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Because of the “‘all-or-none’”’ character of nervous activity, 
neural events and the relations among them can be treated by 

means of propositional logic. It is found that the behavior of 

every net can be described in these terms, with the addition of 
more complicated logical means for nets containing circles; and 
that for any logical expression satisfying certain conditions, one 

can find a net behaving in the fashion it describes. It is shown 

that many particular choices among possible neurophysiological 
assumptions are equivalent, in the sense that for every net be- 
having under one assumption, there exists another net which 

behaves under the other and gives the same results, although 
perhaps not in the same time. Various applications of the calculus 

are discussed. 

INTRODUCTION 

“Taroretican neurophysiology rests on certain cardinal as- 
sumptions. ‘The nervous system is a net of neurons, each having a 

soma and an axon. Their adjunctions, or synapses, are always be- 
tween the axon of one neuron and the soma of another. At any in- 
stant a neuron has some threshold, which excitation must exceed to 

initiate an impulse. This, except for the fact and the time of its 

occurrence, is determined by the neuron, not by the excitation. 

From the point of excitation the impulse is propagated to all parts 
of the neuron. The velocity along the axon varies directly with its 

diameter, from less than one meter per second in thin axons, 
which are usually short, to more than 150 meters per second in 
thick axons, which are usually long. The time for axonal conduc- 

tion is consequently of little importance in determining the time 
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of arrival of impulses at points unequally remote from the same 

source. Excitation across synapses occurs predominantly from 

axonal terminations to somata. It is still a moot point whether 
this depends upon irreciprocity of individual synapses or merely 

upon prevalent anatomical configurations. To suppose the latter 
requires no hypothesis ad hoc and explains known exceptions, but 

any assumption as to cause is compatible with the calculus to 
come. No case is known in which excitation through a single syn- 
apse has elicited a nervous impulse in any neuron, whereas any 
neuron may be excited by impulses arriving at a sufficient number 

of neighboring synapses within the period of latent addition, which 

lasts less than one quarter of a millisecond. Observed temporal 
summation of impulses at greater intervals is impossible for single 

neurons and empirically depends upon structural properties of the 

net. Between the arrival of impulses upon a neuron and its own 
propagated impulse therg is a synaptic delay of more than half 

a millisecond. During the first part of the nervous impulse the 

neuron is absolutely refractory to any stimulation. Thereafter its 

excitability returns rapidly, in some cases reaching a value above 

normal from which it sinks again to a subnormal value, whence 

it returns slowly to normal. Frequent activity augments this sub- 
normality. Such specificity as is possessed by nervous impulses 

depends solely upon their time and place and not on any other 
specificity of nervous energies. Of late only inhibition has been 
seriously adduced to contravene this thesis. Inhibition is the ter- 
mination or prevention of the activity of one group of neurons by 

concurrent or antecedent activity of a second group. Until recently 
this could be explained on the supposition that previous activity 

of neurons of the second group might so raise the thresholds of 
internuncial neurons that they could no longer be excited by 

neurons of the first group, whereas the impulses of the first group 
must sum with the impulses of these internuncials to excite the 

now inhibited neurons. Today, some inhibitions have been shown 
to consume less than one millisecond. This excludes internuncials 

and requires synapses through which impulses inhibit that neuron 
which is being stimulated by impulses through other synapses. 
As yet experiment has not shown whether the refractoriness is 

relative or absolute. We will assume the latter and demonstrate
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that the difference is immaterial to our argument. Either variety 

of refractoriness can be accounted for in either of two ways. The 

“inhibitory synapse”? may be of such a kind as to produce a sub- 

stance which raises the threshold of the neuron, or it may be so 

placed that the local disturbance produced by its excitation 

opposes the alteration induced by the otherwise excitatory syn- 

apses. Inasmuch as position is already known to have such effects 

in the case of electrical stimulation, the first hypothesis is to be 

excluded unless and until it be substantiated, for the second 

involves no new hypothesis. We have, then, two explanations of 

inhibition based on the same general premises, differing only in 
the assumed nervous nets and, consequently, in the time required 

for inhibition. Hereafter we shall refer to such nervous nets as 

equivalent in the extended sense. Since we are concerned with properties 

of nets which are invariant under equivalence, we may make the 

physical assumptions which are most convenient for the calculus. 

Many years ago one of us, by considerations impertinent to 

this argument, was led to conceive of the response of any neuron 

as factually equivalent to a proposition which proposed its ade- 

quate stimulus. He therefore attempted to record the behavior of 

complicated nets in the notation of the symbolic logic of proposi- 

tions. The ‘‘all-or-none” law of nervous activity is sufficient to 

insure that the activity of any neuron may be represented as a 

proposition. Physiological relations existing among nervous activ- 

ities correspond, of course, to relations among the propositions; 

and the utility of the representation depends upon the identity 

of these relations with those of the logic of propositions. To each 

reaction of any neuron there is a corresponding assertion of a 

simple proposition. This, in turn, implies either some other simple 

proposition or the disjunction or the conjunction, with or without 

negation, of similar propositions, according to the configuration 

of the synapses upon and the threshold of the neuron in question. 

