1 Problems NS1

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolution, Newton's root finding method, Riemann zeta function.

Deliverable: Answers to problems
Note: The term 'analytic' is used in two different ways. (1) An analytic function is a function that may be expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Problem \# 1: A two-port network application for the Laplace transform

Figure 1: This three-element electrical circuit is a system that acts to low-pass filter the signal voltage $V_{1}(\omega)$, to produce signal $V_{2}(\omega)$. It is convenient to define the dimensionless ratio $s / s_{c}=R C s$ in terms of a time constant $\tau=R C$ and cutoff frequency $s_{c}=1 / \tau$.

- 1.1: Find the 2×2 ABCD matrix representation of Fig. 1. Express the results in terms of the dimentionless ratio s / s_{c} where $s_{c}=1 / \tau$ is the cutoff frequency and $\tau=R C$ is the time constant.
SOL:

$$
\begin{aligned}
{\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & R \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
s C & 1
\end{array}\right]\left[\begin{array}{cc}
1 & R \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & R \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & R \\
s C & 1+s R C
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
(1+s R C) & R(2+s R C) \\
s C & (1+s R C)
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(1+\frac{s}{s_{c}}\right) & R\left(2+\frac{s}{s_{c}}\right) \\
s C & \left(1+\frac{s}{s_{c}}\right)
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]
\end{aligned}
$$

- 1.2: Find the eigenvalues of the 2×2 matrix. The eigenvalues $\lambda_{ \pm}$of the 2×2 matrix $\mathcal{T}=\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]$ are $\lambda_{ \pm}=\frac{1}{2}\left[\begin{array}{l}(\mathcal{A}+\mathcal{D})-\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B} \mathcal{C}} \\ (\mathcal{A}+\mathcal{D})+\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B C}}\end{array}\right]$. SOL: Since $\mathcal{A}=\mathcal{D}$, this simplifies to

$$
\begin{equation*}
\lambda_{ \pm}=\binom{1+s / s_{c}-\sqrt{\mathcal{B} C}}{1+s / s_{c}+\sqrt{\mathcal{B} C}} \tag{NS-1.1}
\end{equation*}
$$

where $\sqrt{\mathcal{B C}}=\sqrt{\frac{s}{s_{c}}\left(2+\frac{s}{s_{c}}\right)}=\sqrt{\frac{s}{s_{c}}} \sqrt{\frac{s}{s_{c}}}+2 \approx \sqrt{2 \frac{s}{s_{c}}}$ since $s / s_{c} \ll 2$.

In summary, the eigen-values are (recall that $0 \leq s / s_{c}<1$, thus not negative).

$$
\lambda_{ \pm}=1+\frac{s}{s_{C}} \pm \sqrt{2 \frac{s}{s_{C}}}=\frac{1}{2}\left(1 \pm \sqrt{\frac{2 s}{s_{C}}}\right)^{2}+\frac{1}{2}=\left(\frac{1}{\sqrt{2}} \pm \sqrt{\frac{s}{s_{c}}}\right)^{2}+\frac{1}{2}
$$

When $s \rightarrow 0$ both eigen values approach 1 . As $s \rightarrow s_{c}$ the eigen values approach $3 / 2 \pm 0.707$).
In the above expression we have completed the square to simplify the result. This step is easily verified by evaluating the squared term.

- 1.3: Assuming that $I_{2}=0$, find the transfer function $H(s) \equiv V_{2} / V_{1}$.

SOL: Since $I_{2}=0$ the upper row of the ABCD matrix gives the relationship between V_{1} and V_{2} as

$$
V_{1}=\left(1+s / s_{c}\right) V_{2}
$$

- 1.4: Find the pole and residue of $H(s)$?

SOL: If we rewrite $H(s)$ in the standard form, the pole s_{p} and residue A may be identified:

$$
H(s)=\frac{A}{s-s_{p}}=\frac{s_{c}}{s+s_{c}}
$$

Thus the pole is $s_{p}=-s_{C}$ and the residue is $A=s_{C}$.

- 1.5: Find $h(t)$, the inverse Laplace transform of $H(s)$.

SOL:

$$
h(t)=\oint_{\sigma_{0}-j \infty}^{\sigma_{0}+j \infty} \frac{s_{c} e^{s t}}{\left(s+s_{c}\right)} \frac{d s}{2 \pi j}=s_{c} e^{-s_{c} t} u(t)
$$

where $u(t)$ is the step function. There are two poles, at $s_{p}=-s_{c}^{ \pm}$and two residues, at $s_{c}^{ \pm}$.
The integral follows from the Residue Theorem (See Allen's book for details).

- 1.6: Assuming that $V_{2}=0$, find $Y_{12}(s) \equiv I_{2} / V_{1}$.

SOL: Setting $V_{2}=0$ we may read off the requested function as

$$
V_{1}=-R(2+R C s) I_{2}
$$

thus

$$
Y_{12}(s)=-\frac{1}{R\left(2+s / s_{c}\right)}=\frac{A}{s-s_{p}}
$$

with residue $A=s_{c} / R$ and pole $s_{p}=-2 s_{c}$.

