
ECE 403 HWd – Version 1.14 March 25, 2017 Spring 2017

Univ. of Illinois Lec 16, Disc: Lec 17, Due: Lec 20 Prof. Allen

Topic of this homework: Webster Horns: 1D, 3D & Exp Horns; Reflectance; Thermal noise;
Hilbert Transform

Deliverable: Show your work.
If you hand it in late, you will get zero credit. I would like a paper copy, with your name on it.

No doc files.
Some credit is better than NO credit.

1 Wave equation

1.1 History of the wave equation

1. What year did d’Alembert derive his solution to the wave equation? Solution: d’Alembert
first proved this in 1747.

2. What is the form of D’Alembert’s solution? Solution: f(t− x/c) + g(t+ x/c)

3. Who was the first person to calculate the speed of sound, and what was the result? Solution:
Newton did this in 1648. His formula was in error due to the dynamic stiffness of air, which
is γPo. His result was too small by the factor of

√
1.4.

1.2 The Webster wave equation:

The Webster Horn equation may be written in the time domain as 1D transmission line equation:

∂

∂x

[

p(x, t)
ν(x, t)

]

= −
[

0 ρo
A(x)

A(x)
γPo

0

]

∂

∂t

[

p(x, t)
ν(x, t)

]

, (1)

where ν(x, t) = A(x)u(x, t) is the volume velocity, more generally defined as the integral over the
normal component of the particle velocity u(x, t), over the cross-sectional area A(x) of the tube.
Transforming to the frequency domain we have

d

dx

[

P (x, ω)
V (x, ω)

]

= −
[

0 Zs(s, x)
Ys(s, x) 0

] [

P (x, ω)
V (x, ω).

]

(2)

Here we use the complex Laplace frequency s when referring to the per-unit impedance

Zs(s, x) ≡ s
ρo

A(x)
= sM(x) (3)

and per-unit admittance

Ys(s, x) ≡ s
A(x)

γPo
= sC(x), (4)

where M(x) = ρo/A(x) is the horn’s per-unit-length mass, and C(x) = A(x)/γPo per-unit-length
compliance, to remind ourselves that these functions must be causal, and except at their poles,
analytic in s.

The horn of a loudspeaker cone is either conical A(x) = A0(x/x0)
2, or in the shape of an

exponential.
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1.3 To Do:

1. Assuming a conical horn, having area A(x) = Ao(x/xo)
2 with Ao ≤ 4π, rewrite these equa-

tions as a second order equation solely in terms of the pressure P (remove U), and thereby
find the frequency domain solutions P±(x, s) for the conical horn equation. Solution: If we
let Px ≡ ∂P/∂x (i.e., the partial with respect to space) then

Px + ZU = 0 (5)

and
U ′ + YP = 0. (6)

Taking the partial wrt x of the first equation, and then using the second, gives

Pxx + ZxU + ZUx = Pxx −
Zx

Z Px −ZYP = 0. (7)

Using the relation

Zx/Z =
d

dx
lnZ = − d

dx
lnA(x), (8)

with A = Ao(x/xo)
2, we find

Pxx +
2

x
P =

s2

c2
P. (9)

Just as it was important to replace real frequency ω with the Laplace frequency s, since the
roots are typically complex, using the same reasoning, we replace the “real wave number”
k = ω/c with a complex wave number as κ(s). Only in the case of non-dispersive waves (e.g.,
plane waves) is κ(s) = s/c.

Since the wave equation is
∂2P

∂x2
=

1

c2
∂2P

∂x2
(10)

by inspection we see that ω2/c2 = ZY, which results in the final formula for the speed of
sound.

2. Starting from the transmission line equations given above, and assuming an exponential area
function

A(x) = A0e
2mx

(m is a positive constant, called the horn flair parameter), derive the exponential horn equa-
tion for the pressure

∂2p(x, t)

∂x2
+ 2m

∂p(x, t)

∂x
=

1

c2
∂2p(x, t)

∂2t
(11)

Solution: Starting from the basic definitions with A(x) = A0e
2mx along with the basic equa-

tion for a horn, explicitly write out the two equations

dP

dx
+ s

ρo
A0

e−2mxV = 0 (12)

dV

dx
+ s

A0e
2mx

γPo
P = 0 (13)

Next solve for the pressure (remove V ):

d2P

dx2
+ s

ρo
A0

(

e−2mxdV

dx
+ V

d

dx
e−2mx

)

= 0 (14)
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or
d2P

dx2
+ s

ρo
A(x)

(

dV

dx
− 2mV

)

= 0. (15)

Going back to the basic equations, again removing V

d2P

dx2
+ s

ρo
A(x)

(

−s
A(x)

γPo
P + 2m

A(x)

sρo

dP

dx

)

= 0 (16)

which simplifies to the requested result

d2P

dx2
+ 2m

dP

dx
− s2

ρo
γPo

P = 0. (17)

since −s2 = ω2 and γPo = ρoc
2.

