you multiply two vectors, or multiply and divide one matrix by another? Is it subtraction as

in the case of two numbers? Multiplying and dividing polynomials (by long division) generalizes

these operations even further. Linear algebra is a further important generalization, fallout from

the fundamental theorem of algebra, and essential for solving the generalizations of the number

systems.

Many of the concepts about numbers naturally evolved from music, where the length of a string

(along with its tension) determined the pitch (Stillwell, 2010, pp. 11, 16, 153, 261). Cutting the

string’s length by half increased the frequency by a factor of 2. One fourth of the length increases

the frequency by a factor of 4. One octave is a factor of 2 and two octaves a factor of 4 while a half

octave is
√

2. The musical scale was soon factored into rational parts. This scale almost worked,

but did not generalize (sometimes known as the Pythagorean comma111), resulting in today’s well

tempered scale, which is based on 12 equal geometric steps along one octave, or 1/12 octave

( 12
√

2 ≈ 1.05946 ≈ 18/17 = 1 + 1/17).

But the concept of a factor was clear. Every number may be written as either a sum or a product

(i.e., a repetitive sum). This led the early mathematicians to the concept of a prime number, which

is based on a unique factoring of every integer. At this same time (c5000 BCE), the solution of

a second degree polynomial was understood, which led to a generalization of factoring, since the

polynomial, a sum of terms, may be written in factored form. If you think about this a bit, it is sort

of an amazing idea that needed to be discovered (Stillwell, 2010, p. ???). This concept led to an

important string of theorems on factoring polynomials, and how to numerically describe physical

quantities. Newton was one of the first to master these tools with his proof that the orbits of the

planets are ellipses, not circles. This led him to expanding functions in terms of their derivatives

and power series. Could these sums be factored? The solution to this problem led to calculus.

So mathematics, a product of the human mind, is a highly successful attempt to explain the

physical world. All aspects of our lives were impacted by these tools. Mathematical knowledge

is power. It allows one to think about complex problems in increasingly sophisticated ways. An

equation is a mathematical sentence, expressing deep knowledge. WitnessE = mc2 and∇2ψ = ψ̈.

111https://en.wikipedia.org/wiki/Pythagorean_comma
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1.5.18 Reading List

The above concepts come straight from mathematical physics, as developed in the 17th–19th cen-

turies. Much of this was first developed in acoustics by Helmholtz, Stokes and Rayleigh, following

in Green’s footsteps, as described by Lord Rayleigh (1896). When it comes to fully appreciating

Green’s theorem and reciprocity, I have found Rayleigh (1896) to be a key reference. If you

wish to repeat my reading experience, start with Brillouin (1953, 1960), followed by Sommerfeld

(1952) and Pipes (1958). Second-tier reading contains many items: Morse (1948); Sommerfeld

(1949); Morse and Feshbach (1953); Ramo et al. (1965); Feynman (1970a); Boas (1987). A third

tier might include Helmholtz (1863a); Fry (1928); Lamb (1932); Bode (1945); Montgomery et al.

(1948); Beranek (1954); Fagen (1975); Lighthill (1978); Hunt (1952); Olson (1947). It would be

a mistake to ignore other important physics writings by stalwart authors, J.C. Slater112 and Landau

and Lifshitz,113 and their impressive series of mathematical physics books.

You must enter at a level that allows you to understand. Successful reading of these books

critically depends on what you already know. Rudimentary (high school) level math must be

mastered first. Read in the order that helps you best understand the material.

Without a proper math vocabulary, mastery is hopeless. I suspect that one semester of college

math can bring you up to speed. This book is my attempt to present this level of understanding.

112https://en.wikipedia.org/wiki/John_C._Slater
113https://www.amazon.com/Mechanics-Third-Course-Theoretical-Physics/dp/

0750628960
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1.6 Exercises

EXERCISES NS-1

Topic of this homework: Introduction to MATLAB/OCTAVE (see the Matlab or Octave tutorial

for help).

Deliverable: Report with charts and answers to questions. Hint: Use LATEX114

Plotting complex quantities in Matlab Plot real, imaginary, magnitude and phase quantities.

1. Consider the functions f(s) = s2 + 6s+ 25 and g(s) = s2 + 6s+ 5.

(a) Find the zeros of functions f(s) and g(s) using the command roots.

(b) On a single plot, show the roots of f(s) as red circles, and the roots of g(s) as blue

plus signs. The x-axis should display the real part of each root, and the y-axis should

display the imaginary part. Use hold on and grid on when plotting the roots.

(c) Give your figure the title ‘Complex Roots of f(s) and g(s)’ using the command title.

Label the x-axis ‘Real Part’ and the y-axis ‘Imaginary Part’ using xlabel and ylabel.

Type ylim([-10 10]) and xlim([-10 10]), to expand the axes.

2. Consider the function h(t) = ej2πft for f = 5 and t=[0:0.01:2]

(a) Use subplot to show the real and imaginary parts of h(t) as two graphs in one figure.

Label the x-axes ‘Time (s)’ and the y-axes ‘Real Part’ and ‘Imaginary Part’.

(b) Use subplot to plot the magnitude and phase parts of h(t). Use the command angle

or unwrap(angle()) to plot the phase. Label the x-axes ‘Time (s)’ and the y-axes

‘Magnitude’ and ‘Phase (radians)’.

1. Prime numbers in Matlab

(a) Use the Matlab function factor to find the prime factors of 123, 248, 1767, and

999,999.

(b) Use the Matlab function isprime to check if 2, 3 and 4 are prime numbers. What

does the function isprime return when a number is prime, or not prime? Why?

(c) Use the Matlab function primes to generate prime numbers between 1 and 106 and

save them in a vector x. Plot this result using the command hist(x).

(d) Now try [n,bin_centers] = hist(x). Use length(n) to find the number

of bins.

(e) Set the number of bins to 100 by using an extra input argument to the function hist.

Show the resulting figure and give it a title and axes labels.

2. Inf, NaN and logarithms in Matlab

114http://www.overleaf.com
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(a) Try 1/0 and 0/0 in the command window. What are the results? What do these

‘numbers’ mean in Matlab?

(b) In Matlab, the natural logarithm ln(·) is computed using the function log (log10 and

log2 are computed using log10 and log2). Try log(0) in the command window.

(c) Try log(-1) in the command window. Do you get what you expect for ln(−1)?
Show how Matlab arrives at the answer by considering −1 = eiπ.

(d) (not graded) What is a decibel? Look up decibels on the internet.

3. Find the largest prime number that can be stored on an Intel 64 bit computer, which we call

πmax. Hint: As explained in the Matlab/Octave command help flintmax, the largest

positive integer is 253, however the largest integer that can be factored is 232 =
√

264. Explain

the logic of your answer. Hint: help isprime().

%Matlab code to find the largest prime in IEEE-floating point

clear variables; close all

clc

format long;

N=2ˆ32; %flintmax says this is the largest integer

disp(sprintf(’N %g’,N));

%

for n=1:20

p=isprime(N-n);

if p

F=factor(N-n)

disp(sprintf(’n= %g, N=%g; Factor: %d’,n,N,factor(N-n)))

end

end

4. Suppose you are interested in primes that are greater than πmax. How can you find them on

an Intel computer (i.e., one using IEEE-floating point)?

(a) Hint 1: Since every prime number greater than 2 is odd, there is no reason to check

the even numbers. Thus consider a sieve containing only odd numbers, starting from 3

(not 2). Thus odd integers nodd ∈ N/2 contain all the primes other than 2.

5. The following idenity is interesting:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

1 + 3 + 5 + 7 + 9 = 52

· · ·
N−1∑

n=0

2n + 1 = N2.

Can you find a proof?115

115This problem came from an exam problem for Math 213, Fall 2016.
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EXERCISES NS-2

Topic of this homework: Prime numbers, greatest common divisors, the continued fraction al-

gorithm

Deliverable: Answers to questions.

1. According to the fundamental theorem of arithmetic, every integer may be written as a prod-

uct of primes.

(a) Put the numbers 1, 000, 000, 1, 000, 004 and 999, 999 in the form N =
∏
k
πβk

k (you may

use Matlab to find the prime factors).

(b) Give a generalized formula for the natural logarithm of a number, ln(N), in terms of

its primes πk and their multiplicities βk. Express your answer as a sum of terms.

2. Explain why the following 2-line Matlab/Octave program returns the prime numbers πk
between 1 and 100?

n=2:100;

k = isprime(n);

n(k)

3. Prime numbers may be identified using ‘sieves’

(a) By hand, perform the sieve of Eratosthenes for n = 1 . . . 49. Circle each prime p then

cross out each number which is a multiple of p.

(b) In part (a), what is the highest number you need to consider before only the primes

remain?

(c) Generalize: for n = 1 . . . N , what is the highest number you need to consider before

only the primes remain?

(d) Write each of these numbers as a product of primes:

22=

30=

34=

43=

44=

48=

49=

.

4. Find the largest prime πk ≤ 100? Hint: Do not use matlab other than to check your answer.

Hint: Write out the numbers starting with 100 and counting backwards: 100, 99, 98, 97, · · · .
Cross off the even numbers, leaving 99, 97, 95, · · · . Pull out a factor (only 1 is necessary to

show that it is not prime).

5. Find the largest prime πk ≤ 1000? Hint: Do not use matlab other than to check your answer.
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Consider the Euclidean algorithm to find the greatest common divisor (GCD; the largest com-

mon prime factor) of two numbers. Note this algorithm may be performed using one of two

methods:

Method Division Subtraction

On each iteration... ai+1 = bi ai+1 = max(ai, bi)−min(ai, bi)
bi+1 = ai − bi · floor(ai/bi) bi+1 = min(ai, bi)

Terminates when... b = 0 (gcd= a) b = 0 (gcd= a)

The division method (Eq. 2.1, Sect. 2.1.2, Lec 5, Ch. 2) is prefered because the subtraction method

is much slower.

1. Understand the Euclidean (GCD) algorithm

(a) Use the Matlab command factor to find the prime factors of a = 85 and b = 15.

What is the greatest common prime factor of these two numbers?

(b) By hand, perform the Euclidean algorithm for a = 85 and b = 15.

(c) By hand, perform the Euclidean algorithm for a = 75 and b = 25. Is the result a prime

number?

(d) Consider the first step of the GCD division algorithm when a < b (e.g. a = 25 and

b = 75). What happens to a and b in the first step? Does it matter if you begin the

algorithm with a < b vs. b < a?

(e) Describe in your own words how the GCD algorithm works. Try the algorithm using

numbers which have already been separated into factors (e.g. a = 5 · 3 and b = 7 · 3).

2. Coprimes

(a) Define the term coprime.

