ECE 403 HW #1 — Version 1.00 January 26, 2016 Spring 2016

Univ. of Illinois Due W, Feb 4, 2016 Prof. Allen

Topic of this homework: Analytic functions of a complex variable; Fourier Transforms
Deliverable: Show your work.
If you hand it in late, you will get zero credit! I need a stapled paper copy, with your name
on it. (Some ceedit is better than NO credit.) No files.doc

Note: Each person is to do their own final writeup, but (obviously) you may, and should, discuss
it as much as you wish between yourselves. Your crossing the line if you share computer files. The
general rule is, “look but don’t touch.” In otherwords, you need to process all the words you write
through your eyes and your fingers. When ever you use material from someone else, you must give
them credit. I got at least some of my ideas for homework from Wikipedia (I must give Wikipedia
credit when I do this).

1. Convolution: Given two “causal” sequences a,, = [+, .",0,1,0,-1,0,---] and b, = [--+, ", 1,-1,0,0, -+
Here the rising dots .~ define t = 0, before and at which time the signal is zero.

(a) Find causal sequence c = a xb by direction convolution Solution: Time reverse either a or
b and slide it against the other, forming the output sequence ¢, = [0,1,-1,-1,1,0,0, -]

(b) Form polynomial A(z) =¥ a,2" and B(z) = ¥, b,2", and find C'(z) = A(z)-B(z) Solution:
C(2)=(2-2%)(1,-2) = z— 2% = 23 + 2* which has a coef vector [0,1,-1,-1,1,0,--]
(c) thus demonstrate that sequence ¢, and the coefficients of C'(z) are identical. Solution:

Indeed they are the same.

2. Laplace transforms: given that f(t) < F(s)

(a) Find the Laplace transform of &(t), df (t)/dt, [*_ 8(t)dt, and [’ u(t)dt.
Solution:

i. §(t) < 1 is too trivial to repeat here.

ii. df/dt < sF(s). This is shown using integration-by-parts, as follows:

df(t)e™*"] = e""t(zdt —se S f(t)dt

Next integrate this from 0~ to oo, giving

—st|° * s df ® s
f(t)e t‘O*:fof e tadt—s/(; e S (t)dt

Rearranging these and evaluating the limits gives the desired result
o)
G st~ 107y + s (s),
- dt
where f(07) =0.
iii. The integral of a delta function is a step function u(t) < 1/s, while
iv. the integral of a step is tu(t) <> 1/s%

In each case it is important to carry along the u(¢) but it can be implied if you know its
a causal function (i.e., if you are told the transform is a function of s (e.g., F'(s)).



(b) If f(t) = 1/3/7t has a Laplace transform F(s) = 1/./s:

i. What is the inverse Laplace transform of \/s?

Solution: Since d/dt <> s then /s = s/\/s, thus % “\/(—Q < \/s. In fact there is a major

difficulity here, since [ (t)dt = oo. This problem may be resolved by a small delay

in either the numerator of denominator terms so that the delta function does not
resolve at ¢ = 0 in the /¢ term.

ii. What is f(-1)?
Solution: Since f(t) is causal, at t = -1 it is zero.

iii. Integrate I = [, 1ds around the unit circle centered on s = 0.
Solution: Let C be the unit circle, then s = e??, so

27rd€j9 QWJPJG
I:/O e :/90 Lo - jf: do = j 027, = 2mj

iv. Integrate fC %ds around the unit circle centered on s = .5 (i.e., 0 = .5,w = 0), and
s = —2. Solution: The first is 275 and the second is 0. Why?

(¢) Assume that s = o+ jw and F(s) = U(o,w)+jV (0,w) then explain the following formula,
in words:

§I§F(s) ds = yg(U V) (do + jdw) = ﬁ(Uda S Vdw) +j ﬁ(Vda + Udw)

(d) What are the conditions on v and D that

f(Uda Vdw) = - [[(gg ?’9‘:) dodw

the above is true?

(e) Name this condition:
ou 8V
8w Do
Solution: This is one of the two equations that define the Cauchy Riemann condition.
If the two conditions are satisfied, then F'(s) is analytic in the region enclosed by ~ over
the enclosed region D in the complex plane s.