Two difficulties appeared. The first concerns facilitation and ex- 

tinction, in which antecedent activity temporarily alters responsive- 

ness to subsequent stimulation of one and the same part of the 

net. The second concerns learning, in which activities concurrent 

at some previous time have altered the net permanently, so that 

a stimulus which would previously have been inadequate is now
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adequate. But for nets undergoing both alterations, we can sub- 

stitute equivalent fictitious nets composed of neurons whose con- 

nections and thresholds are unaltered. But one point must be 

made clear: neither of us conceives the formal equivalence to be 

a factual explanation. Per contra!—we regard facilitation and 

extinction as dependent upon continuous changes in threshold 

related to electrical and chemical variables, such as after-potentials 

and ionic concentrations; and learning as an enduring change 

which can survive sleep, anaesthesia, convulsions and coma. The 

importance of the formal equivalence lies in this: that the altera- 

tions actually underlying facilitation, extinction and learning in 

no way affect the conclusions which follow from the formal treat- 

ment of the activity of nervous nets, and the relations of the 

corresponding propositions remain those of the logic of propositions. 

The nervous system contains many circular paths, whose ac- 

tivity so regenerates the excitation of any participant neuron that 

reference to time past becomes indefinite, although it still implies 

that afferent activity has realized one of a certain class of con- 

figurations over time. Precise specification of these implications 

by means of recursive functions, and determination of those that 

can be embodied in the activity of nervous nets, completes the 

theory. 

THE THEORY: NETS WITHOUT CIRCLES 

We shall make the following physical assumptions for our cal- 

culus. 

1. The activity of the neuron is an ‘‘all-or-none” process. 

2. A certain fixed number of synapses must be excited within 

the period of latent addition in order to excite a neuron at any 

time, and this number is independent of previous activity and 

position on the neuron. 

3. The only significant delay within the nervous system is syn- 

aptic delay. 

4. The activity of any inhibitory synapse absolutely prevents 

excitation of the neuron at that time. 

5. The structure of the net does not change with time.
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To present the theory, the most appropriate symbolism is that 
of Language II of R. Carnap (1938), augmented with various 
notations drawn from B. Russell and A. N. Whitehead (1927), 
including the Principia conventions for dots. Typographical neces- 
sity, however, will compel us to use the upright ‘E’ for the existen- 
tial operator instead of the inverted, and an arrow (‘—’) for 
implication instead of the horseshoe. We shall also use the Carnap 
syntactical notations, but print them in boldface rather than 
German type; and we shall introduce a functor S, whose value 
for a property P is the property which holds of a number when P 
holds of its predecessor; it is defined by ‘S(P) (t). = .P(Kx).t =)’; 
the brackets around its argument will often be omitted, in which 
case this is understood to be the nearest predicate-expression [Pr] 
on the right. Moreover, we shall write S?Pr for S(S(Pr)), etc. 

The neurons of a given net 9l may be assigned designations 
Cr’, “€2’, ... , “¢,’. This done, we shall denote the property of a 
number, that a neuron ¢; fires at a time which is that number of 
synaptic delays from the origin of time, by ‘N’ with the numeral 
2 as subscript, so that N.(t) asserts that c, fires at the time ¢. N; is 
called the action of c;. We shall sometimes regard the subscripted 
numeral of ‘N’ as if it belonged to the object-language, and were 
in a place for a functoral argument, so that it might be replaced 
by a number-variable [z}] and quantified; this enables us to abbre- 
viate long but finite disjunctions and conjunctions by the use of 
an operator. We shall employ this locution quite generally for 
sequences of Pr; it may be secured formally by an obvious dis- 
junctive definition. The predicates ‘N,’, ‘N2’, ... , comprise the 
syntactical class ‘N’. 

Let us define the peripheral afferents of Si as the neurons of 
with no axons synapsing upon them. Let Ni, ... , Np, denote the 
actions of such neurons and Nyi1, Npi2, ..- , N, those of the rest. 
Then a solution of Dt will be a class of sentences of the form S;: 
Noi (21) «=. Pr: (Ni, No, ..., Np, 21), where Pr; contains no 
free variable save z; and no descriptive symbols save the N in the 
argument [Arg], and possibly some constant sentences [sa]; and 
such that each S; is true of 91. Conversely, given a Pr: (1p41, p's, «+, 
1pl,, 21,8), containing no free variable save those in its Arg, we 
shall say that it is realizable in the narrow sense if there exists a net MN
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and a series of N; in it such that NM, (41) .=. Pn (M, Ne ..., 

Z1, $@) is true of it, where sa, has the form N(0). We shall call it 

realizable in the extended sense, or simply realizable, if for some n S"( Pr) 
(pi, »-+, Pp, 21, S) is realizable in the above sense. c,; is here the 
realizing neuron. We shall say of two laws of nervous excitation 
which are such that every S which is realizable in either sense 
upon one supposition is also realizable, perhaps by a different 

net, upon the other, that they are equivalent assumptions, in 

that sense. 

