
ECE 403 HWe – Version 1.11 April 10, 2017 Spring 2017

Univ. of Illinois Disc: Lect 23, Due: April 13 (Lect 24) Prof. Allen

Topic of this homework: Model of the human middle ear
Deliverable: Show your work.
If you hand it in late, you will get zero credit. I would like a paper copy, with your name on it.

No files.doc, please.
Some credit is better than NO credit.

Note: Due: April 13 (Lect 24). Each person is to do their own final writeup, but obviously you
can discuss it as much as you like between yourselves. However, you’re crossing the line if you share
computer files. The general rule is you need to process all the words you write through your own
eyes and fingers. When ever you use material from someone else, you must give them credit, as I
do here.

This homework is important because the middle ear is the acoustic load on an in the ear
earphone (earbud). The middle ear model has many thing in common with a loudspeaker, but it
runs in reverse.

1 Transducer Thevenin Parameters

The Hunt model of a electromechanical motor was first introduced by Kennelly and Nukiyama
(1919), and fully developed by Hunt (1954). It contains a gyrator, proposed by Tellegen (1948).
The history is carefully discussed in Chapter 1 of Hunt’s book. The equations are also presented
in our lab manual, and HW-C.
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Figure 1: The Hunt model is composed of an electrical impedance Ze(s), a Gyrator having parameter
T = lBo, and a mechanical impedance Zm(s). The electrical side is driven by a voltage φ(t) and a current
i(t), while the mechanical side produces a force f(t) and a velocity v(t).

1.1 To do:

1. Define and then find the ABCD (Transmission) T(s) matrix.

2. Define and then find the impedance matrix Z(s).

3. Compute ∆Z and ∆T . What is the significance of each of these determinants?

4. Define, and then find the Thevenin equivalent force Fthev(s) [N], given an input voltage Φo.

5. Define, and then find the Thevenin equivalent mechanical impedance in mechanical Ohms,
Zthev(s) [Ω].
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2 Simulation of the middle ear

Acoustic constants: ρoc = 407 [Rayls], c = 345 [m/s].
The middle ear may be treated as an L = 2.5 cm long stub of transmission line, terminated

in a series combination of a stiffness, shown as a capacitor Cal and damping, shown as a resistor
Rc. The experimental details of the cat ear have been extensively explored by Guinan and Peake
(1967), and first modeled by Zwislocki (1962, 1957) and much later by Lynch et al. (1982). The
model shown here is a significant simplification, but adequate for our purpose. This homework was
the basis for the masters thesis of Pierre Parent (Parent and Allen, 2007).

The diameter of the ear canal is dc = 0.75 = 2 ∗ rc cm (area Ac = πr2c ). As shown in the figure,
the free field sound pressure, defined as P0(ω) acts as a source in series with the radiation resistance
Rrad. The total radiation impedance Zrad(s,Arad) is a combination of the resistance and a reactive
component Lrad, which represents the local stored field. The two impedances are in parallel

Zrad(s) = sLradRrad/(sLrad +Rrad) = 1/Yrad(s).

where s = σ+ jω is the Laplace complex frequency variable. The radiation admittance for a sphere
is

Yrad = 1/Zrad =
Arad

srcρo
+

Arad

ρoc
=

1

sLrad

+
1

Rrad

,

where rc is the radius of the sphere and Arad is the effective area of the radiation.
If we assume that the pinna (the flap of skin we call our ear) changes the radiation area, then

