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Abstract

A novel multiscale mathematical and computational model of the pulmonary circulation is

presented and used to analyse both arterial and venous pressure and flow. This work is a major

advance over previous studies by Olufsen and coworkers (Ottesen et al., 2003; Olufsen et al.,

2012) which only considered the arterial circulation. For the first three generations of vessels

within the pulmonary circulation, geometry is specified from patient-specific measurements

obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries

and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a

Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI

measurements, while pressure entering the left atrium from the main pulmonary vein is kept

constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’
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arteries is connected to its corresponding terminal vein via a network of vessels representing the

vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate

the admittance of each vascular bed, using bifurcating structured trees and recursion. The

structured-tree models take into account the geometry and material properties of the ‘smaller’

arteries and veins of radii ≥ 50µm. We study the effects on flow and pressure associated with three

classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and

vascular rarefaction. The results of simulating these pathological conditions are in agreement with

clinical observations, showing that the model has potential for assisting with diagnosis and

treatment of circulatory diseases within the lung.

Keywords

Pulmonary circulation; pulmonary hypertension; resistance arteries; structured tree; multiscale
mathematical model

1 Introduction

The cardiovascular circulation is comprised of two separate systems, the systemic and the

pulmonary circulations. The systemic circulation transports oxygenated blood from the left

heart to organs and muscles in the body and back to the right heart, while the pulmonary

circulation transports blood from the right heart through the lungs and back to the left heart

facilitating removal of CO2 and re-oxygenation of the blood.

One-dimensional models of the circulation have been extensively used by many authors to

study pressure and flow wave propagation in the systemic arteries e.g. Olufsen et al. (2000),

Sherwin et al. (2003), Formaggia et al. (2006), Azer & Peskin (2007), Matthys et al. (2007),

Reymond et al. (2009), in the cerebral circulation e.g. Alastruey et al. (2007), Cousins et al.

(2013), Reymond et al. (2009), and coronary arterial trees e.g. Huo & Kassab (2007),

Reymond et al. (2009), Bovendeerd et al. (2006), under normal physiological and

pathological conditions. Moreover, they have been exploited to investigate the

haemodynamics in systemic veins by only considering part of the venous system (Fullana &

Zaleski, 2009) and in closed-loop global systemic circulation models, with particular

emphasis on the venous system (Müller & Toro, 2013). These models are not only useful for

understanding the nature of fluid-structure interaction and the mechanics of pulse waves in

the cardiovascular system but they also make a good research and clinical tool, e.g. by

providing suitable boundary conditions for detailed three-dimensional models (Vignon-

Clementel et al., 2006), assessing the techniques for estimating in vivo pulse wave velocity

(Alastruey, 2011), and surgical planning (Taylor et al., 1999). For a more comprehensive

overview of one-dimensional models and their applications, see Reymond et al. (2009) and

van de Vosse & Stergiopulos (2011).

Most previous modelling studies based on one, or three-dimensional analysis (e.g. Figueroa

et al. (2006), Xiao et al. (2013) and Vignon-Clementel et al. (2006)), focus on the systemic

arterial system, while relatively little attention has been given to the pulmonary circulation

studied here. The lungs have a unique structure, consisting of complex network of arterial

and venous vessels, airways and alveoli. To understand better the dynamics involved in
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predicting the propagation of flow and pressure in the pulmonary circulation, we outline

similarities and differences between the two systems. Both systems transport the same

volume of blood per unit time, but the pulmonary circulation is much smaller and operates at

a much lower pressure, and the pulmonary arterial and venous walls are thinner and more

compliant than the systemic vessels (Milnor, 1989; Patel et al., 1960). Moreover, the

pulmonary system only stores about 10% (500 ml) of the total blood volume. This is still

significant, given that the lungs only comprise 1% of the total body weight (Thurlbeck &

Churg, 1995).