The following theorems about realizability all refer to the ex- 
tended sense. In some cases, sharper theorems about narrow 

realizability can be obtained; but in addition to greater com- 
plication in statement this were of little practical value, since our 

present neurophysiological knowledge determines the law of ex- 

citation only to extended equivalence, and the more precise 

theorems differ according to which possible assumption we make. 

Our less precise theorems, however, are invariant under equiva- 

lence, and are still sufficient for all purposes in which the exact 
time for impulses to pass through the whole net is not crucial. 

Our central problems may now be stated exactly: first, to find 

an effective method of obtaining a set of computable S constituting 

a solution of any. given net; and second, to characterize the class 

of realizable S in an effective fashion. Materially stated, the 

problems are to calculate the behavior of any net, and to find a 
net which will behave in a specified way, when such a net exists. 

A net will be called cyclic if it contains a circle: i.e., if there 

exists a chain ¢;, C41, ... Of neurons on it, each member of the 

chain synapsing upon the next, with the same beginning and end. 

If a set of its neurons ¢, C2, ... , ¢» is such that its removal from 

‘leaves it without circles, and no smaller class of neurons has this 

property, the set is called a cyclic set, and its cardinality is the 

order of 1. In an important sense, as we shall see, the order of a 

net is an index of the complexity of its behavior. In particular, 
nets of zero order have especially simple properties; we shall 

discuss them first. 

Let us define a temporal propositional expression (a TPE), desig- 
nating a temboral propositional function (TPF), by the following 
recursion:
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1. A 'p'[z,) is a TPE, where p; is a predicate-variable. 

2. If S; and S, are TPE containing the same free individual 

variable, so are SS,, SjvS2, S:.S2 and S;. ~ S82. 

3. Nothing else is a TPE. 

Theorem I 

Every net of order 0 can be solved in terms of temporal propositional 

expressions. 

Let c; be any neuron of 9 with a threshold 6; > 0, and let cu, 

Cia, «++, Cip have respectively na, nin, --- , Nip CXCitatory synapses 

upon it. Let ¢j1, ¢j2, .+-, ¢jq have inhibitory synapses upon it. 

Let «; be the set of the subclasses of {ra, miz, .-- , Mip} such that 

the sum of their members exceeds @;. We shall then be able to 

write, in accordance with the assumptions mentioned above, 

Noe) = SUL~ Nin) ZT Male a) 
aeK yy Bea 

where the ‘>.’ and ‘[]’ are syntactical symbols for disjunctions 

and conjunctions which are finite in each case. Since an expression 

of this form can be written for each ¢; which is not a peripheral 

afferent, we can, by substituting the corresponding expression in 

(1) for each N;,, or N;, whose neuron is not a peripheral afferent, 

and repeating the process on the result, ultimately come to an 

expression for N; in terms solely of peripherally afferent N, since 

NM ig without circles. Moreover, this expression will be a TPE, 

since obviously (1) is; and it follows immediately from the definition 

that the result of substituting a 7’PE for a constituent p(z) in a 

TPE is also one. 

Theorem II 

Every TPE ts realizable by a net of order zero. 

The functor S obviously commutes with disjunction, conjunction, 

and negation. It is obvious that the result of substituting any S,, 

realizable in the narrow sense (i.n.s.), for the p(z) in a realizable 

expression S; is itself realizable i.n.s.; one constructs the realizing 

net by replacing the peripheral afferents in the net for S; by the 

realizing neurons in the nets for the S, The one neuron net
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realizes p,(z:) in.s., and Figure 1-a shows a net that realizes 
Spi(zi) and hence SS2, i.n.s., if S: can be realized i.n.s. Now if 
S. and S; are realizable then SS, and S*S; are realizable i.n.s., 
for suitable m and n. Hence so are S"t*S, and S™**S3. Now the 

nets of Figures 1b, c and d respectively realize S(p:(2:) Vv p2(21)), 

S(pilt) « po(zi)), and S(pi(z:) . ~ peo(2i)) ins. Hence S™***! (Siv 

S,), Smt (S,. S2), and Smtett (S$, . ~ S.) are realizable i.n-s. 
Therefore S,v S2S; . S28; . ~ S2 are realizable if S, and S; are. 
By complete’ induction, all TPE are realizable. In this way all 

nets may be regarded as built out of the fundamental elements 
of Figures 1a, b, c, d, precisely as the temporal propositional ex- 

pressions are generated out of the operations of precession, dis- 

junction, conjunction, and conjoined negation. In particular, 

corresponding to any description of state, or distribution of the 

values true and false for the actions of all the neurons of a net save 

that which makes them all false, a single neuron is constructible 
whose firing is a necessary and sufficient condition for the validity 

of that description. Moreover, there is always an indefinite number 

of topologically different nets realizing any TPE. 

