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Terminology, constants & transforms

Definitions of common acoustic variables,1 the mathematical symbols and the units, as used
in the text (see p. 180-181).

Variable Symbol [Units]
Total pressure P = Po + p(t) [N/m2 = Pa]
temperature T = To + τ(t) [K○] Kelvin
density ρ = ρo + δ(t) [kg/m3]
adiabatic law p/δγ = Const.
Boyle’s Law Po/(ρoTo) = Const.
Constants (air)
Atm Pressure Po = 105 [Pa]
Abs temperature To = 273 [K○]
density ρo = 1.18 [kg/m3]

sound speed c = 345 =
√
γPo/ρo [m/s]

specific impedance ρoc = 407 [Rayls]
viscosity µ = 1.86 × 10−5 [Ns/m2] (Poiseuille)
thermal conductivity κ = 25.4 × 103 [N/sK]
specific heat cap @Vo cv [J/kg]
specific heat cap @Po cp [J/kg]
Boltzman’s const. k = 1.38 × 10−23 J/K
ratio of specific heats γ = cp/cv = 1.4 (unitless)

Transform Time → Frequency Frequency → Time

Laplace Transform (LT) F (s) = ∫
∞
0 f(t)e−stdt f(t) = 1

2πj ∮CL
F (s)estds

CL is the Laplace contour
Fourier Transform (FT) F (ω) = ∫

∞
−∞ f(t)e−jωtdt f(t) = 1

2π ∫
∞
−∞ F (ω)ejωtdω

Fourier Series (FS) F [k] = 1
2π ∫

π
−π f(t)e

−jntdt f(t) = ∑∞k=−∞ F [k]ejnt
Z-Transform (ZT) F (z) = ∑∞n=0 f[n]z−n f[n] = 1

2πj ∮Cz
F (z)zn−1dz

Cz is the Z-transform contour
Discrete-Time FT (DTFT) F (ω) = ∑∞−∞ f[n]e−jωn f[n] = 1

2π ∫
π
−π F (ω)e

jωndω

Discrete FT (DFT) F [k]∑N−1
n=0 x[n]e−

2πj
N kn f[n] = 1

N ∑
N−1
k=0 F [k]e

2πj
N kn

Discrete convolution: f[n] ⋆ g[n] = ∑∞k=−∞ f[k]g[n − k]
Continuous convolution: f(t) ⋆ g(t) = ∫

∞
−∞ f(τ)g(t − τ)dτ

1cp, cv: https://en.wikipedia.org/wiki/Heat_capacity#Specific_heat_capacity
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Figure 1: The Hunt model is composed of an electrical impedance Ze(s), a Gyrator having parameter
T = lBo, and a mechanical impedance Zm(s). The electrical side is driven by a voltage ϕ(t) and a current
i(t), while the mechanical side produces a force f(t) and a velocity v(t).

1 Transducer Thevenin Parameters

1. (3pts) Find the ABCD (Transmission) T(s) matrix for the Hunt transducer model in
Figure 1

[Φ(ω)
I(ω)] = T(s) [

F (ω)
−U(ω)] .

[The definition of the Transmission matrix is

[Φ(ω)
I(ω)] = [

1 Ze

0 1
] [ 0 lBo

1/lBo 0
] [1 Zm

0 1
] [F (ω)

U(ω)] =
1

T
[Ze ∆Z

1 Zm
] [ F (ω)−U(ω)]

where ∆Z is the determinent of the impedance Z(s) matrix. ]

2. (2pts) Find the impedance matrix Z(s).

[Φ(ω)
F (ω)] = Z(s) [

I(ω)
U(ω)] .

[This may be found via the table of relations between T and Z (VanValkenberg62).
The answer is

[Φ(ω)
F (ω)] = [

Ze −To

To Zm
] [ I(ω)

U(ω)]

where To = lBo, with l [m] the length of the wire and B0 [Web] the strength of the
magnet [Wb/m2]. ]

3. (2pts) Compute ∆Z and ∆T . What is the significance of each of these determinants?
[∆Z = Ze(s)Zm(s) + T 2

o and ∆T = −1. If ∆T = −1 the system is ‘anti-reciprocal,’ and if
∆T = +1 the system is ‘reciprocal.’ ]

4. (3pts) Define, and then find the Thevenin equivalent force Fthev(s) [N], given an input
voltage Φo. Note: If you are not sure of your answers to the previous parts, you can
solve this problem in terms of an arbitrary ABCD matrix. [The Thevenin equivalent
force is ‘open circuit’ force (analogous to voltage). Therefore we may read it off the
top row of the ABCD matrix equation:

[ Φo

I(ω)] = [
A B
C D] [

F (ω)
−U(ω)] =

1

T
[Ze ∆Z

1 Zm
] [ F (ω)−U(ω)]



giving the equation
Φo = AF − BU ∣U=0 = AF

therefore

Fthev(s) =
ΦoTo

Ze(s)
]

5. (3pts) Define, and then find the Thevenin equivalent mechanical impedance in me-
chanical Ohms, Zthev(s) [Ω]. [The Thevenin impedance is the equivalen impedance
looking into the right side of the loudspeaker model, with the voltage source shorted
(Φ(ω) = 0). First, we must reverse the terminals of the ABCD matrix, so we can
perform our usual left-to-right analysis:

[F (ω)
U(ω)] =

1

∆T

[D B
C A] [

Φ(ω)
−I(ω)]

Setting Φ = 0 and taking the ratio Z = F /U , we find the Thevenin impedance:

Zthev(s) =
F

U
∣
Φ=0
= B
A
= Ze(s)Zm(s) + T 2

o

Ze(s)

]

2 (6pts) Nyquist Theorem on Thermal noise

A stub of transmission line having characteristic impedance z0 is terminated in each end with
this Thevenin model, with R = z0. Then at t = 0, the resistance is short or open circuited.
This setup is shown in the figure.

R R

Vm(x = 0, t < 0) Vm(L, t < 0)

z0 z0
Vm(t > 0)

Figure 2: On the left an ideal lossless transmission line, driven by two resistors. Each resistor has a noise
source in series with it, that generates a voltage equal to the thermal noise in the resistor. At time t = 0 the
resistors are switched out, leaving the voltage in the transmission line frozen in place.

The transmission line stores the voltage as a function of x at t = 0 once the switch is
opened removing the resistors (and also the Thevenin source). At that point voltage Vm(L, t)
becomes frozen.

1. Discuss what happens after t = 0. [The noise traveling in the TL is frozen as it is
reflected from the two ends, with no loss. As a result this frozen noise is periodic with a
period of the round-trip time of the line, which is T = 2L/c. Every periodic signal may
be expanded in a Fourier series, which has energy at the frequencies ωk = k/T = kc/2L.
The Fourier coefficients will not be equal due to the random nature of the noise. On
average, each spectral line will have a power of kT , but since the noise is frozen, the
long term spectral values will not apply. Each time the experiment is repeated, there
will be a randomness in the amplitude of each line. ]



2. What is the fundamental period of the noise? [The period is the round trip delay
T = 2L/c ≈ 58 [ms]. ]

3. Every periodic signal has a Fourier series. If the period is T [s], what can you say
about the Fourier series frequencies? [The fourier frequencies are ωk = 2πk/T . ]

4. The noise spectrum will differ depending on the time at which the switch is opened.
Why? [While the long-term average power spectrum of each line is kT , a frozen piece
of noise will not be equal to the long term average. Rather it will be a snap-shot of
the power at that time. ]

3 Hilbert transform

Analyze the real impulse response

h(t) = e−t/τ0u(t),

with τ0 = 10 [ms], in terms of its Hilbert transform (integral) relations. Note: In all parts of
this problem h(t)↔H(s) and H(ω) = H(s)∣s=jω.

1. (2pts) Find H(s), the Laplace transform of h(t). [Let a = 1/τ0. Then e−atu(t)↔ 1
s+a .

]

2. (1pt) Where are the poles of H(s)↔ e−t/τ0u(t)? [Let a = 1/τ0. Since e−atu(t)↔ 1
s+a

H(s) has a simple pole at s = −1/τ0. ]

3. (2pts) Find the real and imaginary parts of H(ω) ≡H(s)∣s=jω. [First rationalize the
denominator:

H(s) = s∗ + a
(s + a)(s∗ + a)

= σ − jω + a
σ2 + ω2 + a2

.

Next take the real R and imaginary I parts, and evaluate s on the ω axis (set σ = 0):

RH(ω) = a/(a2 + ω2), IH(ω) = −ω/(a2 + ω2).

