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Univ. of Illinois Tue, April 18, 2017; 7-10PM Prof. Allen

Topics: Acoustics, Transforms, Two-port networks

Instructions:

� If you need more space for calculation, use the back of any page.

� NO Cell phones.

� NO Calculators

� Note that each problem has points assigned. More points means “harder.”

You may open the exam at 7:00 PM; You must close it by 9:00 PM.
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cheating: (sign here)

# value score

1 15

2 7

3 16

4 17

5 15

6 15

∑ 85



Terminology, constants & transforms

Definitions of common acoustic variables,1 the mathematical symbols and the units, as used
in the text (see p. 180-181).

Variable Symbol [Units]
Total pressure P = Po + p(t) [N/m2 = Pa]
temperature T = To + τ(t) [K○] Kelvin
density ρ = ρo + δ(t) [kg/m3]
adiabatic law p/δγ = Const.
Boyle’s Law Po/(ρoTo) = Const.
Constants (air)
Atm Pressure Po = 105 [Pa]
Abs temperature To = 273 [K○]
density ρo = 1.18 [kg/m3]

sound speed c = 345 =
√
γPo/ρo [m/s]

specific impedance ρoc = 407 [Rayls]
viscosity µ = 1.86 × 10−5 [Ns/m2] (Poiseuille)
thermal conductivity κ = 25.4 × 103 [N/sK]
specific heat cap @Vo cv [J/kg]
specific heat cap @Po cp [J/kg]
Boltzman’s const. k = 1.38 × 10−23 J/K
ratio of specific heats γ = cp/cv = 1.4 (unitless)

Transform Time → Frequency Frequency → Time

Laplace Transform (LT) F (s) = ∫
∞
0 f(t)e−stdt f(t) = 1

2πj ∮CL
F (s)estds

CL is the Laplace contour
Fourier Transform (FT) F (ω) = ∫

∞
−∞ f(t)e−jωtdt f(t) = 1

2π ∫
∞
−∞ F (ω)ejωtdω

Fourier Series (FS) F [k] = 1
2π ∫

π
−π f(t)e

−jntdt f(t) = ∑∞k=−∞ F [k]ejnt
Z-Transform (ZT) F (z) = ∑∞n=0 f[n]z−n f[n] = 1

2πj ∮Cz
F (z)zn−1dz

Cz is the Z-transform contour
Discrete-Time FT (DTFT) F (ω) = ∑∞−∞ f[n]e−jωn f[n] = 1

2π ∫
π
−π F (ω)e

jωndω

Discrete FT (DFT) F [k]∑N−1
n=0 x[n]e−

2πj
N kn f[n] = 1

N ∑
N−1
k=0 F [k]e

2πj
N kn

Discrete convolution: f[n] ⋆ g[n] = ∑∞k=−∞ f[k]g[n − k]
Continuous convolution: f(t) ⋆ g(t) = ∫

∞
−∞ f(τ)g(t − τ)dτ

1cp, cv: https://en.wikipedia.org/wiki/Heat_capacity#Specific_heat_capacity
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Figure 1: The Hunt model is composed of an electrical impedance Ze(s), a Gyrator having parameter
T = lBo, and a mechanical impedance Zm(s). The electrical side is driven by a voltage ϕ(t) and a current
i(t), while the mechanical side produces a force f(t) and a particle velocity u(t).

1 (15pts) Transducer Thevenin Parameters

1. (3pts) Find the ABCD (Transmission) T(s) matrix for the Hunt transducer model in
Figure 1

[Φ(ω)
I(ω)] = T(s) [

F (ω)
−U(ω)] .

2. (2pts) Find the impedance matrix Z(s).

[Φ(ω)
F (ω)] = Z(s) [

I(ω)
U(ω)] .

3. (2pts) Compute ∆Z and ∆T . What is the significance of each of these determinants?



4. (4pts) Define, and then find the Thevenin equivalent force Fthev(s) [N], given an input
voltage Φo. Note: If you are not sure of your answers to the previous parts, you can
solve this problem in terms of an arbitrary ABCD matrix.

