
ECE 403 HW c – Ver. 1.26 April 10, 2017 Spring 2017

Univ. of Illinois 2/21, Disc: 2/28, Due: 3/2 Prof. Allen

Topic of this homework: Loudspeaker Impedance; Analytic power series; Acoustic Signal pro-
cessing Acoustics; Fourier Transform; Signal processing;

Deliverable: Show your work.
If you hand it in late, you will get zero credit (I will be handing out my solution at that time).

You will only get credit for what you hand in. I want a paper copy, with your name on it. Please
no files.doc.

No matter how limited your results, on the due date submit what ever you have. Some credit
is better than NO credit.

Note: This homework will be discussed by the entire class on Disc: 2/28. You need to be there.
Each person is to do there own final writeup, but obviously you can discuss it as much as you like
between yourselves.

1 Model of a loudspeaker

1.1 ABCD model

The attached figure shows the equivalent circuit for an electro-dynamic earphone.
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Figure 1: Equivalent circuit for an earphone (Beranek and Mellow, 2012, p. 109). This model is simplified from
Kim and Allen (2013). There are three sections, the electrical input (left), the mechanical response (center), and
the acoustic output (right). The electrical input in in terms of the voltage V0(f) and current I0(f). There are two
elements, the coil resistance Re and its inductance Le. The center section corresponds to the mechanical components,
with a compliance Cm (compliance/stiffness), mass Lm and mechanical damping Rm. The mechanical force F2(f)
and a velocity U2(f) are the input to the transformer which converts the force into a pressure. The diaphragm has
an area A, which results in a pressure P3(f) = F2/A, and a volume velocity V3(f) = AU2(f) at the right.

This figure generates the two-port relationship (most of the following quantities are functions
of frequency - we will show it explicitly in the first equation)

[
V0(f)
I0(f)

]

=

[
A(f) B(f)
C(f) D(f)

] [
P3(f)
−V3(f)

]

where

T =

[
A B
C D

]

=

[
1 (Re + sLe)
0 1

]

︸ ︷︷ ︸

electrical

[
0 Go
1
Go

0

]

︸ ︷︷ ︸

gyrator

[
1 1

sCm

0 1

] [
1 sLm

0 1

] [
1 Rm

0 1

]

︸ ︷︷ ︸

mechanical

[
Ao 0
0 1

Ao

]

︸ ︷︷ ︸

transformer

[
1 0

sCa 1

]

︸ ︷︷ ︸

acoustical

where the gyrator (Go = Bol) and the transformer1 (Ao) are used to cross between modalities. The
gyrator converts variables from electrical (voltage (force) = V0, current (flow) = I0) to mechanical

1This matrix is slightly different from Kim et al. (2013), where A is 1/area.
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(force = F1, velocity (flow) = U1). The transformer converts variables from mechanical (force =
F2, velocity (flow) = U2) to acoustical (pressure (force) = P3, volume velocity (flow) = V3).

When analyzing this model, it may help to think of the ABCD matrix as

[
force1
flow1

]

=

[
A B
C D

] [
force2
−flow2

]

which has a corresponding impedance matrix

[
force1
force2

]

=

[
z11 z12
z21 z22

] [
flow1

flow2

]

=
1

C

[
A ∆T

1 D

] [
flow1

flow2

]

.

In the figure, we show the load at the output of the speaker to be Zl = ρc/Acanal. The input
impedance of a 2-port network with load Zl is

Zin = z11 −
z12z21
Zl + z22

where the elements zij are the elements of the impedance matrix of the network.
In this homework assignment, you are asked to compute forces, flows, and transfer functions at

different places in the model (denoted by subscripts 0, 1, 2, and 3). Therefore, you will consider T
and Z matrices that represent subsections of the model.

Calculating transfer functions: In general,

force1 = A× force2 − B × flow2.

Therefore, if either force2 or flow2 is set to zero (open or short circuit), you can calculate the ratio
force2/force1 or flow2/force1.

Calculating forces and flows: To calculate forces and flows, you need to know how the loud-
speaker is driven (driving voltage V0 = 1 for this homework), and what the load is at the speaker
output (in Figure 1, the load is Zl = ρc/Acanal). In this case

force1 = V0 = 1 [Volt] = A× force2 − B × flow2.