The real part is constant below the cutoff (resonant) frequency ω = a, and goes at -12
dB/oct above the cutoff. The imaginary part is bandpass with ±6 dB/Oct above and
below the resonance frequency. ]

4. (1pt) Write out the symmetric he(t) = h(t) + h(−t) and antisymmetric ho(t) = h(t) −
h(−t) functions. Describe why these equations from symmetric and antisymmetric
functions. [2he(t) = h(t) + h(−t) ≡ e−atu(t) + eatu(−t), while 2ho(t) = h(t) − h(−t) ≡
e−atu(t) − eatu(−t). It trivially follows that h(t) = he(t) + ho(t). ]

5. (3pts) Find the Fourier transforms of he(t) ↔ He(ω) and ho(t) ↔ Ho(ω). How do
they relate to the real and imaginary parts of H(ω)?
[Since h(−t)↔H∗(ω), a symmetric time function is real in the frequency domain,

2he(t) = h(t) + h(−t)↔H(ω) +H∗(ω) = 2RH(ω),



thus he(t) ↔ RH(ω). In a similar fashion, an antisymmetric time function is pure
imaginary

ho(t)↔ jIH(ω).

Again with a ≡ 1/τ0:
He(ω) =RH(ω) = a

ω2 + a2
,

Ho(ω) = jIH(ω) =
−jω

ω2 + a2
,

thus
H(ω) =He(ω) +Ho(ω)↔ h(t) = he(t) + ho(t).

The inverse Fourier transform of Ho(ω) is zero at t = 0, which makes it very different
from the inverse Laplace transform, which is not defined at t = 0. What is the inverse
FT of He(ω)? Be sure to discuss what happens at t = 0. ]

6. (2pts) Find the Hilbert (integral) relations between Hr ≡ RH(ω) (real part) and
Hi ≡ IH(ω) (imag part) of H(ω). Hint: These integrals come from a frequency-domain
convolution.

[It follows from the above results that

jHi(ω) =
1

jπ ∫
Hr(ω′)
ω − ω′

dω′ (1)

which for the case at hand is

ω

ω2 + a2
= 1

π ∫
adω

(ω′ − ω)(ω′2 + a2)
. (2)

A second derivation of the requested integrals may be found from

h(t) = h(t)u(t), (3)

(note this is not exactly true at t = 0) which after a FT, results in

H(ω) = 1

2π
H(ω) ⋆ (πδ(ω) + 1

jω
) , (4)

which may be rewritten as

Hr(ω) =
1

2
Hr(ω) +Hi(ω) ⋆

1

2πω
. (5)

The final relations are [Papoulis (1977), Signal Analysis, McGraw Hill, page 251]

Hr(ω) =
1

π ∫
Hi(ω′)
ω − ω′

dω′ and Hi(ω) = −
1

π ∫
Hr(ω′)
ω − ω′

dω′ (6)

]



4 Wave equation

4.1 (3pts) History of the wave equation

1. What year did d’Alembert derive his solution to the wave equation? [d’Alembert
first proved this in 1747. ]

2. What is the form of D’Alembert’s solution? [f(t − x/c) + g(t + x/c) ]

3. Who was the first person to calculate the speed of sound, and what was the result?
[Newton did this in 1648. His formula was in error due to the dynamic stiffness of air,
which is γPo. His result was too small by the factor of

√
1.4. ]

4.2 The Webster horn equation:

In the time domain, in 2x2 matrix form, the Webster horn equation is given by

∂

∂x
[p(x, t)
ν(x, t)] = − [

0 ρo
A(x)

A(x)
γPo

0
] ∂

∂t
[p(x, t)
ν(x, t)] . (7)

1. (2pts) Transform the Horn equation to the frequency domain. [

d

dx
[P (x,ω)
V (x,ω)] = − [

0 Zs(x, s)
Ys(x, s) 0

] [P (x,ω)
V (x,ω).] (8)

Here we use the complex Laplace frequency s when referring to the per-unit impedance

Zs(s, x) ≡ s
ρo

A(x)
= sM(x) (9)

and per-unit admittance

Ys(s, x) ≡ s
A(x)
γPo

= sC(x), (10)

where M(x) = ρo/A(x) is the horn’s per-unit-length mass, and C(x) = A(x)/γPo per-
unit-length compliance, to remind ourselves that these functions must be causal, and
except at their poles, analytic in s. ]

2. (3pts) Assuming a conical horn, having area A(x) = Ao(x/xo)2 with Ao ≤ 4π, rewrite
these equations as a second order equation solely in terms of the pressure P (remove
U), and thereby find the frequency domain solutions P±(x, s) for the conical horn
equation.