5. (4pts) Define, and then find the Thevenin equivalent mechanical impedance in me-
chanical Ohms, Zthev(s) [Ω].

2 (7pts) Nyquist Theorem on Thermal noise

A stub of transmission line having characteristic impedance z0 is terminated in each end with
this Thevenin model, with R = z0. Then at t = 0, the resistance is short or open circuited.
This setup is shown in the figure.

R R

Vm(x = 0, t < 0) Vm(L, t < 0)

z0 z0
Vm(t > 0)

Figure 2: On the left an ideal lossless transmission line, driven by two resistors. Each resistor has a noise
source in series with it, that generates a voltage equal to the thermal noise in the resistor. At time t = 0 the
resistors are switched out, leaving the voltage in the transmission line frozen in place.

The transmission line stores the voltage as a function of x at t = 0 once the switch is
opened removing the resistors (and also the Thevenin source). At that point voltage Vm(L, t)
becomes frozen.

1. (1pt) Discuss what happens after t = 0.



2. (2pt) What is the fundamental period of the noise voltage, vm(L, t > 0)?

3. (2pts) Every periodic signal has a Fourier series. If the period is T [s], what can you
say about the Fourier series frequencies?

4. (2pts) The noise spectrum will differ depending on the time at which the switch is
opened. Why?

3 (16pts) Hilbert transform

Analyze the real, causal impulse response

h(t) = e−t/τ0u(t),

with τ0 = 10 [ms], in terms of its Hilbert transform (integral) relations. Note: Use the
notation h(t)↔H(s) and H(ω) = H(s)∣s=jω.

1. (2pts) Find H(s), the Laplace transform of h(t).

2. (1pt) Where are the poles of H(s)↔ e−t/τ0u(t)?



3. (4pts) Find and sketch the real and imaginary parts of H(ω) ≡H(s)∣s=jω.

4. (1pt) Write out the even he(t) = h(t) + h(−t) and odd ho(t) = h(t) − h(−t) functions.
Describe why these equations are symmetric and antisymmetric functions.

5. (4pts) Find the Fourier transforms of he(t) ↔ He(ω) and ho(t) ↔ Ho(ω). How do
they relate to the real and imaginary parts of H(ω)?

6. (4pts) Find the Hilbert (integral) relations between Hr ≡ RH(ω) (real part) and
Hi ≡ IH(ω) (imag part) of H(ω). Hint: These integrals come from a frequency-domain
convolution.



4 (17pts) Wave equation

4.1 History of the wave equation

1. (1pt) What year did d’Alembert derive his solution to the wave equation?

2. (1pt) What is the form of D’Alembert’s solution?

3. (1pt) Who was the first person to calculate the speed of sound, and what was the
result?

4.2 The Webster horn equation:

In the time domain, in 2x2 matrix form, the Webster horn equation is given by

∂

∂x
[p(x, t)
ν(x, t)] = − [

0 ρo
A(x)

A(x)
γPo

0
] ∂

∂t
[p(x, t)
ν(x, t)] . (1)

where p(x, t)↔ P(x,ω) is the pressure and ν(x, t)↔ V(x,ω) is the volume velocity.

1. (2pts) Transform the Horn equation to the frequency domain.

2. (4pts) Assuming a conical horn, having area A(x) = Ao(x/xo)2 with Ao ≤ 4π, rewrite
Equation 1 as a second order equation solely in terms of the pressure P(x,ω) (remove
V), and thereby find the frequency domain solutions P±(x, s) for the conical horn
equation.



3. (4pts) Assuming an exponential area function

A(x) = A0e
2mx

(m is a positive constant, called the horn flair parameter), derive the exponential horn
equation for the pressure.

∂2p(x, t)
∂x2

+ 2m∂p(x, t)
∂x

= 1

c2
∂2p(x, t)

∂2t
(2)

4. (4pts) In general the solution to a wave equation is of the form

p(x, t) = P +(κ)eκ(s)xest + P −(κ)e−κ(s)xest

where s = σ + ȷω is the Laplace frequency and κ(s) is the complex “wave number.”