(b) How can the Euclidean algorithm be used to identify coprimes?

(c) Give at least one application of the Euclidean algorithm.

3. Write a Matlab function, function x = my_gcd(a,b), which uses the Euclidean al-

gorithm to find the GCD of any two inputs a and b. Test your function on the (a,b) com-

binations from parts (a) and (b). Include a printout (or handwrite) your algorithm to turn

in.

Hints and advice:

• Don’t give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Octave

function, if you use it as a variable or function name, you won’t be able to use gcd to check your gcd()

function. Try clear all to recover from this problem.

• Try using a ‘while’ loop for this exercise (see Matlab documentation for help).

• You may need to make some temporary variables for a and b in order to perform the algorithm.

In this problem we are looking for integer solutions (m,n) ∈ Z to the equations ma + nb =gcd(a,b)
and ma + nb = 0 given positive integers (a, b) ∈ Z+. Note that this requires that either m or n
be negative. These solutions may be found using the Euclidean algorithm only if (a, b) are coprime

(a ⊥ b). Note that integer (whole number) polynomial relations such as these are known as ‘Dio-

phantine equations.’ The above equations are linear Diophantine equations, possibly the simplest

form of such relations.
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Matrix approach: It can be difficult to keep track of the a’s and b’s when the algorithm has many

steps. Here is an alternative way to run the Euclidean algorithm, using matrix algebra. Matrix

methods provide a more transparent approach to the operations on (a, b). Thus the Euclidean

algorithm can be classified in terms of standard matrix operations (discussed in Lec. 5 pp. 73-75):

Division method:

Define [
a0

b0

]
=

[
a
b

] [
ai+1

bi+1

]
=

[
0 1
1 −⌊ai/bi⌋

] [
ai
bi

]

Example: gcd(2,3)=1): For (a, b) = (2, 3), the result is as follows:

[
1
0

]
=

[
0 1
1 −2

] [
0 1
1 −1

] [
0 1
1 0

] [
2
3

]
=

[
−1 1
3 −2

]

︸ ︷︷ ︸
m n

[
2
3

]

Thus from the above equation we find the solution (m,n) to the integer equation

2m+ 3n = gcd(2, 3) = 1,

namely (m,n) = (−1, 1) (i.e., −2 + 3 = 1). There is also a second solution (3,−2), (i.e.,

3 · 2− 2 · 3 = 0), which represents the terminating condition. Thus these two solutions are a

pair and the solution only exists if (a, b) are coprime (a ⊥ b). Subtraction method: This method

is more complicated than the division algorithm, because at each stage we must check if a < b.
Define [

a0

b0

]
=

[
a
b

]
Q =

[
1 −1
0 1

]
S =

[
0 1
1 0

]

where Q sets ai+1 = ai− bi and bi+1 = bi assuming ai > bi, and S is a ‘swap-matrix’ which swaps

ai and bi if ai < bi. Using these matrices, the algorithm is implemented by assigning

[
ai+1

bi+1

]
= Q

[
ai
bi

]
for ai > bi,

[
ai+1

bi+1

]
= QS

[
ai
bi

]
for ai < bi.

The result of this method is a cascade of Q and S matrices. For (a, b) = (2, 3), the result is as

follows: [
1
1

]
=

[
1 −1
0 1

]

︸ ︷︷ ︸
Q

[
0 1
1 0

]

︸ ︷︷ ︸
S

[
1 −1
0 1

]

︸ ︷︷ ︸
Q

[
0 1
1 0

]

︸ ︷︷ ︸
S

[
2
3

]
=

[
2 −1
−1 1

]

︸ ︷︷ ︸
m n

[
2
3

]
.

Thus we find two solutions (m,n) to the integer equation 2m+ 3n = gcd(2, 3) = 1.

1. By inspection, find at least one integer pair (m,n) that satisfies 12m+ 15n = 3.

2. Using matrix methods for the Euclidean algorithm, find integer pairs (m,n) that satisfy

12m+ 15n = 3 and 12m+ 15n = 0. Show your work!!!

3. Does the equation 12m+ 15n = 1 have integer solutions for n and m? Why, or why not?
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Here we explore the continued fraction algorithm (CFA), as discussed in Lec. 6 (Chapters 1

and 2). In its simplest form the CFA starts with a real number, which we denote as α ∈ R. Let us

work with an irrational real number, π ∈ x̂, as an example, because its CFA representation will be

infinitely long. We can represent the CFA coefficents α as a vector of integers nk, k = 1, 2 . . .∞

α = [n1., n2, n3, n4, . . .]

= n1 +
1

n2 + 1
n3+ 1

n4+...

As discussed in Section 1.2.5, the CFA is recursive, with three steps per iteration:

For α1 = π, n1 = 3, r1 = π − 3 and α2 ≡ 1/r1.

α2 = 1/0.1416 = 7.0625 . . .

α1 = n1 +
1

α2

= n1 +
1

n2 + 1
α3

= . . .

In Matlab (Octave) script

alpha0 = pi;

K=10;

n=zeros(1,K); alpha=zeros(1,K);

alpha(1)=alpha0;

for k=2:K %k=1 to K

n(k)=round(alpha(k-1));

%n(k)=fix(alpha(k-1));

alpha(k)= 1/(alpha(k-1)-n(k));

%disp([fix(k), round(n(k)), alpha(k)]); pause(1)

end

disp([n; alpha]);

%Now compair this to matlab’s rat() function

rat(alpha0,1e-20)

1. By hand (you may use Matlab as a calculator), find the first 3 values of nk for α = eπ .

2. For part (1), what is the error (remainder) when you truncate the continued fraction after

n1, ..., n3? Give the absolute value of the error, and the percentage error relative to the

original α.

3. Use the Matlab program provided to find the first 10 values of nk for α = eπ, and verify your

result using the Matlab command rat().

4. Discuss the similarities and differences between the Euclidean algorithm (EA) and CFA.
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EXERCISES NS-3

Topic of this homework: Pythagorean triples, Pell’s equation, Fibonacci sequence

Deliverable: Answers to problems

Euclid’s formula for the Pythagorean triples a, b, c is: a = p2 − q2, b = 2pq, and c = p2 + q2.

1. What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

2. Solve for p and q in terms of a, b and c.

3. The ancient Babylonians (c2000BEC) cryptically recorded (a,c) pairs of numbers on a clay

tablet, archeologically denoted Plimpton-322.

To Do: Find p and q for the first five pairs of a and c from the tablet entries:

Table 1: First five (a,c) pairs of Plimpton-322.

a c

119 169

3367 4825

4601 6649

12709 18541

65 97

4. Based on Euclid’s formula, show that c > (a, b).

5. What happens when c = a?

6. Is b+ c a perfect square? Discuss.

:Pell’s equation is one of the most historic (i.e., important) equations of Greek number theory,

because it was used to show that
√

2 ∈ x̂. We seek integer solutions

x2 −Ny2 = 1.

As shown in Lec 8 of the lecture notes, the solutions xn, yn for the case of N = 2 are given by the

2x2 matrix recursion of the form

[
xn+1

yn+1

]
= 1

[
1 2
1 1

] [
xn
yn

]
= n

[
1 2
1 1

]n [
x0

y0

]
.

Diagonalization of a matrix (“eigenvalue/eigenvector decomposition”): As derived in Ap-

pendix C of the lecture notes, the most efficient way to computeAn is to diagonalize the matrix A,

by finding its eigenvalues and eigenvectors.
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To do: Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your results!

1. Solutions to Pell’s equation were used by the Pythagoreans to explore the value of
√

2.
Explain why Pell’s equation is relevant to

√
2.

2. Find the first 3 values of [xn, yn]
T by hand and show that they satisfy Pell’s equation for

N=2.

3. By hand, find the eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =

[
1 2
1 1

]

4. By hand, show that the matrix of eigenvectors, E, is

E =
[
~e+ ~e−

]
=

1√
3

[
−
√

2
√

2
1 1

]

5. Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[
λ+ 0
0 λ−

]

6. Now that you have diagonalized A (Equation ??), use your results for E and Λ to solve for

the n = 10 solution [x10, y10]
T to Pell’s equation with N = 2.

The Fibonacci sequence is famous in mathematics, and has been observed to play a role in the

mathematics of genetics. Let xn represent the Fibonacci sequence,

xn = xn−1 + xn−2, (1.191)

where the current output sample, xn, is equal to the sum of the previous two inputs. This is a ‘dis-

crete time’ recurrence relation. To solve for xn, we require some initial conditions. In this exercise,

let us define x0 = 1 and xn<0 = 0. This leads to the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .}
for n = 0, 1, 2, 3, . . ..

Here we seek the general formula for xn. Like the Pell’s equation, Eq. 1.191 has a recursive,

eigen decomposition solution. To find it we must recast xn as a 2x2 matrix relation, and then

proceed as we did for the Pell case.

1. Show that Eq. 1.191 is equivalent to the 2× 2 matrix equation

[
xn
yn

]
= A

[
xn−1

yn−1

]
. A =

[
1 1
1 0

]
(1.192)

and that the Fibonacci sequence xn as described above may be generated by

[
xn
yn

]
= An

[
x0

y0

] [
x0

y0

]
=

[
1
0

]

What is the relationship between yn and xn?
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2. Write a Matlab program to compute xn using the matrix equation above (you don’t need to

turn in your code). Test your code using the first few values of the sequence. Using your

program, what is x40?

Note: to make your program run faster, consider using the eigen decomposition of A, de-

scribed by Eq. ?? from the Pell’s equation problem.

3. Using the eigen decomposition of the matrix A (and a lot of algebra), it is possible to obtain

the general formula for the Fibonacci sequence,

xn =
1√
5

[(
1 +
√

5

2

)n+1

−
(

1−
√

5

2

)n+1]
. (1.193)

What are the eigenvalues λ± of the matrix A? How is the formula for xn related to these

eigenvalues?

4. Consider Eq. 1.193 in the limit as n→∞...

(a) What happens to each of the two terms [(1±
√

5)/2]n+1?

(b) What happens to the ratio xn+1/xn?

5. Prove that116

N∑

1

f 2
n = fNfN+1.

6. Replace the Fibonacci sequence with

xn =
xn−1 + xn−2

2
,

such that the value xn is the average of the previous two values in the sequence.

(a) What matrix A is used to calculate this sequence?

(b) Modify your computer program to calculate the new sequence xn. What happens as

n→∞?

(c) What are the eigenvalues of your new A? How do they relate to the behavior of xn
as n → ∞? Hint: you can expect the closed-form expression for xn to be similar to

Eq. 1.193.

7. Now consider

xn =
xn−1 + 1.01xn−2

2
.