3. In general the soluton to a wave equation is of the form

p(x, t) = P+(κ, s)eκxest + P−(κ, s)e−κxest

where s = σ + ω is the Laplace frequency and κ(s) is the complex “wave number.” What is
κ(s) for the

(a) conical horn? Solution: κ(s) = ±s/c.

(b) exponential horn? Solution: κ(s) = −m±
√

m2 + (s/c)2.

(c) What is the significance of κ(s)? Solution: It is called the dispersion relation of the
differential equation, that relates the wavelength to the frequency.

(d) Why is it a function of s? Solution: In general the wavelength is a function of frequency.
This is a generalization of the plane wave relation λf = c, or κ(s) = s/c.

(e) What is the role of P±(κ, s)? Solution: These are aplitudes of the forward and reverse
traveling waves, that are to be determined by applying boundary conditions to the
solution.

4. Show that the solution to Eq. 11 is of the form

P±(x, s) = e−mxe∓
√

m2+(s/c)2 x.

Solution: This equation is an ordinary constant coefficient equation. Accordingly, substitution
of p(x, t) = P (κ, s)e−κxest, one may find κ = −m±

√

m2 + (s/c)2, giving the solution, in the
freq. domain, of the requested form.

Discussion: This solution is loss-less under all conditions. For high frequencies, when
ω > mc, the pressure changes by e−mx as it propagates with a frequency dependent delay,
making it an acoustic transformer. At very high frequencies, when m can be ignored with
respect to ω/c, the wave propagates without dispersion, but still with a decay. It is still
loss-less. The decay in amplitude is due to the change in area.

At very low frequencies, the wave solution is still causal, but no longer decays spacial [the
exp() term is canceled out]. To see this requires taking the inverse Laplace transform of
P (x, s).

Note the interesting and seemingly related relations (s is the Laplace frequency and ↔ rep-
resents the Laplace transform)

sinh−1(s) = loge[s+
√

s2 + 1] (18)

(see Matlab’s doc asinh) and the low-pass sinc()-like relation

J1(t)

t
U(t) ↔

√

s2 + 1− s (19)
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1.4 Reflectance:

1. Find (derive) the formula for the “input” impedance of a transmission line, having charac-
teristic impedance z0(x, s), in terms of the reflectance. Define all the terms. Hint, I did this
in class several times. Solution: Define z0 ≡ P+

U+
and R ≡ P−/P+ = U−/U+, then

Z = P/U =
P+ + P−

U+ − U−

= z0
1 +R

1−R
. (20)

2. Find the formula for the reflectance R(s) in terms of the load impedance ZL(s) and the
characteristic impedance z0 if:1 Solution: Solve above for R(s) in terms of ZL gives:

R =
ZL − z0
ZL + z0

(21)

(a) ZL(x, s) = r [Nt-s/m5]

(b) ZL(x, s) = 1/sC [Nt-s/m5]

(c) ZL(x, s) = r||sM [Nt-s/m5] Solution: Let ZL = rsM
r+sM then

R =
rsM − z0(r + sM)

rsM + z0(r + sM)
=

(r − z0)Ms− z0r

(r + z0)Ms+ z0r
. (22)

(d) Two transmission lines are in cascade, the first one having an area of 1 [cm2] and a
second having an area of 2 [cm2], with lengths L1 and L2 respectively, terminated with
a resistor r = ρc/A, where A = 2 × 10−4 [m2]. Find R(x = 0, s). Solution: Since the
second line is terminated in its own impedance, it is just a resistor at its input, which
makes the problem very simple. As a result

R(s) =
1/1− 1/2

1/1 + 1/2
e−s2L1/c = 1/3e−s2L1/c, (23)

where L1 is the length of the first TL. Note that if the line were not matched at the end,
the story would be very different.

(e) What is the inverse Laplace transform of

i. H(s) = 1/(s+ 1)? Find h(t). Solution: h(t) = e−tU(t)

ii. R(s) = Z−z0
Z+z0

where L = 1, Z = 1 and z0 = 2? Find r(t) at the input. Solution:
r(t) = (1− 2)/(1 + 2)δ(t− 2L/c) = −δ(t− 2)/3

iii. H(s) = s/(s+1)? Solution: H(s) = 1-1/(s+1) ↔ h(t) = d
dte

−tU(t) = δ(t)− e−tU(t)

2 Nyquist Thm on Thermal noise

The purpose of this problem is to do a simulation of Harry Nyquist’s famous result on the noise
of a resistor. The experiment is to use a Thevenin equivalent model of a resistor as a resistance
R in series with a voltage source. A stub of transmission line having characteristic impedance z0
is terminated in each end with this Thevenin model, with R = z0. Then at t = 0, the resistance
is short or open circuited. If open circuited you may watch the voltage at one end, and if short
circuited, you may watch the current. Let’s monitor the voltage with an open circuit. This setup
is shown in the figure.