To calculate force2 or flow2, you need an additional item of information

Z =
force2
−flow2

,

where Z is the input impedance of the remainder of the model, looking to the right.

1.2 MATLAB code

% The following code generates a simplified model of the balanced armature

% receiver (small hearing aid speaker) from Kim et al. 2013. It does not

% include the semi-inductor or transmission line

NFT=1024; NF=1+NFT/2;%number of non-negative frequencies

Fmax=1e4; Fs=2*Fmax; Fmin=Fs/NFT;

f=0:Fmin:Fmax; %sweep frequency from 0 to Fmax [Hz] in steps of Fmin [Hz]

f = f(10:end); % we don’t need the lowest frequencies

% define load condition

A_canal = pi*0.0075^2; % ear canal area m^2
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% useful physical constants

rho = 1.2; % density of air kg/m^3

c = 342; % speed of sound m/s

P0 = 1E5; % atmospheric pressure

eta = 1.4; % ratio of specific heats

%Define basic parameters based on Kim and Allen

Re=195;

Le=9e-3; %electrical section

Lem = 52e-3;

LeTot = Le+Lem;

G = 7.5; %Gryator Bo l: Electrical to Mechanical transformation

Cm=1.25e-3; Lm=4.3e-6; Rm=3e-3; %Mechanical section

A = 2.4e-6; %Mechanical to Acoustical transformation (earphone port radius ~ 1 mm)

Ca = 4.3E-15; % acoustic volume

z0tx = 1e9; ltx = 1e-4; % Kim et al 2013 transmission line parameters

Vtx = ltx*(rho*c/z0tx); % volume of transmission line tube

Ctx = Vtx/(eta*P0); % capacitance of transmission line volume

CaTot = Ca+Ctx;

for k=1:length(f);

s=2*pi*f(k)*1j; %Define complex frequency

Te = [1 Re+s*LeTot;0 1]; %electrical

Tem = [0 G; 1/G 0]; % gyrator electrical to mechanics

Tm = [1 1./(s*Cm); 0 1]*[1 s*Lm; 0 1]*[1 Rm; 0 1]; % mechanical

Tma = [A 0; 0 1/A]; % coupling of mechanics to acoustics

Ta = [1 0; s*CaTot 1]; % acoustical

% indices: 0= front end; 1 = left side of mechanical part (right of

% gyrator); 2 = right side of mechanical part (left of transformer); 3

% = left side of acoustical part (right side of transformer)

T03(k,:,:)=Te*Tem*Tm*Tma*Ta; %avoids a nightmare of algebra

T01(k,:,:)=Te*Tem;

T02(k,:,:)=Te*Tem*Tm;

T13(k,:,:)=Tm*Tma*Ta;

T23(k,:,:)=Tma*Ta;

% calculate Z matrices here to make calculations easier later

Z03(k,1,1) = T03(k,1,1)/T03(k,2,1); % A/C

Z03(k,1,2) = -1/T03(k,2,1); % det(T)/C where det(T) = -1 for anti-reciprocal system (gyrator)

Z03(k,2,1) = 1/T03(k,2,1); % 1/C

Z03(k,2,2) = T03(k,2,2)/T03(k,2,1); % D/C

Z02(k,1,1) = T02(k,1,1)/T02(k,2,1); % A/C

Z02(k,1,2) = -1/T02(k,2,1); % det(T)/C where det(T) = -1 for anti-reciprocal system (gyrator)

Z02(k,2,1) = 1/T02(k,2,1); % 1/C

Z02(k,2,2) = T02(k,2,2)/T02(k,2,1); % D/C

Z13(k,1,1) = T13(k,1,1)/T13(k,2,1); % A/C

Z13(k,1,2) = 1/T13(k,2,1); % det(T)/C where det(T) = 1 for recriprocal system

Z13(k,2,1) = 1/T13(k,2,1); % 1/C

Z13(k,2,2) = T13(k,2,2)/T13(k,2,1); % D/C

Z23(k,1,1) = T23(k,1,1)/T23(k,2,1); % A/C

Z23(k,1,2) = 1/T23(k,2,1); % det(T)/C where det(T) = 1 for reciprocal system

Z23(k,2,1) = 1/T23(k,2,1); % 1/C

Z23(k,2,2) = T23(k,2,2)/T23(k,2,1); % D/C

end %end for freq loop

% Solve for transfer functions:
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I0divV0_U10 = T01(:,2,1)./T01(:,1,1);

% TO DO: Solve for other transfer functions

% Solve for input impedance looking to the right of solution point. Use

% ABCD matrix to model transmission between input (V=1) and solution point.