(a) What matrix A is used to calculate this sequence?

(b) Modify your computer program to calculate the new sequence xn. What happens as

n→∞?

(c) What are the eigenvalues of your new A? How do they relate to the behavior of xn
as n → ∞? Hint: you can expect the closed-form expression for xn to be similar to

Eq. 1.193.

116I found this problem on a workseet for Math 213 midterm (213practice.pdf).



Appendix A

Notation

A.1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed.1

Where the definition is sketchy, page numbers are provided where these concepts are fully ex-

plained, along with many other important and useful definitions. For example a discussion of N

may be found on page 29. Math symbols such as N may be found at the top of the index, since

they are difficult to alphabetize.

A.1.1 Units

Strangely, or not, classical mathematics (as taught today in schools) does not contain the concept

of units. It seems units have been abstracted away. This makes mathematics distinct from physics,

where almost everything has units. Presumably this makes mathematics more general (i.e., ab-

stract). But for the engineering mind, this is not ideal, as it necessarily means that important

physical meaning has been surgically removed, by design. We shall stick to SI units when ever

possible. Spatial coordinates are quoted in meters [m], and time in seconds [s]. Angles in degrees

have no units, whereas radians have units of inverse-seconds [s−1.

A.1.2 Symbols and functions

We use ln as the log function base e, log as base 2, and πk to indicate the kth prime (e.g., π1 =
2, π2 = 3).

When working with Fourier FT and Laplace LT transforms, lower case symbols are in the

time domain while upper case indicates the frequency domain, as f(t) ↔ F (ω). An important

exception are Maxwell’s equations, because they are so widely used as upper case bold letters

(e.g., E(x, ω)). It seems logical to change this to conform to lower case, with e(x, t)↔ E(x, ω)
as the preferred notation.

A.1.3 Special symbols common to mathematical:

There are many pre-defined symbols in mathematics, too many to summarize here. We shall only

use a small subset, defined here.

1https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#

Definition_symbols
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• A set is a collection of objects that have a common property. A set is defined using braces.

For example, if set P = {a, b, c} such that a2 + b2 = c2, then members of P obey the

Pythagorean theorem. Thus we could say that {1, 1,
√

2} ∈ P .

• Number sets: N,P,Z,Q,F, x̂,R,C are briefly discussed below, and in more detail in Section

1.2.1 on p. 29.

• One can define sets of sets and subsets of sets, and this is prone (in my experience) to error.

For example, what is the difference between the number 0 and the null set ∅ = {0}? Is

0 ∈ ∅? Ask a mathematician. It is not a useful construction in the world of engineering.

• They symbol ⊥ is used in many different ways to indicate two things are perpendicular,

orthogonal, or in disjoint sets. In set theory A ⊥ B is equivalent to A ∩ B = ∅. If two

vectors E,H are perpendicular E ⊥ H , then their inner product E ·H = 0 is zero. One

must infer the meaning of ⊥ from its usage (the context).

A.1.4 Greek letters

The Greek letters used in this text include (at least) α, β, γ, δ, ǫ, κ, ρ, ξ, ω, σ, φ, ψ, ζ , and upper-case

Γ,Ξ, Φ, Ψ, ∆, Ω. Unfortunately some common Greek letters have no upper-case symbol, such as

α, ζ .

Many of these are pre-associated in engineering and physics with a specific physical meaning.

For example, ω [rad] is the radian frequency 2πf , ρ [kgm/m3] is commonly the density. φ, ψ are

commonly used to indicate angles of a triangle, and ζ(s) is the Riemann zeta function. Many of

these are so well established it makes no sense to define new terms, so we will adopt these common

terms (and define them).

Likely you do not know all of these Greek letters, commonly used in mathematics. Some of

them are pronounced in strange ways. The symbol ξ is pronounced “see,” ζ is “zeta,” β is “beta,”

and χ is “kie” (rhymes with pie and sky). I will assume you know how to pronounce the others,

which are more phonetic in English. One advantage of learning LATEX is that all of these math

symbols are built in, and thus more easily learned, once you have adopted this powerful open-

source math-oriented word-processing system (e.g., used to write this book).

Table A.1: Double-bold notation for the types of numbers. (#) is a page number. Symbol with an

exponent denote the dimensionality. Thus R2 represents the real plane. An exponent of 0 denotes

point, e.g.,  ∈ C0.

Symbol (p. #) Genus Examples Counter Examples

N (29) Counting 1,2,17,3, 1020 0, -10, 5j

P (29) Prime 2,17,3, 1020 0, 1, 4, 32, 12, −5

Z (30) Integer -1, 0, 17, 5j, -1020 1/2,π,
√

5

Q (30) Rational 2/1, 3/2, 1.5, 1.14
√

2, 3−1/3, π

F (30) Fractional 1/2, 7/22 2/1, 1/
√

2

x̂ (30) Irrational
√

2, 3−1/3, π, e Vectors

R (31) Reals
√

2, 3−1/3, π 2πj

C (31) Complex 1,
√

2j, 3−j/3, πj Vectors
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A.1.5 Double-Bold notation

Table A.1 indicates the symbol followed by a page number indication where it is discussed, and

the Genus (class) of the number type. For example, N > 0 indicates the infinite set of counting

numbers {1, 2, 3, · · · }, not including zero. Starting from any counting number, you get the next

one by adding 1. Counting numbers are also know as the Cardinal numbers.

We say that a number is in the set with the notation 3 ∈ N ⊂ R, which is read as “3 is in the

set of counting numbers, which in turn in the set of real numbers,” or in vernacular language “3 is

a real counting number.”

Prime numbers (P ⊂ N) are taken from the counting numbers, but do not include 1.

The signed integers Z include 0 and negative integers. Rational numbers Q are historically

defined to include Z, a somewhat inconvenient definition, since the more interesting class are the

fractionals F, a subset of rationals F ∈ Q that exclude the integers (i.e., F ⊥ Z). This is a useful

definition because the rationals Q = Z ∪ F are formed from the union of integers and fractionals.

The rationals may be define, using set notation (a very sloppy language, with incomprehensible

syntax) as

Q = {p/q : q 6= 0 & p, q ∈ Z}

which may be read as “the set ‘{· · · }’ of all p/q such that ‘:’ q 6= 0, ‘and’ p, q ⊂ Z. The translation

of the symbols is in single (‘· · · ’) quotes.

Irrational numbers x̂ are very special: They are formed by taking a limit of fractionals, as the

numerator and denominator→ ∞, and approach a limit point. It follows that irrational numbers

must be approximated by fractionals.

The reals (R) include complex numbers (C) having a zero imaginary part (i.e., R ⊂ C).

The size of a set is denoted by taking the absolute value (e.g., |N|). Normally in mathematics

this symbol indicates the cardinality, so we are defining it differently from the standard notation.

Classification of numbers: From the above definitions there exists a natural heretical structure

of numbers:

P ∈ N, Z : {N, 0,−N}, F ⊥ Z, Q : Z ∪ F, R : Q ∪ x̂ ⊂ C

1. The primes are a subset of the counting numbers: P ⊂ N.

2. The signed integers Z are composed of ±N and 0, thus N ⊂ Z.

3. The fractionals F do not include of the signed integers Z.

4. The rationals Q = Z ∪ F are the union of the signed integers and fractionals

5. Irrational numbers x̂ have the special properties x̂ ⊥ Q.

6. The reals R : Q, x̂ are the union of rationals and irrationals x̂

7. Reals R may be defined as a subset of those complex numbers C having zero imaginary part.
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A.2 Periodic functions

Fourier series tells us that periodic functions are discrete in frequency, with frequencies given by

nTx, where Ts is the sample period (Ts = 1/2Fmax and Fmin = Fmax/NFT).

This concept is captured by the Fourier series, which is a frequency expansion of a periodic

function. This concept is quite general. Periodic in frequency implies discrete in time. Periodic

and discrete in time requires periodic and discrete in frequency (the case of the DFT). The modulo

function mmodn is periodic with period n.

A periodic function may be conveniently indicated using double-parentheses notation. This is

sometimes known as modular arithmetic. For example

f((t))T = f(t) = f(t± kT ),

is periodic on t, T ∈ R with a period of T and k ∈ Z. This notation is useful when dealing with

Fourier series of periodic functions.

When a discrete valued (e.g., time) sequence is periodic we use square brackets

f [[n]]N = f [n] = f [n± kN ],

with n, k,N ∈ Z and period N . This notation will be used with discrete-time signals that are

periodic, such as the case of the DFT.

A.3 Differential equations vs. Polynomials

A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a

cubic has degree 3. We shall indicate a polynomial by the notation

PN(z) = zN + aN−1z
N−1 · · ·a0.

It is a good practice to normalize the polynomial so that aN = 1. This will not change the roots,

defined by Eq. 1.27 (p. 59). The coefficient on zN−1 is always the sum of the roots zn (aN−1 =∑N
n zn), and a0 is always their product (a0 =

∏N
n zn).

Differential equations have order (polynomials have degree). If a second order differential

equation is Laplace transformed (Lec. 1.3.14, p. 98), one is left with a degree 2 polynomial.

Example:

d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = α

(
d

dt
x(t) + βx(t)

)
↔ (A.1)

(s2 + bs+ c)Y (s) = α(s+ β)X(s). (A.2)

Y (s)

X(s)
= α

s+ β

s2 + bs+ c
≡ H(s)↔ h(t). (A.3)

Using the same argument as for polynomials, the lead coefficient must always be 1. The co-

efficient α ∈ R is called the gain. The complex variable s is the Laplace frequency. Discuss

half-derivatives, etc.

The ratio of the output Y (s) over the input X(s) is called the system transfer function H(s).
When H(s) is the ratio of two polynomials in s, the transfer function is said to be bilinear, since

it is linear in both the input and output. The roots of the numerator are called the zeros and those

of the denominator, the poles. The inverse Laplace transform of the transfer function is called

the system impulse response, which describes the system’s output signal y(t) for any given input

signal x(t), via convolution (i.e., y(t) = h(t) ⋆ x(t)).
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Matrix algebra: Systems

B.1 Vectors

Vectors as columns of ordered sets of scalars ∈ C. When we write then out in text, we typically

use row notation, with the transpose symbol:

[a, b, c]T =



a
b
c


 .

This is strictly to save space on the page. The notation for conjugate transpose is †, for example



a
b
c




†

=
[
a∗ b∗ c∗

]
.

The above example is said to be a 3 dimensional vector, because it has three components.

