ECE 403
Univ. of Illinois

ExamII - Version 1.00 April 18, 2017
Tue, April 18, 2017; 7-10PM

Spring 2017
Prof. Allen

Topics: Acoustics, Transforms, Two-port networks

Instructions:

- If you need more space for calculation, use the back of any page.
- NO Cell phones.
- NO Calculators
- Note that each problem has points assigned. More points means "harder."

You may open the exam at 7:00 PM; You must close it by 9:00 PM.

NAME: \qquad NETID: \qquad
I will not share information during this exam, and I will discretely report others if I observe cheating: \qquad (sign here)

$\#$	value	score
1	15	
2	7	
3	16	
4	17	
5	15	
6	15	
\sum	85	

Terminology, constants \& transforms

Definitions of common acoustic variables, ${ }^{1}$ the mathematical symbols and the units, as used in the text (see p. 180-181).

Variable	Symbol	$[\mathrm{Units}]$
Total pressure	$P=P_{o}+p(t)$	$\left[\mathrm{N} / \mathrm{m}^{2}=P a\right]$
temperature	$T=T_{o}+\tau(t)$	$\left[\mathrm{K}^{\circ}\right]$ Kelvin
density	$\rho=\rho_{o}+\delta(t)$	$\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
adiabatic law	$p / \delta^{\gamma}=$ Const.	
Boyle's Law	$P_{o} /\left(\rho_{o} T_{o}\right)=$ Const.	
Constants (air)		
Atm Pressure	$P_{o}=10^{5}$	$[\mathrm{~Pa}]$
Abs temperature	$T_{o}=273$	$\left[\mathrm{~K}^{\circ}\right]$
density	$\rho_{o}=1.18$	$\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
sound speed	$c=345=\sqrt{\gamma P_{o} / \rho_{o}}$	$[\mathrm{~m} / \mathrm{s}]$
specific impedance	$\rho_{o} c=407$	$[\mathrm{Rayls}]$
viscosity	$\mu=1.86 \times 10^{-5}$	$\left[\mathrm{Ns} / \mathrm{m}^{2}\right]$ (Poiseuille)
thermal conductivity	$\kappa=25.4 \times 10^{3}$	$[\mathrm{~N} / \mathrm{sK}]$
specific heat cap @V V_{o}	c_{v}	$[\mathrm{~J} / \mathrm{kg}]$
specific heat cap @P	c_{p}	$[\mathrm{~J} / \mathrm{kg}]$
Boltzman's const.	$k=1.38 \times 10^{-23}$	$\mathrm{~J} / \mathrm{K}$
ratio of specific heats	$\gamma=c_{p} / c_{v}=1.4$	$(\mathrm{unitless})$

Transform	Time \rightarrow Frequency	Frequency \rightarrow Time
Laplace Transform (LT)	$F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$	$f(t)=\frac{1}{2 \pi j} \oint_{C_{L}} F(s) e^{s t} d s$
		C_{L} is the Laplace contour
Fourier Transform (FT)	$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$	$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega$
Fourier Series (FS)	$F[k]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-j n t} d t$	$f(t)=\sum_{k=-\infty}^{\infty} F[k] e^{j n t}$
Z-Transform (ZT)	$F(z)=\sum_{n=0}^{\infty} f[n] z^{-n}$	$f[n]=\frac{1}{2 \pi j} \oint_{C_{z}} F(z) z^{n-1} d z$
		C_{z} is the Z-transform contour
Discrete-Time FT (DTFT)	$F(\omega)=\sum_{-\infty}^{\infty} f[n] e^{-j \omega n}$	$f[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(\omega) e^{j \omega n} d \omega$
Discrete FT (DFT)	$F[k] \sum_{n=0}^{N-1} x[n] e^{-\frac{2 \pi j}{N} k n}$	$f[n]=\frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{\frac{2 \pi j}{N} k n}$

Discrete convolution: $f[n] \star g[n]=\sum_{k=-\infty}^{\infty} f[k] g[n-k]$
Continuous convolution: $f(t) \star g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau$

[^0]

Figure 1: The Hunt model is composed of an electrical impedance $Z_{e}(s)$, a Gyrator having parameter $T=l B_{o}$, and a mechanical impedance $Z_{m}(s)$. The electrical side is driven by a voltage $\phi(t)$ and a current $i(t)$, while the mechanical side produces a force $f(t)$ and a particle velocity $u(t)$.