ZL = rho*c/A_canal; % ear canal

Zin2 = Z23(:,1,1) - Z23(:,1,2).*Z23(:,2,1)./(ZL + Z23(:,2,2));

Zin1 = Z13(:,1,1) - Z13(:,1,2).*Z13(:,2,1)./(ZL + Z13(:,2,2));

Zin0 = Z03(:,1,1) - Z03(:,1,2).*Z03(:,2,1)./(ZL + Z03(:,2,2));

% forces

V0 = ones(1,length(f)); % input 1 V

% TO DO: Calculate F1, F2, P3

% flows

I0 = 1./Zin0;

% TO DO: Calculate U1, U2, V3

% PLOT INPUT IMPEDANCE

figure(’units’,’normalized’,’outerposition’,[.05 .15 .7,.7])

subplot(121)

plot(f/1000, abs(Zin0)); hold on

set(gca,’xscale’,’log’,’yscale’,’log’,’xlim’,[.2 10]);

title(’|Z_{in}|’)

xlabel(’Frequency [kHz]’)

subplot(122)

plot(f/1000, unwrap(angle(Zin0))/pi); hold on

set(gca,’xscale’,’log’,’xlim’,[.2 10],’ylim’,[-.6 .6]);

title(’\angle Z_{in} [rad/pi]’)

xlabel(’Frequency [kHz]’)

% TO DO: Calculate Zin with other load conditions, compare

% PLOT TRANSFER FUNCTIONS

figure(’units’,’normalized’,’outerposition’,[.05 .15 .7,.7])

subplot(231) %(a)

plot(f/1000, abs(I0divV0_U10));

set(gca,’xscale’,’log’,’xlim’,[.2 10]); title(’(a) |I_0/V_0|_{U_1=0}’)

xlabel(’Frequency [kHz]’)

% TO DO: add subplots for (b)-(f)

% PLOT FORCES AND FLOWS

[val,i1k] = min(abs(f-1000)); % find 1kHz index for normalizing curves

figure(’units’,’normalized’,’outerposition’,[.05 .15 .7,.7])

subplot(121)

plot(f/1000, abs(V0)/abs(V0(i1k)),’k’,’linewidth’,2); hold on

legend(’|V_0|’)

xlabel(’Frequency [kHz]’); set(gca,’xscale’,’log’,’xlim’,[.2 10]); title(’Generalized Forces’)

% TO DO: Add F1, F2, P3

subplot(122)

plot(f/1000, abs(I0)/abs(I0(i1k)),’k’,’linewidth’,2); hold on

legend(’|I_0|’)

xlabel(’Frequency [kHz]’); set(gca,’xscale’,’log’,’xlim’,[.2 10]); title(’Generalized Flows’)

% TO DO: Add U1, U2, V3

To do:

1. Explain how this code works. For full credit you must be clear. Identify the key lines of code,
and explain how they work.

2. Plot the magnitude of each of the following transfer functions:

(a) The current into the gyrator I0(f)/V0(f) with the speaker motor blocked (U1 = 0)
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(b) F1(f)/V0(f) with U1 = 0 (blocked)

(c) U1(f)/V0(f) with F1(f) = 0 (open circuit)

(d) F2(f)/V0(f) with U2 = 0

(e) U2(f)/V0(f) with F2(f) = 0

(f) P3(f)/V0(f) with V3(f) = 0, expressed in Pascals [Pa].

In each of the above response, discuss the bandwidth and properties of each transfer function
in terms of the circuit elements. Solution: You may find the transfer functions using the
following equations:
I0divV0 U10 = T01(:,2,1)./T01(:,1,1);

F1divV0 U10 = 1./T01(:,1,1);

U1divV0 F10 = -1./T01(:,1,2);

F2divV0 U20 = 1./T02(:,1,1);

U2divV0 F20 = -1./T02(:,1,2);

