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Abstract Infants start their journey into language as universal listeners but by the
end of the first year of life they become native language experts, as their perceptual
systems and brains attune to the sound patterns of their native language(s). This
chapter describes this attunement process and its neural correlates. Speech is the
auditory medium that allows us to externalize language. Speech perception and lan-
guage acquisition are thus tightly connected, especially during development. While
focusing primarily on the development of speech perception, this chapter, therefore,
necessarily touches upon the growth of language more generally. It discusses the
major milestones of this developmental trajectory in chronological order, starting
out with prenatal experience and newborns’ speech perception abilities, and follow-
ing the attunement process in phoneme and tone perception during the first year of
life, early word learning and the prosodic bootstrapping of grammar during the tod-
dler years.
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8.1 Introduction

Speech perception undergoes dramatic changes during the first years of human
development. Infants are born with speech perception abilities that allow them to
acquire any of the world’s languages. After months of experience, these initially
broadly based, universal abilities get tuned to the native language(s). This attun-
ement process implies a reorganization and/or narrowing of perceptual categories,
with the maintenance or refinement of native sound categories, and a loss or decrease
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in sensitivity to non-native ones. At the neural level, it is accompanied by an increas-
ingly focal brain specialization for native language processing.

This chapter describes this language attunement process and its neural correlates.
Importantly, speech is the auditory medium that allows us to externalize language.
Speech perception cannot thus be described without reference to language, the rep-
resentation and rule system humans possess. This is particularly true in develop-
ment. Hearing infants only have access to speech to learn language; they receive no
formal or explicit instructions about the words or rules of their native languages.
Yet, they successfully acquire the lexicon and the grammar of their mother tongue
in the span of just a few years with amazing ease and efficiency. This fact has led to
the assumption that the sound patterns of language are intimately intertwined with
the other levels of language such as grammar and lexicon. Correlations between the
sound patterns and abstract linguistic regularities allow infants to use speech to
learn about or “bootstrap” the grammar and the lexicon (Morgan and Demuth 1996).
These abstract acquisitions in turn help infants further fine-tune their perception of
the speech signal.

Speech perception and language acquisition are thus tightly connected and inter-
act synergistically. Empirical evidence for these connections is steadily increasing
(Werker 2018; Swingley 2021). Given this interactive view of speech and language,
this chapter, while focusing primarily on the development of speech perception, will
necessarily touch upon the growth of language more generally.

The ultimate mechanisms of language development have long been debated,
with some theories arguing for genetically endowed factors (Lenneberg 1967;
Chomsky et al. 2002), and others for experiential and learning-based ones (Elman
et al. 1997; Tomasello 2000). With the advent of brain imaging and especially
genetic and epigenetic studies (Werker and Hensch 2015), it is becoming increas-
ingly clear that biologically endowed and experiential factors are likely to act syn-
ergistically and rely on each other to bring about language development. The strict
binary dichotomy of the traditional nature-nurture debate is thus replaced by a more
integrative view of the factors that contribute to the developmental changes in
speech perception and language acquisition.

Related to this new perspective, the notion of critical periods in speech percep-
tion and language acquisition has been revisited. The original proposal (e.g.,
Lenneberg 1967) was based on observations about language development failing to
reach native-like competence when acquisition starts late, typically after puberty.
One example comes from cases of feral children. These children are raised in social
deprivation and thus not spoken to. They only recover language if they are discov-
ered and introduced to language before puberty (Curtiss et al. 1974). Immigrants to
the USA constitute another example. They have been observed to achieve native
competence in English if they arrived before age 8—10 years (Johnson and Newport
1989). But since language learning remains possible throughout the life span, with
large individual variations in outcome, the notion of critical periods was sometimes
debated. With a better understanding of the experiential, molecular, and neural
mechanisms controlling critical period phenomena, both in humans (Weikum et al.
2012; Gervain et al. 2013) and in animals (Weaver et al. 2004; Hensch 2005), where
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invasive studies can be carried out to close or re-open critical periods, the notion of
critical periods has taken on a new, biologically better-defined meaning. How brain
plasticity changes during speech perception and language development as a result of
the closure of the critical period has thus recently received considerable attention
(Werker and Hensch 2015).

This chapter follows the development of speech perception chronologically. It
starts by reviewing newborn infants’ universal abilities and then following how
these abilities narrow down and attune to the native language. Such attunement
processes operate at different levels of phonological organization, from global ones
such as rhythm to smaller units such as phonemes, syllables, tones, or words.

8.2 Newborns’ Speech Perception Abilities

In the light of the theoretical debates on the role of innate and learned factors in
language acquisition, newborn infants’ abilities have received considerable atten-
tion. These abilities were viewed as the best approximation we can methodologi-
cally get of the “initial state,” that is, the state of the perceptual and language
learning system before experience begins. Since then, evidence has gathered that
fetuses learn from the speech input they receive in utero, as hearing becomes opera-
tional between the 24th and 28th week of gestation (Eggermont and Moore 2012).
Newborns thus show universal, broadly based speech perception abilities not spe-
cific to any language yet, as well as abilities that are already shaped by prenatal
experience.

8.2.1 Newborns’ Universal Speech Perception Abilities

The auditory system is immature at birth and continues developing into late child-
hood/early adolescence (Moore 2002; Eggermont and Moore 2012). Yet, newborns
show a variety of speech perception abilities, many of which are universal and
broadly based, allowing newborns to discriminate most sound patterns found in the
world’s languages and thus enabling them to start learning any language.
Newborns’ first task is to identify speech among the sounds present in their envi-
ronment. Newborns and 2-month-old! infants can indeed recognize speech, and
show a strong preference for it over equally complex sine wave analogs (Vouloumanos
and Werker 2004). However, the category “speech” may be relatively broad at birth,
roughly corresponding to primate vocalizations, as newborns show equal preference
for human speech and rhesus monkey vocalizations (Vouloumanos et al. 2010). Yet,

'Throughout this chapter, the ages specified indicate the ages of infants tested in the cited studies.
While an individual infant of a given age may not show a specific ability, on average, infants as a
group do so at the age indicated.
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Fig. 8.1 Language in the newborn brain. (a) A near-infrared spectroscopy (NIRS) brain imaging
cap on a newborn infant head, and (b) the corresponding sensor space overlaid on a newborn struc-
tural scan. NIRS is a commonly used imaging technique to localize the language network in
infants’ and young children’s brains. (Images adapted from Abboub et al. (2016)). (¢) A schematic
illustration of the brain areas that have been found to be involved in a variety of speech and lan-
guage processing tasks in young infants using brain imaging

by 3 months, infants show a unique preference for speech over both sine wave ana-
logs and monkey calls (Vouloumanos et al. 2010).