The mean driving pressure in the pulmonary arteries is about 10 mmHg1 compared to

91mmHg in the systemic arteries, and, since the volume flux is equal in both systems, the

resistance in the pulmonary circulation is nine times less than that of systemic circulation,

see Nichols & O’Rourke (1998) and Hall (2011). Furthermore, the pulmonary veins serve

not only as channels through which oxygenated capillary blood flow is transported into the

left atrium, but they also regulate fluid filtration pressure in the upstream capillary network

via active vasomotion contributing significantly towards total pulmonary vascular resistance

(Gao & Raj, 2005). This suggests that in the pulmonary circulation the veins play an active

role when regulating haemodynamics and the pressure drop continues over both arteries and

veins, whereas in the systemic circulation the veins are passive and the majority of the

pressure drop can be found within the arteries and arterioles. Although in both the systemic

and pulmonary circulations the precapillary arterioles are the major site of resistance under

both normal and hypoxic conditions (Burton, 1972; Barnes & Liu, 1995; Levy et al., 2001;

Olufsen et al., 2012; Pries et al., 1995), there is still some confusion as to the relative

contribution of arteries, capillaries and veins to total resistance to the flow in the lungs

(Burton, 1972; Gao & Raj, 2005). Some results (Levy et al., 2001; Pries et al., 1995; Zhuang

et al., 1983) suggest that the pre-capillary pressure drop takes place across the small vessels

of diameter 10–300 µm making the vascular beds the location of maximum resistance to the

blood flow and the greatest pressure drop. The only study that has attempted to use

computation to assess the pressure drop over both large and small vessels is by Olufsen et al.

(2012), who predicted the pressure drop across the systemic vascular beds using a

structured-tree model. To our knowledge, there is no study that includes the effects of both

arterioles and venules on micro-circulatory characteristics of blood flow in the pulmonary

circulation.

In this paper, we develop a mathematical model and numerical algorithms allowing

prediction of the pressure drop and pulse wave propagation for the combined pulmonary

arterial and venous system. The model includes all arteries and veins of radii greater than 50

µm. The large arteries and veins, with radii greater than 5 mm, are represented explicitly,

and pulse wave propagation within these vessels is predicted by solving the 1D Navier–

Stokes equation for a Newtonian fluid using a Lax–Wendroff numerical scheme. Flow and

pressure in the small arteries and veins with radii between 5 mm and 50 µm are computed

via solutions to linearised equations solved in vessel networks (vascular beds) consisting of

pairs of structured trees connected at their smallest (terminal) branches. A total admittance

1As is common for studies of cardiovascular dynamics, all pressures are given in mmHg. The conversion to SI units is 1 mmHg =
133.3 Pa.
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matrix is derived for each vascular bed using a fast recurrence relation. For each vascular

bed, the admittance matrix provides a boundary condition linking pressures and volume

fluxes between smallest (terminal) large arteries and the corresponding large veins. The

analysis is further extended to prediction of the mean pressure drop within the vascular beds.

Finally, this new pulmonary model is applied to analyse three clinical conditions associated

with pulmonary hypertension, viz. pulmonary arterial hypertension (PAH) associated with

increased resistance and stiffening of pulmonary arterioles and venules, vascular

remodelling (HLD) associated with hypoxic lung disease, and chronic thromboembolic

pulmonary hypertension (CTEPH) represented by increased stiffness of the large pulmonary

arteries. Results from our study show good agreement with clinical observations (Lankhaar

et al., 2006).

2 Methods

The pulmonary circulation illustrated in Figure 1 consists of large arteries and veins

organised in a tree-like structure. The main pulmonary artery (MPA) emanates from the

right ventricle and bifurcates into two vessels, the right (RPA) and left (LPA) pulmonary

arteries transporting blood to the right and left lungs. As the heart is located on the left side

of the body, the RPA is significantly longer than the LPA. These two main vessels further

bifurcate into the right and left interlobular arteries (RIA and LIA) and the right and left

trunk arteries (RTA and LTA). Arteries continue to bifurcate following a structured

branching scheme in which daughter vessels are scaled relative to parent vessels (Weibel,