P3divV0 V30 = 1./T03(:,1,1);
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3. Assume the earphone is terminated in an infinitely long tube of area Acanal, having an
impedance of ρoc/Acanal. Also assume the earphone is driven by a voltage V0 = 1 [Volt].
Plot the magnitudes of the following variables as a function of frequency: generalized forces
V0, F1, F2,P3, and (in a second plot) the generalized flows I0, U1, U2,V3. Normalize all the
plots to a single value at 1 [kHz]. Explain what each curve is telling you (identify resonances,
and explain their source). Be sure your curves are labeled properly in a legend, so that the
different variables are easily distinguished. Solution: You can find the forces and flows from
the following equations:
% forces V0 = ones(1,length(f)); % input 1 V

F1 = 1./(T01(:,1,1) + T01(:,1,2)./Zin1);

F2 = 1./(T02(:,1,1) + T02(:,1,2)./Zin2);

P3 = 1./(T03(:,1,1) + T03(:,1,2)./ZL);

% flows

I0 = 1./Zin0;

U1 = -1./(Zin1.*T01(:,1,1) + T01(:,1,2));

U2 = -1./(Zin2.*T02(:,1,1) + T02(:,1,2));
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V3 = -1./(ZL.*T03(:,1,1) + T03(:,1,2));
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4. The given code generates a plot of the input impedance of the speaker, given Zin = ρc/Acanal.
On the same plot, show the input impedance when

(a) The speaker is in the ear canal (Zl = ρc/Acanal).

(b) The speaker port is blocked (instead of Zl = ρc/Acanal, Zl → ∞; in Matlab, set ZL=Inf).

(c) The diaphragm is blocked (this requires the impedance F2/U2 → ∞).

Describe the differences in the speaker’s electrical input impedance under these three condi-
tions. Can you relate these differences to the motion of the diaphragm? Solution: Difference
in loads causes diaphragm resonance to move. When the diaphragm itself is blocked, there is
no resonance!
You can use the following code to calculate these input impedances:
ZL = rho*c/A canal; % ear canal

Zin0 = Z03(:,1,1) - Z03(:,1,2).*Z03(:,2,1)./(ZL + Z03(:,2,2)); % (a)

Zin3blocked = Z03(:,1,1) - Z03(:,1,2).*Z03(:,2,1)./(Inf + Z03(:,2,2)); % (b)

Zin2blocked = Z02(:,1,1) - Z02(:,1,2).*Z02(:,2,1)./(Inf + Z02(:,2,2)); % (c)
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5. Define the motional impedance, and explain why it is an important concept. Hint: See the lab
manual (Lab 3) for help! Using your input impedances from the previous problem, calculate
and plot the motional impedance for the case where Zl = ρc/Acanal. Solution: The motional
impedance is described in the Lab Manual for Lab 3. There are references to pages in the
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text that discuss this more.
The measured electrical impedance Zin = Ze + Zmot, where Zmot is the impedance due to
the motion of the diaphragm. Therefore, Zin = Ze when the diaphragm is blocked. Once we
know Ze, we can calculate Zmot with any mechanical or acoustical load, given the electrical
input impedance. You can use the code:
Zmot = Zin0-Zin2blocked

to calculate Zmot for the case where the acoustic load is ρc/Acanal.
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2 Filter classes

In the following let s = σ + iω be the Laplace (complex) frequency. Filters are causal functions
(one sided in time) that modify a signal (any function of time) into another signal. For example if
h(t) is a filter, and x(t) a signal then

y(t) = h(t) ⋆ x(t) ≡
∫ t

∞

h(t− τ)x(τ)dτ

where ⋆ defines convolution.
Both transfer functions and impedances are in the class of filters.
An important property of a filter is that it is causal, and has a Laplace transform. However, a

signal has a Fourier transform and may not always be causal. A physical real-world filter is always
causal. Mathematically one may easily define an anti-causal filter (e.g., (u(−t)), but it is hard (i.e.,
impossible) to understand exactly what that would mean in practice.

Background:

1. A causal filter h(t) ↔ H(s) is one that is zero for negative time. It necessarily has a Laplace
transform.

2. A finite impulse response (FIR) filter has finite duration, namely if f(t) is FIR, then it is zero
for t < 0 (it is causal) and for t > T where T is a positive constant (time). FIR filters only
have zeros (they do not have poles).

