
ECE 403 HWe – Version 1.10 March 29, 2017 Spring 2017

Univ. of Illinois Disc: Lect 23, Due: April 13 (Lect 24) Prof. Allen

Topic of this homework: Model of the human middle ear
Deliverable: Show your work.
If you hand it in late, you will get zero credit. I would like a paper copy, with your name on it.

No files.doc, please.
Some credit is better than NO credit.

Note: Due: April 13 (Lect 24). Each person is to do their own final writeup, but obviously you
can discuss it as much as you like between yourselves. However, you’re crossing the line if you share
computer files. The general rule is you need to process all the words you write through your own
eyes and fingers. When ever you use material from someone else, you must give them credit, as I
do here.

This homework is important because the middle ear is the acoustic load on an in the ear
earphone (earbud). The middle ear model has many thing in common with a loudspeaker, but it
runs in reverse.

1 Transducer Thevenin Parameters

The Hunt model of a electromechanical motor was first introduced by ?, and fully developed by
?. It contains a gyrator, proposed by ?. The history is carefully discussed in Chapter 1 of Hunt’s
book. The equations are also presented in our lab manual, and HW-C.

−
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Figure 1: The Hunt model is composed of an electrical impedance Ze(s), a Gyrator having parameter
T = lBo, and a mechanical impedance Zm(s). The electrical side is driven by a voltage ϕ(t) and a current
i(t), while the mechanical side produces a force f(t) and a velocity v(t).

1.1 To do:

1. Define and then find the ABCD (Transmission) T(s) matrix. Solution: The definition of the
Transmission matrix is[

Φ(ω)
I(ω)

]
=

[
1 Ze

0 1

] [
0 lBo

lBo 0

] [
1 Zm

0 1

] [
F (ω)
U(ω)

]
=

1

T

[
Ze ∆Z

1 Zm

] [
F (ω)
−U(ω)

]
where ∆Z is the determinent of the impedance Z(s) matrix.

2. Define and then find the impedance matrix Z(s). Solution: This may be found via the table
of relations between T and Z (VanValkenberg62). The answer is[

Φ(ω)
F (ω)

]
=

[
Ze −To

To Zm

] [
I(ω)
U(ω)

]
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where To = lBo, with l [m] the length of the wire and B0 [Web] the strength of the magnet
[Wb/m2].

3. Compute ∆Z and ∆T . What is the significance of each of these determinants? Solution:
∆Z = Ze(s)Zm(s) + T 2

o and ∆T = −1. If ∆T = −1 the system is ‘anti-reciprocal,’ and if
∆T = +1 the system is ‘reciprocal.’

4. Define, and then find the Thevenin equivalent force Fthev(s) [N], given an input voltage
Φo. Solution: The Thevenin equivalent force is ‘open circuit’ force (analogous to voltage).
Therefore we may read it off the top row of the ABCD matrix equation:[

Φo

I(ω)

]
=

[
A B
C D

] [
F (ω)
−U(ω)

]
=

1

T

[
Ze ∆Z

1 Zm

] [
F (ω)
−U(ω)

]
giving the equation

Φo = AF − BU |U=0 = AF

therefore

Fthev(s) =
ΦoTo

Ze(s)

5. Define, and then find the Thevenin equivalent mechanical impedance in mechanical Ohms,
Zthev(s) [Ω]. Solution: The Thevenin impedance is the equivalen impedance looking into the
right side of the loudspeaker model, with the voltage source shorted (Φ(ω) = 0). First, we
must reverse the terminals of the ABCD matrix, so we can perform our usual left-to-right
analysis: [

F (ω)
U(ω)

]
=

1

∆T

[
D B
C A

] [
Φ(ω)
−I(ω)

]
Setting Φ = 0 and taking the ratio Z = F/U , we find the Thevenin impedance:

Zthev(s) =
F

U

∣∣∣
Φ=0

=
B
A

=
Ze(s)Zm(s) + T 2

o

Ze(s)

2 Simulation of the middle ear

Acoustic constants: ρoc = 407 [Rayls], c = 345 [m/s].
The middle ear may be treated as an L = 2.5 cm long stub of transmission line, terminated

in a series combination of a stiffness, shown as a capacitor Cal and damping, shown as a resistor
Rc. The experimental details of the cat ear have been extensively explored by Guinan and Peake
(1967), and first modeled by Zwislocki (1962, 1957) and much later by Lynch et al. (1982). The
model shown here is a significant simplification, but adequate for our purpose. This homework was
the basis for the masters thesis of Pierre Parent (Parent and Allen, 2007).