2009). The branching pattern continues until the level of the bronchia where the capillaries

loop around the bronchi to facilitate maximal perfusion of oxygen and carbon dioxide with

the lungs. The venous vessels closely follow the branching patterns of the arteries, with the

exception of the four large veins (the right and left inferior veins (RIV and LIV) and the

right and left superior pulmonary veins (RSV and LSV)), which deliver blood to the left

atrium. For this study, we separate arteries and veins into two groups; the large vessels, i.e.

the MPA, R/LPA, R/LIA, R/LTA, R/LIV and R/LSV, which are modelled explicitly, and the

small vessels, including the small arteries (veins) and arterioles (venules), which are

represented by structured trees. The smallest capillaries offer little flow resistance (Fung,

1996) and are therefore not included in the model. In the large vessels non-linear inertial

effects cannot be neglected, whereas for the smaller vessels viscous effects play an

important role. This separation is similar to earlier studies (Olufsen et al., 2000, 2012; Steele

et al., 2007), however none of these considered the effect of the venous circulation. One

study by Li & Cheng (1993) does include both arteries and veins, but this study uses a

lumped parameter model to represent the small vessels, so it is not possible to the predict

pressure drop over the complete system. Moreover, since the pulmonary veins contribute

towards overall vascular resistance that regulate flow in pulmonary arteries, studying the

pulmonary arterial system in isolation is not adequate.

In Olufsen et al. (2012), we adapted the 1D fluid dynamics model of Olufsen (1999) to

predict blood flow and pressure in the pulmonary arteries. Here we use a similar approach to

predict flow and pressure in a complete network including pulmonary arteries and veins. An

important feature of the complete pulmonary circulation model is our new methodology

developed to connect arterial and venous structured trees.
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2.1 The large arteries and veins

We first describe the geometry used for generating the domain for the computational model,

and secondly we discuss how the haemodynamics is computed in the large vessels.

Vessel geometry—As in our previous study (Olufsen et al., 2012), the geometry of the

large pulmonary arteries was specified from MRI measurements from a healthy young

volunteer. Figure 1 shows a schematic of the pulmonary circulation network including the

first three generations of the pulmonary arteries and the large pulmonary veins. For these

vessels, lengths and diameters are summarised in Table 1. The large vessels are connected to

structured trees including small arteries/arterioles and veins/venules.

It is often difficult to locate the large pulmonary veins because their geometry and

orientation vary significantly even between healthy individuals, and thus, to limit the time

the subject was in the MRI scanner, these vessels (numbered 8 to 11 in Table 1) were not

measured. Consequently, we constructed a model of the most common healthy pulmonary

venous geometry, in which the four left and right, superior and inferior pulmonary veins

return the oxygenated blood from both lungs into the left atrium (Kato et al., 2003). The

dimensions of these veins were obtained from literature (Kawahira et al., 1997; Kim et al.,

2005) and adjusted to meet the requirements of the numerical scheme that the distal

diameter of each terminal large artery (i.e. the RIA, RTA, LIA and LTA) must be the same

as the distal diameter of its matching terminal vein (RSV, RIV, LSV and LIV respectively)

(Figure 1).

2.1.1 Large-vessel fluid dynamics—Blood flow in the large compliant pulmonary

arteries and veins are computed using the approach put forward by Olufsen (1999) and

Olufsen et al. (2000, 2012) in which volumetric flow rate, blood pressure, and cross

sectional area was predicted in time along one spatial dimension. These quantities are

predicted using two equations ensuring conservation of volume and momentum, combined

with a constitutive equation relating vessel cross sectional area to blood pressure.

Conservation of volume is satisfied by

(1)

where q(x, t) denotes the volumetric flow along any given vessel and A(x, t) denotes the

corresponding cross-sectional area. These quantities are functions of the distance x along the

vessels and time t. Assuming a flat velocity profile with a thin boundary layer,

(2)

with constant central velocity ū, the momentum balance equation can be written as

(3)
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where ρ (constant) denotes the density of the fluid, p(x, t) the pressure, ν (constant) the

kinematic viscosity, δ(constant) the boundary layer thickness, and R(x, t) the vessel radius.

