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Terminology, constants & transforms

Definitions of common acoustic variables,1 the mathematical symbols and the units, as used
in the text (see p. 180-181).

Variable Symbol [Units]
Total pressure P = Po + p(t) [N/m2 = Pa]
temperature T = To + τ(t) [K○] Kelvin
density ρ = ρo + δ(t) [kg/m3]
adiabatic law p/δγ = Const.
Constants (air)
Atm Pressure Po = 105 [Pa]
Abs temperature To = 273 [K○]
density ρo = 1.18 [kg/m3]
Boyle’s Law Po/(ρoTo) = Const.

sound speed c = 345 =
√
γPo/ρo [m/s]

specific impedance ρoc = 407 [Rayls]
viscosity µ = 1.86 × 10−5 [Ns/m2] [Poise]
thermal conductivity κ = 25.4 × 103 [N/sK]
specific heat cap @Vo cv [J/kg]
specific heat cap @Po cp [J/kg]
Boltzman’s const. k = 1.38 × 10−23 J/molecule
ratio of specific heats γ = cp/cv = 1.4

Transform Time → Frequency Frequency → Time

Laplace Transform (LT) F (s) = ∫
∞
0 f(t)e−stdt f(t) = 1

2πj ∮CL
F (s)estds

CL is the Laplace contour

Fourier Transform (FT) F (ω) = ∫
∞
−∞ f(t)e−jωtdt f(t) = 1

2π ∫
∞
−∞ F (ω)ejωtdω

Fourier Series (FS) F [k] = 1
2π ∫

π
−π f(t)e

−jntdt f(t) = ∑∞k=−∞ F [k]ejnt
Z-Transform (ZT) F (z) = ∑∞n=0 f[n]z−n f[n] = 1

2πj ∮Cz
F (z)zn−1dz

Cz is the Z-transform contour

Discrete-Time FT (DTFT) F (ω) = ∑∞−∞ f[n]e−jωn f[n] = 1
2π ∫

π
−π F (ω)e

jωndω

Discrete FT (DFT) F [k]∑N−1
n=0 x[n]e−

2πj
N kn f[n] = 1

N ∑
N−1
k=0 F [k]e

2πj
N kn

Discrete convolution: f[n] ⋆ g[n] = ∑∞k=−∞ f[k]g[n − k]
Continuous convolution: f(t) ⋆ g(t) = ∫

∞
−∞ f(τ)g(t − τ)dτ

1cp, cv: https://en.wikipedia.org/wiki/Heat_capacity#Specific_heat_capacity



1 Basic Acoustics (9 pts)

1.1 The speed of sound

The formula for the speed of sound is c =
√
γP0/ρ0.

1. (1 pt) What is the significance of γP0? [This combination of variables represents the
adiabatic compressibility of air. The γ = cp/cv results from holding the temperature
constant during the cycle of the wave. Heat diffusion is slow compared to the cycle at
acoustic frequencies, such that the thermal energy is trapped in the air. ]

2. (1 pt) Does P0 depend on temperature? Yes / No (circle one) [No. The barometric
pressure depends on the weight of the air above us. While its density dependents on
temperature (ρ∝ T ), the total weight (i.e., mass) is constant, and is therefore indepen-
dent of temperature. That leaves the question as to why the barometric pressure varies
over time, but that is more about the humidity, winds, and many other variables. ]

3. (1 pt) Does ρ0 depend on temperature? Yes / No (circle one) [Yes, as discussed in
class

ρ(T,P0) = 1.275
273

273 +C
P0

105
,

where C is the temperature in degrees Celsius and K = 273 + C is the absolute tem-
perature [K○]. ]

4. (1 pt) What is the form of the dependence of the speed of sound on temperature?
Give the formula (or a proportional relationship) for c(T ), and explain the dependence.

[Since c =
√
γP0/ρ0 and following the state equation for a gas, ρ0 ∝ 1/T , we may

conclude that c(T )∝
√
T , where T is in degrees Kelvin. Because the percentage change

in degrees Kelvin is much smaller than in degrees C, this dependence is relatively small.
]

1.2 The wave equation

Below is the 2x2 matrix equation that describes, in the frequency domain, the propagation
of 1 dimensional sound waves in a tube having area A(x), in terms of the pressure P (x, s)
and volume velocity U(x, s): As shown in class the basic equations are:

d

dx
[ P (x,ω)
U(x,ω) ] = − [

0 Z(x, s)
Y(x, s) 0

] [ P (x,ω)
U(x,ω) ] . (1)

where P is the pressure, U is the volume velocity, Z = sρ0/A(x) and Y = sA(x)/ηP0, with
A(x) the area of the tube as a function of position along the length of the tube x.