The diameter of the ear canal is dc = 0.75 = 2 ∗ rc cm (area Ac = πr2c ). As shown in the figure,
the free field sound pressure, defined as P0(ω) acts as a source in series with the radiation resistance
Rrad. The total radiation impedance Zrad(s,Arad) is a combination of the resistance and a reactive
component Lrad, which represents the local stored field. The two impedances are in parallel

Zrad(s) = sLradRrad/(sLrad +Rrad) = 1/Yrad(s).

where s = σ+ jω is the Laplace complex frequency variable. The radiation admittance for a sphere
is

Yrad = 1/Zrad =
Arad

srcρo
+

Arad

ρoc
=

1

sLrad
+

1

Rrad
,
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where rc is the radius of the sphere and Arad is the effective area of the radiation.
If we assume that the pinna (the flap of skin we call our ear) changes the radiation area, then

we can account for this pinna-horn effect (a transformer), changing the effective area. The effective
area is equivalent to resonant scattering characterized by krrad ≈ 1, where k = ω/c = 2π/λ. Thus
the larger the effective area the smaller the impact of the mass reactance Lrad on the radiation
efficiency. Namely, the size of Lrad decreases as the effective area is made larger via the action of the
horn transformer. We can chose the area to match the frequency where the radiation load switches
from a mass to a resistance. This frequency was found to be 3 kHz in the cat ear (Rosowski et al.,
1988, Fig. 10).

+
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d

Figure 2: Model of the ear canal, terminated by the radiation impedance Zrad(s) at the tragus (x = 0), and
by the eardrum and cochlea at x = L. The horn transformation is the transformer that represents the concha,
that converts the area of the canal to the area of the pinna/concha opening. This transformer ratio seems
necessary to reduce the effective radiation mass seen by the ear canal, to improve the matching of energy
between the canal and free-space. It does this by making the area defining Lrad larger by the transformer turns
ratio. The effective turns ratio needs to be estimated from measured data (Rosowski et al., 1988, Fig. 10).

The model: To model the middle ear we first need to simulate the transmission line by using
d’Alembert solution of the wave equation. This simulation will operate in the time domain.

Create two arrays that represent the forward and backward velocity traveling waves u+(x− ct)
and u−(x+ ct). Let c = 345 m/s.

The boundary conditions at each end of the line will be realized via reflection coefficients R(L, s)
at the cochlear end and R(0, s) at the input. Initially assume that P0 is zero, and drive the middle
ear with a velocity source Uec at the tragus.

On the left we terminate the ear in a radiation impedance

Zrad(s) =
sLradRrad

sLrad +Rrad
.

At the cochlear end we terminate the line with an impedance

Zc = Rc + 1/(sCal),

where Rc is the cochlear impedance and Cal is the stiffness of the annular ligament, which is the
ligament that holds the stapes in the oval window. The cochlear resistance (Rc) is assumed to be
twice the characteristic impedance of the ear canal.

Each impedance may be converted into a reflection coefficient, defined as

R(s) ≡ U−
U+

=
Z(s)− z0
Z(s) + z0

,

where z0 = ρoc/Ac is the characteristic impedance of the ear canal, having area Ac. For example,
the reflection coefficient at x = L is the transfer function between the wave reflected U−(L, s)
over the incident wave U+(L, s), as defined above. The two reflection coefficients are a function of
complex frequency s.
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Use the bilinear z transform1 to convert R(s) into a discrete time IIR filter having numerator
polynomial N(z) (zeros) and denominator polynomial D(z) (poles), so that the reflectance filters
(e.g., R(0, s) and R(L, s)) are implemented in the time domain. I recommend that you implement
the filter manually rather than use the filter() command. [If you chose to use the filter()

command, you must save state between calls. See help filter for the details on how to do this,
and carefully verify that it is working.]