Finally, the constitutive equation relating pressure p(x, t) and cross sectional area A(x, t) can

be obtained assuming that the deformation of the wall can be modelled as a thin elastic

membrane, giving

(4)

where p0 denotes the external pressure, E Young’s modulus, h the vessel wall thickness, and

r0 the vessel radius associated with p(x, t) = p0. From these quantities the unstressed vessel

area A0 can be computed as .

The above system of equations are hyperbolic, thus for each vessel a boundary condition

must be applied at each end. For the MPA, the flow is specified at the inlet (See Figure 1)

using the MRI measured flow-rate waveform shown in Figure 2. At each bifurcation, two

conditions are needed connecting outflow from the parent vessel and inflow to the daughter

vessels. These are imposed by ensuring continuity of flow and conservation of pressure, i.e.

where subscript p denotes the parent vessel and subscripts di, i = 1,2 denotes the two

daughter vessels. The outflow from the large terminal arteries and the inflows to the

corresponding large terminal veins are obtained by connecting arterial and venous structured

trees. Finally, at the outflow of the large veins (at the inflow to the left atrium) we specify a

constant pressure of 2mmHg which corresponds to the normal mean pressure.

2.2 The small arteries and veins

In order to develop a model of the complete pulmonary circulation, we prescribe separate

structured tree models for the arterial and venous trees, extending Olufsen et al.’s (2000)

model for the systemic circulation and Olufsen et al.’s (2012) model for the pulmonary

circulation, and then join these two trees. Since the small pulmonary veins are known to

follow closely the course of the pulmonary arteries, we modelled the pulmonary venous tree

as a ‘mirror image’ of the pulmonary arterial tree depicted in Figure 1. The two trees are

represented by the same topology, assuming a one-to-one correspondence between each

vessel, but vessels are allowed to have different length-to-radius ratios and material

properties (e.g. compliances), from vessels in the mirror tree. To ensure that the same

number of branches in arterial and venous trees, the radius of the root (i.e. largest) vessel

must be the same for arterial and venous trees. Both the arterial and venous structured trees

are set up, as described by Olufsen (1999) and Olufsen et al. (2000, 2012), assuming that at

each junction the daughter vessel radius can be predicted from the parent vessels as rd1 = α

rp and rd2 = β rp, i.e. for any vessel the radius r = αiβjr0, where r0 is the radius of the root

vessel. Scaling factors α and β were determined from studies suggesting that branching of

Qureshi et al. Page 6

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



smaller arteries are governed by three relations: a radius relation, an asymmetry ratio γ and

an area ratio η, given by

where the subscript p refers to the parent vessel and subscripts di, i = 1,2 to the daughter

vessels. It should be noted that only two of these relations are mathematically independent.

The exponent ξ in the radius relation was obtained from considerations associated with

minimising work in the arterial system. A value of ξ =3 is optimal for laminar flow, ξ = 2.33

for turbulent flow and ξ = 2.76 is a good choice for arterial blood flow (Pollanen, 1992;

Suwa et al., 1963; Uylings, 1977). Finally, the scaling factors α and β satisfy observations

that the cross-sectional areas Ad1, Ad2 < Ap while Ad1 + Ad2 > Ap.

In addition to the radius relations, the length of each vessel must be specified. For the

pulmonary vessels, a length-to-radius relation was obtained by analysing data summarised

by Fung (1996) (based on experiments by Singhal et al. (1973)) combined with observations

from more recent studies by Huang et al. (1996) that suggest a length-to-radius relation

given by

(5)

where the l and r (both specified in cm) denote the length and radius of the vessel.

The recent study by Cousins & Gremaud (2012) showed that the resistance predicted at the

root of the structured trees critically depend on the value of the minimum vessel rmin at

which trees are terminated. For the pulmonary arterial and venous structured trees we chose

rmin = 50µm. This choice of cutoff value allows us to use a single equation (5)1 within each

arterial tree and (5)3 within the venous trees, to scale the vessels’ lengths to their radii. Note

that different scaling for the arteries and veins provides asymmetry between the two

structured trees.