3. An Infinite impulse response (IIR) filter is one that is non-zero in magnitude as t → ∞, bu it is
still causal (h(t < 0) = 0). All IIR filters have poles (as well as zeros), namely if h(t) ↔ H(s)
then H(s) has poles in the region σ ≤ 0. IIR filters have the characteristic of ‘feedback’
(output depends on previous inputs), which is why the impulse response is infinitely long.

4. A Minimum Phase filter m(t) ↔ M(s) is a filter (it must be causal) having the smallest
phase (i.e., ∠M(jω)) of any filter with magnitude |M(ω)|, on the jω axis. A minimum phase
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filter also satisfies the very special condition

ℵ(t) ↔ N(s) ≡ 1

M(s)
,

where the inverse of m(t) is causal. Thus m(t) ⋆ ℵ(t) = δ(t) where ⋆ represents convolution.
All impedances are minimum phase (every impedance Z(s) has a corresponding admittance
Y (s) ≡ 1/Z(s)).

5. An all-pass filter modifies the phase but not themagnitude of a signal; namely if a(t) is a causal
impulse response of a causal all-pass filter, having Fourier Transform A(ω) ≡ |A(ω)|eiφ(ω),
then |A(ω)| = 1. Thus the phase φ(ω) completely specifies the all-pass filter. The group delay
is defined as

τg(ω) ≡ −∂φ(ω)

∂ω
,

Since

φ(ω) =

∫ ω

0
τg(ω)dω,

the group delay also may be used as the definition of an all-pass (i.e., the filter can be derived
the group delay).

A causal all-pass filter having a real time response (a(t) real and causal), must have its poles
and zeros symmetrically located across both the σ and jω axes. For example a pole at
sp = −1 + j and a zero at sz = 1 + j

Ã(s) =
s− 1− j

s+ 1− j

would produce an all-pass response. This is because |Ã|s=jω = 1 (verify this for yourself).
The inverse Laplace transform a(t) ↔ A(s) is be complex because the conjugate poles and
zeros have been ignored in this example. To repair this (to force a(t) to be real), the full filter
must be

A(ω) ≡ Ã(ω) · Ã∗(ω) =
s− 1− j

s+ 1− j
· s− 1 + j

s+ 1 + j
.

6. A positive real (PR) filter z(t) ↔ Z(s) = R(s) + iX(s) is both minimum phase, and has a
positive real part in the right half s plane, namely

R(σ > 0) > 0

that is, for σ > 0 ℜZ > 0.

Every impedance z(t) ↔ Z(s) is PR. Since impedance is used in the definition of power, it
represents a positive definite operator (a fancy name for a filter). For example, if one convolves
a current i(t) with an impedance, a voltage results. Namely v(t) = z(t) ⋆ i(t). Since power is
voltage times current, the complex power is P(t) ≡ v(t)i(t). The time average power is the
time average of P(t), P(t) ≡

∫

T P(t)dt (if P (t) is periodic, then we average over a period T).

To do: Prove (or discuss in detail) each of the following:

1. The relation h(t) ⋆ g(t) ↔ H(ω)G(s).

(a) Start by writing out the formula for the convolution of h(t) and g(t), denoted h(t)⋆g(t).

Solution:

h(t) ⋆ g(t) ≡
∫

−∞

τ=0
h(t− τ)g(τ)dτ

The limits have been chosen to be consistent with the fact that g(t) = 0 for τ < 0.
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(b) Then show that the inverse transform of a product of filters is a convolution. Solution:
Start from the definition of the product of the FT of h(t) ↔ H(ω) and the LT of
g(t) ↔ G(s).

1

2π

∫
∞

−∞

H(ω)G(iω)eiωtdω =
1

2π

∫
∞

−∞

dω

[∫
∞

−∞

h(ξ)e−iωξdξ

]

︸ ︷︷ ︸

H(ω)

[∫
∞

0
g(τ)e−(σ0+iω)τdτ

]

︸ ︷︷ ︸

G(σ0+iω)

eiωt

Here we let σ0 = 0 placing the ROC in the RHP.

Changing the order of the integration gives

1

2π

∫
∞

−∞

dξ

∫
∞

0
dτ h(ξ) g(τ)

∫
∞

ω=−∞

dωeiω(t−ξ−τ)

︸ ︷︷ ︸

2πδ(t−ξ−τ)

=
1

2π

∫
∞

ξ=0
h(ξ)g(t− ξ)dξ

This may also be written as the convolution given as the first equation if we manage the
delta function differently.