=0

3. Fourier and Laplace transforms

(a) Derive the Fourier transform for the step function u(¢ - 1).

Solution:  Since the integral does not converge, one must fake it by using the time-
symmetric relationship 2u(t) = 1 —sgn(t), delayed:

~ o0 : 1-sgn(t—1 - —jw
U(w) = [ ﬁ(tl)e‘]“tdt:}'{bgn( )} = mh(w) + —
— oo 2 Jw
) . —jwt |*°
# [ eIwtgr = & .
1 —Jjw |y

(b) Derive the Laplace transform for the step function w(t—1). Solution: ¢ /s

e—jw _ 6—jwoo —jw e—jwoo

(&

Jw Jw Jw




()

(2)

Find the Fourier transform X (w) of
x(t) = u(t) —u(t-.001) & X(w)

Solution: Note the md(w) term cancels out in this case, making the rect(t) function
much nicer than the step allowing one to compute rect(t) * rect(t).

Find the Laplace transform X (s) of z(t) = u(t) — u(t —.001) < X(s)
Solution: (1 - e*/1000) /s,

If 4(t) <> U(w) is the F step function, what is @(t) = @(t) ? Solution: This is a really
dirty question, because its not in any book I know of, and the solution is a surprise:
The problem here is that 2a(t) = 1 + sgn(t), and 1 = 1 badly blows up, and does not
exist. Another way to say this is to work in the frequency domain and use the fact
that 1 < 275(w), and that convolution in time is the product in frequency. In this case
1% 1< (27)2(8(w))?. Probably nobody told you, that you cannot make a function out
of §(). (e.g., It is not legal to square a delta function. (The Taylor series of a delta
functions cannot be defined.) Please show me if you find this written down anywhere.)

Hand-plot (or describe the plot of) | X (w)| and |X(s)|. Solution: Since the numerator
has 1 - e 7“7 the magnitude is sinusodial varying. The phase factor e 79T/2 ig removed
by taking the magnitude.

Where are the poles and zeros in each case above. Solution: Fourier transforms dont

have poles and zeros. The Laplace transforms for these examples have poles at s = 0,
and zeros at e=*7 =1 and e® = 0, depending on the case.

4. Plotting of complex functions Z(s): Domain: s =0 +iw, Range: Z(s) = R(s) +iX(s).

There are two ways you can plot complex functions of a complex variable: First one can plot
the contour R(s) vs X(s) as a function of the specific domain of s. Alternatively one may
plot R(s) and X (s), that is plot the Range Z(s) in terms of the specified Domain. In the
first case its like a polar plot, parametric in the range variable. In the second, its two plots,
R(s) and X (s) as a function of the Domain variable in the s plane. These are very different
ways of plotting the same information, and both are important.

(a)

Domain: s =0, Range: Z(s) =1+s.

Solution: Make two axes, one for the s plane and one for the Z(s) = R(s) +iX(s) plane.
Label the two sets of axes: On the left (s plane), the horizontal axis (abscissa) is labeled
o, while the vertical axis (ordinate) is jw. For the Z(s) axis (on the right), the abscissa
is labeled R(s) and the ordinate axis is j X (s).

In engineering terms think of Z(s) = R+ jX as an impedance having a real part (the
resistance) R, and an imaginary part (the reactance) X (s). In this specific example,
the impedance consists of a 1 ohm [Q] resistor R = 1, in series with a L = 1 Henry [H]
inductor of impedance X = sL. Note that L = 1 is not an impedance (it is an inductance)
whereas sL is an impedance.

Next indicate the Range s = o on the s axis. This will be a line along the o (x) axis.
Label several points on this line, including A=-1, B=0 and C = 1.

On the second axis plot Z(0) = 1+ ¢ This will also be a line along the z axis, but in
this case, an axis that is labeled R. Note that Z(¢) = R = 0 + 1. Thus in the Z plane,
our three points are offset by 1. On the = axis of the Domain plot, the mapping dictates
A=0,B=1and C=2.