Analogously with this behavioral preference for speech, the brains of young
infants are specialized for speech processing. Three-month-old infants, full-term
neonates, and even premature newborns activate similar brain networks as adults
(the superior and middle temporal gyri, the inferior parietal cortex, and the inferior
frontal gyrus, including Broca’s area; Fig. 8.1) in response to language, but not to
non-linguistic controls such as backward speech (Dehaene-Lambertz et al. 2002;
Peia et al. 2003; Mahmoudzadeh et al. 2013). As discussed in Sect. 8.2.2, prenatal
experience may already shape this specialization.

In addition to identifying speech in their environment, newborns are able to dis-
criminate languages from one another, even if they never heard them before, on the
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basis of the languages’ different rhythms (Mehler et al. 1988; Nazzi et al. 1998).
Language rhythm was first quantified along three acoustic dimensions (Ramus et al.
1999): %V, which is the relative proportion of vowels in the speech signal as well as
AC and AV, which are the variability in the length of consonant and vowel clusters,
respectively. In the space defined by these variables (Fig. 8.2), languages cluster
together into what was traditionally called the rhythm classes of languages. While
language rhythmic is best understood as a continuum (Nespor 1990), the classes are
still often used. They are named after the time unit that was once believed to be the
basic isochronous element in the languages belonging to a given class (Abercrombie
1967). Japanese is thus a mora-timed language the mora is a unit larger than the
phoneme, but smaller than the syllable). (Mora-timed language have the highest
9%V and the lowest AC values. Syllable-timed languages, such as French or Italian,
still have relatively high %V, but medium AC values. Stress-timed languages such
as English and Polish, in which the unit was believed to be the interval between
stressed syllables, have lower %V and higher AC. Subsequently, other metrics have
also been proposed to quantify rhythm (Grabe and Low 2002; Dellwo 2006). They
are better at accounting for speech rate differences across speakers.

Rhythmic discrimination does not require familiarity with the languages.
Newborns prenatally exposed to French are able to discriminate between English
and Japanese, for instance, as can tamarin monkeys (Ramus et al. 2000). This
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Fig. 8.2 Different languages in the space defined by %V and AC, two measures of speech rhythm.
(Adapted from Mehler et al. (2004))
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finding suggests that rhythmic discrimination might be a general property of the
primate or mammalian auditory system, independent of experience with language
or the ability to acquire it.

One important implication of newborns’ ability to discriminate languages on the
basis of thythm is that infants born into a multilingual environment can immediately
detect that they are being exposed to different languages, at least if the languages are
rhythmically different. Bilingual newborns have indeed been shown to be able to
discriminate their two languages from a third, rhythmically different language
(Byers-Heinlein et al. 2010).

In addition to their abilities to identify speech in different languages in their
environment, newborns are also able to process smaller units within the speech
signal. Behavioral results show, for instance, that infants readily detect the acoustic
cues correlated with the beginnings and ends of words (Christophe et al. 1994).
They have also been found to be sensitive to syllables within words (Sansavini et al.
1997), readily discriminating words in which the stress is on the first syllable (e.g.,
doctor) vs. those in which it is on the final one (e.g., guitar). Interestingly, however,
infants cannot tell apart words with different numbers of phonemes if the number of
syllables is the same.

During the first months of life, infants can also discriminate many of the pho-
nemes appearing in the world’s languages, as has been shown both behaviorally
(Eimas et al. 1971) and electrophysiologically (Dehaene-Lambertz and Baillet
1998). This universal discrimination repertoire is one of the hallmarks of young
infants’ broad-based abilities, allowing them to learn any language to which they
are exposed. Interestingly, chinchillas and songbirds can also discriminate pho-
nemes at similar acoustic boundaries (Kuhl 1981, 1986), suggesting that phoneme
perception builds on evolutionarily available perceptual abilities. It is, therefore,
available to young infants prior to experience. How this ability is then shaped by
language experience will be discussed in Sect. 8.3.

What features of the acoustic signal of speech newborns rely on to discriminate
phonemes is only now starting to be investigated. When processing speech pre-
sented in silence (Chap. 4, Tune and Obleser; Chap. 7, Ullas, Bonte, Formisano, and
Vroomen), adults can discriminate phonemes even on the basis of a strongly impov-
erished speech signal retaining only the slowest modulations (<16 Hz) of the ampli-
tude envelope (Drullman 1995; Shannon et al. 1995), mimicking the signal available
to cochlear implant users. A brain imaging study (Cabrera and Gervain 2020) inves-
tigated how newborns process consonant contrasts in three acoustic conditions. One
condition consisted of the intact speech signal. In the second condition, the full
envelope was preserved, but the temporal fine structure was suppressed. In the third
condition, only the slowest modulations of the envelope were preserved. This study
showed that newborns were able to discriminate consonants in all three conditions,
suggesting that, like for adults, the slowest modulation cues of the speech envelope
are sufficient for young infants to process the finest details of the speech signal.
Interestingly, however, the three conditions activated different brain areas, suggest-
ing early neural specialization for different aspects of the speech signal. Specifically,
the condition containing the full envelope evoked a more left-lateralized activation
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than the slow envelope condition, suggesting adult-like brain specialization for the
different aspects of the speech signal early in life.

Newborns are sensitive not only to sound patterns, but also to structural regulari-
ties in the speech input. Thus, they can detect repetition-based patterns such as ABB
(e.g., “mu ba ba,” “pe na na,” etc.) or AAB (e.g., “ba ba mu,” “na na pe,” etc.), and
discriminate them from otherwise similar random sequences such as ABC (e.g.,
“mu ba ge,” “pe na ku,” etc.; Gervain et al. 2008), or from one another (e.g., ABB
vs. AAB; Gervain et al. 2012). Furthermore, this ability involves the bilateral tem-
poral and left frontal areas, including Broca’s area, implying that the infant lan-
guage network is already similar to the adult one.