Theorem III 

Let there be given a complex sentence S, built up in any manner out 
of elementary sentences of the form p(z, — zz) where zz is any numeral, 

by any of the propositional connections: negation, disjunction, conjunction, 

implication, and equivalence. Then 8, is a TPE and only if tt is false 
when its constituent p(z: — zz) are all assumed false—i.e., replaced 

by false sentences—or that the last line in its truth-iable contains an 

°F’ —or there is no term in its Hilbert disjunctive normal form com- 

posed exclusively of negated terms. 

These latter three conditions are of course equivalent (Hilbert 

and Ackermann, 1938). We see by induction that the first of them 

is necessary, since p(z: — 2z) becomes false when it is replaced 

by a false sentence, and S,vS2, S,.S: and S;.~ S: are all 

false if both their constituents are. We see that the last condition 

is sufficient by remarking that a disjunction is a TPH when its 

constituents are, and that any term 

S,.S.....8n.~ mele Meee oe Sh 

can be written as
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(Sy «Soe eee Sm) _™ (Smit Smpo¥ vee -v S,), 

which is clearly a TPE. 
The method of the last theorems does in fact provide a very 

convenient and workable procedure for constructing nervous nets 
to order, for those cases where there is no reference to events 

indefinitely far in the past in the specification of the conditions. 
By way of example, we may consider the case of heat produced 

by a transient cooling. 
If a cold object is held to the skin for a moment and removed, 

a sensation of heat will be felt; if it is applied for a longer time, the 
sensation will be only of cold, with no preliminary warmth, how- 
ever transient. It is known that one cutaneous receptor is affected 
by heat, and another by cold. If we let N, and Nz be the actions 
of the respective receptors and Ns; and N,« of neurons whose 
activity implies a sensation of heat and cold, our requirements 

may be written as 

Nit): = + NiG—1) .v. N2(f—-3) . ~ Nolf—2) 

Ni, (8) - =. N2(t—2) « N2t—1) 

where we suppose for simplicity that the required persistence in 
the sensation of cold is, say, two synaptic delays, compared with 
one for that of heat. These conditions clearly fall under Theorem 
III. A net may consequently be constructed to realize them, by 
the method of Theorem II. We begin by writing them in a fashion 
which exhibits them as built out of their constituents by the 
operations realized in Figures la, b, c, d: i.e., in the form 

Ns@) . = . S{Ni@ v S[(SN2(t)) . ~ Net} 
Ni(t) . = . S{[SN2(é)] . Not}. 

First we construct a net for the function enclosed in the greatest 

number of brackets and proceed outward; in this case we run a 
net of the form shown in Figure 1a from c, to some neuron ¢q, say, 

so that 

N.(t). = . SN2(t). 

Next introduce two nets of the forms ic and 1d, both running 
from c, and ¢2, and ending respectively at c, and say ¢». ‘Then 

Nit). =. SINGG) . Ne@)]. = . SE(SNe(t)) . Ne). 

Nit). =. SIND). ~ Nef). = . SUGSN2(é)) . ~ N2@)I.
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Finally, run a net of the form 1b from ¢ and ¢, to ¢3, and derive 

Na(t). = . SIN: ¢) vNs()] 
» =. S{Ni © v S[(SN2®) . ~ Na(t)}}. 

These expressions for N3(é) and N.(f) are the ones desired; and 
the realizing net in fofo is shown in Figure te. 

This illusion makes very clear the dependence of the correspond- 
ence between perception and the “external world” upon the 
specific structural properties of the intervening nervous net. The 

same illusion, of course, could also have been produced under 
various other assumptions about the behavior of the cutaneous 

receptors, with correspondingly different nets. 

We shall now consider some theorems of equivalence: i.e., 
theorems which demonstrate the essential identity, save for time, 

of various alternative laws of nervous excitation. Let us first dis- 
cuss the case of relative inhibition. By this we mean the supposition 
that the firing of an inhibitory synapse does not absolutely prevent 
the firing of the neuron, but merely raises its threshold, so that 

a greater number of excitatory synapses must fire concurrently 
to fire it than would otherwise be needed. We may suppose, losing 
no generality, that the increase in threshold is unity for the firing 
of each such synapse; we then have the theorem: 

Theorem IV 

Relative and absolute inhibition are equivalent in the extended sense. 