Finally is the question of the boundary conditions. This is where things are a little tricky.
These are dealt with by defining the end reflection coefficients

R(L, s) ≡ U−(L, s)

U+(L, s)

and

R(0, s) ≡ U+(0, s)

U−(0, s)
.

In the frequency domain we can find

U−(L, s) = R(L, s)U+(L, s)

and
U+(0, s) = R(0, s)U−(0, s).

These relations give the junction reflected wave in terms of the incident wave. For example, at
x = L the incident wave is U+ and the reflected wave is U−. At x = 0 the signs must change. Since
this relation is in the frequency domain, it represents a convolution in the time domain. Since we
wish to run the middle ear model in the time domain, we must design the filter represented by
these reflection coefficients. To do this we may use the bilinear z transform.

Each reflection coefficient R is given by

R(s) =
Z(s)− z0
Z(s) + z0

.

I derived this formula in class and showed that Z(s) is the load impedance and z0 = ρoc/A is the
characteristic impedance of the transmission line. Taking the case of x = L we find

R(L, s) =
Rc + 1/(sCal)− z0
Rc + 1/(sCal) + z0

.

When using the bilinear z transform one substitutes 2Fs
z−1
z+1 for s. Try doc bilinear from

Matlab c⃝.
Show your work. Check all the filters and all the components carefully.
Show your work. For example, show the impulse response for each of these filters r(0, t) ↔

R(0, s) and r(L, t) ↔ R(L, s). Also test your time domain transmission line impulse response
by setting the reflection coefficients to 1, and then compute the impulse response of pc(L, t) with
an impulse at the input (e.g., find pec(0, t) = δ(t)). Show your work. Write this up with a full
description of what you did, so that I can easily understand how you got your results. I will grade
this homework partially on the readability of the presentation.

To do:

1. Find z0, the characteristic impedance of the ear canal. (1 min) Solution: The radius of the
canal is rc = dc/2 = 0.0075/2 [m]. The canal area is πr2c = 4.42 × 10−5, so z0 = ρoc/A =
407/πr2c or 9.2 [MΩ] (read this as “MKS Acoustic meg-ohms”)

1substitute s = 2
Ts

1−z−1

1+z−1 where Ts is the sampling frequency.
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Figure 3: Left: Model of the ear canal, terminated by the radiation impedance Zrad(s) at the tragus (x = 0),
and by the eardrum and cochlea at x = L.

Figure 4: Zrad(L, s) for an actual cat ear, looking out from the eardrum, with and without the pinna.
(Rosowski et al., 1988, Fig. 10).

2. Assume that the cochlear load resistor Rc is equal to twice the characteristic impedance of the
ear canal. Find Cal, by assuming that the impedance of this element (Zal ≡ 1/sCal) is equal to
the cochlear impedance Rc at a frequency of 0.800 kHz. Show all your work. (1 min) Solution:
To find Cal set the impedance of Cal equal to 2z0 at 800 [Hz]: |1/2π800Cal| = 2z0 = 2ρoc/Ac

giving Cal = 10.8 [pF].

3. Determine the radiation impedance looking out the ear canal, and compute the resonant
frequency, defined as the frequency fc ≡ s/2πj, for which the real and imaginary parts are
equal. For an example of the frequency response of this impedance look at Rosowski et al.
(1988, Fig. 10) provided on the class web site. Hint: Arad should be approximately the surface
area of a half-sphere.