1. (3 pts) Assuming A(x) = Ao is constant, rewrite these equations as a second order
equation (the wave equation) solely in terms of the pressure P (remove U), Z and Y .
[If we let P ′ ≡ ∂P /∂x (i.e., the partial with respect to space) then

P ′ +ZU = 0 (2)

and
U ′ + Y P = 0. (3)



Taking the partial wrt x of the first equation, and then using the second, gives

P ′′ +ZU ′ = P ′′ −ZYP = 0. (4)

]

2. (2 pts) Find the formula for the speed of sound in terms of Z and Y . [Since the
wave equation is

∂2P

∂x2
= s2

c2
P ↔ 1

c2
∂2P

∂t2
(5)

by inspection we see that ω2/c2 = ZY, which results in the final formula for the speed
of sound. ]

2 deciBels [dB]

1. (3 pts) There are two different definitions of acoustic dB, one based on pressure

dBp = 20 log10(P /Pref)

and a second based on acoustic intensity

dBI = 10 log10(I/Iref)

where P is the pressure in Pascals and I is the acoustic intensity.

To do: Using the relationships I ≡ ∣P ∣2/ρc and Iref ≡ ∣Pref ∣2/ρc, demonstrate that
these formulas are equivalent. Show your work. [The first is given by the formula
∣Pref ∣2/ρc and the second is given by Iref . Thus we need to show that numerically these
two quantities are similar (almost identical). Since (20 × 10−6)2/407 ≈ 10−12, the two
references are nearly, but not exactly, the same. ]

2. (1 pt) What is the attenuator gain, expressed in dB, if the pressure is reduced by a
factor of 2? [-6 dB corresponds to dividing the pressure by 2. ]

3. (1 pt) How many millibels [mB] in 1 bel [B]? [1000 mB = 1 B since mB is a much
smaller unit that the bel. ]

4. (1 pt) Give the formula for the intensity in mB units. [Note that 1 [dB] = 0.1 [Bel].
The intensity in mB is 1000 log10(I/Iref) where Iref = 10−12 W/m2. ]

5. (1 pt) Give the formula for the sound pressure level in cB (centibel) units. [The
sound pressure level in cB is 200 log10(P /Pref) where Pref = 20 × 10−6 [Pa]. ]



3 Transforms

3.1 Name that transform

Given the description of the signal/system, name the transform(s) that would be used to
analyze it:

1. (1 pt) The time response is an infinite sine wave, sin(t). [Fourier transform or fourier
series ]

2. (1 pt) The time response is zero for t < 0 and the frequency response is a function of
the complex radian frequency s. [Laplace, since it is strictly causal, and frequency is
complex. ]

3. (1 pt) The time response is given at times t = nT for n = 0 . . .∞, where T = 1/Fs

with Fs = 44100 kHz, and the frequency response is specified on the continuous unit
circle. [Since the frequency resp is specified on the unit circle, then it must be the z
transform. It is a causal sampled systems. ]

4. (1 pt) A finite-duration louspeaker voltage signal, measured in the laboratory, passed
through an A/D converter, and analyzed in Matlab. [DFT ]

3.2 Fourier vs. Laplace transforms

1. (2 pts) When do you use a Laplace transform and when do you use the Fourier
transform? Hint: Discuss differences in the time-domain signals/responses. [Use the
Laplace on causal impulse responses, such as impedances, and the Fourier transform on
“signals” that go on forever (or at least for a long time). The LT codes the transient
(and steady state), while the FT only captures the steady-state response. ]

2. (1 pt) Give an example where you can use both the FT and LT. [A causal function
typically has a FT , but not always. For example e−atu(t) has both, while etu(t) has a
LT but no FT . ]

3. (1 pt) Give an example where you cannot use the Laplace transform. [The Laplace
transform is always analytic in some region of the s plane. Functions that only have
transforms on the jω axis do not have LT s. A speech signal does not have a LT , for
example. ]

4. (2 pts) Derive the Fourier transform for the step function ũ(t − 1). Hint: You may
use the FT pair sgn(t)↔ 2

jω .