we can account for this pinna-horn effect (a transformer), changing the effective area. The effective
area is equivalent to resonant scattering characterized by krrad ≈ 1, where k = ω/c = 2π/λ. Thus
the larger the effective area the smaller the impact of the mass reactance Lrad on the radiation
efficiency. Namely, the size of Lrad decreases as the effective area is made larger via the action of the
horn transformer. We can chose the area to match the frequency where the radiation load switches
from a mass to a resistance. This frequency was found to be 3 kHz in the cat ear (Rosowski et al.,
1988, Fig. 10).
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Figure 2: Model of the ear canal, terminated by the radiation impedance Zrad(s) at the tragus (x = 0), and
by the eardrum and cochlea at x = L. The horn transformation is the transformer that represents the concha,
that converts the area of the canal to the area of the pinna/concha opening. This transformer ratio seems
necessary to reduce the effective radiation mass seen by the ear canal, to improve the matching of energy
between the canal and free-space. It does this by making the area defining Lrad larger by the transformer turns
ratio. The effective turns ratio needs to be estimated from measured data (Rosowski et al., 1988, Fig. 10).

The model: To model the middle ear we first need to simulate the transmission line by using
d’Alembert solution of the wave equation. This simulation will operate in the time domain.

Create two arrays that represent the forward and backward velocity traveling waves u+(x− ct)
and u−(x+ ct). Let c = 345 m/s.

The boundary conditions at each end of the line will be realized via reflection coefficients R(L, s)
at the cochlear end and R(0, s) at the input. Initially assume that P0 is zero, and drive the middle
ear with a velocity source Uec at the tragus.
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On the left we terminate the ear in a radiation impedance

Zrad(s) =
sLradRrad

sLrad +Rrad

.

At the cochlear end we terminate the line with an impedance

Zc = Rc + 1/(sCal),

where Rc is the cochlear impedance and Cal is the stiffness of the annular ligament, which is the
ligament that holds the stapes in the oval window. The cochlear resistance (Rc) is assumed to be
twice the characteristic impedance of the ear canal.

Each impedance may be converted into a reflection coefficient, defined as

R(s) ≡
U−

U+

=
Z(s)− z0
Z(s) + z0

,

where z0 = ρoc/Ac is the characteristic impedance of the ear canal, having area Ac. For example,
the reflection coefficient at x = L is the transfer function between the wave reflected U−(L, s)
over the incident wave U+(L, s), as defined above. The two reflection coefficients are a function of
complex frequency s.

Use the bilinear z transform1 to convert R(s) into a discrete time IIR filter having numerator
polynomial N(z) (zeros) and denominator polynomial D(z) (poles), so that the reflectance filters
(e.g., R(0, s) and R(L, s)) are implemented in the time domain. I recommend that you implement
the filter manually rather than use the filter() command. [If you chose to use the filter()

command, you must save state between calls. See help filter for the details on how to do this,
and carefully verify that it is working.]

Finally is the question of the boundary conditions. This is where things are a little tricky.
These are dealt with by defining the end reflection coefficients

R(L, s) ≡
U−(L, s)

U+(L, s)

and

R(0, s) ≡
U+(0, s)

U−(0, s)
.

In the frequency domain we can find

U−(L, s) = R(L, s)U+(L, s)

and
U+(0, s) = R(0, s)U−(0, s).

These relations give the junction reflected wave in terms of the incident wave. For example, at
x = L the incident wave is U+ and the reflected wave is U−. At x = 0 the signs must change. Since
this relation is in the frequency domain, it represents a convolution in the time domain. Since we
wish to run the middle ear model in the time domain, we must design the filter represented by
these reflection coefficients. To do this we may use the bilinear z transform.

Each reflection coefficient R is given by

R(s) =
Z(s)− z0
Z(s) + z0

.

1substitute s = 2

Ts

1−z
−1

1+z−1 where Ts is the sampling frequency.
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I derived this formula in class and showed that Z(s) is the load impedance and z0 = ρoc/A is the
characteristic impedance of the transmission line. Taking the case of x = L we find

R(L, s) =
Rc + 1/(sCal)− z0
Rc + 1/(sCal) + z0

.