Row vs. column vectors: With rare exceptions, vectors are columns, denoted column-major.1

To avoid confusion, it is a good rule to make your mental default column-major, in keeping with

most signal processing (vectorized) software.2 Column vectors are the unstated default of Mat-

lab/Octave, only revealed when matrix operations are performed. The need for the column (or

row) major is revealed as a consequence of efficiency when accessing long sequences of num-

bers from computer memory. For example, when forming the sum of many numbers using the

Matlab/Octave command sum(A), where A is a matrix, by default Matlab/Octave operates on the

columns, returning a row vector, of column sums. Specifically

sum

[
1 2
3 4

]
= [4, 6].

If the data were stored in “row-major” order, the answer would have been the column vector

[
3
7

]
.

1https://en.wikipedia.org/wiki/Row-_and_column-major_order
2In contrast, reading words in English is ‘row-major.’
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Dot products: A vector dot product is defined to weight vector elements before summing them,

resulting in a scalar. The transpose of a vector (a row-vector), typically used as weights on the

elements of a vector. Dot products play an important role in vector algebra and calculus. For

example 

1
1
1


 ·



1
2
3


 =



1
1
1




T 

1
2
3


 =

[
1 1 1

]


1
2
3


 = 1 + 2 + 3 = 6.

Dialects of vector notation: Physical fields are, by definition, functions of space x [m], and in

the most general case, time t[s]. When Laplace transformed, the fields become functions of space

and complex frequency (e.g., E(x, t) ↔ E(x, s)). As before, there are several equivalent vector

notations. For example, vector E(x, t) may also written as

E(x, t) =



Ex(x, t)
Ey(x, t)
Ez(x, t)


 =



Ex
Ey
Ez


 (x, t) =

[
Ex, Ey, Ez

]T ≡ Exx̂ + Eyŷ + Ezẑ.

The above equation, with an equation number, is called a “displayed” equation. The in-line di-

alect is E(x, t) ==
[
Ex, Ey, Ez

]T
Ex(x, t)x̂ +Ey(x, t)ŷ +Ez(x, t)ẑ. These are all shorthand

notations for expressing the vector. Such usage is similar to a dialect in a language. Another di-

alect is column-transpose or “in-line” notation, so to place the vector on one line, saving space:

E(x, t) = [Ex, Ey, Ez](x, t)]
T . These several variants on vector notation are frequently used, even

interchangeably.

Complex elements: When the elements are complex (∈ C), the transpose is defined as the

complex conjugate of the elements. In such complex cases the transpose conjugate is denoted with

a † rather than T . Vectors are also frequency written using a bold font

aT =
[
2 −3 1

]
∈ C.

For this case when the elements are complex, the dot product is a real number

a · b = a†b =
[
a∗

1 a∗
2 a∗

3

]


b1

b2

b3


 = a∗

1b1 + a∗
2b2 + a∗

3b3 ∈ R.

Norm of a vector: The dot product of a vector with itself is called the norm of a, designated as

||a|| =
√

a†a ≥ 0

which is always non-negative.

Such a construction is useful when a and b are related by an impedance matrix

V (s) = Z(s)I(s)

and we wish to compute the power. For example, the impedance of a mass is ms and a capacitor

is 1/sC. When given a system of equations (a mechanical or electrical circuit) one may define an

impedance matrix.
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Complex power: In this special case, the complex power P(s) ∈ R(s) is defined, in the complex

frequency domain (s) as

P(s) = I†(s)V (s) = I†(s)Z(s)I(s)↔ p(t). [W]

The real part of the complex power must be positive. The imaginary part corresponds to available

stored energy.

GIVE MORE EXAMPLES

The case of three-dimensions is special, allowing definitions that are not defined in more di-

mensions. A vector in R3 labels the point having the coordinates of that vector.

B.1.1 Vectors in R3

Dot product in R3: The dot B ·C = ||B|| ||C|| cos(θ), and cos(θ) is called the direction cosine

between B and C.

Norm of a vector in R3: The norm of a vector is the dot product of it with itself

||A|| =
√

A ·A

Euclidean distance between two points in R3: The dot product of the difference between two

vectors (A−B) · (A−B) is the Euclidean distance between the points they define

||A−B|| =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.

Cross product: and cross product A × B = ||A|| ||B|| sin(θ) are defined between the two

vectors A and B.

The triple product: This is defined between three vectors as

A · (B ×C) = det

∣∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

,

∣∣∣∣∣∣∣

also defined in Fig. 1.16. This may be indicated without the use of parentheses, since there can

be no other meaningful interpretation. However for rigor, parentheses should be used. The triple

product is the volume of the parallelepiped (3D-crystal shape) outlined by the three vectors, shown

in Fig. 1.16, p. 80.

B.2 NxM Matrices

When working with matrices, the role of the weights and vectors can change, depending on the

context. A useful way to view a matrix is as a set of column vectors, weighted by the elements of

the column-vector of weights multiplied from the right. For example




a11 a12 a13 · · · a1M

a21 a22 a32 · · · a3M

. . .

aN1 aN2 aN3 · · · aNM







w1

w2

· · ·
wM


 = w1




a11

a21

a21

· · ·
aN1




+ w2




a12

a22

a32

· · ·
aN2



. . . wM




a1M

a2M

a3M

· · ·
aNM



,
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where the weights are
[
w1, w2, . . . , wM .

]T
Alternatively the matrix is a set of row vectors of

weights, each of which re applied to the column vector on the right ([w1, w2, · · · ,WM ]T ).

The determinant of a matrix is denoted either as det A or simply |A|, (as in the absolute

value.) The inverse of a square matrix is A−1 or invA. If |A| = 0, the inverse does not exist.

AA−1 = A−1A.

Matlab’s notional convention for a row-vector is [a, b, c] and a column-vector is [a; b; c]. A

prime on a vector takes the complex conjugate transpose. To suppress the conjugation, place a

period before the prime. The : argument converts the array into a column vector, without conju-

gation. A tacit notation in Matlab is that vectors are columns and the index to a vector is a row

vector. Matlab defines the notation 1 : 4 as the “row-vector” [1, 2, 3, 4], which is unfortunate as it

leads users to assume that the default vector is a row. This can lead to serious confusion later, as

Matlab’s default vector is a column. I have not found the above convention explicitly stated, and it

took me years to figure this out for myself.

When writing a complex number we shall adopt 1 to indicate
√
−1. Matlab/Octave prefer this

as well, as its explicit.

Units are SI; Angles in degrees [deg] unless otherwise noted. The units for π are always in

radians [rad]. Ex: sin(π), e90◦

eπ/2.

B.2.1 NxN matrices and 2x2 systems

Definitions:Does this discussion belong in
Appendix A?
Does this discussion belong in
Appendix A?

1. Scalar: A number, e.g. {a, b, c, α, β, · · · } ∈ {Z,Q, x̂,R,C}

2. Vector: A quantity having direction as well as magnitude, often denoted by a bold-face

letter with an arrow, x. In matrix notation, this is typically represented as a single row

[x1, x2, x3, . . .] or single column [x1, x2, x3 . . .]
T (where T indicates the transpose). In this

class we will typically use column vectors. The vector may also be written out using unit

vector notation to indicate direction. For example: x3×1 = x1x̂ +x2ŷ +x3ẑ = [x1, x2, x3]
T ,

where x̂, ŷ, ẑ are unit vectors in the x, y, z Cartesian directions (here the vector’s subscript

3 × 1 indicates its dimensions). The type of notation used may depend on the engineering

problem you are solving.

3. Matrix: A =
[
a1,a2,a3, · · · ,aM

]
N×M

= {an,m}N×M , can be a non-square matrix if the

number of elements in each of the vectors (N) is not equal to the number of vectors (M).

When M = N , the matrix is square. It may be inverted if its determinant |A| =
∏
λk 6= 0

(where λk are the eigenvalues).

We shall only work with 2× 2 and 3× 3 square matrices throughout this course.

4. Linear system of equations: Ax = b where x and b are vectors and matrix A is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse

x = A−1b

(b) Equivalence: If two systems of equations A0x = b0 and A1x = b1 have the same

solution (i.e., x = A−1
0 b0 = A−1

1 b1), they are said to be equivalent.
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(c) Augmented matrix: The first type of augmented matrix is defined by combining the

matrix with the right-hand-side. For example, given the linear system of equations

Ax = y [
a b
c d

] [
x1

x2

]
=

[
y1

y2

]
,

then the augmented matrix is

A|y =

[
a b y1

c d y2

]

A second type of augmented matrix may be used for finding the inverse of a matrix

(rather than solving a specific instance of linear equations Ax = b). In this case the

augmented matrix is

A|I =

[
a b 1 0
c d 0 1

]

Performing Gaussian elimination on this matrix, until the left side becomes the identity

matrix, yieldsA−1. This is because multiplying both sides byA−1 givesA−1A|A−1I =
I|A−1.

5. Permutation matrix (P ): A matrix that is equivalent to the identity matrix, but with scrambled

rows (or columns). Such a matrix has the properties det(P ) = ±1 and P 2 = I . For the 2x2

case, there is only one permutation matrix:

P =

[
0 1
1 0

]
P 2 =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]

A permutation matrix P swaps rows or columns of the matrix it operates on. For example,

in the 2x2 case, pre-multiplication swaps the rows

PA =

[
0 1
1 0

] [
a b
α β

]
=

[
α β
a b

]
,

whereas post-multiplication swaps the columns

AP =

[
a b
α β

] [
0 1
1 0

]
=

[
b a
β α

]

For the 3x3 case there are 3 · 2 = 6 such matrices, including the original 3x3 identity matrix

(swap a row with the other 2, then swap the remaining two rows).

6. Gaussian elimination (GE) operations Gk: There are 3 types of elementary row operations,

which may be performed without fundamentally altering a system of equations (e.g. the

resulting system of equations is equivalent). These operations are (1) swap rows (e.g. using

a permutation matrix), (2) scale rows, or (3) perform addition/subtraction of two scaled rows.

All such operations can be performed using matrices.

For lack of a better term, we’ll describe these as ‘Gaussian elimination’ or ‘GE’ matrices.3

We will categorize any matrix that performs only elementary row operations (but any number

of them) as a ‘GE’ matrix. Therefore, cascade of GE matrices is also a GE matrix.

3The term ‘elementary matrix’ may also be used to refer to a matrix that performs an elementary row operation.

Typically, each elementary matrix differs from the identity matrix by one single row operation. A cascade of elemen-

tary matrices could be used to perform Gaussian elimination.
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Consider the GE matrix

G =

[
1 0
1 −1

]

(a) This pre-multiplication scales and subtracts row (1) from (2) and returns it to row (2).

GA =

[
1 0
1 −1

] [
a b
α β

]
=

[
a b

a− α b− β

]

The shorthand for this operation is Gaussian elimination operation is (1) ← (1) and

(2)← (1)− (2).