[If we let Px ≡ ∂P /∂x (i.e., the partial with respect to space) then

Px +ZV = 0 (11)

and
Vx + YP = 0. (12)

Taking the partial wrt x of the first equation, and then using the second, gives

Pxx +ZxU +ZUx = Pxx −
Zx

Z
Px −ZYP = 0. (13)



Using the relation

Zx/Z =
d

dx
lnZ = − d

dx
lnA(x), (14)

with A = Ao(x/xo)2, we find

Pxx +
2

x
P = s2

c2
P. (15)

Just as it was important to replace real frequency ω with the Laplace frequency s,
since the roots are typically complex, using the same reasoning, we replace the “real
wave number” k = ω/c with a complex wave number as κ(s). Only in the case of
non-dispersive waves (e.g., plane waves) is κ(s) = s/c.
Since the wave equation is

∂2P

∂x2
= 1

c2
∂2P

∂x2
(16)

by inspection we see that ω2/c2 = ZY , which results in the final formula for the speed
of sound. ]

3. (3pts) Assuming an exponential area function

A(x) = A0e
2mx

(m is a positive constant, called the horn flair parameter), derive the exponential horn
equation for the pressure.

∂2p(x, t)
∂x2

+ 2m∂p(x, t)
∂x

= 1

c2
∂2p(x, t)

∂2t
(17)

[Starting from the basic definitions with A(x) = A0e2mx along with the basic equation
for a horn, explicitly write out the two equations

dP

dx
+ s ρo

A0

e−2mxV = 0 (18)

dV

dx
+ sA0e2mx

γPo

P = 0 (19)

Next solve for the pressure (remove V ):

d2P

dx2
+ s ρo

A0

(e−2mxdV

dx
+ V d

dx
e−2mx) = 0 (20)

or
d2P

dx2
+ s ρo

A(x)
(dV
dx
− 2mV ) = 0. (21)

Going back to the basic equations, again removing V

d2P

dx2
+ s ρo

A(x)
(−sA(x)

γPo

P + 2mA(x)
sρo

dP

dx
) = 0 (22)

which simplifies to the requested result

d2P

dx2
+ 2mdP

dx
− s2 ρo

γPo

P = 0. (23)

since −s2 = ω2 and γPo = ρoc2.
]



4. (4pts) In general the soluton to a wave equation is of the form

p(x, t) = P +(κ)eκ(s)xest + P −(κ)e−κ(s)xest

where s = σ + ȷω is the Laplace frequency and κ(s) is the complex “wave number.”

(a) What is κ(s) for the conical horn? [κ(s) = ±s/c. ]
(b) What is the significance of κ(s)? [It is called the dispersion relation of the

differential equation, that relates the wavelength to the frequency. ]

(c) Why is it a function of s? [In general the wavelength is a function of frequency.
This is a generalization of the plane wave relation λf = c, or κ(s) = s/c. ]

(d) What is the role of P ±(κ, s)? [These are aplitudes of the forward and reverse
traveling waves, that are to be determined by applying boundary conditions to
the solution. ]

5 Reflectance

1. (6pts) A tube transmission line with characteristic impedance z0 and length L is
terminated in a load impedance ZL(s).

(a) Starting with the definition of the impedance

Z(s, x) ≡ P (s, x)
U(s, x)

,

show that the reflectance

R(s, x) = Z(s, x) − z0
Z(s, x) + z0

.

You should express the pressure and velocity are sums of the forward and back-
ward traveling waves (P = P + + P −, U = U+ −U−). What is z0 in terms of P ± and
U±? [Starting from the definition of the impedance (at any point x),

Z(x, s) = P (x)
U(x)

= P + + P −
U+ −U−

= P +

U+
(1 + Γ
1 − Γ

) = zo
1 + Γ
1 − Γ

]

(b) Find the formula for the reflectance at the load, R(s, x)∣x=L = R(s,L) for
i. ZL(s) = r [Nt-s/m5]

ii. ZL(s) = 1/sC [Nt-s/m5]

iii. ZL(s) = r∣∣sM [Nt-s/m5] [Let ZL = rsM
r+sM then

R = rsM − z0(r + sM)
rsM + z0(r + sM)

= (r − z0)Ms − z0r
(r + z0)Ms + z0r

. (24)

]



2. (2pts) For the transmission line described in the previous problem, let L = 1, ZL(s) = 1
and z0 = 2.