(c) The point of this example is that one function is of ω while the other a function of s.
How does this impact the convolution? Solution: The function h(t) may exist over all
time. Because G(s) is causal however, one limit of the convolution is affected. This may
be written in two different ways, but the simpler way is the first method, since there it
is clear where the limit is for g(τ) (i.e., at τ = 0).

2. Can an all-pass be filter minimum phase? Explain. Solution: In some sense all-pass is the
opposite of minimum phase. Any causal filter may be factored into the product of an all-
pass (A(ω)) and a minimum phase M(ω) filter. Namely given any causal transfer function
H(ω) = A(ω)M(ω), where |A| = 1 is only a frequency dependent delay, and M(ω) is a filter
with the smallest phase possible given |M(ω)|. The real and imaginary parts of a minimum
phase filter are Hilbert transforms of each other.

3. Prove that δ(t− 5) is all-pass. Solution: |e−5s| = 1

4. Is δ(t+ 5) all-pass? Solution: This response is not causal, but still is all-pass, since |e5s| = 1.
One can take the LT of an anti-causal signal, since it is still one-sided. However, this situation
seems unlikely to arise in a real-world problem.

5. Is e−t all-pass or minimum phase? Justify your answer. Solution: if you assume its causal,
then yes it has a single pole at s = −1. If the function exists for all time, then it doesn’t have
either a L or F transform.

6. For what conditions on a and b is F (s) = s−a
s+b all-pass? Solution: In the trivial case, if b =

-a, then F(s) =(s-a)/(s-a)=1 is all-pass. Otherwise, we require that b is equal to the complex
conjugate of a. If b=a*, then the real part of the pole will be opposite the real part of the
zero, so it falls on the other side of the jw axis. We need to take the complex conjugate so
that the imaginary parts of the pole and zero will be the same.

7. For what conditions on a and b is F (s) = s−a
s+b minimum phase? Solution: Only if the pole

and zero are in the LHP. i.e., a,−b both have negative real parts.

8. Does F (s) = s+j
s−j have a real impulse response? Solution: No: f(t) = d

dte
jtu(t) + jejtu(t)

9. In the continuous time domain, a pure delay by T [s] may be written as δ(t − T ) ↔ e−iωT .
Find the expression for z−N , a pure delay of N samples in the discrete time domain. Hint:
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Discrete time n relates to continuous time via t = nTs, where Ts is the sampling period. If a
delay T = NTs, relate this to the continuous time delay. What must z be? Solution: In the
discrete time domain, a delay of N samples is δ(nT −NT ), where T is the sample period, is
n is the time index and tn = nT is the delay we wish to represent. Taking the z transform
gives z−N = e−iωNT . Thus z−1 = e−iωT .

10. Where are the poles and zeros for

(a) a Stable filter Solution: poles in LHP, zeros anywhere

(b) an all-pass filter Solution: poles LHP, zeros symmetrically in the RHP

(c) a Minimum phase filter Solution: All poles and zeros in LHP

(d) an Impedance (PR function) Solution: Poles and zeros must be carefully place in the
LHP only, such that the phase of the impedance is always between ±π. This places a
very tight constraint on the pole–zero locations, much more than their simplifying being
in the LHP.

11. Describe the mathematical relationship between i(t) and v(t) if they are related by the Laplace
transform via Ohm’s law

V (ω) = Z(s)I(ω).

Solution: From Ohm’s law Z = V/I, convolution relates the voltage and current. That is

v(t) ≡ z(t) ⋆ i(t) =

∫ t

τ=−∞

z(t− τ)i(τ)dτ =

∫
∞

τ=0
z(τ)i(t− τ)dτ ↔ V (ω) = Z(s)I(ω),

where z(t) ↔ Z(s) ≡ V (ω)
I(ω) . Here v(t) ↔ V (ω) and i(t) ↔ I(ω) are FTs of the voltage and

current. In general v(t) and i(t) do not have LTs, since they are signals, not systems, thus the
system properties (linear, causality, active, . . . ) have no physical significance. Impedances
are the most common functions having a LT, and therefore, poles and zeros. Most books
do not discuss this most obvious case, of mixing signals with impedances. It only considers
signal that have a LT. For example, when a noise is filtered by a low-pass RC filter having
a linear causal time-invariant transfer function H(s) ≡ Vo/Vi = R/(R+ 1/sC), the input an
output noise signals will not have a LT. Such problems abound (are common).