1Note that r, C and M represent an acoustic resistance, compliance and mass. Namely they are positive constants.
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R R

Vm(x = 0, t < 0) Vm(L, t < 0)

z0 z0
Vm(t > 0)

The transmission line stores the voltage at t = 0 once the switch is opened removing the resistors
(and also the Thevenin source). At that point voltage Vm(L, t) becomes periodic with a period of
2L/c, where L is the length of the line and c is the speed of the wave.

Define an array that has a duration of the period, and load it with thermal random samples
[x=randn(1,N) with N the number of noise samples]. Set the RMS to 1. The RMS may be
computed using std(x,1). Use a sampling period T = 1/fs with fs = 10 × 103 Hz for this
experiment, and let c = 345 [m/s] be the speed of sound (an acoustic transmission line), with
L = 10 [m].

1. What is the fundamental period of the noise? Solution: The period is the round trip delay
T = 2L/c ≈ 58 [ms].

2. Every periodic signal has a Fourier series. If the period is T [s], what are the Fourier series
frequecies? You know the answer to the question, but you may need to think about it. This
is not difficult. Solution: If a function is periodic with period T , then this may be indicated
as f((t))T . This notation with the double parentheses is meant to indicate that the function
is periodic, and the subscript T is the period. Any periodic funciton has harmonics at the
Fourier series frequencies given by fk = (k + 1)/T . The fundamental frequency is f0 = 1/T .
The first harmonic is also the fundametal frequency. Yes this is confusing. The second
harmonic is f2 = 2 ∗ f0. The third harmonic is k = 3 with f3 = 3 ∗ f0.

3. Plot two periods of the time domain signal. Using fft(), find the spectrum of the periodic
noise, for 1, 4 and 10 periods. Be sure to properly label all axes (with units)! For each of the
FFT plots, show one figure of the full FFT (from 0 Hz up to the half-sample-rate), and one
figure zoomed in on the range 0 to ∼300 Hz (linear axis, not log axis). Comment/explain any
observations.

Note: Let’s say your array length is N . When creating 10 periods of random noise, don’t
use randn(1,10*N). Use randn(1,N) to randomly populate 1 period, and then repeat that
noise 10 times, so that it is identical. Remember, its in a delay line. Solution: There will
be harmonics at fn = n/T = 17[Hz], and the bandwidth of the noise lines become narrow as
more periods are included.

4. Why won’t the values of your spectral peaks be the same as your fellow students? Average
the values of your spectral peaks over many noise samples (that is, many initializations of
the randn(1,N) array), and plot the resulting spectral average. Just do this for the case of
10 periods.

Solution: The average harmonic amplitude may be computed using Parseval’s formula, since
the power in the noise is independent of how it is calculated, either in the time domain, or in
the frequency domain. Parseval’s Thm is

1

T

∫ T

0
|w(t)|2dt =

∞
∑

k=−∞

|W (2πk/T )|2.

On the average the spectral level should be |W (ω)|, but because of the finite sample of the
noise, for any given frozen sample, the spectrum will not be constant. This is very important
point that many students (and graduates) seem to miss. It is the ensemble that is constant,
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not the FT of a fixed sample. No matter now long the noise sample is, the spectral samples
|W (ωk)| will never become the same, except in the average.

When you use the FFT, it is necessarily over a finite bandwidth, determined by the sampling
rate you chose. Thus the above formula is not the one to use for the case of a band-limited
signal (its not wrong, just not the most relevant, given the more detailed assumption of a
band-limited and sampled noise. Thus the formula to use is Parseval’s Thm for the DFT

N−1
∑

n=0

x[n]2 =
1

N

N−1
∑

k=0

|X(ej2πk/(N−1))|2.

Now the problem with this formula is that the normalization is wrong, as it will not give you
the true ”spectral level” you would actually measure with a volt meter placed at the output
of a filter around one of the spectral lines (i.e., what you would see coming out of a spectral
analyzer, calibrated in volts/

√
Hz.

In other words, the solution to this problem is a nightmare of details, and the books (at least
that I read) don’t tell you any of this. I prefer to proceed with a numerical solution, for
speed and accuracy. Namely, make a narrow band filter around one of the spectral lines, and
measure the level of the line. Do this for many noise samples, and take an average. That
would be a good problem. Maybe next time.