We may write out a law of nervous excitation after the fashion 
of (1), but employing the assumption of relative inhibition instead; 

inspection then shows that this expression is a TPE. An example | 
of the replacement of relative inhibition by absolute is given by 
Figure if. The reverse replacement is even easier; we give the 

inhibitory axons afferent to c; any sufficiently large number of 
inhibitory synapses apiece. 

Second, we consider the case of extinction. We may write this 

in the form of a variation in the threshold 6; after the neuron ¢; 

has fired; to the nearest integer—and only to this approximation 

is the variation in threshold significant in natural forms of excita- 
tion—this may be written as a sequence 6; + 5; for 7 synaptic 

- 10 -
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delays after firing, where 6; = 0 for 7 large enough, say 7 = M or 

greater. We may then state 

Theorem V 

Extinction ts equivalent to absolute inhibition. 

For, assuming relative inhibition to hold for the moment, we 

need merely run MM circuits Si, So, ... Su containing respectively 

1, 2, ..., Af neurons, such that the firing of each link in any is 
sufficient to fire the next, from the neuron ¢; back to it, where 

the end of the circuit J; has just 4; inhibitory synapses upon ¢;. 
It is evident that this will produce the desired results. The reverse 

substitution may be accomplished by the diagram of Figure lg. 
From the transitivity of replacement, we infer the theorem. To 

this group of theorems also belongs the well-known 

Theorem VI 

Facilitation and temporal summation may be replaced by spatial sum- 

mation. 

This is obvious: one need merely introduce a suitable sequence 

of delaying chains, of increasing numbers of synapses, between the 

exciting cell and the neuron whereon temporal summation is 

desired to hold. The assumption of spatial summation will then 
give the required results. See e.g. Figure 1h. This procedure had 

application in showing that the observed temporal summation in 

gross nets does not imply such a mechanism in the interaction of 

individual neurons. 

The phenomena of learning, which are of a character persisting 

over most physiological changes in nervous activity, seem to re- 

quire the possibility of permanent alterations in the structure of 

nets. The simplest such alteration is the formation of new synapses 

or equivalent local depressions of threshold. We suppose that some 

axonal terminations cannot at first excite the succeeding neuron; 

but if at any time the neuron fires, and the axonal terminations 
are simultaneously excited, they become synapses of the ordinary 

kind, henceforth capable of exciting the neuron. The loss of an 

inhibitory synapse gives an entirely equivalent result. We shall 

then have 

- 11 -
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Theorem VII 

Alterable synapses can be replaced by circles. 

This is accomplished by the method of Figure li. It is also to 

be remarked that a neuron which becomes and remains spon- 

taneously active can likewise be replaced by a circle, which is set 

into activity by a peripheral afferent when the activity commences, 

and inhibited by one when it ceases. 

THE THEORY: NETS WITH CIRCLES 

The treatment of nets which do not satisfy our previous assump- 

tion of freedom from circles is very much more difficult than that 

case. This is largely a consequence of the possibility that activity 

may be set up in a circuit and continue reverberating around it 

for an indefinite period of time, so that the realizable Pr may 
involve reference to past events of an indefinite degree of remote- 

ness. Consider such a net 9, say of order p, and let a, ¢2, ..., ¢» be 

a cyclic set of neurons of ©. It is first of all clear from the definition 

that every N, of 9{ can be expressed as a TPE, of Ni, No, ..., Np 

and the absolute afferents; the solution of Sj involves then only 

the determination of expressions for the cyclic set. This done, we 

shall derive a set of expressions [ A]: 

N; (21) -=., Pr {S™ Ni (21), S*2 N2(21), eeey S"ip N, (21) |; (2) 

where Pr, also involves peripheral afferents. Now if n is the least 

common multiple of the n,;, we shall, by substituting their equiva- 

lents according to (2) in (3) for the N;, and repeating this 

process often enough on the result, obtain S of the form 

Ni(zi) . = . Pri[S” Ni (21), S” No(zi), --- , S° Np(1)]. (3) 

These expressions may be written in the Hilbert disjunctive nor- 

mal form as 

N,(zi). =. a S.[] S*.N;(z:) [] ~ S* N;(21), for suitable , (4) 
ae jek Ith g 

B atk 

where S,is a TPE of the absolute afferents of 9. There exist 

some 2” different sentences formed out of the pN; by conjoming 

to the conjunction of some set of them the conjunction of the 

- 12 -
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negations of the rest. Denumerating these by X,(z:), X2(z:), .--, 

X»,(%1), we may, by use of the expressions (4), arrive at an equi- 
pollent set of equations of the form 

2p 

X;(Z1) =, Di Pris(ts) . S°X; (21). (5) 

Now we import the subscripted numerals 7,7 into the object- 
language: i.e., define Pr, and Pr2 such that Pri(zz1,21) . = . X;(z) 
and Pr2(221,2Z2,21) . = . Pr,;(z1) are provable whenever 22; and 
2Z_ denote 1 and 7 respectively. 