In sum, newborns already possess a repertoire of basic auditory, speech percep-
tion, and learning mechanisms, many of them shared with chinchillas or songbirds,
that allow them to crack the linguistic code in any language they encounter in their
environment, independently of prenatal speech experience.

99 ¢

8.2.2 Newborns’ Speech Perception Abilities Shaped by
Prenatal Experience

A growing number of studies suggests that newborns also have abilities shaped by
experience with speech heard in the womb in addition to their universal perceptual
sensitivities. Auditory experience with speech starts in the womb. But the intrauter-
ine speech signal is different from the signal heard outside of the womb. Maternal
tissues and the amniotic fluid act as low-pass filters at about ~400-800 Hz, although
the exact values can only be estimated from computational simulations and record-
ings in pregnant sheep models (Gerhardt et al. 1990; Lecanuet and Granier-Deferre
1993; DeCasper et al. 1994). As a result of this low-pass filtering, the melody and
rhythm of speech, which jointly define the prosody of a language, are preserved. At
the same time, the fine details necessary to identify individual sounds, especially
consonants, are suppressed. As a result, words are mostly unintelligible. Infants’
first experience with speech thus consists mainly of prosodic information (Gervain
2015, 2018).

This prenatal experience already shapes fetuses’ speech perception abilities.
Newborns recognize and prefer their mother’s voice over other female voices
(DeCasper and Fifer 1980). They also show a preference for their native language
over other languages (Mehler et al. 1988; Moon et al. 1993) and a story heard fre-
quently in the womb over other stories (DeCasper et al. 1994; Kisilevsky et al. 2009).

Relevant to language acquisition, fetuses learn even more specific details about
their native language. Since vowels have the highest energy in the speech signal and
are the main carriers of prosody, some vowels seem to be already learned in part
prenatally. Indeed, newborns show a preference for a vowel they did not hear prena-
tally over a native one (Moon et al. 2013). Fetuses can also learn word-level
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prosodic information (Partanen et al. 2013), readily detecting a change in lexical
pitch trained prenatally, which untrained newborns do not recognize.

Infants also show evidence of learning prenatally about the prosody of larger
linguistic units, such as utterances. Languages vary as a function of what acoustic
cues mark prosodic prominence in their phonological phrases. In some languages,
such as French or English, prominence is carried by a durational contrast, meaning
that the prominent element is lengthened as compared to the non-prominent one
(e.g., in the phrase fo Rome, the vowel of the prominent content word Rome is lon-
ger than the vowel of the non-prominent preposition). In these languages, the prom-
inent element typically occupies a phrase-final position, so phrases have an iambic
prosodic pattern.

In other languages, like Japanese or Turkish, prominence is indicated by a pitch/
intensity contrast. In these languages, prominence is phrase-initial (i.e., trochaic), so
the higher or louder element is at the phrase onset (e.g., in the Japanese phrase,
Tokyo kara, which literally translates as “Tokyo to” and means “to Tokyo,” the first
vowel of Tokyo is higher than the vowel of the word kara). This alternation of prom-
inent and non-prominent elements creates a rhythmic prosodic pattern readily per-
ceivable even by listeners who are unfamiliar with a given language (Langus
et al. 2016).

Newborn infants also seem to pick up on this pattern from their prenatal expo-
sure (Abboub et al. 2016). Newborns were presented with pairs of pure tones con-
trasting in duration, pitch, or intensity. In one condition, the pairs were consistent
with the patterns found in natural languages. Specifically, they were iambic pairs
(e.g., short-long) for the durational contrast, like in the English example to Rome,
and trochaic pairs for the pitch (e.g., high-low) and intensity contrasts (e.g., loud-
soft), like in the Japanese example Tokyo kara. In the other condition, the pairs were
inconsistent with these patterns, so trochees (e.g., long-short) for duration, iambs
for pitch/intensity (e.g., low-high/soft-loud). The newborn brain showed a greater
response to the inconsistent patterns, but only for the acoustic cue that marks pro-
sodic prominence in the language the infants were exposed to prenatally.

Newborns’ knowledge of the native prosody might even go beyond perception.
It has been suggested that newborns’ communicative cries reproduce the prosodic
patterns of their native language (Mampe et al. 2009). Indeed, German newborns’
cry patterns were found to have initial prominence, just like typical declarative
utterances in German do. By contrast, French babies’ cries were prominence-final
mimicking the prosodic contour characteristic of French utterances. Recently, these
findings received some criticism on the basis of the statistical analyses used
(Gustafson et al. 2017). But in a subsequent study, automated classification algo-
rithms could separate cries from French-, Arabic-, and Italian-exposed newborns
according to native language (Manfredi et al. 2019). If confirmed to be true, these
findings would indicate that prenatal experience is sufficiently strong to shape even
production.

Prenatal experience also shapes the brain specialization for language processing.
Newborns’ brain responses to speech in the native language are different from
responses to non-native languages. Some studies find stronger left-lateralization for



8 Development of Speech Perception 209

the native language played forward than backward. The response involves the same
regions as in adults, mainly the middle and superior temporal areas and the inferior
frontal regions, including Broca’s area (Pefia et al. 2003). When directly comparing
neonates’ responses to their native language vs. a non-native tongue, some studies
reproduced the left hemisphere advantage for forward vs. backward speech in the
native language, but no hemispheric difference in a non-native language (Sato et al.
2012; May et al. 2017). However, other studies found no hemispheric differences
for either language, but an overall advantage for the native language over the non-
native one (May et al. 2011). The lateralization issue notwithstanding, all studies
found a difference between the responses to the native language and unfamiliar
languages, strongly suggesting that the brain network for speech processing is
sculpted by prenatal experience. Furthermore, this network is already specialized
for processing speech, as a whistled language does not activate it despite being a
human communication system (May et al. 2017).