Domain: s = jw, Range: Z(s) =1+ s. Solution: The range is a vertical line defined by
o = 0. Pick three points as —j,0,j. The range here is Z(jw) = 1 + jw, which is a vertical



line running to the right of the jw axis by 1 unit. Our three points are at 1 —7,1,1+ j.
You could also plot the real and imaginary parts of Z

(c) Domain: s = jw, Range: H(s) = 1 +s2 Solution: First, an impedance cannot have

this form, because its real part can be negative. However a transfer function (Output
voltage over an input voltage) can have this form. For this reason I have changed the
Range to be H(s).

Since the domain is jw we wish to look at H(jw) = 1 + (jw)? = 1 —w?. This is therefore
simply a real function of radian frequency w with R(w) = 1 - w? being a parabola (in
standard (z,y) form: y(x) = 1 -22). In the s (Range) plane, s traverses the vertical
§ = jw axis.

The Range is R <1, and X =0.

(d) Domain: real, but Reverse the range and domain. Thus the Domain is the real part
of H(s) =1+ s%, while the Range s(9iH). Plot range for domain SRH. Hint: use the
notation w = H(s), that is write s(w) and restrict the Domain w to be real. (What
I'm asking for here that you to find the inverse function s(w), and restrict w to be
real, and plot the result.) Solution: As suggested, use the more transparent notation
w(s) = H(s) = u(s) +iv(s). Invert the function w(s), so that the range becomes the
domain, and then restricted the new domain to be real (v =0).

Specifically, solving for s(w) = £\/w — 1, restricting v = 0 (i.e., H real):

(w) +Vu -1 ifu>0
s(u) =
+i\/1+ul ifu<0
This is a double-valued parabola, on its side, for u > 0 but switches to a purely imaginary

function ++/1 + |u| for u < 0. We shall later learn this happens in an acoustic horn, and I
believe in semiconductors in the “valence band,” but then that’s not my area of expertise.

5. Find the solutions (numerical values in the form = = a + jb) of the following:

(a) 22 +1 =0 Solution: This requires finding the roots of this quadratic equation, which are
Ty =+V-1==+1

(b) x3 +8 =0 Solution: zj = &/=8 with k =1,2,3. Thus z;, = 2¢""(1*2k)/3 for integers k.

(c) x = i' (Show your work, as always!) Solution: According to Matlab the answer is

\/—_1\/7_1 = 0.2079. To get this number, we know that a® = ¢*!™(®) Thus In(j) = jr/2,
and therefore j7 = /77/2 = ¢=™/2 = (0.2079. Done correctly, one must add jk27 to the
exponent, revealing an co number of real numbers as the solution! For more on this
topic read “An imaginary tale THE STORY OF /-1 ” (Princeton University Press,
1998) by Paul J. Nahin.

¢

(d) What is the frequency of a' for any constant a? What if a = —1? Solution: a' =
|afted(«®) = e7teit \where w defines the frequency we wish to solve for wy, = 2a, thus

f=<a)/2n.
Example: a = -1 then 2a =7 and f =1/2 [Hz].

6. Harmonic functions



(a)

Show that if F'(s) = e® that the real and imaginary parts obey the Cauchy-Riemann
conditions. Solution: Let x = 0 and y = w: The CR conditions are u, = v, and u, = ~v,,
which we wish to show hold for e®. Expressing e® in real and imaginary parts

u(x,y) +iv(z,y) = e = e”(cos(y) +isin(y).
Thus u(z,y) = e* cos(y) and v(z,y) = e sin(y). From the CR conditions we find
ug = €” cos(y) = v, = €e* cos(y)
furthermore
uy = —€*sin(y) = —v, = e”sin(y),
and we see that the CR conditions are satisfied everywhere. We see that the function is

therefore entire (i.e., analytic everywhere in the s plane).