(b) Post-multiplication adds and scales columns.

AG =

[
a b
α β

] [
1 0
−1 1

]
=

[
a− b b
α− β β

]

Here the second column is subtracted from the first, and placed in the first. The second

column is untouched. This operation is not a Gaussian elimination. Therefore, to

put Gaussian elimination operations in matrix form, we form a cascade of pre-multiply

matrices.

Here det(G) = 1, G2 = I , which won’t always be true if we scale by a number greater

than 1. For instance, if G =

[
1 0
m 1

]
(scale and add), then we have det(G) = 1,

Gn =

[
1 0

n ·m 1

]
.

Exercise: Find the solution to the following 3x3 matrix equation Ax = b by Gaussian elimina-

tion. Show your intermediate steps. You can check your work at each step using Matlab.


1 1 −1
3 1 1
1 −1 4






x1

x2

x3


 =



1
9
8


 .

1. Show (i.e., verify) that the first GE matrix G1, which zeros out all entries in the first column,

is given by

G1 =




1 0 0
−3 1 0
−1 0 1




Identify the elementary row operations that this matrix performs. Solution: Operate with

GE matrix on A

G1[A|b] =




1 0 0
−3 1 0
−1 0 1







1 1 −1 1
3 1 1 9
1 −1 4 8


 =



1 1 −1 1
0 −2 4 6
0 −2 5 7




The second row of G1 scales the first row by -3 and adds it to the second row

(2)⇐ −3(1) + (2).

The third row ofG1 scales the first row by -1 and adds it to the third row [(3)⇐ −(1)+(3)].
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2. Find a second GE matrix, G2, to put G1A in upper triangular form. Identify the elementary

row operations that this matrix performs. Solution:

G2 =



1 0 0
0 1 0
0 −1 1




or [(2)⇐ −(2) + (3)]. Thus we have

G2G1[A|b] =



1 0 0
0 1 0
0 −1 1







1 0 0
−3 1 0
−1 0 1






1 1 −1 1
3 1 1 9
1 −1 4 8


 =




1 1 −1 1
0 −2 4 6
0 0 1 1




3. Find a third GE matrix, G3, which scales each row so that its leading term is 1. Identify the

elementary row operations that this matrix performs. Solution:

G3 =



1 0 0
0 −1/2 0
0 0 1




which scales the second row by -1/2. Thus we have

G3G2G1[A|b] =



1 0 0
0 −1/2 0
0 0 1







1 1 −1 1
0 −2 4 6
0 0 1 1


 =



1 1 −1 1
0 1 −2 −3
0 0 1 1




4. Finally, find the last GE matrix, G4, that subtracts a scaled version of row 3 from row 2, and

scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix

(G4G3G2G1A = I). Solution:

G4 =



1 −1 −1
0 1 2
0 0 1




Thus we have

G4G3G2G1[A|b] =



1 −1 −1
0 1 2
0 0 1







1 1 −1 1
0 1 −2 −3
0 0 1 1


 =



1 0 0 3
0 1 0 −1
0 0 1 1




5. Solve for [x1, x2, x3]T using the augmented matrix format G4G3G2G1[A|b] (where [A|b]
is the augmented matrix). Note that if you’ve performed the preceding steps correctly,

x = G4G3G2G1b. Solution: From the preceding problems, we see that [x1, x2, x3]T =
[3,−1, 1]T .
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B.3 Inverse of the 2x2 matrix

We shall now apply Gaussian elimination to find the solution [x1, x2] for the 2x2 matrix equation

Ax = y (Eq. 1.59, left). We assume to know [a, b, c, d] and [y1, y2]. We wish to show that the

intersection (solution) is given by the equation on the right.

Here we wish to prove that the left equation (i) has an inverse given by the right equation (ii):
[
a b
c d

] [
x1

x2

]
=

[
y1

y2

]
(i);

[
x1

x2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
(ii).

How to take inverse:

1) Swap the diagonal, 2) change the signs of the off-diagonal, and 3) divide by ∆.

B.3.1 Derivation of the inverse of a 2x2 matrix

1. Step 1: To derive (ii) starting from (i), normalize the first column to 1.
[
1 b

a

1 d
c

] [
x1

x2

]
=

[
1
a

0
0 1

c

] [
y1

y2

]

2. Step 2: Subtract row (1) from row (2): (2)← (2)-(1)
[
1 b

a

0 d
c
− b

a

] [
x1

x2

]
=

[
1
a

0
−1
a

1
c

] [
y1

y2

]

3. Step 3: Multiply row (2) by ca and express result in terms of the determinate ∆ = ad− bc.
[
1 b

a

0 ∆

] [
x1

x2

]
=

[
1
a

0
−c a

] [
y1

y2

]

4. Step 4: Solve row (2) for x2: x2 = − c
∆
y1 + a

∆
y2.

5. Step 5: Solve row (1) for x1:

x1 =
1

a
y1 −

b

a
x2

=
1

a
y1 −

b

a

[
− c

∆
y1 +

a

∆
y2

]

=

[
1

a
+
b

a

c

∆

]
y1 −

b

a

a

∆
y2.

Rewriting in matrix format, in terms of ∆ = ad− bc, gives:
[
x1

x2

]
=

[
1
a

+ bc
a∆
− b

∆

− c
∆

a
∆

] [
y1

y2

]
=

1

∆

[
∆+bc
a
−b

−c a

] [
y1

y2

]
=

1

∆

[
d −b
−c a

] [
y1

y2

]
,

since d = (∆ + bc)/a.

Summary: This is a lot of messy algebra, that is why it is essential you memorize it:

1) Swap diagonal, 2) change off-diagonal signs, 3) normalize by ∆.
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Eigen Analysis

In the following discussion we show how to determine E and D (i.e., Λ), given A.

Calculating the eigenvalue matrix (Λ): The matrix equation for E is

AE = EΛ. (C.1)

Pre-multiplying by E−1 diagonalizes A, given the eigenvalue matrix (D in Matlab)

Λ = E−1AE. (C.2)

Post-multiplying by E−1 recovers A

A = EΛE−1. (C.3)

Matrix power formula: This last relation is the entire point of the eigenvector analysis, since it

shows that any power of A may be computed from powers of the eigen values. Specifically

An = EΛnE−1. (C.4)

For example, A2 = AA = EΛ (E−1E) ΛE−1 = EΛ2E−1.

Equations C.1, C.2 and C.3 are the key to eigenvector analysis, and you need to memorize

them. You will use them repeatedly throughout this course, and possibly for a long time after it is

over.

Showing that A − λ±I2 is singular: If we restrict Eq. C.1 to a single eigenvector (one of e±),

along with the corresponding eigenvalue λ±, we obtain a matrix equations

Ae± = E±λ± = λ±E±

Note the important swap in the order of E± and λ±. Since λ± is a scalar, this is legal (and critically

important), since this allows us to remove (factored out) E±

(A− λ±I2)E± = 0. (C.5)

This means that the matrix A−λ±I2 must be singular, since when it operates on E±, which is not

zero, it gives zero. It immediately follows that its determinant is zero (i.e., |(A−λ±I2)| = 0). This

equation is used to uniquely determine the eigenvalues λ±. Note the important difference between

λ±I2 and Λ (i.e., |(A− Λ)| 6= 0).
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Calculating the eigenvalues λ±: The eigenvalues λ± of A may be determined from |(A −
λ±I2)| = 0

∣∣∣∣∣
1− λ± N

1 1− λ±

∣∣∣∣∣ = (1− λ±)2 −N2 = 0.

For our case of N = 2, λ± = (1±
√

2).1

Calculating the eigenvectors e±: Once the eigenvalues have been determined, they are substi-

tute them into Eq. C.5, which determines the eigenvectors E =
[
e+, e−

]
, by solving

(A− λ±)e± =

[
1− λ± 2

1 1− λ±

]
E± = 0,

where 1− λ± = 1− (1±
√

2) = ∓
√

2.

Recall that Eq. C.5 is singular, because we are using an eigenvalue, and each eigenvector is

pointing in a unique direction (This is why it is singular). You might respectively suggest that this

equation has no solution. In some sense you would be correct. When we solve for E±, the two

equations defined by Eq. C.5 co-linear (the two equations describe parallel lines). This follows

from the fact that there is only one eigenvector for each eigenvalue.

Expecting trouble, yet proceeding to solve for E = [e+
1 , e

+
2 ]T ,

[
−
√

2 2

1 −
√

2

] [
e+

1

e+
2

]
= 0.

This gives two identical equations −
√

2e+
1 + 2e+

2 = 0 and e+
1 −
√

2e+
2 = 0. This is the price

of an over-specified equation (the singular matrix is degenerate). The most we can determine is

e+ = c [−
√

2, 1]T , where c is a constant. We can determine eigenvector direction, but not its

magnitude.

Following exactly the same procedure for λ−, the equation for e− is
[√

2 2

1
√

2

] [
e−

1

e−
2

]
= 0.

In this case the relation becomes e−
1 +
√

2e−
2 = 0, thus E− = c [

√
2, 1]T where c is a constant.

Normalization of the eigenvectors: The constant c may be determined by normalizing the

eigenvectors to have unit length. Since we cannot determine the length, we set it to 1. In some

sense the degeneracy is resolved by this normalization. Thus c = 1/
√

3, since
(
±
√

2
)2

+ 12 = 3 = 1/c2.

Summary: Thus far we have shown

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]

and

Λ =

[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
.

1It is a convention to order the eigenvalues from largest to smallest.
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Verify that Λ = E−1AE: To find the inverse of E, 1) swap the diagonal values, 2) change the

sign of the off diagonals, and 3) divide by the determinant ∆ = 2
√

2/
√

3 (see Appendix ??)

E−1 =

√
3

2
√

2

[
1
√

2

−1
√

2

]
=

[
0.6124 0.866
−0.6124 0.866

]
.

By definition for any matrix E−1E = EE−1 = I2. Taking the product gives

E−1E = ✚
✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
· 1

✚
✚
√

3

[√
2 −

√
2

1 1

]
=

[
1 0
0 1

]
= I2.

We wish to show that Λ = E−1AE

[
1 +
√

2 0

0 1−
√

2

]
. = ✚

✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
·
[
1 2
1 1

]
· 1

✚
✚
√

3

[√
2 −

√
2

1 1

]
,

which is best verified with Matlab.