[Since the integral does not converge, one must fake it by using the time-symmetric
relationship 2ũ(t) = 1 − sgn(t), delayed:

Ũ(ω) ≡ ∫
∞

−∞
ũ(t − 1)e−jωtdt = F {1 − sgn(t − 1)

2
} = πδ̃(ω) + e−jω

jω

≠ ∫
∞

1
e−jωtdt = e−jωt

−jω
∣
∞

1

= e−jω − e−jω∞
jω

= e−jω

jω
− e−jω∞

jω

]



5. (2 pts) Derive the Laplace transform for the step function u(t − 1). [e−s/s ]

6. (1 pt) Describe the similarities and differences between u(t − 1) and ũ(t − 1). [The
FT has a delta function in addition to 1/jω term. The Fourier transform is not ideal
for analysis of 1-sided signals. ]

3.3 Laplace transforms

1. Time derivative and integral properties of the Laplace transform: Assuming f(t) ↔
F (s),

(a) (1 pt) What is the LT of df/dt? [sF (s). This is shown using integration-by-
parts, as follows:

d[f(t)e−st] = e−stdf
dt
dt − se−stf(t)dt

Integrate this from 0− to ∞, giving

f(t)e−st∣∞0− = ∫
∞

0−
e−st

df

dt
dt − s∫

∞

0−
e−stf(t)dt

Rearranging these and evaluating the limits gives the desired result

∫
∞

0−

df

dt
e−stdt = f(0−) + sF (s),

where f(0−) = 0. ]

(b) (1 pt) What is the LT of ∫
t

0− f(t)dt? [F (s)/s ]

2. Find the Laplace transforms of the following functions (show your work where indi-
cated)

(a) (1 pt) ∫
t

−∞ δ(t)dt [This is simply u(t), so the LT is 1/s. ]
(b) (1 pt) t2

2 u(t) [This is u(t) integrated twice in time, so the LT is 1/s3. ]
(c) (2 pts) h(t) = 3e−t/τu(t) (show your work; explicitly evaluate the LT integral)

[h(t)↔H(s) = 3
s+1/τ , which has a pole at s = −1/τ . ]

3. (2 pts) If u(t)/
√
πt ↔ 1/

√
s = F (s), What is g(t) ↔

√
s? [Since d/dt ↔ s then√

s = s/
√
s, thus d

dt
u(t)√
πt
↔
√
s. There appears to be a difficulty here, since ∫

δ(t)√
t
dt is

singular at t = 0. This problem may be resolved by inserting a small delay To, so that
the delta function does not resolve at t = 0. If we let G(s) = e−sTo

√
s ↔ d

dt
u(t)√
π(t−To)

=

�����δ(t)√
π(t−To)

+ u(t) ddt
1√

π(t−To)
. ]

4. (2 pts) Integrate I = ∫C
1
sds around the unit circle centered on s = 0.

[Let C be the unit circle, then s = ejθ, so

I = ∫
2π

0

dejθ

ejθ
= ∫

2π

θ=0

jejθ

ejθ
dθ = j ∫

2π

θ=0
dθ = j θ∣2πθ=0 = 2πj

]

5. (2 pts) Integrate ∫C
1
sds around the unit circle centered on s = 0.5 (i.e., σ = 0.5, ω = 0),

and s = −2. [The first is 2πj and the second is 0. This is explained by the Cauchy
Residue Theorem. ]



4 Convolution

Given two “causal” sequences an = [⋯,⋰,0,1,0,−1,0,⋯] and bn = [⋯,⋰,1,−1,0,0,⋯]. Here
the rising dots ⋰ define t = 0, before and at which time the signal is zero. Assume that
following [0,⋯] the signal remains zero.