5. Given T = 300 degrees Kelvin (300-273 = 27 degrees C) and k = 1.38× 10−23 [J/degree K],
what would the RMS value of the voltage be? Justify your answer. Hint: this is also know as
“Johnson/Nyquist Noise”. By sampling we inherently band-limit the signal. Solution: Use
the formula from the paper, and you get that the RMS level is Vrms =

√
4kTRB, which is

the same as V 2
rms/R = 4kTB.

3 Hilbert transform

In all parts of this problem h(t) ↔ H(s) and H(ω) = H(s)|s=jω

Analyze the real impulse response

h(t) = e−t/τ0u(t),

with τ0 = 10 [ms], in terms of its Hilbert transform (integral) relations.

1. Find H(s), the Laplace transform of h(t). Solution: Let a = 1/τ0. Then e−atu(t) ↔ 1
s+a .

2. Where are the poles of H(s) ↔ e−t/τ0u(t)? Solution: Let a = 1/τ0. Since e−atu(t) ↔ 1
s+a

H(s) has a simple pole at s = −1/τ0.

3. Evaluate the following:

(a) Determine g(t) ≡ h(t) ∗ δ(t). (∗ represents convolution.) Solution: Convolution with a
delta function is an identity, thus g(t) = h(t) ∗ δ(t) = h(t)

(b) Determine h(t)δ(t−1). Solution: Multiplying by a delta function evaluates the function
at the time of the delta function. Thus h(t)δ(t− 1) = e−1/τ0δ(t− 1).

(c) Determine h(0). Solution: h(0−) = 0 and h(0+) = 1. I would conclude that at t = 0,
h(t) is not defined. What does this say about delta functions?
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4. Find the real and imaginary parts of H(ω) ≡ H(s)|s=jω. Solution: First rationalize the
denominator:

H(s) =
s∗ + a

(s+ a)(s∗ + a)
=

σ − jω + a

σ2 + ω2 + a2
.

Next take the real ℜ and imaginary ℑ parts, and evaluate s on the ω axis (set σ = 0):

ℜH(ω) = a/(a2 + ω2), ℑH(ω) = −ω/(a2 + ω2).

The real part is constant below the cutoff (resonant) frequency ω = a, and goes at -12 dB/oct
above the cutoff. The imaginary part is bandpass with ±6 dB/Oct above and below the
resonance frequency.

5. Write out the symmetric he(t) and antisymmetric ho(t) functions.

Solution: 2he(t) = h(t) + h(−t) ≡ e−atu(t) + eatu(−t), while 2ho(t) = h(t) − h(−t) ≡
e−atu(t)− eatu(−t). It trivially follows that h(t) = he(t) + ho(t).

6. Find the Fourier transforms of he(t) ↔ He(ω) and ho(t) ↔ Ho(ω).

Solution: Since h(−t) ↔ H∗(ω), a symmetric time function is real in the frequency domain,

2he(t) = h(t) + h(−t) ↔ H(ω) +H∗(ω) = 2ℜH(ω),

thus he(t) ↔ ℜH(ω). In a similar fashion, an antisymmetric time function is pure imaginary

ho(t) ↔ jℑH(ω).

Again with a ≡ 1/τ0:

He(ω) = ℜH(ω) =
a

ω2 + a2
,

Ho(ω) = jℑH(ω) =
−jω

ω2 + a2
,

thus
H(ω) = He(ω) +Ho(ω) ↔ h(t) = he(t) + ho(t).

The inverse Fourier transform of Ho(ω) is zero at t = 0, which makes it very different from the
inverse Laplace transform, which is not defined at t = 0. What is the inverse FT of He(ω)?
Be sure to discuss what happens at t = 0.

7. Find the Hilbert (integral) relations between Hr ≡ ℜH(ω) (real part) and Hi ≡ ℑH(ω) (imag
part) of H(ω).

Solution: It follows from the above results that

jHi(ω) =
1

jπ

∫

Hr(ω
′)

ω − ω′
dω′ (24)

which for the case at hand is

ω

ω2 + a2
=

1

π

∫

a dω

(ω′ − ω)(ω′2 + a2)
. (25)

A second derivation of the requested integrals may be found from

h(t) = h(t)u(t), (26)
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(note this is not exactly true at t = 0) which after a FT, results in

H(ω) =
1

2π
H(ω) ⋆

(

πδ(ω) +
1

jω

)

, (27)

which may be rewritten as

Hr(ω) =
1

2
Hr(ω) +Hi(ω) ⋆

1

2πω
. (28)

The final relations are [Papoulis (1977), Signal Analysis, McGraw Hill, page 251]

Hr(ω) =
1

π

∫

Hi(ω
′)

ω − ω′
dω′ and Hi(ω) = − 1

π

∫

Hr(ω
′)

ω − ω′
dω′ (29)
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