1 (15pts) Transducer Thevenin Parameters

1. (3pts) Find the ABCD (Transmission) $\mathbf{T}(s)$ matrix for the Hunt transducer model in Figure 1

$$
\left[\begin{array}{c}
\Phi(\omega) \\
I(\omega)
\end{array}\right]=\mathbf{T}(\mathbf{s})\left[\begin{array}{c}
F(\omega) \\
-U(\omega)
\end{array}\right] .
$$

2. (2pts) Find the impedance matrix $\mathbf{Z}(s)$.

$$
\left[\begin{array}{c}
\Phi(\omega) \\
F(\omega)
\end{array}\right]=\mathbf{Z}(s)\left[\begin{array}{c}
I(\omega) \\
U(\omega)
\end{array}\right] .
$$

3. (2pts) Compute Δ_{Z} and Δ_{T}. What is the significance of each of these determinants?
4. (4pts) Define, and then find the Thevenin equivalent force $F_{\text {thev }}(s)[\mathrm{N}]$, given an input voltage Φ_{o}. Note: If you are not sure of your answers to the previous parts, you can solve this problem in terms of an arbitrary $A B C D$ matrix.
5. (4pts) Define, and then find the Thevenin equivalent mechanical impedance in mechanical Ohms, $Z_{\text {thev }}(s)[\Omega]$.

2 (7pts) Nyquist Theorem on Thermal noise

A stub of transmission line having characteristic impedance z_{0} is terminated in each end with this Thevenin model, with $R=z_{0}$. Then at $t=0$, the resistance is short or open circuited. This setup is shown in the figure.

Figure 2: On the left an ideal lossless transmission line, driven by two resistors. Each resistor has a noise source in series with it, that generates a voltage equal to the thermal noise in the resistor. At time $t=0$ the resistors are switched out, leaving the voltage in the transmission line frozen in place.

The transmission line stores the voltage as a function of x at $t=0$ once the switch is opened removing the resistors (and also the Thevenin source). At that point voltage $V_{m}(L, t)$ becomes frozen.

1. (1pt) Discuss what happens after $t=0$.
2. (2pt) What is the fundamental period of the noise voltage, $v_{m}(L, t>0)$?
3. (2pts) Every periodic signal has a Fourier series. If the period is $T[\mathrm{~s}]$, what can you say about the Fourier series frequencies?
4. (2pts) The noise spectrum will differ depending on the time at which the switch is opened. Why?

3 (16pts) Hilbert transform

Analyze the real, causal impulse response

$$
h(t)=e^{-t / \tau_{0}} u(t)
$$

with $\tau_{0}=10[\mathrm{~ms}]$, in terms of its Hilbert transform (integral) relations. Note: Use the notation $h(t) \leftrightarrow H(s)$ and $H(\omega)=\left.H(s)\right|_{s=j \omega}$.

1. (2pts) Find $H(s)$, the Laplace transform of $h(t)$.
2. (1pt) Where are the poles of $H(s) \leftrightarrow e^{-t / \tau_{0}} u(t)$?
3. (4pts) Find and sketch the real and imaginary parts of $\left.H(\omega) \equiv H(s)\right|_{s=j \omega}$.
4. (1pt) Write out the even $h_{e}(t)=h(t)+h(-t)$ and odd $h_{o}(t)=h(t)-h(-t)$ functions. Describe why these equations are symmetric and antisymmetric functions.
5. (4pts) Find the Fourier transforms of $h_{e}(t) \leftrightarrow H_{e}(\omega)$ and $h_{o}(t) \leftrightarrow H_{o}(\omega)$. How do they relate to the real and imaginary parts of $H(\omega)$?
6. (4pts) Find the Hilbert (integral) relations between $H_{r} \equiv \mathfrak{R} H(\omega)$ (real part) and $H_{i} \equiv \Im H(\omega)$ (imag part) of $H(\omega)$. Hint: These integrals come from a frequency-domain convolution.