The flow and pressure predicted within the structured trees applied at the end of the large

vessels is modeled to mimic dynamics within the vascular beds. These networks provide

resistance to the flow and dampen the flow oscillations. The parameters, ξ, γ and rmin along

with a given r0, determine the size and density of the structured tree, and hence the total

cross-sectional area through which the blood flows. Since we fix rmin instead of the number

of generations, the total number of vessels in each structured tree attached to unique terminal

vessels varies with r0, providing non-uniform downstream resistances within different

vascular beds. For instance, for ξ = 2.76, γ = 0.41, rmin = 0.005 cm and r0 = 0.9 cm, the

number of generations in α and β branches of the arterial side are 56 and 10, respectively,

yielding 7.4 × 105 vessels in the tree. This changes to 49 and 9 generations in the α and β

branches respectively, with total number of vessels reducing to 5.8 × 105, if r0 = 0.45 cm.
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Moreover, it has been shown in Olufsen et al. (2012) that changing ξ and γ changes the

structured tree density, and hence the peripheral flow resistance.

2.2.1 Small-vessel fluid dynamics—As in the case of large vessels, three equations

determine the flow, pressure, and area for each vessel in the structured tree. However, for

these small vessels, as in Olufsen et al. (2000), nonlinear effects are small, allowing

linearisation of the governing equations. The linearised momentum equation is given by

(6)

Assuming all quantities are periodic, pressure and flow can be expressed in the frequency

domain using complex periodic Fourier series given by

where

and ωk = 2πk/T is the angular frequency, with

Thus for each value of ωk, equation (6) becomes

(7)

where for convenience we drop the suffix k. Assuming that the small vessels do not taper,

(7) can be solved to give

where  is the Womersley number, and J0(x) is the Bessel function of

the first kind and zero order.

Defining the frequency-domain volumetric-flow-rate in terms of velocity,

(8)
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where

and J1(x) is the first-order Bessel function of the first kind.

The one-dimensional continuity equation for the small vessels is the same as for the large

vessels. Using the tube law (4), the continuity equation (1) can be written as

where C is the compliance, which can be approximated by linearizing the tube law (4),

giving

(9)

since Eh ≫ pr0. Assuming periodicity, the continuity equation becomes

(10)

Differentiating (10) with respect to x and substituting the result into (8) gives a wave

equation of the form

(11)

where the wave propagation velocity is given by

(12)

Solving (10) and (11) gives the flow and pressure in the frequency domain at any spatial

position x along a vessel segment

(13)

(14)

where a and b are constants, ω is the frequency and .

2.3 Structured-tree matching conditions

In the one-sided pulmonary arterial model (Olufsen et al., 2012) an outflow boundary

condition was obtained at the terminal of each large artery by computing the root

impedance, defined as Z(x, ω) = P(x, ω)/Q(x, ω), for each structured tree. Since only the
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arterial side of the circulation was considered, defining a scalar impedance function Z(0, ω)

at the proximal end, in terms of known impedance Z(L, ω) at the distal end of each vessel in

the tree, was sufficient to recursively compute the root impedance. However, to connect the

network of arterial and venous vessels, we need to define a relation between pressures and

flows at both ends of each vessel, and consequently derive a boundary condition that match

the pressures and flows at the terminals of large arteries and veins. To do so, we set up

expressions determining the admittance of each structured tree, a 2 × 2 matrix Y(≡ Z−1)

(Peskin, 1961), relating pressure and flow at the outflow of each large terminal artery to

pressure and flow at the inflow to the corresponding large terminal vein, as shown in Figure

3.

Unlike the one-sided structured tree, in which prediction of the root impedance required a

constant impedance applied at the terminal branches of the structured tree, for the two-sided

tree no specific values of pressure and flow relations are required at points arterial trees

connect with venous trees. The only conditions needed to set up the admittance matrix are

the junction conditions requiring continuity of pressure and conservation of volume flux.