3 Name that transform

1. You are given a specification of the time and frequency properties of some signals and you
are asked to name the type of transform that would be used to analyze these signals in
the frequency domain (e.g. Fourier transform, Laplace transform, z-transform, discrete FT
(DFT), discrete time FT (DTFT), Fourier series, etc.).

(a) The time response is zero for t < 0 and the frequency response is a function of the radian
frequency ω = 2πf Solution: Laplace since it is strictly causal.

(b) The time response is zero for t > 0 and the frequency response is a function of the radian
frequency ω = 2πf Solution: This is anticausal, it must be analytic in the left half plane.
This never happens, thus we never talk about it.

(c) The time response is given at points tn = nT , where T = 1/Fs with Fs = 44100 kHz, and
the frequency response is specified outside the unit circle. Solution: Since the frequency
resp is specified outside the unit circle, then it must be the z transform. It is a causal
sampled systems.
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(d) The time response is given at times t[n] = nT for integer n and constant T , and the
frequencies are given at f [k] = k/T Solution: This sounds like the DTFT. Since no time
range is specified, it must be for all time, and thus a DTFT.

2. Find the Fourier series expansion of the periodic function

f((t))T ≡
∞∑

n=−∞

δ(t− nT )

Give the formula for F [k]. Show your work. Explain how you get the solution. Solution:
This is exactly the example I gave in class, of a train of delta functions. The FS was found
to be 2π

T

∑

k δ(ω − k 2π
T )

3. Find the Laplace transform of h(t) = 3e−t/τu(t). Give an example of an electrical circuit that
has this impulse response. Solution: This is a bit of a classic result with H(s) = 3/(s+(1/τ)).

4. If the impulse response of some system is h(t) = 3et/τu(t+1), describe the interesting things
about the system. Solution: This is unstable (active) and “advanced-causal,” meaning it is
causal but advanced in time by 1 second. This is a special case of one-sided, but it is not
causal.

5. What is the basic idea behind an analytic function? Give an example of a function that
is analytic, and one that is not. Solution: All impedances are analytic in the right half
plane, since they are causal. A causal function has a power series in frequency that converges
everywhere in the region of convergence (ROC).

6. Laplace vs. Fourier

(a) When do you use a Laplace transform and when do you use the Fourier transform?
Solution: Use the Laplace on causal impulse responses, such as impedances, and the
Fourier transform on “signals” that go on forever, or at least for a long time

(b) Give an example where you can use both. Solution: A causal function typically has a
FT, but not always. For example e−atu(t) has both, but etu(t) has no FT.

(c) Give an example where you cannot use the Laplace transform. Solution: The Laplace
transform is always analytic in some region. Functions that only have transforms on the
jω axis do not have FTs. A speech signal does not have a LT, for example.

7. Given the transform pair f(t) ↔ F (ω) one may prove that F ∗(t) ↔ 2πf∗(ω). Solution: This
isn’t that easy. I need to show this in class. Its a matter of carefully applying the definitions
of the FT.

Apply this relationship to the following transform pairs, to derive new transform pairs (I
worked out the first question, as an example):

(a) δ(t) ↔ 1

Solution: f(t) = δ(t) ↔ F (ω) = 1. Thus applying the above relationship we find that if
the time function is 1 then the transform is 2πδ(ω).

(b) ejω0t ↔ 2πδ(ω − ω0) Solution: δ(t− t0) ↔ e−jωt0 . This should be known to you.

(c) u(t) ↔ πδ(ω) + 1/jω Solution: δ(t− 1/jt) ↔ 2u(ω)
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4 History

1. Describe some interesting things about Pythagoras. Be sure to include when, where, and
why. What might this have to do with Audio Engineering? Solution: Look this up on Wiki.

2. Give a few reasons that Newton might be relevant to Audio Engineering. Solution: He was
the first to calculate the speed of sound. He may have been off by

√
1.4, but this is a pretty

impressive feat.

3. What year did Fourier work out his analysis of heat transfer? How did he do it? Solution:
Around 1822 (Maxwell was c1865) he did this in the frequency domain. The heat transfer
equation is not the wave equation, it is the diffusion equation. Yet he solved it in the frequency
domain.
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