Solution: There are two areas that need to be distinguished here, the canal area and the
effective area of the tragus looking out into the pinna. Please be clear about these two areas.
The canal area is Ac = πr2c while the effective radiation area is half the area of a sphere,
having a diameter of the canal) is Arad = π

2d
2
c .
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In this case we use the effective area of the pinna given by Arad = π
2d

2
c = 88× 10−6 [m2] and

Yrad = 1/sLrad + 1/Rrad, (1)

with Rrad ≡ ρoc/Arad=4.6 MΩ, Lrad = ρorrad/Arad = 1.18(dc/2)/0.5π(dc)
2 = 50 [H].

Details: In the problem specification we assume that the effective radiation area, looking
out of the canal into the pinna from the tragus, is half the area of a sphere having the same
diameter as the canal.

The cutoff frequency, defined such that the impedance of the mass of the air equals the
radiation resistance, is given by ωc/2π = ρoc/2πρor0 = c/dcπ ≈ 14.6 [kHz].

Thus in this model, the radiation load is well approximated by a mass. Thus

Rtragus ≈
sLrad − z0
sLrad + z0

= −1 (2)

since the resonant frequency determined by f0 ≡ z0/L2π ≈ 50 [kHz]. The cat data indicate
that the ear radiates well above about 3 kHz, and the canal of the cat is half that of the
human (dcat ≈ 3.6 [mm]). My basis for this is Fig. 10 which shows a matched radiation
impedance above about 3 kHz (“intact” line in Fig. 10 (a) (left panel).

Something seems to be off by an order of magnitude, and I can’t find it. Rtragus

should approach 0 above 3 kHz according the the data of Fig.10(a). This would
happen if f0 ≡ z0/Lrad2π were 3 kHz rather than 50. I have double checked this,
and have not found an error. If the mass were 3 H rather than 50, the model
would agree with the cat data. I do not know of corresponding human data.

It is the job of a horn to match two impedances. If the pinna is playing the role
of a horn, and our formula for the radiation mass is off, due to the influence of
this pinna-horn, then that would account for the differences we observe here. I
think this is an interesting research project.

You might think that the radiation resistance can be ignored, until you want to compute the
power. Thus the real part, though small, is critical and cannot be ignored!

The pinna modifies this characteristic load, as it must act as a horn, transforming the canal
impedance, to better match the air. We have taken this effect into account by assuming that
the area of the radiation impedance is determined by a half-sphere having a diameter the
canal. This gives a cutoff frequency of 14 kHz. In the cat data shown in the include figure
from Rosowski et al., the pinna resonance is more like 3-5 kHz. Some how the effective area is
much larger, even for the cat pinna. I conclude that this pinna is very important to hearing.
Try putting up your hands about your ears, to make larger pinna, and you will see what
I mean. For more details download the paper (Rosowski et al., 1988) posted on the class
website.

4. The simulation is to be done in the time domain. Define two arrays in Matlab c⃝ called
u+(x−ct) and u−(x+ct), which represent the velocity of the waves in the ear canal, traveling
in the two directions. At each time step, the data in the first array is shifted to the right,
while the second is shifted to the left. The distance between two points corresponds in the
array is dx = cT where sampling rate T = 1/Fs.Choose the sampling rate Fs such that there
are at least 5 points along the length of the ear canal (you can modify the length of the canal
slightly to make the samples come out at the ends).

Solution: To have 5 points, there must be 4 sections of delay, so Fs = 1/dT with dT =
0.025/4. Thus Fs =55.2 kHz. An alternative is to change the length of the canal to reduce
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this frequency to something that your sound card can work at, like Fs = 44.100 [kHz]. You
might do this if you wish to listen to sounds processed by the middle ear model.

5. Find the formula for the input impedance Z(0, s) of the middle ear at the entrance of the
ear canal, when the cochlea is “blocked” (Zc = ∞ or R(L, s) = 1)? (Hint, this has a simple
answer that you can easily derive).

Solution: When the end of the acoustic line is blocked there is a “short” across the end,
namely the velocity (current) is zero. The reflectance at x = 0 is a delayed version of the
reflectance at the cochlea (x = L), thus R(0, s) = −e−jω2L/c, which has an inverse Fourier
transform of r(0, t) = −δ(t−2L/c). Make sure you understand why this is! Do you understand
where the delay is coming from?