In sum, despite their immature auditory system, newborns show sophisticated
speech perception abilities. Some of these abilities are universal, allowing infants to
start acquiring any language. Others, by contrast, are already tuned to the prenatal
experience with speech, especially prosody, infants received in the womb.

8.3 Perceptual Attunement to the Native Language

After birth, experience with the full-band speech signal begins and infants start to
learn about the sound patterns specific to their native language(s). The experience
induces a perceptual reorganization or attunement to the native language, whereby
the ability to discriminate linguistic contrasts found in the language(s) heard is
maintained or even improved, while the ability to distinguish most contrasts that do
not appear in the input decreases (Werker and Tees 1984; Kuhl 2004). This reorga-
nization may show different developmental trajectories in different areas of lan-
guage. In some, a simple decrease in non-native discrimination (with a concomitant
improvement in native discrimination) is observed (Werker and Tees 1984). Other
areas are characterized by a U-shaped trajectory, where after the initial ability to
discriminate certain contrasts and a subsequent decline, the ability re-emerges
(Weikum et al. 2007, 2013). This newly emerging ability is sometimes underpinned
by mechanisms that are different in nature than those underlying the initial ability.
The initial ability is acoustic, closely linked to acoustic discriminability, whereas
the emerging one is shaped by native language experience.

Attunement to the native language comes about as an intricate interplay
between experience and perceptual/cognitive mechanisms. Attunement is accom-
panied by reorganization at the neural level, with increasingly focal, lateralized
brain specialization for native language processing. This, in turn, is tied to devel-
opmental changes in brain plasticity, brought about by the changing balance of
inhibitory and excitatory connections, ultimately linked to synaptogenesis, myelin-
ation, and pruning (Casey et al. 2000; Tierney and Nelson 2009; Haartsen et al.
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2016)—neurophysiological mechanisms that are particularly active between the
prenatal period and adolescence (although they remain operational throughout
the lifespan).

It is not surprising, therefore, that attunement to experience is not unique to
speech and language. Similar phenomena have been observed in other perceptual
domains, for instance, in face perception (Pascalis et al. 2002; Maurer and
Werker 2014).

The general principle of attunement to the native language(s) notwithstanding,
different areas of speech perception undergo different narrowing trajectories, and
some non-native contrasts, such as click consonants or some tonal contrasts, remain
discriminable throughout life. The following sections discuss each of these develop-
mental trajectories in turn.

8.3.1 Linguistic Rhythm

The rhythmic discrimination ability observed in newborns provides a good explana-
tion of how bilinguals exposed to rhythmically different languages may distinguish
their languages from birth. However, some bilinguals are exposed to rhythmically
similar languages, and newborns cannot discriminate these from one another at
birth. From what age and on what basis do bilinguals of rhythmically similar lan-
guages start distinguishing between their mother tongues? Bilingual infants grow-
ing up with Spanish and Catalan, two rhythmically similar languages, were found to
succeed on this discrimination task at 4 months of age (Bosch and Sebastian-Galles
1997). Monolingual Spanish and monolingual Catalan infants also performed simi-
larly. Basque-Spanish bilinguals were also shown to distinguish the two languages
between 3.5 and 4 months (Molnar et al. 2013). While monolingual Basque infants
behaved similarly, interestingly, the monolingual Spanish infants in this study only
discriminated the two languages when habituated to Basque, but not when habitu-
ated to Spanish. This asymmetry may be related to the geopolitical dominance of
Spanish in the Spanish Basque Country, the location of the study.

Taken together, the above results suggest that familiarity and experience with at
least one of the languages allow discrimination even within the rhythmic group after
3—4 months of experience. Specifically, this discrimination ability may rely on
familiarity with the phoneme repertoire, syllable structure, and/or phonotactic regu-
larities of at least one of the languages.

8.3.2 Audio-Visual Speech Perception

Speech is not only heard, but also seen. A considerable amount of visual informa-
tion is available in the speaker’s face/head when producing speech. This informa-
tion includes the position and movement of the lips, and the tongue, as well as of the
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eyes, eyebrows, and head, about the global features of different languages, their
prosody, as well as individual phonemes (Guellai et al. 2014; Wagner et al. 2014; de
la Cruz-Pavia et al. 2020a). Adults have been shown to readily integrate such visual
information with the auditory signal while processing speech (McGurk and
MacDonald 1976). They can also use it to discriminate languages presented only
visually (Soto-Faraco et al. 2007; Weikum et al. 2013). Furthermore, visual infor-
mation also supports and augments speech perception in a non-native language or
when the signal is degraded (Birulés et al. 2020). It also helps listeners segment out
words from continuous speech (Mitchel and Weiss 2014) or parse the speech input
to larger prosodic units (de la Cruz-Pavia et al. 2020b).

How infants use the visual correlates of speech has received increasing attention.
Both monolingual and bilingual infants can readily discriminate two languages on
the basis of visual speech alone at 4 and 6 months if at least one is their native lan-
guage. By 8 months, only bilingual infants continue to do so (Weikum et al. 2007).
This suggests that maintaining visual sensitivity helps infants in their daily task of
discriminating between their two languages, a challenge that monolinguals do not
face. Interestingly, this maintained perceptual sensitivity is general, as familiarity
with the languages is not necessary to show successful discrimination. Indeed, both
English-French and Spanish-Catalan bilinguals discriminate visual French and
visual English at 8 months (Sebastidan-Gallés et al. 2012). During the first 6 months
of life, while their audio-visual sensitivity to speech is still broadly based, infants
can also match talking faces to speech in languages that are unfamiliar to them. This
ability weakens by 12 months of age when speech is adult-directed, showing per-
ceptual narrowing (Kubicek et al. 2014a). Interestingly, 12-month-olds still succeed
if the auditory stimuli used are infant-directed (Kubicek et al. 2014b).

The prosody of speech also has its visual correlates: speakers of Japanese and
English produce eyebrow movements and head nods to mark phrase boundaries (de
la Cruz-Pavia et al. 2020a), which adult listeners can use, in conjunction with audi-
tory information, to parse speech into phrasal units (de la Cruz-Pavia et al. 2019).
Eight-month-old, but not yet 4-month-old infants, also start to show sensitivity to
these visual cues, and can integrate them with auditory prosodic information and
word frequency. However, this integration process is not yet adult-like, in particular
in the temporal asynchrony that infants expect and tolerate between the different
cues (de la Cruz-Pavia et al. 2019).