Verify that A = EΛE−1: We wish to show that

[
1 2
1 1

]
=

1

✚
✚
√

3

[√
2 −

√
2

1 1

]
·
[
1 +
√

2 0

0 1−
√

2

]
. ✚

✚
√

3

2
√

2

[
1
√

2

−1
√

2

]
,

which is best verified with Matlab (or Octave). All the above equations have been verified both

with Matlab and Octave.
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Appendix D

Symbolic analysis of T E = EΛ

Update: Using Octave (version 4.2.2, June 21, 2018):

e1,1 =
b

a
2
− d

2
+ 1

2

√
a2 − 2ad+ 4bc + d2

=
2b

(a− d) +
√

(a− d)2 + 4bc

This looks very different from what I have below!

Here is what I get with the same command, from Matlab (June 21, 2018)

e1,1 =
a
2

+ d
2
−

√
a2−2 a d+d2+4 b c

2

c
− d

c
=

1

2c

[
(a− d)−

√
(a− d)2 + 4 b c

]

Here we derive the eigen-matrix E, and eigen-value matrix Λ given a 2x2 Transmission matrix

T =

[
A B
C D

]
,

such that T E = EΛ, using symbolic algebra methods, given by the Matlab/Octave’s script

syms A B C D T E L %Use symbolic Matlab/Octave

T=[A B;C D] %Given matrix T

[E,L]=eig(T) %Find eigen-vector matrix E and

%eigen-value matrix L

D.1 General case

The eigenvectors e± are

e± =




1
2C

[
(A−D)∓

√
(A−D)2 + 4BC

]

1


 (D.1)

and eigenvalues are

λ± =
1

2


 (A+D)−

√
(A−D)2 + 4BC

(A +D) +
√

(A−D)2 + 4BC


 (D.2)

The term under the radical (i.e., the discriminant) may be written in terms of the determinant of T

(A−D)2 + 4BC = A2 +D2 − 4(AD − BC) = A2 +D2 − 4∆T .

This becomes especially important for the case of reciprocal systems where ∆T = 1, or for anti-

reciprocal systems where ∆T = −1.
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D.2 Special cases having symmetry

Each 2x2 matrix has four entries, each of which can be complex. This leads to 4x2=8 possible

special symmetries (an eightfold way), discussed next, in quasi-order of their importance. Each

symmetry is related to properties of T . For example if T = T †, the matrix is said to have Hermitian

symmetry. When T = T T the matrix is symmetric, and when T = −T T is is said to be skew-

symmetric. Each of these eightfold symmetries corresponds to some sort of physical constraint, as

discussed below.

D.2.1 Reversible systems

When the values of T on its diagonal are equal (A = D), the matrix is called reversible, and the

eigenvectors and eigenvalues greatly simplify to

E =

[
−
√

B
C +

√
B
C

1 1

]
Λ =

[
A−

√
BC 0

0 A +
√
BC

]
(D.3)

This is a common symmetry, thus it is very important. It is useful in describing transmission lines,

as been discussed in length in Sections 1.3.9 (p. 89), H.3.2 and H.3.3 (pp 252-254).

D.2.2 Reciprocal systems

When the matrix is symmetric (B = C), the corresponding system is said to be reciprocal. Most

physical systems are reciprocal. The determinant of the transmission matrix of a reciprocal network

∆T = AD − BC = 1. For example Electrical networks, composed of inductors, capacitors

and resistors are always reciprocal. It follows that the complex impedance matrix is symmetric

(Van Valkenburg, 1964a).

Magnetic systems, such as dynamic loudspeakers are anti-reciprocal, and correspondingly

∆T = −1 The impedance matrix of a loudspeaker is skew symmetric (Kim and Allen, 2013).

All impedance matricies are either symmetric or anti-symmetric, depending on if they are recip-

rocal (LRC networks) or anti-reciprocal (magnetic networks). These system have complex eigen

values with negative real parts, corresponding to lossy systems. In some sense, all of this follows

from conservation of energy, but the precise general case is waiting for enlightenment. The imped-

ance matrix is never Hermitian. It is easily proved that Hermitian matricies have real eigen-values,

which correspond to lossless networks. Any physical system of equations that has any type of loss,

cannot be Hermitian.

In summary, given a reciprocal system, the T matrix has ∆T = 1, and the corresponding

impedance matrix is symmetric (not Hermitian).

D.2.3 Impedance

As previously discussed in Section 1.3.9 (p. 89), the T matrix corresponding to an impedance

matrix is [
V1

V2

]
= Z(s)

[
I1

I2

]
=

1

C

[
A ∆T

1 D

] [
I1

I2

]
.



D.2. SPECIAL CASES HAVING SYMMETRY 201

Reciprocal systems have skew-symmetric impedance matrices, namely z12 = z21. When the sys-

tem is both reversibleA = D and reciprocal, the impedance matrix simplifies to

Z(s) =
1

C

[
A 1
1 A

]

For such systems there are only two degrees of freedom,A and C. As discussed previously Section

1.3.9, p. 89, these each have a physical meaning, 1/C is the Thévenin source voltage and A/Cc is

the Thévenin impedance.

D.2.4 Transmission matrices and symmetry

The transmission matrix fully characterizes a two-port network (Sect. 1.3.9, p. 89).

D.2.5 Hermitian symmetry

When a system is Hermitian its matrix is conjugate symmetric

Z(s) = Z†(s),

a stronger condition that reciprocal, but not the symmetric symmetry of a Brune impedance matrix.

Impedance is not Hermitian, unless the diagonal elements are real, but it does have symmetric

symmetry.

In the case of a Hermitian matrix, the eigenvalues are always real. To show this start from the

definition of an impedance eigen-equation (V is a vector of voltages, I a current vector Z and an

impedance matrix)

V = ZI = IΛ,

where Z, I,V,Λ ∈ C, A = A† is a square conjugate-symmetric matrix, and I,V are vectors of

the size of Z. Here Z† is the complex transpose (see Appendix A, p. 188). The power P is the real

part of the voltage times the current

2P = V†I + VI† = (ZI)†I + ZI I† = I†Z†I + ZI I†

??? Subtracting the two equations gives

D.2.6 Double roots

For the 2x2 case of double roots the matrix has Jordan form

T =

[
λ 1
0 λ

]
.

Then

T 2 =

[
λn nλ
0 λn

]
.

This generalizes to nxn matrices having arbitrary combinations of degeneracies (multiple roots),

as in symmetric (square) drums, for example,
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Appendix E

Analysis of Pell equation (N=2, 3, M)

Section G.2.3 (p. 235) showed that the solution [xn, yn]
T to Pell’s equation, for N = 2, is given by

powers of Eq. 1.10. To find an explicit formula for [xn, yn]
T , one must compute powers of

A = 1

[
1 2
1 1

]
. (E.1)

We wish to find the solution to Pell’s equation (Eq. 1.10), based on the recursive solution, Eq.

1.11 (p. 50). Thus we need is powers ofA, that isAn, which gives the a closed form expression for

[xn, yn]T . By the diagonalization of A, its powers are simply the powers of its eigenvalues. This

diagonalization is called an eigenvalue analysis, a very general method rooted in linear algebra.

This type of analysis allows us to find the solution to most of the linear the equations we encounter.

From Matlab with N = 2 the eigenvalues of Eq. E.1 are λ± ≈ [2.4142,−0.4142] (i.e.,

λ± = 1(1 ±
√

2)). The final solution to Eq. E.1 is given in Eq. G.11 (p. 235). The solution for

N = 3 is provided in Appendix E.1.1 (p. 204).

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of

the eigenvalues. This results in the general solution given by
[
xn
yn

]
= 1nAn

[
1
0

]
= 1nEΛnE−1

[
1
0

]
.

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab

command [E,D]=eig(A) is helpful to find D and E given any A. As we saw above,

Λ = 1

[
1 +
√

2 0

0 1−
√

2

]
≈
[
2.414 0

0 −0.414

]
.

E.1 Pell equation eigenvalue-eigenvector analysis

Here we show how to compute the eigenvalues and eigenvectors for the 2x2 Pell matrix for N = 2

A =

[
1 2
1 1

]
.

The Matlab command [E,D]=eig(A) returns the eigenvector matrix E

E = [e+, e−] =
1√
3

[√
2 −

√
2

1 1

]
=

[
0.8165 −0.8165
0.5774 0.5774.

]
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and the eigenvalue matrix Λ (Matlab’s D)

Λ ≡
[
λ+ 0
0 λ−

]
=

[
1 +
√

2 0

0 1−
√

2

]
=

[
2.4142 0

0 −0.4142

]
.

The factor
√

3 on E normalizes each eigenvector to 1 (i.e., The Matlab command norm([
√

2, 1])
gives

√
3).

In the following discussion we show how to determine E and D (i.e., Λ), given A.

Table E.1: This table summarizes the solution of Pell’s equation due to the Pythagoreans using matrix recursion,

for the case of N=3. The integer solutions are shown in on the right. Not that xn/yn →
√

3, in agreement with the
Euclidean algorithm. The Matlab program for generating this data is PellSol3.m. It seem likely that β0 could be
absorbed in the starting solution, and then be removed from the generating function, other than as the known factor βn

0

Pell’s Equation for N = 3
Case of N = 3 & [x0, y0]

T = [1, 0]T , β0 = /
√

2
Note: x2

n − 3y2
n = 1, xn/yn −→∞

√
3

[
x1

y1

]
= β0

[
1
1

]
= β0

[
1 3
1 1

] [
1
0

]
(1β0)2 − 3(1β0)2 = 1

[
x2

y2

]
= β2

0

[
4
2

]
= β2

0

[
1 3
1 1

] [
1
1

] (
4β2

0

)2 − 3
(
2β2

0

)2
= 1

[
x3

y3

]
= β3

0

[
10
6

]
= β3

0

[
1 3
1 1

] [
4
2

] (
10β3

0

)2 − 3
(
6β3

0

)2
= 1

[
x4

y4

]
= β4

0

[
28
16

]
= β4

0

[
1 3
1 1

] [
10
6

] (
28β4

0

)2 − 3
(
16β4

0

)2
= 1

[
x5

y5

]
= β5

0

[
76
44

]
= β5

0

[
1 3
1 1

] [
28
16

] (
76β5

0

)2 − 3
(
44β5

0

)2
= 1

E.1.1 Pell equation for N = 3

In Fig. E.1 for N = 3 is given, with β0 = /
√

2. Perhaps try other trivial solutions such as [−1, 0]T

and [±, 0]T , to provide clues to the proper value of β0 for cases where N > 3.1

Exercise: I suggest that you verify EΛ 6= ΛE and AE = EΛ with Matlab. Here is the Matlab
program which does this:

A = [1 2; 1 1]; %define the matrix

[E,D] = eig(A); %compute the eigenvector and eigenvalue matrices

A*E-E*D %This should be $\approx 0$, within numerical error.

E*D-D*E %This is not zero

1My student Kehan found the genaral formula for βo.