4 (17pts) Wave equation

4.1 History of the wave equation

1. (1pt) What year did d'Alembert derive his solution to the wave equation?
2. (1pt) What is the form of D'Alembert's solution?
3. (1pt) Who was the first person to calculate the speed of sound, and what was the result?

4.2 The Webster horn equation:

In the time domain, in 2 x 2 matrix form, the Webster horn equation is given by

$$
\frac{\partial}{\partial x}\left[\begin{array}{l}
p(x, t) \tag{1}\\
\nu(x, t)
\end{array}\right]=-\left[\begin{array}{cc}
0 & \frac{\rho_{o}}{A(x)} \\
\frac{A(x)}{\gamma P_{o}} & 0
\end{array}\right] \frac{\partial}{\partial t}\left[\begin{array}{l}
p(x, t) \\
\nu(x, t)
\end{array}\right] .
$$

where $p(x, t) \leftrightarrow \mathcal{P}(x, \omega)$ is the pressure and $\nu(x, t) \leftrightarrow \mathcal{V}(x, \omega)$ is the volume velocity.

1. (2pts) Transform the Horn equation to the frequency domain.
2. (4pts) Assuming a conical horn, having area $A(x)=A_{o}\left(x / x_{o}\right)^{2}$ with $A_{o} \leq 4 \pi$, rewrite Equation 1 as a second order equation solely in terms of the pressure $\mathcal{P}(x, \omega)$ (remove \mathcal{V}), and thereby find the frequency domain solutions $P_{ \pm}(x, s)$ for the conical horn equation.
3. (4pts) Assuming an exponential area function

$$
A(x)=A_{0} e^{2 m x}
$$

(m is a positive constant, called the horn flair parameter), derive the exponential horn equation for the pressure.

$$
\begin{equation*}
\frac{\partial^{2} p(x, t)}{\partial x^{2}}+2 m \frac{\partial p(x, t)}{\partial x}=\frac{1}{c^{2}} \frac{\partial^{2} p(x, t)}{\partial^{2} t} \tag{2}
\end{equation*}
$$

4. (4pts) In general the solution to a wave equation is of the form

$$
p(x, t)=P^{+}(\kappa) e^{\kappa(s) x} e^{s t}+P^{-}(\kappa) e^{-\kappa(s) x} e^{s t}
$$

where $s=\sigma+\jmath \omega$ is the Laplace frequency and $\kappa(s)$ is the complex "wave number."
(a) What is $\kappa(s)$ for the conical horn?
(b) What is the significance of $\kappa(s)$?
(c) Why is it a function of s ?
(d) What is the role of $P^{ \pm}(\kappa, s)$?

5 (15pts) Reflectance

1. (6pts) A tube transmission line with characteristic impedance z_{0} and length L is terminated in a load impedance $Z_{L}(s)$.
(a) The reflectance at any location x along the tube transmission line is