- 1.7: Find the input impedance to the right-hand side of the system, $Z_{22}(s) \equiv V_{2} / I_{2}$ for two cases:

1. $I_{1}=0$

SOL: When $I_{1}=0, Z_{22}=R+1 / s C$. When $V_{1}=0$

$$
\begin{aligned}
Z_{22}(s) & =2 R \| \frac{1}{s C} \\
& =R \frac{2+s / s_{c}}{1+s / s_{c}} \\
& =R \frac{s+2 s_{c}}{s+s_{c}}
\end{aligned}
$$

2. $V_{1}=0$

SOL: In this case

$$
0=\left(1+1 / s_{c}\right) V_{2}-R\left(2+s / s_{c}\right) I_{2} .
$$

Solving for $Z_{22}=V_{2} / I_{2}$ gives requested result.

- 1.8: Find the determinant of the $A B C D$ matrix.

SOL: Hint: It is always 1

$$
\begin{aligned}
\left|\begin{array}{cc}
1+R C s & \left.2 R+R^{2} C s\right) \\
s C & 1+R C s
\end{array}\right| & = \\
1+2 R C s+(R C s)^{2} & -2 R C s-(R C s)^{2} \\
& =1
\end{aligned}
$$

History

Problem \# 2: Write a sentnece or two about each person.

- 2.1: Provide a brief definition of the following properties:

1. Ramon y Cajal. SOL: Spanish physiologist who drew amazing freehand micrographs of nerve cells (1890-1933).
2. Charles Scott Sherrington. SOL: Author of first book describing brain function, as functional groups (1906).
3. Rafael Lorente de No. SOL: Student of Cajal. Was not allowed to publish his views on feedback in the brain until 1934 once Cajal died.
4. Minsky and Papert (1969). SOL: Wrote book Perceptrons that predicted perceptrons had several limitations (p. 12) such as detecting embedded patterns, called patterns in context.
5. McCulloch and Pitts. SOL: Published a mathematical analysis of brain circuits that was the first to introduce model neural feedback (nets with circles) (1943). In one form their model may be expressed as

$$
V_{j}(t-\tau)=H\left[\left(\sum_{k} \alpha_{j k} V_{k}\left(t-\tau_{k}\right)\right)-\Theta_{j}\right] .
$$

6. Albert Einstein. SOL: In 1905 he published a paper that provided the quantitative relation between the diffusion constant D and the mobility constant μ (p. 56, 59):

$$
D=\frac{k T}{q} \mu,
$$

now known as the Einstein relation. This relation is equally important to the semiconductor industry.
7. Hodgkin and Huxley. SOL: H-H were the first to work out the mechanism between spike propagation in nerve fibers.
8. Hermann Helmholtz. SOL: Helmholtz was the first to measure the speed of a spike in a frog nerve, which he found to be $27[\mathrm{~m} / \mathrm{s}]$ (1850).

System Classification

Problem \# 3: Answer the following system classification questions about physical systems, in terms of the system postulates.

- 3.1: Provide a brief definition of the following properties:

L/NL : linear(L)/nonlinear(NL): SOL: Superposition and scaling hold
TI/TV : time-invariant(TI)/time varying(TV): SOL: The measurement time is irrelevant
P/A : passive(P)/active(A): SOL: An active system has a power source, a passive system does not.
C/NC : $\operatorname{causal(C)/non-causal(NC):~SOL:~Responds~only~when~driven~for~} t \geq 0$.
$\mathrm{Re} / \mathrm{Clx}: \operatorname{real(Re)/complex}(\mathrm{Clx}):$ SOL: The time function is real (or complex).

- 3.2: Along the rows of the table, classify the following systems: In terms of a table having 5 columns, labeled with the abbreviations: L/NL, TI/TV, P/A, C/NC, Re/Clx:

					Category		
\#	Case:	Definition	L/NL	TI/TV	P/A	C/NC	Re/Clx
1	Conduction	$\boldsymbol{i}(t)=g_{m} \boldsymbol{E}(t)$	L	TI	P	C	Re
2	Diffusion	$i(t)=D \frac{d[N a]}{d x}$	L	TI	P	C	Re
3	Switch	$v(t) \equiv \begin{cases}0 & t \leq 0 \\ v_{0} & t>0 .\end{cases}$	L	TV	P	C	Re
5	Channel	$i(t)=g_{m}(v(t))$	NL	TV	A	C	Re
6	Membrane	$I_{\text {out }}=g_{m}\left(V_{\text {in }}\right)$	NL	TI	P	C	Re
7	Nerve cell	Hogkin-Huxley Eqs.	NL	TI	A	C	Re
8	Nerve cell	Physical nerve cells	NL	TV	A	C	Re
9	Neural spike	$v(t, x)=\delta\left(t-x / c_{o}\right)$	L	TI	A	C	Re
10	Trans. Line	ABCD matrix	L	TI	P	C	Re