(a) Find the frequency domain reflectance R(s,0) at x = 0.
(b) Find the time-domain reflectance r(t,0) at x = 0. [r(t) = (1 − 2)/(1 + 2)δ(t −

2L/c) = −δ(t − 2)/3 ]

3. (3pts) Two transmission lines are in cascade, the first one having an area of 1 [cm2]
and a second having an area of 2 [cm2], with lengths L1 and L2 respectively, terminated
with a resistor r = ρc/A, where A = 2 [cm2]. Find R(x = 0, s). [Since the second line
is terminated in its own impedance, it is just a resistor at its input, which makes the
problem very simple. As a result

R(s) = 1/1 − 1/2
1/1 + 1/2

e−s2L1/c = 1/3e−s2L1/c, (25)

where L1 is the length of the first TL. Note that if the line were not matched at the
end, the story would be very different. ]

4. (3pts) What is the inverse Laplace transform of

(a) H(s) = 1/(s + 1)? Find h(t). [h(t) = e−tU(t) ]
(b) H(s) = s/(s + 1)? [H(s) = 1-1/(s+1) ↔ h(t) = d

dte
−tU(t) = δ(t) − e−tU(t) ]

6 Model of the middle ear

As shown in the figure, the free field sound pressure, defined as P0(ω) acts as a source in
series with the radiation resistance Rrad. The total radiation impedance Zrad(s,Arad) is a
combination of the resistance and a reactive component Lrad, which represents the local
stored field. The two impedances are in parallel

Zrad(s) = sLradRrad/(sLrad +Rrad) = 1/Yrad(s).

where s = σ + jω is the Laplace complex frequency variable. The radiation admittance for a
sphere is

Yrad = 1/Zrad =
Arad

srcρo
+ Arad

ρoc
= 1

sLrad

+ 1

Rrad

,

where rc is the radius of the sphere and Arad is the effective area of the radiation.
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Figure 3: Model of the ear canal, terminated by the radiation impedance Zrad(s) at the tragus (x = 0),
and by the eardrum and cochlea at x = L.



On the left we terminate the ear in a radiation impedance

Zrad(s) =
sLradRrad

sLrad +Rrad

.

At the cochlear end we terminate the line with an impedance

Zc = Rc + 1/(sCal),

where Rc is the cochlear impedance and Cal is the stiffness of the annular ligament, which
is the ligament that holds the stapes in the oval window. The cochlear resistance (Rc) is
assumed to be twice the characteristic impedance of the ear canal.

To Do:

1. (3pts) Find the formula for the reflection coefficient at x = L. Sketch the magnitude
∣R(s,L)∣ as a function of frequency. Hint: You should label any constants, or set them
equal to 1 for plotting.

Γ(L, s) ≡ U−(L, s)
U+(L, s)

.

[In this case the load impedance is Zc = Rc + 1/(sCal), thus

R(L, s) = Rc + 1/(sCal) − z0
Rc + 1/(sCal) + z0

.

]

2. (3pts) Find the formula for the reflection coefficient at x = 0 (looking out towards the
radiation impedance). Sketch its magnitude as a function of frequency.

Γ(0, s) ≡ U+(0, s)
U−(0, s)

.

[In this case the load is Zrad. ]

3. (2pts) Consider the radiation impedance looking out the ear canal, Yrad.

(a) What is the frequency for which its real and imaginary parts are equal (in terms
of Lrad and Rrad)? [

1

2πf0Lrad

= 1

Rrad

.

]

(b) Describe the dependence of Yrad on Lrad and Rrad below and above this frequency.
[Rrad dominates at high frequencies above f0, Lrad dominates at low frequencies
below f0. ]

4. (3pts) Find the formula for the input impedance Z(0, s) of the middle ear at the
entrance of the ear canal, when the cochlea is “blocked” (Zc =∞ or R(L, s) = 1)?
[When the end of the acoustic line is blocked there is a “short” across the end, namely
the velocity (current) is zero. The reflectance at x = 0 is a delayed version of the



reflectance at the cochlea (x = L), thus R(0, s) = −e−jω2L/c, which has an inverse
Fourier transform of r(0, t) = −δ(t − 2L/c). Make sure you understand why this is! Do
you understand where the delay is coming from?

It follows that the impedance is

Z(0, s) = z0
1 +R(0, s)
1 −R(0, s)

= z0
1 + e−s2L/c
1 − e−s2L/c

.

A little algebra and we find

Z(0, s) = jz0
cos(sL/c)
sin(sL/c)

= j ρoc
A

cot(ωL/c) = z0 coth(sL/c).

This may be written in the time domain by a Taylor series, and it is a train of impulses
spaced 2L/c apart. In other words, R(0, s) ↔ r(x = 0, t) = δ(t − 2L/c) is the same as
impedance Z(ω) = −j ρoc

A cot(ωL/c). ]
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