Like in adults, infants’ perception of speech in noise improves when they are
provided with additional visual information (Hollich et al. 2005). A large body of
work indicates that this facilitatory effect is based on infants’ ability to match the
auditory and visual signals at the syllable/phoneme level. Infants, for instance, can
choose which of two silently talking faces articulates a syllable heard auditorily
(Kuhl and Meltzoff 1982; MacKain et al. 1983; Patterson and Werker 1999, 2002).
Audio-visual matching also undergoes perceptual narrowing, similarly to auditory
phoneme perception (see Sect. 8.3.3). By 11-12 months of age, infants no longer
match the auditory and visual signals of phonemes if those are not found in their
native language (Pons et al. 2009; Danielson et al. 2017).
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Interestingly, what cues infants rely on in a talking face also changes during
development, reflecting the underlying perceptual reorganization. While infants and
adults mainly look at the eyes of a (talking) face (Hunnius and Geuze 2004; Viola
Macchi et al. 2004), around 8—12 months of age, infants shift their attention to the
mouth region, and this shift is more pronounced if infants hear non-native speech
(Lewkowicz and Hansen-Tift 2012; Kubicek et al. 2013) or if they are bilingual
(Pons et al. 2015). This shift corresponds to the developmental timeline of percep-
tual narrowing to the native language, and might thus reflect infants’ strategy to seek
out visual information that supports the attunement process. Indeed, by 12 months
of age, infants only look to the mouth region when hearing non-native speech, but
not when hearing their native language (Lewkowicz and Hansen-Tift 2012). This
audio-visual reorganization may be a crucial milestone in speech perception, as
children with language impairment show reduced attention to the mouth (Pons
et al. 2018).

8.3.3 Phoneme Perception

Very young infants, up to about 4-6-months of age, can discriminate almost all
phonemes appearing in the world’s languages, even those that do not appear in their
native language and that adult speakers of a different language are unable to dis-
criminate, as has been shown both behaviorally (Eimas et al. 1971; Werker and
Curtin 2005) and electrophysiologically (Dehaene-Lambertz and Baillet 1998;
Kujala et al. 2004). Infants’ phoneme perception, like that of adults, is categorical,
especially for consonants, possibly less so for vowels (Swingley 2021). Perception
is categorical when a given acoustic difference between two sounds is discriminated
and treated as contrastive if it spans a phoneme boundary, but not discriminated if it
falls within the boundaries of a phoneme category (even though infants are able to
perceive the acoustic difference; McMurray and Aslin 2005). This universal dis-
crimination repertoire is one of the hallmarks of young infants’ broad-based abili-
ties, allowing infants to learn any language they are exposed to.

After several months of experience with the native language, non-native sound
discrimination declines (Werker and Tees 1984), while the discrimination of con-
trasts found in the native language is maintained or even improves (Kuhl et al. 2006;
Narayan et al. 2010). This perceptual attunement toward the native sound repertoire
takes place around 4—-6 months for vowels (Kuhl et al. 1992) and 10—12 months for
consonants (Werker and Tees 1984). The system nevertheless remains plastic for
several years after attunement. It is thus possible to learn the phoneme inventory of
another language until age 68 years (or the onset of puberty the latest), as studies
with immigrants (Johnson and Newport 1989) and international adoptees suggest
(Ventureyra et al. 2004; Pierce et al. 2014). Infants growing up multilingually go
through the same perceptual narrowing, although for some sounds, they also show
different developmental patterns (Byers-Heinlein and Fennell 2014). For instance,
when a phoneme pair is distinguished in one of their languages, but not in the other,
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bilingual infants may go through a phase when they do not discriminate between the
two sounds.

Interestingly, the ability to discriminate non-native contrasts does not always get
lost. Some features of click sounds, found for example in the African language
Zulu, remain discriminable to non-native adults (Best et al. 1988). This has been
explained by the unusual, almost non-linguistic nature of these sounds.

Phoneme discrimination may be facilitated by systematic associations between
sounds and objects, implying that the relationship between phoneme perception and
word learning is mutual (Werker and Yeung 2005). Thus, 9-month-old infants can
successfully discriminate a non-native sound contrast if each phoneme occurs in a
nonword that is associated with an object (Yeung and Werker 2009), whereas at this
age, they would already fail without the association with objects, due to perceptual
attunement.

This relationship between word learning and perceptual attunement notwith-
standing, the lexicon is still relatively small between 4 and 12 months of life, when
perceptual attunement takes place. To explain how phonetic perception changes
without a sizeable lexicon, different mechanisms based on similarity-matching and
distributional learning have been proposed (Kuhl 2004; Werker and Curtin 2005).
These models assume that the distributional characteristics of different phonemes in
the speech signal reflect those perceptible differences that are contrastive in the
language and de-emphasize differences that are not.

Existing results also point toward another factor in the development of early
phoneme perception, the contribution of the motor system. In adult speech percep-
tion, a long tradition has argued for the key role of the motor system in phoneme
perception (e.g., Liberman and Mattingly 1985). According to the motor theory of
speech perception, the motor schemes necessary to produce a speech sound play an
important role in its identification, when the sound is perceived. Whereas the origi-
nal conception of a necessary role for the motor system in speech perception is not
supported empirically, there is a strong case to be made for the interplay of speech
perception and production in adults (Hickok et al. 2003).