Appendix F

Tables of Fourier and Laplace Transforms

Properties of Fourier Transforms:

1. Both time t and frequency ω are real.

2. For the forward transform (time to frequency), the sign of the exponential is negative.

3. The limits on the integrals in both the forward and reverse FTs are [−∞,∞].

4. When taking the inverse Fourier transform, the scale factor of 1/2π is required to cancel the

2π in the differential dω.

5. The Fourier step function may be defined by the use of superposition of 1 and sgn(t) = t/|t|
as

ũ(t) ≡ 1 + sgn(t)

2
=





1 if t > 0

1/2 t = 0

0 if t < 0

.

Taking the FT of a delayed step function

ũ(t− To)↔
1

2

∫ ∞

−∞
[1− sgn(t− To)] e−jωtdt = πδ̃(ω) +

e−jωTo

jω

Thus the FT of the step function has the term πδ(ω) due to the 1 in the definition of the

Fourier step. This term introduces a serious flaw with the FT of the step function: While it

appears to be causal, it is not.

6. The convolution ũ(t) ⋆ ũ(t) is not defined because both 1 ⋆ 1 and δ̃2(ω) do not exist (and

cannot be defined).

7. The inverse FT has convergence problems whenever there is a discontinuity in the time re-

sponse. This we indicate with a hat over the reconstructed time response. The error between

the target time function and the reconstructed is zero in the root-mean sense, but not point-

wise.

Specifically, at the discontinuity point for the Fourier step function (t = 0), ũ(t) 6= u(t), yet∫ |ũ(t)− u(t)|2dt = 0. At the point of the discontinuity the reconstructed function displays

Gibbs ringing (it oscillates around the step, hence does not converge at the jump).1 The

LT does not exhibit Gibbs ringing.

1https://en.wikipedia.org/wiki/Gibbs_phenomenon
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8. The FT is not always analytic in ω, as in this example of the step function. The step function

cannot be expanded in a Taylor series about ω = 0, because δ̃(ω) is not analytic in ω.

9. The Fourier δ function is denoted δ̃(t), to differentiate it from the Laplace delta function

δ(t). They differ because the step functions differ, due to the convergence problem described

above.

10. One may define

ũ(t) =
∫ t

−∞
δ̃(t)dt,

and define the somewhat questionable notation

δ̃(t) =
d

dt
ũ(t),

since the Fourier step function is not analytic.

11. The rec(t) function is defined as

rec(t) =
ũ(t)− ũ(t− To)

To
=





0 if t > 0

1/To 0 < t < To

0 if t < 0

.

It follows that δ̃(t) = limTo→0. Like δ̃(t), the rec(t) has unit area.

Table F.1: Summary of key properties of FTs.

FT Properties

d

dt
v(t)↔ ωV (ω) deriv

f(t) ⋆ g(t)↔ F (ω)G(ω) conv

f(t)g(t)↔ 1

2π
F (ω) ⋆ G(ω) conv

f(at)↔ 1

a
F
(
ω

a

)
scaling
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Table F.2: A brief table of simple Fourier Transforms. Note a > 0 ∈ R has units [rad/s]. To flag this
necessary condition, we use |a| to assure this condition will be met. The other constant To ∈ R [s] has no
restrictions, other than being real. Complex constants may not appear as the argument to a delta function,
since complex numbers do not have the order property.

f(t)↔ F (ω) Name

δ̃(t)↔ 1(ω) ≡ 1 ∀ ω Dirac

1(t) ≡ 1 ∀ t↔ 2πδ̃(ω) Dirac

sgn(t) =
t

|t| ↔
2

ω

ũ(t) =
1(t) + sgn(t)

2
↔ πδ̃(ω) +

1

ω
≡ Ũ(ω) step

δ̃(t− To)↔ e−ωTo delay

δ̃(t− To) ⋆ f(t)↔ F (ω)e−ωTo delay

ũ(t)e−|a|t ↔ 1

ω + |a| exp

rec(t) =
1

To
[ũ(t)− ũ(t− To)]↔

1

To

(
1− e−ωTo

)
pulse

ũ(t) ⋆ ũ(t)↔ δ̃2(ω) Not defined NaN
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Properties of the Laplace Transform

1. Time t ∈ R [s] and Laplace frequency [rad] are defined as s = σ + ω ∈ C.

2. Given a Laplace transform (LT ) pair f(t) ↔ F (s), in the engineering literature, the time

domain is always lower case [f(t)] and causal (i.e., f(t < 0) = 0) and the frequency domain

is upper-case [e.g. F (s)]. Maxwell’s venerable equations are the unfortunate exception to

this otherwise universal rule.

3. The target time function f(t < 0) = 0 (i.e., it must be causal). The time limits are 0− < t <
∞. Thus the integral must start from slightly below t = 0 to integrate over a delta functions

at t = 0. For example if f(t) = δ(t), the integral must include both sides of the impulse.

If you wish to include non-causal functions such as δ(t + 1) it is necessary to extend the

lower time limit. In such cases simply set the lower limit of the integral to −∞, and let the

integrand (f(t)) determine the limits.

4. When taking the forward transform (t → s), the sign of the exponential is negative. This

is necessary to assure that the integral converges when the integrand f(t) → ∞ as t → ∞.

For example, if f(t) = etu(t) (i.e., without the negative σ exponent), the integral does not

converge.

5. The limits on the integrals of the forward transform are t : (0−,∞) ∈ R, and the reverse LTs

are [σo−∞, σo +∞] ∈ C. These limits will be further discussed in Section 1.4.9 (p. 123).

6. When taking the inverse Laplace transform, the normalization factor of 1/2π is required to

cancel the 2π in the differential ds of the integral.

7. The frequency for the LT must be is complex, and in general F (s) is complex analytic for

σ > σo. It follows that the real and imaginary parts of F (s) are related. Given ℜ{F (s)} it is

possible to find ℑ{F (s)} (Boas, 1987). More on this in Section 1.3.14 (p. 98).

8. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane.

This will be explained in Sections 1.4.5-1.4.9 (p. 118-123).

9. The Laplace step function is defined as

u(t) =
∫ t

−∞
δ(t)dt =





1 if t > 0

NaN t = 0

0 if t < 0

.

Alternatively one could define δ(t) = du(t)/dt.

10. It is easily shown that u(t)↔ 1/s by direct integration

F (s) =
∫ ∞

0
u(t) e−stdt = −e

−st

s

∣∣∣∣∣

∞

o

=
1

s
.

With the LT step (u(t)) there is no Gibbs ringing effect.
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11. In many physical applications, the Laplace transform takes the form of a ratio of two poly-

nomials. In such case the roots of the numerator polynomial are call the zeros while the roots

of the denominator polynomial are called the poles. For example the LT of u(t) ↔ 1/s has

a pole at s = 0, which represents integration, since

u(t) ⋆ f(t) =
∫ r

−∞
f(τ)dτ ↔ F (s)

s
.

12. The LT is quite different from the FT in terms of its analytic properties. For example, the

step function u(t) ↔ 1/s is complex analytic everywhere, except at s = 0. The FT of

1↔ 2πδ̃(ω) is not analytic anywhere.

13. Dilated step function (a ∈ R)

u(at)↔
∫ ∞

−∞
u(at)e−stdt =

1

a

∫ ∞

−∞
u(τ)e−(s/a)τdτ =

a

|a|
1

s
= ±1

s
,

where we have made the change of variables τ = at. The only effect that a has on u(at)
is the sign of t, since u(t) = u(2t). However u(−t) 6= u(t), since u(t) · u(−t) = 0, and

u(t) + u(−t) = 1, except at t = 0, where it is not defined.

Once complex integration in the complex plane has been defined (Section 1.4.2, p. 107), we

can justify the definition of the inverse LT (Eq. 1.77).2

2
https://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms
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Table F.3: The following table provides a brief table of Laplace Transforms of f(t), δ(t),
u(t), rect(t),To, p, e,∈ R and F (s), G(s),s, a ∈ C. Given a Laplace transform (LT ) pair f(t) ↔ F (s),
the frequency domain will always be upper-case [e.g. F (s)] and the time domain lower case [f(t)] and
causal (i.e., f(t < 0) = 0). An extended table of transforms is given in Table F.4 on page 211.

f(t)↔ F (s) t ∈ R; s, F (s) ∈ C Name

δ(t)↔ 1 Dirac

δ(|a|t)↔ 1

|a| a 6= 0 time-scaled Dirac

δ(t− To)↔ e−sTo delayed Dirac

δ(t− To) ⋆ f(t)↔ F (s)e−sTo –
∞∑

n=0

δ(t− nTo) =
1

1− δ(t− To)
↔ 1

1− e−sTo
=

∞∑

n=0

e−snTo one-sided impulse train

u(t)↔ 1

s
step

u(−t)↔ −1

s
anti-causal step

u(at)↔ a

s
a 6= 0 ∈ R dilated or reversed step

e−atu(t)↔ 1

s+ a
a > 0 ∈ R damped step

cos(at)u(t)↔ 1

2

(
1

s− a +
1

s+ a

)
a ∈ R cos

sin(at)u(t)↔ 1

2

(
1

s− a −
1

s+ a

)
a ∈ C “damped” sin

u(t− To)↔
1

s
e−sTo T0 > 0 ∈ R time delay

rect(t) =
1

To
[u(t)− u(t− To)]↔

1

To

(
1− e−sTo

)
rect-pulse

u(t) ⋆ u(t) = tu(t)↔ 1/s2 ramp

u(t) ⋆ u(t) ⋆ u(t) =
1

2
t2u(t)↔ 1/s3 double ramp

1√
t
u(t)↔

√
π

s

tpu(t)↔ Γ(p+ 1)

sp+1
ℜp > −1, q ∈ C

Jn(ωot) u(t)↔
(√

s2 + ω2
o − s

)n

ωno
√
s2 + ω2

o
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Table F.4: Functional relationships between Laplace Transforms.

LT functional properties

f(t) ⋆ g(t) =
∫ t

t=0
f(t− τ)g(τ)dτ ↔ F (s)G(s) convolution

u(t) ⋆ f(t) =
∫ t

0−

f(t)dt↔ F (s)

s
convolution

f(at)u(at)↔ 1

a
F (

s

a
) a ∈ R 6= 0 scaling

f(t)e−atu(t)↔ F (s+ a) damped

f(t− T )e−a(t−T )u(t− T )↔ e−sTF (s+ a) damped and delayed

f(−t)u(−t)↔ F (−s) reverse time

f(−t)e−atu(−t)↔ F (a− s) time-reversed & damped

d

dt
f(t) = δ′(t) ⋆ f(t)↔ sF (s) deriv

Additional transforms

sin(t)u(t)

t
↔ tan−1(1/s) half-sync

F.1 Methods for automating the calculation of residues

In this appendix we shall set up the general problem of finding Kk given Eq. 1.50 (Gustavsen and

Semlyen, 1999).