$$
\Gamma(x, s)=\frac{Z(x, s)-z_{0}}{Z(x, s)+z_{0}}
$$

Starting with this formula, show that the impedance

$$
Z(x, s) \equiv \frac{\mathcal{P}(x, s)}{\mathcal{V}(x, s)}
$$

Hint: What is z_{0} in terms of the forward and reverse traveling waves $\mathcal{P}^{ \pm}$and $\mathcal{V}^{ \pm}$?
(b) Find the formula for the reflectance at the load (simplify your answer, if applicable), $\left.\Gamma(x, s)\right|_{x=L}=\Gamma(L, s)=\Gamma_{L}(s)$ for
i. $Z_{L}(s)=r\left[\mathrm{Nt-s} / \mathrm{m}^{5}\right]$
ii. $Z_{L}(s)=1 / s C\left[\mathrm{Nt-s} / \mathrm{m}^{5}\right]$
iii. $Z_{L}(s)=r \| s M\left[\mathrm{Nt}-\mathrm{s} / \mathrm{m}^{5}\right]$
2. (3pts) For the transmission line described in the previous problem, let $L=1, Z_{L}(s)=1$ and $z_{0}=2$.
(a) Find the frequency domain reflectance $\Gamma(0, s)$ at $x=0$.
(b) Find the time-domain reflectance $\gamma(0, t) \leftrightarrow \Gamma(0, s)$ at $x=0$.
3. (3pts) Two transmission lines are in cascade, the first one having an area of $1\left[\mathrm{~cm}^{2}\right]$ and a second having an area of $2\left[\mathrm{~cm}^{2}\right]$, with lengths L_{1} and L_{2} respectively, terminated with a resistor $r=\rho c / A$, where $A=2\left[\mathrm{~cm}^{2}\right]$. Find $R(x=0, s)$.
4. (3pts) What is the inverse Laplace transform of
(a) $H(s)=1 /(s+1)$? Find $h(t)$.
(b) $H(s)=s /(s+1)$?

6 (15pts) Model of the middle ear

As shown in the figure, the free field sound pressure, defined as $P_{0}(\omega)$ acts as a source in series with the radiation resistance $R_{\text {rad }}$. The total radiation impedance $Z_{\text {rad }}(s)$ is a combination of the resistance and a reactive component $L_{\text {rad }}$, which represents the local stored field. The two impedances are in parallel

$$
Z_{r a d}(s)=s L_{r a d} R_{r a d} /\left(s L_{r a d}+R_{r a d}\right)=1 / Y_{r a d}(s) .
$$

where $s=\sigma+j \omega$ is the Laplace complex frequency variable. The radiation admittance for a sphere is

$$
Y_{r a d}=1 / Z_{r a d}=\frac{A_{r a d}}{s r_{c} \rho_{o}}+\frac{A_{r a d}}{\rho_{o} c}=\frac{1}{s L_{r a d}}+\frac{1}{R_{r a d}},
$$

where r_{c} is the radius of the sphere and $A_{\text {rad }}$ is the effective area of the radiation.

Figure 3: Model of the ear canal, terminated by the radiation impedance $Z_{\text {rad }}(s)$ at the tragus $(x=0)$, and by the eardrum and cochlea at $x=L$.

On the left we terminate the ear in a radiation impedance

$$
Z_{r a d}(s)=\frac{s L_{r a d} R_{r a d}}{s L_{r a d}+R_{r a d}}
$$

At the cochlear end we terminate the line with an impedance

$$
Z_{c}=R_{c}+1 /\left(s C_{a l}\right),
$$

where R_{c} is the cochlear impedance and $C_{a l}$ is the stiffness of the annular ligament, which is the ligament that holds the stapes in the oval window. The cochlear resistance $\left(R_{c}\right)$ is assumed to be twice the characteristic impedance of the ear canal.

To Do:

1. (4pts) Find the formula for the reflection coefficient at $x=L$. Sketch the magnitude $|R(L, s)|$ as a function of frequency. Hint: You should label any constants, or set them equal to 1 for plotting.
2. (4pts) Find the formula for the reflection coefficient at $x=0$ (looking out towards the radiation impedance). Sketch its magnitude as a function of frequency.
3. (3pts) Consider the radiation impedance looking out the ear canal, $Y_{\text {rad }}$.
(a) What is the frequency for which its real and imaginary parts are equal (in terms of $L_{r a d}$ and $\left.R_{r a d}\right)$?
(b) Describe the dependence of $Y_{r a d}$ on $L_{r a d}$ and $R_{r a d}$ below and above this frequency.
4. (4pts) Find the formula for the input impedance $Z(0, s)$ of the middle ear at the entrance of the ear canal, when the cochlea is "blocked" $\left(Z_{c}=\infty\right.$ or $\left.\Gamma(L, s)=1\right)$?

[^0]: ${ }^{1} c_{p}, c_{v}$: https://en.wikipedia.org/wiki/Heat_capacity\#Specific_heat_capacity