This theory received relatively little attention in developmental research, since
infants’ motor and production skills so clearly lag behind their perceptual skills,
although correlational evidence between infants’ babbling/production and phoneme
perception abilities has been reported (Guellai et al. 2014; Majorano et al. 2014;
Vilain et al. 2019). However, a study by Bruderer et al. (2015) has provided direct
experimental evidence that the position of infants’ tongue and lips may impact how
they perceive speech sounds. When 6-month-old English-learning infants were
tested on a non-native speech contrast produced with movement of the tongue tip,
they showed successful discrimination, replicating earlier results about infants’
quasi-universal ability to discriminate consonant contrasts before about 10 months
(Werker and Tees 1984). However, when the same infants had to accomplish the
same task with a teething toy in their mouth that specifically inhibited tongue tip
movements, infants failed. This effect was specific as teething toys with other shapes
not impacting the position of the tongue tip, but that of the lips (lip spreading), did
not prevent infants from making the discrimination. These results are remarkable in
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that the infants tested were preverbal, barely starting to babble, and had no experi-
ence with the phoneme contrast tested, yet showed the influence of the position of
the articulators on their discrimination abilities, providing experimental evidence
for the auditory-motor link at the earliest age in development (Bruderer et al. 2015).

8.3.4 Tone Perception

Perceptual attunement to the native language has been observed not only for pho-
nemes, but also for lexical tones, the linguistic function of which is similar to that
of phonemes in that they are minimal units of distinguishing meaning in tonal lan-
guages like Thai or Mandarin Chinese. The perception of lexical tone follows a
similar attunement pattern to phonemes, with infants exposed to tone languages
maintaining discrimination, and unexposed infants losing it over the second half of
the first year of life, although some studies paint a more complex picture. The
acoustic distance between the tested tone pairs seem to play a role, and some studies
have also shown U-shaped developmental patterns whereby the ability to discrimi-
nate non-native tones returns after a drop even in non-exposed infants (Mattock and
Burnham 2006; Liu and Kager 2012).

8.3.5 Increasing Brain Specialization as a Correlate
of Perceptual Attunement

Perceptual attunement observed behaviorally is paralleled by increasing brain spe-
cialization at the neural level. Brain activation in response to language features
found in the native language becomes more focal and more lateralized, with pho-
neme discrimination lateralizing to the left hemisphere and prosody-related dis-
crimination lateralizing to the right (Minagawa-Kawai et al. 2011). As an example,
3-month-old Parisian infants respond bilaterally to Parisian French, their native dia-
lect, and Quebecois French, a non-native regional dialect. Their brain responses to
the two dialects are similar. By 5 months of age, however, Parisian infants show a
differential response to the native dialect, which is left lateralized and more focal
than 3-month-olds’ responses (Cristia et al. 2014).

The processing of smaller linguistic units also gets lateralized. Lexical pitch
accent contrasts, such as high-low vs. low-high, are readily discriminated both by
4-month-old and 10-month-old Japanese infants behaviorally, but brain imaging
reveals important underlying differences in processing (Sato et al. 2010). The
younger infants process the contrast bilaterally, with the activation patterns closely
resembling their brain responses to pure tones, suggesting that processing is mostly
based on the acoustic properties of the stimuli. The older infants, by contrast, show
a left-lateralized discrimination response to the pitch accent contrast, the intensity
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of which is greater than that of the response to pure tones, indicating more special-
ized and more linguistically based processing. Similarly, Japanese infants have been
found to discriminate the vowel duration contrast such as the short and long /a/ in
Japanese (Minagawa-Kawai et al. 2007) at 6-7 months, not at 10—11 months, and
then again from 13 to 14 months onward until adulthood. The initial discrimination
response at 6—7 months is bilateral, whereas it becomes left lateralized from 13 to
14 months on, after reorganization.

These results clearly illustrate the development of the brain specialization for the
native language. Processing and discrimination are initially acoustically based, and
hence more bilateral. During reorganization, response patterns may vary or even
weaken, and then re-emerge as more linguistic in nature, indexed by their more
focal and lateralized location.

8.4 Learning Word Forms

As infants attune to their native sound repertoire, they also start acquiring their first
words (Jusczyk and Aslin 1995; Tincoff and Jusczyk 1999; Bergelson and Swingley
2012). Speech is a continuous signal in which words are not systematically sepa-
rated by pauses or other acoustic cues in a fully reliable manner. Thus, one chal-
lenge infants face when learning words is to segment out the possible word form
candidates from the speech stream so that they can associate them with appropriate
meanings. Here, we will only be addressing the word segmentation problem. How
infants associate the extracted word forms with meaning goes beyond speech per-
ception; the reader is, therefore, referred to existing overviews on this issue
(Markman 1994; Golinkoff et al. 2000).

What cues do infants rely on to identify possible word forms? Several types of
cues have been identified and statistical cues have received considerable attention.
Ithas long been recognized that the statistical regularities of phoneme co-occurrences
are also reliable indicators of word boundaries (Harris 1955; Brent and Cartwright
1996). Thus, the syllable /ti/ follows the syllable /pri/ with a greater probability than
/bei/ follows /ti/, for example, as in the sequence pretty baby, because /pri/ and /ti/
frequently co-occur in the same word, while the adjective pretty might be followed
by a large number of other words; thus, /ti/ and /bei/ do not necessarily co-occur.
Saffran et al. (1996) and much subsequent work have shown that infants are able to
pick up such regularities and use them to segment speech. Thus, infants expect a
boundary between words when the probabilities between syllables are low.

Other segmentation cues have also been proposed in the literature. First, infants
might rely on typical stress patterns, such as the strong-weak (trochaic) pattern
commonly found in English content words (e.g., ‘doctor). This is plausible, because
infants have been shown to develop sensitivity to the stress patterns typical of their
native language between 6 and 9 months (Jusczyk and Aslin 1995; Morgan and
Saffran 1995; Morgan 1996). Such a stress-based segmentation mechanism, called
the Metrical Segmentation Strategy (Cutler and Carter 1987; Cutler 1994), has been
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shown to underlie 7.5-month-old English-learning infants’ recognition of familiar
words. In a series of studies, Jusczyk et al. (1999b) have shown that when familiar-
ized with trochaic English words (e.g., ‘doctor, ‘candle), 7.5-month-olds prefer
passages containing these words over passages that do not contain them. This pref-
erence is specific to the trochaic word form, because passages containing only the
first strong syllables of the words (e.g., dock, can) did not give rise to a similar
preference.