1. (2 pts) Find causal sequence c ≡ a⋆b by direction convolution [Time reverse either a or
b and slide it against the other, forming the output sequence cn = [0,1,−1,−1,1,0,0,⋯]
]

2. (2 pts) Form the polynomials A(z) = ∑anzn and B(z) = ∑ bnzn, and find C(z) = A(z)⋅
B(z) [C(z) = (z−z3)(1−z) = z−z2−z3+z4 which has a coef vector [0,1,−1,−1,1,0,⋯]
]

3. (1 pt) What can you say about the sequence cn and the coefficients of C(z)? [They
are the same. ]

5 Acoustic transmission line

+

−

B)

x = 0
P1

U1
P3

U3 = 0
P2

x = L
R1 zl

U2

zo

This circuit represents an acoustic tube transmission line (TL), terminated at the far end
x = L with impedance zl(s). Every TL has four parameters: a length L [m], wave speed
c = 343 [m/s], cross-sectional area Ao [m2] and characteristic impedance zo.

To Do:

1. (2 pts) What is the acoustic impedance, zo observed by a plane wave in the tube
(area Ao)? What are its units? [The specific acoustic impedance of a plane wave is
ρc = 407 [Rayls]. The acoustic impedance of a plane wave in a tube of area A0 is ρc/A0

[Rayls/m2]. ]

2. (3 pts) Express the pressure and velocity as sums of the forward and backward trav-
eling waves (P = P + + P −, U = U+ −U−). Start with the definition of the impedance

Z(x, s) ≡ P (x, s)
U(x, s)

,

and find the relationship between Z(x, s) and the ‘reflectance’ Γ(x, s) (the frequency-
dependent reflection coefficient), at any point x along the transmission line. Note that
the characteristic impedance is also given as zo = P +/U+ = P −/U−, namely the ratio of
incident (reflected) pressure over volume velocity. [Starting from the definition of the
impedance (at any point x),

Z(x, s) = P (x)
U(x)

= P + + P −
U+ −U−

= P +

U+
(1 + Γ
1 − Γ

) = zo
1 + Γ
1 − Γ

]



3. (2 pts) Assuming zl = zo, find the input impedance Zin(s). [The quick answer is
that since Γ(s) = 0, the input impedance is

Zin = R1 + z0.

]

4. (3 pts) If the load impedance zl = zo, determine the transfer function H31(s). Hint:
Consider the forward and reverse traveling pressures, P = P + + P −. How is P +3 related
to P +2 ? If there are no reflections from zl, what can you say about P −3 and P −2 ? [P −3
and P −2 are equal to 0 because there are no reflections. Thus, P3/P2 = P +3 /P +2 , where
the forward pressures are related by the delay along the tube. In this case the wave is
a delay of T . Since δ(t − T )↔ e−sT ,

H32(s) =
P3

P2

= e−sT .

and

H31(s) =
P3

P1

= zo
R1 + z0

e−sT .

]

6 Lumped-element impedance models

6.1 Impedance elements

1. Find the impedance, Z(s) = F (s)/V (s), where F (s) is the force and V (s) is the
velocity (flow), by taking the Laplace transform (LT) of each of the following three
force relations.

(a) (1 pt) Hooke’s Law f(t) =Kx(t) (note that v(t) = dx/dt), whereK is the stiffness
(K = 1/C, where C is the compliance, analogous to capacitance for electrical
circuits). [Taking the LT gives

F (s) =KX(s) =KV (s)/s,

since

v(t) = d

dt
x(t)↔ sX(s).

Thus the impedance of the spring is

Zs(s) =
K

s
,

which is analogous to the impedance of an electrical capacitor. The relationship
may be made tighter by specifying the compliance of the spring as C = 1/K. ]

(b) (1 pt) Resistance f(t) = Rv(t) (e.g. an electrical resistor or mechanical dash-pot).
[From the LT this becomes

F (s) = RV (s)



and the impedance of the dash-pot is then

Zr = R,

analogous to that of an electrical resistor. ]

(c) (1 pt) Newton’s Law for Mass f(t) =Mdv(t)/dt (note mechanicalM is analogous
to inductance L in an electrical circuit). [Taking the LT gives

F (s) = sMV (s)

thus
Zm(s) = sM,

analogous to an electrical inductor. ]

6.2 The Helmholtz Resonator

A bottle has a neck of area Aneck and length l. It is connected to the body of the bottle
“barrel” of volume Vbarrel. Treat the barrel as a short piece of transmission line, closed at one
end, which looks like a compliance C = Vbarrel/γP0, and the neck as a mass M = ρ0l/Aneck.
These two impedances are in series, since they both see the same volume velocity (flow).