If F(s) =log(s), where are the Cauchy-Riemann conditions valid, or not? Explain. Note
the CR conditions in polar form are

1 1
Uy ==Vy (CR-1)  Vp=--Uy (CR-2)
T T

Solution: ~ This is nicely explained in Greenberg, Advanced Engineering Mathematics
2d Edition (ECE-493 Text) on page 1144, Example 7: To understand this case we must
write s = re/? in polar coordinates, where

F(r,0) =1log(r) +j(0 + k27))

with k& any integer. Thus U(r,0) =log(r) and V (r,0) = 0 + k2.
As in the previous example we must show CR conditions in polar coordinates. In this
case it is fairly easy however

U, =1/r and Vy/r =1/r,
thus CR (1) is satisfied. From CR (2)
Vr,=0and —-Uy/r=0

so we find equality again. Thus the CR conditions are obeyed. The function in this case
is multi-valued due to the ik27 term in v(6) (a branch cut is required, not discussed in
class).

If F(s) = V1+s2, where are the Cauchy-Riemann conditions valid, or not? Explain.

Hint: Take the log first. Solution: The hint is really important, else the math is really
tedious. The function is analytic except at s = +i.

Going the hard way, it looks like working in polar coordinates is useful. We may write
the real part as u(r,0) = (F(s) + F(s))/2. Thus

2u(r,0) = V1 +12i20 4 \/1 4 y2¢-120

and

20(r,0) = V1 + 1220 — /1 + r2¢-i20

for which we need to show the CR conditions wu, = vg/r and v, = —ug/r hold. As I say,
don’t do the problem this way.
Or the easy way

log V1 + 52
dogd + 5 :S/(1+82)
S

which has poles at s = +j so its not analytic there. Thus using dlog F'(s)/ds makes the
problem trivial.



(d) If F(s)=s/(1+s), where are the Cauchy-Riemann conditions valid, or not valid? Ex-
plain. Solution: As above we need u(o,w) and v(o,w):

(c+iw)(1+o-iw) o(l+0)+w?+iw
F(s) = : =
(1+o0+iw)(1+0—iw) (1+0)2+w?
Thus ( "
o(l+o0)+w
ulo,w) = (1+0)? +w?
and o
v(o,w) =

(1+0)2+w?
To compute u, and v, is starting to get ugly.

Lets start over again with a transformation z = 1+ s, and then work in polar coordinates
(z =re'?). This gives

F(z)=1-1/z=1-¢"%/r=1-cosf/r +isinf/r,
thus u(r,0) = 1 - cosf/r and v(r,0) = sinf/r. Now use the CR conditions in polar

coordinates, as given above. as u, = vg/r and v, = —ug/r. Proceeding with F(z)

Uy = — COS 927’1 = cosf/r? and vg/r = cos 0/r?

or

thus these two are equal. Next
. 2 0 2 . 2
vy = —sinf/r® and —ug/r = %COSG/T = —sinf/r*,

which are also equal. Thus both CR conditions are satisfied — except at r = 0, where
nothing works because the angle is not defined, and the partials do not exist.

Using the log on this function and you can do it in your head. By inspection we see that
there are poles in the s plane at -1 and oo.

Hilbert Transforms
(a) Determine the Hilbert (integral) relations between H.(w) and H,(w) by use of the
Fourier transform relations 1sgn(t) < % and/or u(t) < 7r5(w)+% . Note: sgn(t) = t/|t|.
Solution: This follows simply from the following obvious relationship

(1) = he(t)sgn(t) < 5 Ho(w) = () (1)
since sgn(t) < % Thus
Hy(w) = =+ Ho(w) (2)

(b) Find the Hilbert (integral) relations between H, = RH (w) (real part) and H; = TH(w)
(imag part) of H(w).
Solution: It follows from the above results that

PH () = - [ B () (3)

T w=-w'




which for the case at hand is

w 1 / adw (4)
w2+a? 7J (W -w)(w?+a?)
A second derivation of the requested integrals may be found from
h(t) = h(t)u(t), (5)

(note this is not exactly true at ¢ = 0) which after a FT, results in

H(w) - %H(w) . (mS(w) N L) (6)

which may be rewritten as

Hy(w) = S Hy () + i)

The final relations are [Papoulis (1977), Signal Analysis, McGraw Hill, page 251]

H,(w) = B / de' and H;(w) = ! [ de'

T w-w T w-w'

7. Filter classes

In the following let s = o +iw be the Laplace (complex) frequency. Filters are causal functions
(one sided in time) that modify a signals (any function of time) into another signal. For
example if h(t) is a filter, and s(¢) a signal then

y(1) = ()« s(t) = [ "Wt = )a(r)dr

where * defines convolution.
Both transfer functions and impedances are in the class of filters.