When using the bilinear z transform one substitutes 2Fs
z−1

z+1
for s. Try doc bilinear from

Matlab c©.
Show your work. Check all the filters and all the components carefully.
Show your work. For example, show the impulse response for each of these filters r(0, t) ↔

R(0, s) and r(L, t) ↔ R(L, s). Also test your time domain transmission line impulse response
by setting the reflection coefficients to 1, and then compute the impulse response of pc(L, t) with
an impulse at the input (e.g., find pec(0, t) = δ(t)). Show your work. Write this up with a full
description of what you did, so that I can easily understand how you got your results. I will grade
this homework partially on the readability of the presentation.

To do:

1. Find z0, the characteristic impedance of the ear canal. (1 min)

2. Assume that the cochlear load resistor Rc is equal to twice the characteristic impedance of
the ear canal. Find Cal, by assuming that the impedance of this element (Zal ≡ 1/sCal) is
equal to the cochlear impedance Rc at a frequency of 0.800 kHz. Show all your work. (1
min)

3. Determine the radiation impedance looking out the ear canal, and compute the resonant
frequency, defined as the frequency fc ≡ s/2πj, for which the real and imaginary parts are
equal. For an example of the frequency response of this impedance look at Rosowski et al.
(1988, Fig. 10) provided on the class web site. Hint: Arad should be approximately the surface
area of a half-sphere.

4. The simulation is to be done in the time domain. Define two arrays in Matlab c© called
u+(x−ct) and u−(x+ct), which represent the velocity of the waves in the ear canal, traveling
in the two directions. At each time step, the data in the first array is shifted to the right,
while the second is shifted to the left. The distance between two points corresponds in the
array is dx = cT where sampling rate T = 1/Fs.Choose the sampling rate Fs such that there
are at least 5 points along the length of the ear canal (you can modify the length of the canal
slightly to make the samples come out at the ends).

5. Find the formula for the input impedance Z(0, s) of the middle ear at the entrance of the
ear canal, when the cochlea is “blocked” (Zc = ∞ or R(L, s) = 1)? (Hint, this has a simple
answer that you can easily derive).

6. Find the two reflection coefficients and plot their magnitude frequency response.

7. What are the coefficients of the time domain filters that implement the reflection coefficients?

(Hint 1: Use Matlab’s bilinear() command. Hint 2: here is the answer to 1 decimal place,
to help you debug up to this point. I’ve used a sampling rate of ≈70 kHz to compute this:
R(0, z−1) = (.5− .08z−1)/(1− .4z−1) and R(L, z−1) = (0.3− 0.3z−1)/(1− 0.95z−1).)

8. What are the poles and zeros in s and in z−1 planes? List them, or plot them using ‘x‘ to
represent poles, and ‘o’ to represent zeros.
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9. Compute and plot the input impedance (numerically derived at x = 0), using your Matlab
model at the point labeled Pec(ω) (i.e., at x = 0). Use log-frequency [Hz] and dB for the
magnitude. Use z0 as the dB reference (e.g., plot 20 log10(|Zc(0, f)|/z0)). Don’t forget that
Z ≡ P/U where p = (u+ − u−)/z0 and p ≡ u+ − u−. Compute the time sequence for p and
u and then FFT these and take the ratio. Be sure that each function has settled to zero or
else you will alias the answer. I am not asking for the transmission line model, I’m looking
for the numerical solution.

10. Using the time domain model, compute the tragus transfer function of the middle ear, defined
as the ratio of the cochlear pressure to the ear canal pressure Pc(ω)/Pec(ω). Pressure Pec is
more precisely Ptragus.

11. Compute the free field transfer function of the middle ear, defined as the ratio of the cochlear
pressure Pc(ω)/P0(ω). I suggest you work backward, and find the pressure P0, the assumed
source, required to give the given source Uec.

Note that this question may be just too hard, and take to long, so do this problem last (or
just skip it if you don’t have the time to deal with it. (30-60 min)

12. A 16 electrical ohm earphone delivers 120 dB SPL into the ear canal with 1 volt RMS input
at 1 kHz. Using your middle ear model, calculate the efficiency (Acoustic/Electrical power
ratio, in %) of the earphone, at 1 kHz.
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