Moreover, by this age, English infants use language-specific stress cues to seg-
ment words from the ongoing speech stream. When presented with a continuous
stream of syllables consisting of a consonant and a vowel, where every third syllable
was stressed, 7- and 9-month-olds treated as familiar only those trisyllabic sequences
that had initial stress (soft-weak-weak). Infants showed no recognition of trisyllabic
sequences that were not trochaic (weak-soft-weak or weak-soft-soft; Curtin et al.
2001). The Metrical Segmentation Strategy also predicts that weak-strong, that is,
iambic, words (e.g., gui ‘tar) might initially be missegmented, which turns out to be
the case (Jusczyk et al. 1999b).

A second possible language-specific cue to segmentation is phonotactics, that is,
the regularities of how phonemes can be combined in a language. Knowing that the
sequence /br/ is frequent in the initial positions of English words, while /nt/ typi-
cally appears at the end can help the learner posit word boundaries. Indeed, Saffran
and Thiessen (2003) tested the acquisition of phonotactic constraints using segmen-
tation as the experimental task. Using a different approach, Mattys et al. (1999)
explored how 9-month-old English-learning infants’ knowledge of English phono-
tactics helps them posit word boundaries. They familiarized infants with non-sense
words consisting of a sequence of consonants (C) and vowels (V) in the following
order CVCCVC. The CC cluster in the middle was either frequent word-internally
in English, but infrequent across word boundaries (e.g., /nk/) or vice versa (e.g., /
nt/). Infants segmented the non-sense words into two monosyllables when the CC
cluster was infrequent word-internally and frequent across word boundaries. No
segmentation was observed for the other type of CC clusters, indicating that
9-month-old infants can use their phonotactic knowledge to assist them in word
segmentation (Mattys and Jusczyk 2001). Phonotactic biases, that is frequent, typi-
cal phonotactic patterns that appear in a language, can also aid segmentation. Thus,
infants have been found to be perceptually sensitive to the Labial-Coronal bias by
10 months of age in languages, like French, in which this bias is present in the lexi-
con. The Labial-Coronal bias means that in the vocabulary of many languages,
words with two consonants in them are such that the initial consonant is labial and
the subsequent one is coronal, rather than the other way round. Studies suggest that
infants show a preference for words that are Labial-Coronal over words with the
opposite pattern (Nazzi et al. 2009). Similarly, infants learning languages with
vowel harmony, but not those exposed to a non-harmonic language, are sensitive to
this property of their native language by about 7-13 months of life (Altan et al.
2016; Gonzalez-Gomez et al. 2019). Vowel harmony is the tendency found in some
languages for vowels within a word to be similar to one another in some feature. For
instance, in Hungarian, vowels harmonize in frontness/backness (e.g., the word ajto
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“door” only has back vowels, while the word edény “dish” only has front vowels).
Sensitivity to such biases can help infants identify possible word forms in the input,
and thus contribute to segmentation.

A third segmentation cue comes from the distributions of allophones, different
realizations of the same phoneme in different positions within words. In English,
aspirated stop consonants, consonants produced with a small puff of air, appear in
the initial positions of stressed syllables (Church 1987), their unaspirated allo-
phones appear elsewhere. Consequently, aspirated stops are good cues to word
onsets. Because infants as young as 2 months are able to discriminate the different
allophones of a phoneme (Hohne and Jusczyk 1994), it is not implausible to assume
that they might use them as cues for segmentation. Indeed, Jusczyk et al. (1999a)
have shown that at 9 months, infants are able to posit word boundaries (e.g., night
rates vs. nitrates) based on allophonic and distributional cues, and at 10.5 months,
allophonic cues alone are sufficient for successful segmentation.

In the speech input that infants receive, the above cues never occur in isolation.
Therefore, it is important to understand how these cues interact during the actual
process of language acquisition. Work by Mattys, Jusczyk, and colleagues (Mattys
et al. 1999; Mattys and Jusczyk 2001) has shown that when stress and phonotactic
cues are pitted against each other, that is, provide conflicting information about
word boundaries, 9-month-old infants prefer to rely on stress cues. When stress and
statistical information are contrasted, 6-month-olds follow the statistical informa-
tion (Saffran and Thiessen 2003), while 8-month-olds rely more on stress (Johnson
and Jusczyk 2001). This developmental trajectory might indicate a shift from uni-
versal to more language-specific strategies, reflecting infants’ growing knowledge
of the specifics of their native phonology.

By the end of the first year of life, infants thus develop powerful strategies to
segment the continuous speech stream into words and start building a small vocabu-
lary of candidate word forms. This development happens in parallel with the attun-
ement to the native phoneme repertoire, and the two processes mutually influence
each other. As a consequence, the native phoneme categories only become stable
enough to support word learning in highly demanding contexts by about 18 months
of age, but not yet at 14 months (although they are sufficiently reliable to allow
word learning when context and task demands are low). Indeed, while 14-month-
old infants can reliably learn to associate one non-sense word with a novel object
and another non-sense word with another novel object when the non-sense words
are phonologically distinct, such as “lif” and “neem,” they have difficulty with mini-
mal pairs. Minimal pairs are word that differ in a single phoneme, such as “bih” and
“dih,” and succeed in the latter task only by 18 months (Stager and Werker 1997).
By about this age, they seem to encode even subsegmental detail in word forms
(White and Morgan 2008).

Infants thus first show evidence of recognizing some word forms and reliably
associate them with possible meanings between 6 and 9 months. Between this age
and about 18 months, as their native phoneme repertoire stabilizes and they develop
language-specific strategies for segmenting words, they start to build a sizeable lexi-
con as they become expert word learners during the second year of life.
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8.5 Prosodic Perception

Infants’ first linguistic experience largely consists of the rhythm and melody of the
language(s) spoken by their mothers before birth (Gervain 2018). Throughout early
language acquisition, prosody continues to play an important role in scaffolding
language learning—this is known as prosodic bootstrapping.

Many lexical and grammatical properties of language are accompanied by char-
acteristic prosodic patterns. The theory of prosodic bootstrapping (Morgan and
Demuth 1996) holds that young learners can exploit the prosodic cues that are
directly available in their input to learn about the perceptually unavailable, abstract
lexical, and grammatical properties with which those cues are correlated. In English,
for instance, bisyllabic nouns (N) and verbs (V) with the same segmental make-up
are distinguished by lexical stress: nouns tend to have initial stress, verbs final
stress, such as the noun record /'reka(r)d/ vs. the verb record /ri'ko(r)d / (Cutler and
Carter 1987). Knowing this regularity, a learner is able to categorize novel words as
nouns or verbs even if she does not know their meanings.