It follows that the impedance is

Z(0, s) = z0
1 +R(0, s)

1−R(0, s)
= z0

1 + e−s2L/c

1− e−s2L/c
.

A little algebra and we find

Z(0, s) = jz0
cos(sL/c)

sin(sL/c)
= j

ρoc

A
cot(ωL/c) = z0 coth(sL/c).

This may be written in the time domain by a Taylor series, and it is a train of impulses spaced
2L/c apart. In other words, R(0, s) ↔ r(x = 0, t) = δ(t − 2L/c) is the same as impedance
Z(ω) = −j ρocA cot(ωL/c).

Personally I find this trivially obvious, once you think hard about it, yet “kinda” cool.

6. Find the two reflection coefficients and plot their magnitude frequency response.

Solution: In each case

R(s) =
Z(s)− z0
Z(s) + z0

,

with z0 = ρoc/A and Z(s) as the impedance load, at each end.

The reflectance at each end is expressed as a numerator over denominator polynomial, namely
we need four polynomials, N(0, s) and D(0, s) at the stapes end, defined as

R(0, s) =
N(0, s)

D(0, s)
=

sLrad||Rrad − z0
sLrad||Rrad + z0

≈ Lrads− z0
Lrads+ z0

which has a first order pole and a zero as roots of N(L, s) and D(L, s). R(0, s) ≈ 1 due to the
high mass. Because of the horn of the pinna, this may be unrealistic Rosowski et al. (1988).

At the cochlear end

R(L, s) =
N(L, s)

D(L, s)
=

Rc + 1/sCal − z0
Rc + 1/sCal + z0

which also has a first order pole and zero. This last expression is 1 at low frequencies (f < 0.8
[kHz]), where the impedance of the annular ligament dominates, and becomes 1/3 at high
frequencies (f > 0.8 [kHz]).

The two reflectance functions may be inverse Laplace transformed to give impulse responses
r(0, t) and r(L, t), which then may be convolved with u+(t) to give u−(t) at each end of the
line. These filter are designed next.
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7. What are the coefficients of the time domain filters that implement the reflection coefficients?

(Hint 1: Use Matlab’s bilinear() command. Hint 2: here is the answer to 1 decimal place,
to help you debug up to this point. I’ve used a sampling rate of ≈70 kHz to compute this:
R(0, z−1) = (.5− .08z−1)/(1− .4z−1) and R(L, z−1) = (0.3− 0.3z−1)/(1− 0.95z−1).)

Solution: These filters are determined by Matlab’s bilinear command, with the coefficients
for the two reflectance functions given above

[Nd,Dd] = bilinear(N,D,Fs)

To learn how to do this, type:

doc bilinear

8. What are the poles and zeros in s and in z−1 planes? List them, or plot them using ‘x‘ to
represent poles, and ‘o’ to represent zeros.

9. Compute and plot the input impedance (numerically derived at x = 0), using your Matlab
model at the point labeled Pec(ω) (i.e., at x = 0). Use log-frequency [Hz] and dB for the
magnitude. Use z0 as the dB reference (e.g., plot 20 log10(|Zc(0, f)|/z0)). Don’t forget that
Z ≡ P/U where p = (u+ − u−)/z0 and p ≡ u+ − u−. Compute the time sequence for p and
u and then FFT these and take the ratio. Be sure that each function has settled to zero or
else you will alias the answer. I am not asking for the transmission line model, I’m looking
for the numerical solution.

Solution: This is done by finding both pec(0, t) and u0,t from the time domain model, and then
FFT’ing them, and taking ratios. The answer should look like a transmission line terminated
in an impedance that is close to its characteristic impedance. In other words, there should
be a very shallow standing wave. At low frequencies, the impedance should become stiffness
dominated due to the stiffness of the annular ligament, represented by the capacitor Cal. The
radiation load reflects most of the energy coming from the canal below the resonant frequency
of the radiation load ωc = c/r0, which is determined by the diameter of the canal (see the
solution to question 3, above). This means that below 29.3 kHz, the radiation impedance
will be dominated by the inductance, and therefore the reflection coefficient R(0, s) ≈ −1. It
would be good to know the precise value of this resonant frequency, to give a more precise
estimate of the reflectance at the input. I should have asked for these numbers in an early
part of the problem, but I didn’t think of it. Too bad, because that would have helped.