The total or root admittance is calculated by joining admittances in series and parallel as

described in Algorithm 1 in section 2.3.4.

2.3.1 Admittance matrix for a single vessel—Given the boundary flows Q1 = Q(0, ω)

and Q2 = Q(L, ω) which are defined such that inflows are positive, the admittance matrix is

obtained by relating the flows and pressures at the proximal (x = 0) and distal (x = L) ends of

the vessels using equations (13) and (14) yielding

(15)

where CL ≡ cos(ωL/c), SL ≡ sin(ωL/c), and

(16)

is the admittance matrix for any one artery or vein when ω ≠ 0. When ω = 0, (15) becomes

(17)

and therefore

(18)

which is the admittance matrix for ω = 0. The derivation of (18) can be found in Vaughan

(2010).
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Non-dimensional admittance matrices: In the frequency domain, pressure and flow are

scaled using

where ρ is the density of blood, g is acceleration due to gravity, l is the characteristic length,

qc is the characteristic flow and P̃ and Q̃ are the non-dimensional pressure and flow,

respectively. For a single vessel, these quantities allows computation of non-dimensional

admittance Ỹ given by

For convenience below, the tilde has been removed from all non-dimensional quantities.

2.3.2 Admittance matrix for two vessels in parallel—In the following, we consider

two vessels, S and T, in parallel joined to a common inflow and outflow, as depicted in

Figure 4(b). Since the pressure is continuous across a bifurcation, the pressure at the inlet to

vessel S is the same as the pressure at the inlet to vessel T. Similarly, the pressure at the

outlet of vessel S is the same as the pressure at the outlet of vessel T. Denoting the inlet and

outlet pressures by P1 and P2, respectively, this connection can be described by

(19)

where Q1 and Q2 denote the inflow and outflow of the vessel, and Y is the admittance

matrix. Volume flux is conserved across a bifurcation thus, for two vessels connected in

parallel, the two admittances can be added giving

(20)

is the total admittance matrix for two vessels in parallel. The symbol ‖ represents the

admittance of two vessels connected in parallel.

2.3.3 Admittance matrix for two vessels in series—Next, we consider two vessels

connected in series, as depicted in Figure 4(c). The flow and pressure can be written as

(21)

where i = S, T and k = 1,2 with Yjk being the components of the 2 × 2 admittance matrix. Let

 along with  at the junction of two vessels in series. This system can

be solved for P using (21), giving
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(22)

where

(23)

is the admittance matrix for two vessels connected in series. Here the symbol ⇔ denotes the

admittance matrix of vessels joined in series.

2.3.4 Linking an arterial and a venous tree—To link the arterial and venous trees, the

two trees should be ‘mirror images’ of each other in as much as that they should have the

same number of bifurcations and terminal vessels, however, each tree is allowed to have

different vessel properties including compliance and length-to-radius ratio. The admittance

matrix (16) is computed for each individual vessel, and the total admittance of the two

connected trees is found recursively by combining the admittance matrices of vessels and

subtrees in series (using (23)) and in parallel (using (20)) as appropriate. To set up the

recursion algorithm, each pair of vessels (arterial and venous) are assigned an index (i, j)

indicating that the radius of the vessel is ; in addition each vessel is assigned a label

“A” or “V” specifying if the vessel is an artery or a vein. For example, the total admittance

for a small network consisting of an arterial (A) and a venous (V) tree, each having one

bifurcation with branches scaled by factors α and β, is given by

Below we describe the general algorithm valid for trees where the compliance is identical

for arterial and venous vessels, while the length-to-radius ratio is larger for vessels in the

venous tree.

Algorithm 1: Recursive algorithm to compute the 2 × 2 admittance matrix Y for a connected

network of arterial and venous vessels

The root admittance matrix Y is computed recursively by calling Y = admit(0, 0).