1. (2 pts) What is the input impedance Z(s) of the bottle in terms of M and C?

2. (1 pt) What is true about Z(s) at the bottle’s resonant frequency?

3. (1 pt) Find the bottle’s resonant frequency, in terms of M and C. Hint: Set s = j2πf .
[Solving for the resonant frequency, 0 = s0M + 1/(s0C), gives

s0 = jω0 =
√
−1
MC

which gives ω0 =
√

1

MC

]

4. (1 pt) Write out the formula for the resonant frequency in terms of the physical
dimensions of the bottle, and the speed of sound c. [The formula for the Helmholtz
resonator was derived in class, where it was shown to be

f0 =
c

2π

√
A

V l
, (6)

where A, l are the area and length of the neck and V is the volume of the bottle. ]

7 ABCD matrix method

7.1 Transfer functions of a transmission line

In this problem, we will look at the transfer function of the two-port network shown in Fig. 1.



M M
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C

Figure 1: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of
stiffness K or compliance C = 1/K. Below it is the electrical equivalent circuit, for comparison. The mass is
modeled as an inductor and the springs as capacitors to ground. The velocity is analogous to a current and
the force fn(t) to the voltage vn(t).

The velocity transfer function for this system is defined as the ratio of the output to the
input velocity. Consider the engine on the left pulling the train at velocity V1 and each car
responding with a velocity of Vn. Then

H(s) = VN(s)
V1(s)

is the frequency domain ratio of the last car having velocity VN to V1, the velocity of the
engine, at the left most spring (i.e., coupler).

To do:

1. (3pts) To start let N = 2. Write the ABCD matrix T for a single cell, composed
of series mass M/2, shunt compliance C and series mass M/2, that relates the force
(analogous to voltage) and velocity (analogous to current) at node 1 to node 2, where

[F1

V1
] = T12 [

F2(ω)
−V2(ω)

] (7)

[

T12 = [
1 sM/2
0 1

] [ 1 0
sC 1

] [1 sM/2
0 1

] = [1 + s
2MC/2 (sM/2)(2 + s2MC/2)
sC 1 + s2MC/2 ] (8)

]

2. (2 pts) Find the velocity transfer function assuming an unloaded input (F2 = 0).

H21(s) =
V2

V1

∣
F2=0

. (9)

[From the lower equation of (Eq.7) we see that V1 = sCF2 − (s2MC/2 + 1)V2. ]

3. (3 pts) Express H21(s) as a partial fraction expansion (e.g., put it in residue form).
You can set M = C = 1. [Expanding in a partial fraction expansion

V2

V1

∣
F2=0
= −1
s2MC/2 + 1

= ( c+
s − s+

+ c−
s − s−

) .

with s± = ±ȷ
√

2
MC and c± = ±ȷ/

√
2MC. ]



4. (1 pt) Find h21(t), the inverse Laplace transform of H21(s). (Note the Laplace trans-
form pair reptu(t)↔ r

s−p) [

h(t) = ∮
σ0+j∞

σ0−j∞

est

s2MC/2 + 1
ds

2πj
= c+e−s+tu(t) + c−e−s−tu(t).

The poles are at s± = ±ȷ
√

2
MC and the residues are c± = ±ȷ/

√
2MC. Its always a good

idea to verify this result using Matlab/Octave residue command. ]

5. (2 pts) What is the input impedance Zin = F1/V1 if F2 = −r0V2? [

Starting from the equation for T (s)

Zin(s) =
F1

V1

= T [ F2

−V2
] = −(1 + s

2CM/2)r0��V2 − (sM/2)(2 + s2CM/2)��V2

−sCr0��V2 − (1 + s2CM/2)��V2

.

Note that V2 cancels. ]

6. (2 pts) State the ABCD matrix relationship between the first and Nth node, in terms
of the cell matrix T12. [

[F1

V1
] = TN

12 [
FN(ω)
−VN(ω)

]

]

7.2 Model of a loudspeaker

The attached figure shows the equivalent circuit for an electro-dynamic earphone.