Then we may rewrite (5) as 

(21)2Zp : Pry (21, 23) 

~ = . (H2_)22, . Pro (21, Z2, 23 ~ Z2n) . Pr, (Zo, 23 — 2Zn) (6) 

where 22, denotes n and 22, denotes 2”. By repeated substitution 
we arrive at an expression 

(2122p 2 Pr, (21, 22,222) « = . (H22)2z, (H23)22,.. « (Ezq)2Zp. 

Pro(21, Z2, 22n (222 — 1)) . Pre(Zo, Zz, Zn (222 —~1))..... (7) 

Pro(Zn—1,2n,0) . Pri(z,,0), for any numeral zz. which denotes s. 

This is easily shown by induction to be equipollent to 

(21)2Zp:. Pri (Zi, 2% 222) : = : (Ef) (22) 222 — 1f (Zo 22n) 

S 22p of (Z2y 222) = 21. Pre(f (zn (22 + 1)), (8) 

F(22nZ2)) . Pri(f(O), 0) 

and since this is the case for all zze, it is also true that 

(24) (21)22p 2 Pri(zi, 24) - = - (Ef) Gs) Ga — 1) - f2) 

S 22» f (2s) = 21 f (Zs) = 21. Pro[f(Ze + 1), F(Z), 2) . (9) 

Pri[f (res (Ze, Z2n)), res (Z4, 2Zn)]; 

where 2z, denotes n, res (r,s) is the residue of r mod s and 22, 

denotes 2”. This may be written in a less exact way as 

Nt). =. (Fé) (i -1.¢4@) S 2?.¢@@ =7. 

Plo + 1), o@) - Nelo) O)], 

where x and t are also assumed divisible by n, and Pr, denotes P. 
From the preceding remarks we shall have 

- 13 -
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Theorem VIII 

The expression (9) for neurons of the cyclic set of a net N together 
with certain ‘TPE expressing the actions of other neurons in terms of 
them, constitute a solution of N. 

Consider now the question of the realizability of a set of S,;. A 

first necessary condition, demonstrable by an easy induction, is that 

(Zo) 21 . pi (Ze) = po (Ze) 1. S; = sp (10) 

should be true, with similar statements for the other free p in S;: 

i.€., nO nervous net can take account of future peripheral afferents. 

Any S; satisfying this requirement can be replaced by an equi- 
pollent S of the form 

(Ef) (Z2)21 (Z3)Z2p i fe Prim: 

f(z, 22,23 = 1.=. pes (Ze) (11) 

where zz, denotes ~, by defining 

Pr; = far) (Z2)Z1(Z3)ZZp 2» f(Z1, 22,23) = O. V. f (21, Ze, Zs) 

= 1 :f(Z1, Zo, Z3) =l,=., pz (Ze) 2 8 S;]. 

Consider now these series of classes a;, for which 

N;(t): =: (Be) @)t(m)q : gear: Nae). = . of, 2,m) = 1. 

Z{=@q+1,°°°,M] (12) 

holds for some net. ‘These will be called prehensible classes. Let us — 

define the Boolean ring generated by a class of classes x as the 

aggregate of the classes which can be formed from members of «x 

by repeated application of the logical operations; i.e., we put 

Rk) = pAL (a, B) t cxex 
— ae ia, PX... —a,a.B, av Bed]. 

We shall also define 

Rk). =. Rk) —c p — “x, 

R(x) =p (a, B) taex aed. >. —a,a.B,av ZB, S “aer 

R(x) = R, (x) _~ tp — “Ky 

and 

o(b,t) = [(m) . d+ 1,t,m) = y(m)]. 
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The class R(x) is formed from « in analogy with R(x), but by 

repeated application not only of the logical operations but also 

of that which replaces a class of properties Pea by S(P) ¢ S “a. 

We shall then have the 

LEMMA 

Pri(pi, po, «+. , Pm, 21) is a TPE if and only if 

(21) (pi, eee y Pn) (EP m+1) * Pmt € Rell pr, b2, eee sy Pm} ) 

Pmti (Zi) = Pri(pi, po, «++, Pm, 21) (13) 

is true; and it is a 7 PE not involving ‘S’ if and only if this holds 

when ‘,’ is replaced by ‘8’, and we then obtain 

Theorem IX 

A sertes of classes on, a2, ... a, 15 @ series of prehensible classes if and 

only if 

(Em) (En) (p)n@) (y):. @)mo(e) = Ov b@ =1:—: (B) 

(Ey)m. oy) = 0. BR ((Ei) . y = a)) . v. (u)m. 