Z(s) =
N(s)

D(s)
= sLo +Ro +

K∑

k=0

Kk

s− sk
, (F.1)

given the roots sk of polynomial D(s) = ΠK
k=1(s− sk) = 0.

Needs significant work.Needs significant work.

1. First discuss the general properties of Z(s) = K−1s+K0 +
∑K
k=k1

Kk

s−sk
.

Exercise: The impedance may be written as

Z(s) =
N(s)

D(s)
=

∑
m nms

m

∑
k dksk
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Thus the companion matrix for the numerator polynomial N(s) is

ZN =




−dN−1 dN−2 · · · · · · −d0

1 0 · · · 0

0 1 . . .
...

...
...

...
. . .

...

0 0 · · · 1 0




, (F.2)

thus numerator polynimial of Z(s) is N(s) = |ZN − sIN |.
The companion matrix for the denomonator polynomial D(s) is

YN =




−nN−1 nN−2 · · · · · · −n0

1 0 · · · 0

0 1 . . .
...

...
...

...
. . .

...

0 0 · · · 1 0




, (F.3)

while the denomonator polynomial of Z(s) is D(s) = |YN − sIN |.

2. Note that these equations need to include the determination of unknowns Lo and Ro, which

in some cases will be zero.

3. Next transform the residue epansion into its companion matrix (Sect. 1.3.2, Eq. 1.36 p. 65).

By definition, the eigen-values of the companion matrix are the same as the roots of the

impedance matrix.

4. General method to substitute s = sk in Z(s), to define a non-degenerate linear system of

equations in Kk, having nonzero determinant (∆K 6= 0) (Gustavsen and Semlyen, 1999).

The method is recursive if the roots are not accurately known. It might be useful to review

Newton’s method along with the Vandermonde determinant, to see if this might be further

optimized.

5. This method has close ties to the classic CFA, where it has been called the Cauer decompo-

sition, named after its inventor Wilhelm Cauer (Cauer and Mathis, 1995; Cauer et al., 2000;

Cauer, 1958; Cauer et al., 1958), who acted as the primary thesis advisor for Brune (Brune,

1931b; Van Valkenburg, 1964b).
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Bhâskara II, 50

bi-harmonic, 109

bilinear transformation, 76, 94, 186, 244, 245

Boas, 173

Bode, 173

Bombelli, 19, 23, 33, 78, 105

Brahmagupta, 20, 29, 50, 52, 172

branch cut, 114, 115, 250

branch cuts, 115

branch points, 115

Brillouin, 56, 73, 173

Brillouin zones, 110, 235

219



220 INDEX

Brune Condition, 112

Brune impedance, 77, 108–111, 119, 122

Cantor, 31

Cardano, 59

Cauchy, 56, 72, 93, 114

Cauchy integral formula, 120

Cauchy integral theorem, 120

Cauchy residue theorem, 51, 120

Cauchy-Riemann conditions, 107

causality, 97, 260

CFA, see continued fractions, 44

characteric resistance, 249

characteristic admittance, 149

Chebyshev, 39

chord–tangent methods, 92, 93, 217, 224, 228

CoC, 160

codomain, 72

CoG, 160

colorized plots: see “plots, colorized”, 256

companion matrix, 65, 67

complex analytic, 104, 112–115, 250

complex analytic functions, 93, 94, 97, 106,

114

complex analytic functions: see analytic, 71

complex analytic: see analytic, 71

complex frequency, see Laplace frequency, 121

complex numbers, 31

complex numbers, History of, 33

complex numbers, Newton’s view, 105

complex numbers: polar representation, 32

complex propagation function, see propagation

function, 110

composition, 28, 39, 50, 76, 78, 79, 82, 89, 91,

93, 94, 239, 240

compressible, 164

conjugate variables, 86, 91, 120, 144

conservation of energy, 110

conservation of energy, see energy, 106

conservation of energy: see energy, 23

conservative field, 109, 136, 164

continued fractions, 45, 222, 245

convolution, 73, 74, 123, 205

coprime, 30, 217, 218, 221

counting numbers, 29

cryptography, 36

cubic, 59

Curl ∇×(), 39, 130, 139, 160

d’Alembert, 24–26, 56, 58, 73, 103, 109, 131,

145, 149, 153, 154, 168

d’Alembert’s superposition principle, 145

deconv(), 76

deconvolution, 67, 75

degree, fractional, 186

degree, polynomials, 59, 73, 116, 186

degrees of freedom, 161

derivative, fractional, 117

derivative, half, 252

derivative, order, 117

Descartes, 23, 26, 73, 103, 231

determinant, 83, 88, 89, 129, 189, 190

DFT, 97

Dicke, 173

Diophantus, 18–20, 49

Dirac impulse function, 255

dispersion relation, 110

dispersion relation, see propagation function,

110

dispersive wave propagation, 58

Divergence ∇·(), 39, 130, 139, 160

division with rounding, 45

DoC, 160

DoF: see degrees of freedom, 161

DoG, 160

domain, 72

domain-coloring: see “plots, colorized”, 96

dot product, 74

DTFT, 97

dynamic stiffness of air, 58

eardrum standing waves, 170

eigen analysis of reversible systems, 200

eigen-analysis, 21

eigen-analysis: 2x2 matrix, 51, 199

eigen-analysis: Fibonacci, 54

eigen-analysis: Pell’s equation, 51

eigen-function expansion, 229

eigen-function of d/dt, 124

eigen-modes, 36

eigen-modes: physical explanation, 134

Einstein, 56

elimination, 78, 79

emf, 166

energy, 23, 57, 86, 120



INDEX 221

entire function, 70

entropy, 42, 43

epicycle, 57

equations, linear, 52

equi-partition theorem, 58

Eratosthenes, 41, 254

error function, 252

essential singularity, 115

Euclid, 31, 43

Euclid’s formula, 18, 20, 28, 48, 224, 225

Euclidean algorithm, 43, 44, 218

Euclidean length, 80

Euler, 25, 26, 56, 93, 231, 254

Euler’s equation, 140

Euler’s functional zeta equation, 258

evolution operator κ(s), 58

Ewald, 73

Exam I, 55

Exam II, 102

Exam III, 125

Exam IV (Final), 171

extended complex plane, 93

factoring, 59

Fermat, 23, 26, 50, 73, 103, 231

Feshbach, 173

Feynman, 139, 173

FFT, 97

Fibonacci sequence, 53

Fourier Series, 97

Fourier transform, 97

Fourier transform properties, 206

Fourier transform table, 207

fractional numbers, 30

fractional, degree, 117

fractional, order, 117

frequency domain, 40, 58, 97, 112, 113

Fry, 173

FTC, 159

FTCC, 159

FTVC, 136

function, circular, 72

function, inverse, 72

function, periodic, 72

functions, causal, 100

functions, periodic, 100

functions: Γ(s), 258

fundamental theorem of algebra, 39, 73, 76

fundamental theorem of arithmetic, 30, 34,

37–39

fundamental theorem of calculus, 39, 105

fundamental theorem of complex calculus, 39,

93, 103, 106

fundamental theorem of vector calculus, 39,

160, 161

fundamental theorems, 37–39, 159

fundamental theorems, vectors, 103

Galileo, 23, 57, 72, 103, 133

Gamma function, 257, 258

Gauss, 56, 114, 218

Gauss-Lucas theorem, 64, 233

Gaussian elimination, 87

GCD, 36, 43, 44, 220–222

GCD, greatest common divisor, 43

geometric series, 68

Gibbs phenomenon, 205, 208

Gradient∇(), 39, 130, 139, 160

gravity, 23, 57, 82, 155

Green, 173

Greens Theorem, 108

gyrator, 101

gyro-scope, 158

Halley, 9

Heaviside, 56

Heaviside step function, 208

Heisenberg, 73

Helmholtz, 26, 56, 103, 161, 173

Helmholtz portrait, 163

Helmholtz’ Theorem, 136

Helmholtz’s decomposition, 160

Helmholtz’s decomposition, see fundamental

theorem of vector calculus, 160

horn equation, 141, 144, 149, 156

horn, conical, 151

horn, exponential, 151

horn, uniform, 149

Hunt, 173

Huygens, 103, 141

Huygens principle, 154

IEEE-754, 31, 35, 59, 66

impedance, 77, 91, 92, 99, 102, 108–110,

120–122



222 INDEX

impedance, Brune, 77

impedance, poles and zeros, 146

impulse function, 252

impulse response, 186

incompressible, 164

integers, 30

integers, utility of, 34

integration, half, 252

internet security, 36, 219

intersection, 78

intersection of curves, 78, 82, 83, 87, 224, 226,

228, 231, 238, 240–242, 244

intersection of sets, 78

intersection point, 83

irrotational, 158, 164, 165

Kepler, 57

key encryption, 218

Kirchhoff, 56

Kirchhoff’s law, 139

Kirchhoff’s laws, 86

Kirchhoff’s portrait, 163

Lagrange, 50

Lamb, 173

Laplace frequency, 58, 91, 97, 121, 208

Laplace transform, 99, 209

Laplace transform table, 210, 252

Laplace transform, impedance, 112

LaplaceFrequency, 112

Laplacian, 141

Laplacian ∇2, 120, 129, 137, 139, 160

Laplacian N dimensions, 131

Laplacian, scalar∇2, 39

Laplacian, vector ∇2, 160

lattice vector, 235

laws of gravity, 57

length, Euclidean, 80

Leonardo da Vinci, 23

Lighthill, 173

linear equations, 73

linearity, 260

logarithmic derivative, 62, 64, 118, 233

logarithmic integral, 217, 218
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vector identity: CoG, 163

vector identity: DoC, 163

vector identity: DoG, 128

vector identity: GoD, 128, 160

vector identity: Laplacian, 164

vector inner product, see scalar product, 82

vector product, 80, 82, 164

vector triple product, 82

vector wave equation, 235

vector, three, 82

vector, unit, 82

vectors, 78

wave equation, 57, 141, 167, 235

wave number, 58, 89, 235

wave number, complex, 241

wave number, see propagation function, 110

wavelength, 58, 110

Webster horn equation, see horn equation, 141,

142

z-transform, 53, 97

Zeno’s paradox, 103

zeros, 186, 209

zeta function poles, 256, 259

zeta function, Euler, 40, 254

zeta function, Riemann, 40, 254

zviz.m, see: “plots, colorized”, 96