The main signature of a filter is that it is causal, and has a Laplace transform. The signature
of a signal is that it has a Fourier transform and is NOT causal. A signal may be causal, but
that is not the norm. An physical real-world filter is always causal. Mathematically one may
easily define a non-causal filter (e.g., (u(-t)), but it is hard (i.e., impossible) to understand
exactly what that would mean in practice, other than in some quantum-black-hole-world.

Background:

(a) A causal filter h(t) < H(s) is one that is zero for negative time. It necessarily has a
Laplace transform.

(b) An finite impulse response (FIR) filter has finite duration, namely if f(t) is FIR, then
it is zero for t < 0 (it is causal) and for ¢ > T" where T is positive constant (time). FIR
filters only have zeros (they do not have poles).

(c) An Infinite impulse response (IIR) filter is one that is non-zero in magnitude as ¢t - oco.
All TIR filters have poles, namely if h(t) <> H(s) then H(s) has poles in the region
o <0.



(d) A Minimum Phase filter m(t) < M (s) is a filter (it must be causal) having the smallest
phase (i.e., £ M (jw)) of any filter with magnitude |M (w)|, on the jw axis. A minimum
phase filter also satisfies the very special condition

1

R(t) < N(s) = M(s)

namely the inverse of m(t) is causal. Thus m(t) x R(t) = 6(¢) where * represents convo-
lution. All impedances are minimum phase (every impedance Z(s) has a corresponding
admittance Y (s) =1/Z(s).

(e) An all-pass filter modifies the phase but not the magnitude of a signal; namely if a(t)
is a causal impulse response of a causal all-pass filter, having Fourier Transform A(w) =
|A(w)[e*) | then |A(w)| = 1. Thus the phase ¢(w) completely specifies the all-pass
filter. The group delay is defined as

Ip(w)
ow '’

Tg(w) =-

Since

o) = [ r(w)do,

the group delay also may be used as the definition of an all-pass.

A causal all-pass filter having a real time response (a(t) real and causal), must have its
poles and zeros symmetrically located across both thew and jw axes. For example a pole
at sp=—1+jand azeroat s, =1+

would produce an all-pass response. This is because |A|s-j,, = 1 (verify this for yourself).
The inverse Laplace transform a(t) <> A(s) is be complex because the conjugate poles
and zeros have been ignored in this example. To repair this (to force a(t) to be real),
the full filter must be

Aw) = A(w) + A% (w) = 2227 821+

s+1-j s+1-j

(f) A positive real (PR) filter 2(t) < Z(s) = R(s) +iX(s) is both minimum phase, and has
a positive real part in the right half s plane, namely

R(c>0)>0

that is, for o > 0 RZ > 0.

Every impedance z(t) <> Z(s) is PR. Since impedance is used in the definition of power,
it represents a positive definite operator (a fancy name for a filter). For example, if one
convolves a current i(¢) with an impedance, a voltage results. Namely v(t) = z(t) » i(t).
Since power is voltage times current, the complex power is P(t) = v(t)i(t). The time
average power is the time average of P(t), P(t) = [, P(t)dt.

To do: Prove (or discuss in detail) each of the following:

(a) The relation h(t) » g(t) < H(w)G(s).



(b)

—~
o

i. Start by writing out the formula for the convolution of h(t) and g(t), denoted

h(t) » g(t).
Solution:

Wty 9= [ h(t-m)g(r)dr

The limits have been chosen to be consistent with the fact that g(¢) =0 for 7 < 0.

ii. Then show that the inverse transform of a product of filters is a convolution. So-
lution: Start from the definition of the product of the FT of h(t) < H(w) and the
LT of g(t) < G(s).