(x) = 0. BRGY (E.) «y = ad]: © @) t dea. (14) 
o(f, nt tp).—. (Ef). fe. wiym(et—1. 

éd(int+1)+p,ne+p,w) = fintt+ p, nx + p, w). 

The proof here follows directly from the lemma. The condition 

is necessary, since every net for which an expression of the form 

(4) can be written obviously verifies it, the ¢’s being the charac- 

teristic functions of the S, and the 8 for each 4 being the class 

whose designation has the form [[ Pr;[] Pr;, where Pr, denotes 
tao, eB 

a, for all &. Conversely, we may write an expression of the form 

(4) for a net 9 fulfilling prehensible classes satisfying (14) by putting 
for the Pr, Pr denoting the y’s and a Pr, written in the analogue 

for classes of the disjunctive normal form, and denoting the a 

corresponding to that y, conjoined to it. Since every S of the form 

(4) is clearly realizable, we have the theorem. 

It is of some interest to consider the extent to which we can 

by knowledge of the present determine the whole past of various 

special nets: i.e., when we may construct a net the firing of the 

cyclic set of whose neurons requires the peripheral afferents to 
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have had a set of past values specified by given functions ¢;. In 

this case the classes a; of the last theorem reduced to unit classes; 

and the condition may be transformed into 

(E m,n) (p)n@, 9) (Ej) 3. @)m: op) =O... o(@) =1: 

pec(y, ni+ p):—>: w)m(@)t—1. én + 1) 

+ p, nx + p,w) = o;(ni + p, nz + p,w):. 
(u,v) (wm . o:(n(u + 1) + p, nu + p, w) 

= ¢i(n +1) + p,m + p,w). 

On account of limitations of space, we have presented the above 

argument very sketchily; we propose to expand it and certain of 
its implications in a further publication. 

The condition of the last theorem is fairly simple in principle, 

though not in detail; its application to practical cases would, 
however, require the exploration of some 2 classes of functions, 
namely the members of R({a, ..., a}). Since each of these is 

a possible 8 of Theorem IX, this result cannot be sharpened. But 

we may obtain a sufficient condition for the realizability of an S 

which is very easily applicable and probably covers most practical 
purposes. This is given by 

Theorem X 

Let us define a set of K of S by the following recursion: 

1. Any TPE and any TPE whose arguments have been re- 
placed by members of K belong to K; 

2. If Pr(zi) is a member of K, then (z2)z: . Pri(ze), (Eze)21 
Pr,(zz), and C,,,(2:) . s belong to it, where C,,, denotes the property 

of being congruent to m modulo n, m < n. 

3. The set K has no further members. 

Then every member of K is realizable. 

For, if Pr,(z:) is realizable, nervous nets for which 

N; (23) _=~, Pr, {z;) . SN; (21) 

Ni@) . = . PriG@i) v SN; (1) 

are the expressions of equation (4), realize (z2)z . Pri(z2) and 
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(E z2)2, . Pr,(z2) respectively; and a simple circuit, c, C2, .-+ 5 Cas 
of n links, each sufficient to excite the next, gives an expression 

Nn (21) « = - NiO) . Cre 

for the last form. By induction we derive the theorem. 
One more thing is to be remarked in conclusion. It is easily 

shown: first, that every net, if furnished with a tape, scanners 

connected to afferents, and suitable efferents to perform the 
necessary motor-operations, can compute only such numbers as 

can a Turing machine; second, that each of the latter numbers 

can be computed by such a net; and that nets with circles can be 

computed by such a net; and that nets with circles can compute, 
without scanners and a tape, some of the numbers the machine 

can, but no others, and not all of them. This is of interest as 

affording a psychological justification of the Turing definition of 

computability and its equivalents, Church’s \ — definability and 
Kleene’s primitive recursiveness: If any number can be computed 

by an organism, it is computable by these definitions, and con- 

versely. 

CONSEQUENCES 
Causality, which requires description of states and a law of 

necessary connection relating them, has appeared in several forms 

in several sciences, but never, except in statistics, has it been as 

irreciprocal as in this theory. Specification for any one time of 
afferent stimulation and of the activity of all constituent neurons, 

each an “all-or-none” affair, determines the state. Specification 

of the nervous net provides the law of necessary connection whereby 
one can compute from the description of any state that of the 

succeeding state, but the inclusion of disjunctive relations prevents 

complete determination of the one before. Moreover, the regen- 
erative activity of constituent circles renders reference indefinite 

as to time past. Thus our knowledge of the world, including 

ourselves, is incomplete as to space and indefinite as to time. 