10. Using the time domain model, compute the tragus transfer function of the middle ear, defined
as the ratio of the cochlear pressure to the ear canal pressure Pc(ω)/Pec(ω). Pressure Pec is
more precisely Ptragus.

Solution: The intent here was to do this numerically, not analytically. This is done by
finding the impulse response to a current pulse in the ear canal, and then computing the
cochlear velocity uc(L, t) = u+(L, t)− u−(L, t). From this velocity find the cochlear pressure
(Pc = Rcuc(L, t)), and then divide that by the ear canal pressure, which is computed from
the canal velocity uec(0, t) = u+(0, t)− u−(0, t) with the relation pec(0, t) = zrad(t) ⋆ uec(0, t).
To find the transfer function in question, you need to FFT() the two impulse responses, and
take their ratio. Then plot this on log-log coordinates. It should look like a high pass filter,
with a 6-9 dB high pass slope, and an in-band ripple of not more than a few dB, between 0.8
kHz and Fs/2.

11. Compute the free field transfer function of the middle ear, defined as the ratio of the cochlear
pressure Pc(ω)/P0(ω). I suggest you work backward, and find the pressure P0, the assumed
source, required to give the given source Uec.
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Note that this question may be just too hard, and take to long, so do this problem last (or
just skip it if you don’t have the time to deal with it. (30-60 min)

Solution:

Method 1: Solve the problem with a velocity source at the entrance to the ear canal. Find
all the velocities and pressures. From the impedance divider equation

Pec

P0
=

Zec

Zec + Zrad
. (3)

One may then solve this for P0(ω), given Pec and the two impedances.

Method 2: One may also write the system in chain matrix form:[
P0

U0

]
=

[
1 Zrad

0 1

] [
sinh(γL) z0 cosh(γL)

y0 cosh(γL) sinh(γL)

] [
1 sCal

0 1

] [
1 0
Zc 1

] [
Pc

Uc

]
(4)

where γ = ω/c, Zrad = sLrRrad/(sLr + Rrad) and y0 = 1/z0 = A/ρoc. It is assumed that
Uc = 0 since the cochlear impedance is the load, and there is no additional load. At the
input end, the radiation impedance looks like a short circuit compared to the characteristic
impedance of the canal (i.e., R(0, x) = −1). Thus U0 = P0/Rrad. If we were to make these
substitutions, we would have two equations (one matrix equation) in two variables, P0 and
Pc. There would still be lots of algebra to do.

12. A 16 electrical ohm earphone delivers 120 dB SPL into the ear canal with 1 volt RMS input
at 1 kHz. Using your middle ear model, calculate the efficiency (Acoustic/Electrical power
ratio, in %) of the earphone, at 1 kHz. Solution: The idea behind this problem is that since
you know the power in the ear canal and the electrical power, you can compute the efficiency
of the earphone by taking the ratio. The Acoustic power is just 0.5|P |2/R where P is the
pressure at 120 dB SPL, and R is the real part of the ear canal impedance, which you got
from the model. The electrical power is |V |2/2Re, where V=1 volt RMS, and Re = 16 ohms.
Thus the electrical power is 1/32 watts (31 mW).

Since the frequency is 1 kHz, we may safely ignore the annular ligament stiffness sCal, and
just assume that the power delivered is into the cochlear resistance Rc = 2ρoc/A ohms. Also
120 dB SPL is 120-94=26 dB (a factor of 20) larger than 1 Pa (94 dB SPL). Thus 120 dB
SPL is just 20 Pa, and the acoustical power is 202/Rc Watts, or 22 µ watts. The power ratio
is 0.66 × 10−3 (0.06% efficiency). This earphone is really inefficient, by a factor of 1000. I
believe that these numbers are realistic.
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