Experimental findings over the past two decades suggest that infants are indeed
able to exploit such correlations to break into the lexicon and grammar of their
native language(s), thus alleviating the learning problem they face when confronted
with the acquisition of abstract linguistic properties (Gervain et al. 2021).

As reviewed in Sect. 8.2, many of newborns’ speech perception abilities rely on
prosody. These sensitivities constitute the basis of the subsequent bootstrapping role
of prosody. One area in which this has been extensively documented is word learn-
ing (Sect. 8.4). Once infants learn the lexical stress pattern typical of their native
language on the basis of the first few words they encounter, they can then use this
knowledge to constrain and support further learning.

Another important mechanism of prosodic bootstrapping is prosodic grouping,
also known as the Iambic-Trochaic Law (ITL) (Hayes 1995), which states that
sound sequences contrasting in duration are naturally perceived iambically (e.g., as
forming pairs in which the first sound is short, the second one is long), whereas
sound sequences that contrast in pitch or intensity are perceived trochaically (e.g.,
as forming pairs in which the first sound is high/loud, the second one is low/soft).
The position as well as the acoustic realization of phrase-level prosodic prominence
co-varies with word order (Nespor et al. 2008; Gervain and Werker 2013). In lan-
guages in which phrases start with grammatical words called functors, (e.g., in
Rome), such as English or Italian, prosodic prominence in phonological phrases,
which falls on the content word, is phrase-final (i.e., iambic) and is realized as a
durational contrast—that is, as the lengthening of the stressed vowel of the content
word (e.g., in Rome). By contrast, languages, such as Japanese, Turkish, or Basque,
where grammatical words appear at the end of phrases, the prominence is initial
(i.e., trochaic) and is realized as increased pitch or intensity (e.g., Japanese: Tokyo
ni “to Tokyo”). While other cues may accompany prominence in any language,
pitch or intensity serves as the contrastive cue in languages with final grammatical
functors, whereas duration plays this role in functor-initial languages. Infants as
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young as 8—9 months of age can align phrasal prosody with the underlying syntactic
pattern within phrases, as they expect functors to be non-prominent and content
words to be prominent (Bernard and Gervain 2012). Even more importantly,
7-month-old bilinguals exposed to a functor-initial and a functor-final language use
the different prosodic realizations to select the relevant word order (Gervain and
Werker 2013). Upon hearing a durational contrast (short-long), they select sequences
with a functor-initial order, while, when presented with a pitch contrast (high-low),
they prefer functor-final sequences. This is strong evidence that infants start using
prosody to bootstrap syntax even before they have a sizeable lexicon, suggesting
that they set abstract syntactic parameters rather than memorize or rote-learn lexical
patterns or item-based expressions. In this regard, the role of the ITL is particularly
relevant. As mentioned before, newborns already show familiarity with the pre-
dominant iambic or trochaic prosodic patterns of their native language from prena-
tal experience (Abboub et al. 2016). This knowledge may guide young infants from
very early on in how they segment and parse the language input, and allow them to
determine basic properties of their native grammar such as its word order. For
instance, an infant expecting a functor-content word order on the basis of prosody
will be able to directly assign the correct lexical category to the novel words she
encounters in an input sentence. This is further aided by young infants’ ability to
distinguish functors and content words on the basis of their phonological differ-
ences (Shi et al. 1999). Thus, on the basis of auditory cues alone, infants may be
able to already build a rudimentary representation of the basic word order of func-
tors and content words, which then further correlates with other word order phe-
nomena, such as the relative order of verbs and their objects, or main clauses and
subordinate clauses, etc., (Dryer 1992), providing infants with a powerful strategy
to break into the grammar of their native language.

Later, children can also use prosody to support the processing of syntactic struc-
tures (Christophe et al. 2008, 2016; Hawthorne and Gerken 2014). Infants perceive
intonational phrase boundaries from 5 months of age (Hirsh-Pasek et al. 1987;
Minnel and Friederici 2009). To test the effect of phrasal prosody on syntactic anal-
ysis, sentences with syntactically ambiguous phrases were presented to toddlers
such as the baby flies, which can be interpreted as a noun phrase as in The baby flies
hide in the shadows, or as a noun and a verb as in The baby flies her kite. In these
sentences, prosody disambiguates the two possibilities, as in one sentence there is a
prosodic boundary before the ambiguous word fly, in the other case, the boundary
follows fly. When listening to the critical phrase in such sentences (with the end of
the sentence being masked by noise), toddlers as young as 20 months of age are able
to exploit the prosodic information, and looked at the picture depicting the intended
meaning (Carvalho et al. 2016).

Children thus use prosody from the very beginning of language development
starting with their prenatal experience with speech to identify and break into the
native language, relying on prosodic cues to extract words from the input, learn the
basic word order of the native language, and subsequently to constrain syntactic
parsing.



220 J. Gervain
8.6 Chapter Summary

Infants start their journey into language as universal listeners, but by the end of the
first year of life they become native language experts, as their perceptual systems
and brains reorganize to better perceive those linguistic contrasts that they encoun-
ter in the native language, losing sensitivity to non-native sound patterns. Attunement
to the native language starts prenatally, as infants first experience speech in the
womb. Accordingly, newborns possess speech perception abilities, some of which
already show the impact of prenatal experience, while many others are universal and
broadly based, allowing infants to learn any of the world’s languages. After several
months of experience with their native languages, infants start to lose these univer-
sal abilities, becoming unable to discriminate most contrasts (phonemes, tones, etc.)
that are not used in the native language(s), while improving and fine-tuning their
native sound categories. This perceptual attunement is accompanied by an increas-
ing hemispheric specialization for language at the neural level. In parallel with the
perceptual reorganization, infants also start learning their first words and the basics
of their native grammar. The acquisition of the different levels of language thus
proceeds in parallel and interacts with one another in synergistic ways.
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