(a) What is κ(s) for the conical horn?

(b) What is the significance of κ(s)?

(c) Why is it a function of s?

(d) What is the role of P ±(κ, s)?



5 (15pts) Reflectance

1. (6pts) A tube transmission line with characteristic impedance z0 and length L is
terminated in a load impedance ZL(s).

(a) The reflectance at any location x along the tube transmission line is

Γ(x, s) = Z(x, s) − z0
Z(x, s) + z0

.

Starting with this formula, show that the impedance

Z(x, s) ≡ P(x, s)
V(x, s)

.

Hint: What is z0 in terms of the forward and reverse traveling waves P± and V±?

(b) Find the formula for the reflectance at the load (simplify your answer, if applica-
ble), Γ(x, s)∣x=L = Γ(L, s) = ΓL(s) for
i. ZL(s) = r [Nt-s/m5]

ii. ZL(s) = 1/sC [Nt-s/m5]

iii. ZL(s) = r∣∣sM [Nt-s/m5]



2. (3pts) For the transmission line described in the previous problem, let L = 1, ZL(s) = 1
and z0 = 2.

(a) Find the frequency domain reflectance Γ(0, s) at x = 0.

(b) Find the time-domain reflectance γ(0, t)↔ Γ(0, s) at x = 0.

3. (3pts) Two transmission lines are in cascade, the first one having an area of 1 [cm2]
and a second having an area of 2 [cm2], with lengths L1 and L2 respectively, terminated
with a resistor r = ρc/A, where A = 2 [cm2]. Find R(x = 0, s).

4. (3pts) What is the inverse Laplace transform of

(a) H(s) = 1/(s + 1)? Find h(t).

(b) H(s) = s/(s + 1)?



6 (15pts) Model of the middle ear

As shown in the figure, the free field sound pressure, defined as P0(ω) acts as a source in series
with the radiation resistance Rrad. The total radiation impedance Zrad(s) is a combination
of the resistance and a reactive component Lrad, which represents the local stored field. The
two impedances are in parallel

Zrad(s) = sLradRrad/(sLrad +Rrad) = 1/Yrad(s).

where s = σ + jω is the Laplace complex frequency variable. The radiation admittance for a
sphere is

Yrad = 1/Zrad =
Arad

srcρo
+ Arad

ρoc
= 1

sLrad

+ 1

Rrad

,

where rc is the radius of the sphere and Arad is the effective area of the radiation.
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Figure 3: Model of the ear canal, terminated by the radiation impedance Zrad(s) at the tragus (x = 0),
and by the eardrum and cochlea at x = L.

On the left we terminate the ear in a radiation impedance

Zrad(s) =
sLradRrad

sLrad +Rrad

.

At the cochlear end we terminate the line with an impedance

Zc = Rc + 1/(sCal),

where Rc is the cochlear impedance and Cal is the stiffness of the annular ligament, which
is the ligament that holds the stapes in the oval window. The cochlear resistance (Rc) is
assumed to be twice the characteristic impedance of the ear canal.

To Do:

1. (4pts) Find the formula for the reflection coefficient at x = L. Sketch the magnitude
∣R(L, s)∣ as a function of frequency. Hint: You should label any constants, or set them
equal to 1 for plotting.



2. (4pts) Find the formula for the reflection coefficient at x = 0 (looking out towards the
radiation impedance). Sketch its magnitude as a function of frequency.

3. (3pts) Consider the radiation impedance looking out the ear canal, Yrad.

(a) What is the frequency for which its real and imaginary parts are equal (in terms
of Lrad and Rrad)?

(b) Describe the dependence of Yrad on Lrad and Rrad below and above this frequency.

4. (4pts) Find the formula for the input impedance Z(0, s) of the middle ear at the
entrance of the ear canal, when the cochlea is “blocked” (Zc =∞ or Γ(L, s) = 1)?
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