L /oo H(w)G(iw)e™ dw = L /oo dw [foo h(f)ei“’gdf] [foog(r)e("O”w)TdT] et
27‘[‘ —00 27T —00 —00 0
H(w) G(oo+iw)

Here we let g = 0 placing the ROC in the RHP.
Changing the order of the integration gives

i * = * w(t—€6-7) _ i e _
5 A [ arh©) () [ due e ARIGIIGROT

2w (t-&-7)

This may also be written as the convolution given as the first equation if we manage
the delta function differently.

iii. The point of this example is that one function is of w while the other a function of s.
How does this impact the convolution? Solution: The function h(t) may exist over
all time. Because G(s) is causal however, one limit of the convolution is affected.
This may be written in two different ways, but the simpler way is the first method,
since there it is clear where the limit is for g(7) (i.e., at 7 =0).

Is an all-pass filter minimum phase? Explain. Solution: In some sense all-pass is the
opposite of minimum phase. Any causal filter may be factored into the product of an
all-pass (A(w)) and a minimum phase M (w) filter. Namely given any causal transfer
function H(w) = A(w)M (w), where |A| = 1 is only a frequency dependent delay, and
M (w) is a filter with the smallest phase possible given |M (w)|. The real and imaginary
parts of a minimum phase filter are Hilbert transforms of each other.

) Prove that §(t - 5) is all-pass. Solution: [e % =1

Is 6(t +5) all-pass? Solution: This response is not causal, but still is all-pass, since
le?*| = 1. Now one could argue (and you should) that it cannot have a Laplace transform
if its not causal. I agree, but actually one sided functions can be generalized to have a
LT. So its an unfair question (or at least very confusing) in that sense.

Is e7! all-pass or minimum phase? Justify your answer. Solution: if you assume its
causal, then yes it has a single pole at s = —1. If the function exists for all time, then it
doesn’t have either a L or F transform.

When is F(s) = =% all-pass? Solution: When a = +b it is all-pass.

s+b

When is F(s) = %7 minimum phase? Solution: Only if the pole and zero are in the

LHP. i.e., a,—b both have negative real parts.

Does F(s) = % have a real impulse response? Solution: No: f(¢) = %ejtu(t) + jeltu(t)
In the continuous time domain, a pure delay by T [s] may be written as §(t—T') < e 7,
Find the expression for 2™V, a pure delay of N samples in the discrete time domain.
Solution: In the discrete time domain, a delay of N samples is 6(nT — NT'), where T is
the sample period, is n is the time index and ¢, = nT" is the delay we wish to represent.
Taking the z transform gives 2=V = ¢ N7 Thus 27! = 77T,



(j) Where are the poles and zeros for

i. a Stable filter Solution: poles in LHP, zeros anywhere
ii. an all-pass filter Solution: poles LHP, zeros symmetrically in the RHP
iii. a Minimum phase filter Solution: All poles and zeros in LHP

iv. an Impedance (PR function) Solution: Poles and zeros must be carefully place in the
LHP only, such that the phase of the impedance is always between +7. This places
a very tight constraint on the pole—zero locations, much more than their simplifying
being in the LHP.

8. Describe the mathematical relationship between i(¢) and v(¢) if they are related by the
Laplace transform via Ohm’s law

V(w) =Z(s)I(w).

Solution: From Ohm’s law Z = V/I, convolution relates the voltage and current. That is

o(t) = 2(t) *i(t) = [Tj_zog =iy = [ (it r)dr o V(W) = Z() (@),

where z(t) < Z(s) = V() Here v(t) < V(w) and i(t) < I(w) are FTs of the voltage and

I(w) *
current. In general v(t) and i(¢) do not have LTS, since they are signals, not systems, thus the
system properties (linear, causality, active, ...) have no physical significance. Impedances

are the most common functions having a LT, and therefore, poles and zeros. Most books
do not discuss this most obvious case, of mixing signals with impedances. It only considers
signal that have a LT. For example, when a noise is filtered by a low-pass RC filter having
a linear causal time-invariant transfer function H(s) = V,/V; = R/(R + 1/sC), the input an
output noise signals will not have a LT. Such problems abound (are common).
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