+

−

V0(f)

I0(f)
LeRe

Bol Ao

F2(f)

U2(f)
U1(f)

Lm Rm
ρoc

Acanal

V3(f)
P3(f)

Ca

F1(f)

Cm

Figure 2: There are three sections for this equivalent circuit for an earphone: the electrical input (left), the
mechanical response (center), and the acoustic output (right). The electrical input in in terms of the voltage
V (f) and current I(f). There are two elements, the coil resistance R and its inductance L. The center
section corresponds to the mechanical components, with a compliance C (spring), mass M and mechanical
damping r. The mechanical force F2(f) and a velocity U2(f) are the input to the transformer which converts
the force into a pressure. The diaphragm has an area A, which results in a pressure P2(f) = F1/A0, and a
volume velocity V2(f) = A0U(f) at the right.

1. (3 pts) Write out the transmission matrix for the loudspeaker between the input (V ,
I) and the mechanical output (F2, U2, to the left of the transformer). Namely, find T
defined as

[V
I
] = T [ F2

−U2
] .

Your answer should be expressed as a product of 2x2 matrices. You do not need to
multiply them together. [

[V
I
] = [1 R + sL

0 1
] [ 0 Bol

1/Bol 0
] [1 r + sM + 1/sC

0 1
] [ F2

−U2
]



]

2. (2 pts) The measured loudspeaker input impedance

Zin =
V

I
= Ze +Zmot.

Describe Ze and Zmot.

8 Filter classes

In the following let s = σ + iω be the Laplace (complex) frequency. Filters are causal
functions (one sided in time) that modify a signal (any function of time) into another signal.
For example if h(t) is a filter, and x(t) a signal then

y(t) = h(t) ⋆ x(t) ≡ ∫
t

∞
h(t − τ)s(τ)dτ ↔H(s)G(s)

where ⋆ defines convolution.

1. Define each of the following filter types (e.g. describe the characteristics of the filter’s
impulse response h(t) or frequency response H(s), or describe the pole-zero locations,
where applicable).

(a) (1 pt) Causal [The output is zero for t < 0. ]
(b) (1 pt) Stable [All poles must be in the left half plane, or on the jω axis. ]

(c) (1 pt) All-pass [The magnitude of an all-pass filter has magnitude of 1. This
filter only changes the phase. The zeros are symmetrically place in the right-half
plane across from the poles, in the left half plane. ]

(d) (1 pt) Minimum phase [The poles and zeros of this filter are in the left half
plane. ]

(e) (1 pt) Positive real [The real part of the frequency response is positive. ]

2. (1 pt) Can an all-pass filter be minimum phase? Why or why not? [In some sense
all-pass is the opposite of minimum phase. Any causal filter may be factored into
the product of an all-pass (A(ω)) and a minimum phase M(ω) filter. Namely given
any causal transfer function H(ω) = A(ω)M(ω), where ∣A∣ = 1 is only a frequency
dependent delay, and M(ω) is a filter with the smallest phase possible given ∣M(ω)∣.
The real and imaginary parts of a minimum phase filter are Hilbert transforms of each
other. ]

3. (1 pt) Prove that δ(t − 5) is all-pass. [∣e−5s∣ = 1 ]

4. (1 pt) Is δ(t+5) all-pass? [This response is not causal, since it is a time advance of 5
[s]. It has the LT e5s. But it still is still all-pass, since ∣e5s∣ = 1. Now one might argue
that it cannot have a Laplace transform if its not causal. But one sided functions can
be generalized to have a LT . ]



5. (2 pts) Is e−t all-pass or minimum phase? Justify your answer. [if you assume its
causal, then yes it has a single pole at s = −1. If the function exists for all time, then
it doesn’t have either a LT or FT transform. ]

6. (2 pts) When is F (s) = s−a
s+b all-pass? [In the trivial case, if b = -a, then F(s) =(s-

a)/(s-a)=1 is all-pass. Otherwise, we require that b is equal to the complex conjugate
of a. If b=a*, then the real part of the pole will be opposite the real part of the zero,
so it falls on the other side of the jw axis. We need to take the complex conjugate so
that the imaginary parts of the pole and zero will be the same. ]

7. (2 pts) When is F (s) = s−a
s+b minimum phase? [Only if the pole and zero are in the

LHP. i.e., a,−b both have negative real parts. ]

8. (1 pt) Does F (s) = s+j
s−j have a real impulse response? [No: f(t) = d

dte
jtu(t)+ jejtu(t)

]
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