This ignorance, implicit in all our brains, is the counterpart of 

the abstraction which renders our knowledge useful. The role of 

brains in determining the episternic relations of our theories to our 
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Figure i 
 



A Logical Calculus of Ideas Immanent in Nervous Activity 

observations and of these to the facts is all too clear, for it is ap- 
parent that every idea and every sensation is realized by activity 
within that net, and by no such activity are the actual afferents 
fully determined. 

There is no theory we may hold and no observation we can make 
that will retain so much as its old defective reference to the facts 
if the net be altered. Tinnitus, paraesthesias, hallucinations, de- 

lusions, confusions and disorientations intervene. Thus empiry 

confirms that if our nets are undefined, our facts are undefined, 

and to the “real” we can attribute not so much as one quality 

or “form.” With determination of the net, the unknowable object 
of knowledge, the “‘thing in itself,’ ceases to be unknowable. 

To psychology, however defined, specification of the net would 
contribute all that could be achieved in that field—even if the 

analysis were pushed to ultimate psychic units or “psychons,” for 

a psychon can be no less than the activity of a single neuron. 

Since that activity is inherently propositional, all psychic events 

have an intentional, or “‘semiotic,” character. The “all-or-none” 

law of these activities, and the conformity of their relations to 

those of the logic of propositions, insure that the relations of 

  

= EXPRESSION FOR THE FIGURES 

In the figure the neuron ¢; is always marked with the numeral i upon the 
body of the cell, and the corresponding action is denoted by ‘N’ with z as sub- 

script, as in the text. 

Figure la Na(t). 

Figure tb WN;(é). 

Figure Ic N3(é). 

Figure id N(t). 

Figure te N(¢) : 

N.(t) . 

Figure 1f N,(é) : 

» Nilé — 1) 

- Nilé — 1) v No(t — 1) 

~ Nilé — 1). Nalt — 1) 

»~ Nit — 1). ww N2(t — 1) 

>Ni(t —1).v. Nolt —3).~N:2(t — 2) 

» Not — 2). Ne(t — 1) 

i~ Nit — 1). Not — 1) V Nit ~ 1). 0. Nift — 1) + 
N.(t — 1). Na(é — 1) 

:~ Nilt — 2). No(t — 2) V Ni(t — 2). v0. Nilft — 2). 

N.(t — 2). Ns(t — 2) 

. Ni{t — 2). ™ Nilt — 3) 

~ Nifé — 1). Nit — 2) 

> Net —1).V. Nilt —1). (Ex)t — 1. Ni). N2(x) 

He
il

 
il 

Il 
ll Nv® : 

Figure ig N;(t). 

Figure 1h WN2(t). 

Figure li N(t): 

I 
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psychons are those of the two-valued logic of propositions. Thus 
in psychology, introspective, behavioristic or physiological, the 

fundamental relations are those of two-valued logic. 
Hence arise constructional solutions of holistic problems involving 

the differentiated continuum of sense awareness and the norma- 
tive, perfective and resolvent properties of perception and execu- 

tion. From the irreciprocity of causality it follows that even if the 
net be known, though we may predict future from present activities, 
we can deduce neither afferent from central, nor central from 

efferent, nor past from present activities—conclusions which are 
reinforced by the contradictory testimony of eye-witnesses, by the 

difficulty of diagnosing differentially the organically diseased, the 
hysteric and the malingerer, and by comparing one’s own mem- 

ories or recollections with his contemporaneous records. Moreover, 

systems which so respond to the difference between afferents to 
a regenerative net and certain activity within that net, as to 
reduce the difference, exhibit purposive behavior; and organisms 

are known to possess many such systems, subserving homeostasis, 
appetition and attention. Thus both the formal and the final 

aspects of that activity which we are wont to call mental are 
rigorously deducible from present neurophysiology. The psychi- 

atrist may take comfort from the obvious conclusion concerning 

causality—that, for prognosis, history is never necessary. He can 
take little from the equally valid conclusion that his observables 

are explicable only in terms of nervous activities which, until 
recently, have been beyond his ken. The crux of this ignorance 

is that inference from any sample of overt behavior to nervous 
nets is not unique, whereas, of imaginable nets, only one in fact 

exists, and may, at any moment, exhibit some unpredictable 
activity. Certainly for the psychiatrist it is more to the point that 

in such systems “Mind” no longer “‘goes more ghostly than a 
ghost.’ Instead, diseased mentality can be understood without loss 
of scope or rigor, in the scientific terms of neurophysiology. For 

neurology, the theory sharpens the distinction between nets neces- 

sary or merely sufficient for given activities, and so clarifies the 

relations of disturbed structure to disturbed function. In its own 
domain the difference between equivalent nets and nets equivalent 

in the narrow sense indicates the appropriate use and importance 
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of temporal studies of nervous activity: and to mathematical bio- 
physics the theory contributes a tool for rigorous symbolic treat- 

“Ment of known nets and an easy method of constructing hypo- 
thetical nets of required properties. 
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