Recursive function Y(i, j) = admit(i, j)

if r(i+1, j) < rmin (α-branch)

  for k = A, V

    Yk (i+1, j) = eqn (16), ω ≠ 0

    Yk(i+1, j) = eqn (18), ω = 0

  end

  Y(i+1, j) = ser(YA(i+1, j),YV (i+1, j))

else
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  Y(i+1, j) = admit(i+1, j)

end

if r(i, j+1) < rmin (β branch)

  for k = A, V

    Yk(i, j+1) = eqn (16), ω ≠ 0

    Yk(i, j+1) = eqn (18), ω = 0

  end

  Y(i, j+1) = ser(YA(i, j+1),YV (i, j+1))

else

  Y(i, j+1) = admit(i, j+1)

end

Ymid (i, j) = Y(i+1, j)+ Y(i, j+1)

for k = A, V

    Yk(i,j) = eqn (19), ω ≠ 0

    Yk(i,j) = eqn (20), ω = 0

end

Y(i, j) = ser(ser(YV (i, j),Ymid(i, j)),YA(i, j))

Series function Y(i, j) = ser(YS(i, j),YT (i, j)): For vessel (i, j) compute determinants

then Y has components

2.4 Vessel compliance

Only a few studies (Greenfield & Douglas, 1963; Krenz & Dawson, 2003; Reeves et al.,

2005; Yen & Sobin, 1988; Yen et al., 1990) provide quantitative data on the elastic

properties of human pulmonary arteries and veins. In our previous study (Olufsen et al.,

2012), a value for the pulmonary arterial compliance parameter C in (9) was derived from

the work of Krenz & Dawson (2003), who measured a stiffness parameter λ given by

(24)

where p denotes the transmural pressure (mmHg), D (cm) the vessel diameter associated

with pressure p, and, D0 the vessel diameter at zero pressure p0 = 0. They suggested that a

diameter-independent, constant value of λ =0.02 mmHg−1 holds throughout the pulmonary
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arteries and veins, implying a uniform compliance across the entire pulmonary system (see

Figure 7 in Krenz & Dawson (2003)). Inserting λ into the tube law (4) gives

(25)

This value is approximately 17 times smaller than the stiffness parameter value (8.65 × 105

gs−2cm−1) used by Olufsen et al. (2000) for systemic arteries. However, several studies

(Evans et al., 1960; Greenfield & Douglas, 1963; Patel et al., 1962) have reported that the

compliance of the pulmonary arteries is larger by a factor of 2–10 times the systemic arterial

compliance. This is significantly less than the factor of 17 suggested by Krenz & Dawson

(2003). As reported in our previous study dealing only with the pulmonary arterial tree

(Olufsen et al., 2012), albeit for a different outflow condition, this value of λ leads to low

arterial pulmonary pressures (3–14 mmHg), whereas typical pulmonary arterial pressures

should range from 10–25 mmHg (Fung, 1996; Hall, 2011). The very small compliance

proposed by Krenz & Dawson was extracted from a set of measurements collated from 26

studies, on six different species, conducted in vivo and in vitro. However, the mechanical

properties of vessels are known to change when excised (Valdez-Jasso et al., 2009).

Simulations by Clipp & Steele (2009) support using a larger compliance value, about 3

times the arterial value, which is scaled with vessel radius, and they discuss the sensitivity of

modelling results to the stiffness parameter. However, several authors (Attinger (1963);

Krenz&Dawson (2003); Yen et al. (1990)) believe that the pulmonary compliance is

diameter independent and hence spatially invariant across the entire system. Attinger (1963)

supports this hypothesis in a study showing that the pulse wave speed in the pulmonary

arteries does not increase away from the heart.

By analysing data from arterial and venous vessels of several orders of magnitude in

diameter, Krenz & Dawson (2003) provide strong evidence that the compliance is constant

across the system. Finally, the independent study on excised human lungs by Yen et al.

(1990), defines an averaged compliance values of λA = 0.012 ± 0.0024 mmHg−1 for arterial

vessels with diameters 200–1600 µm and λV = 0.013 ± 0.0064 mmHg−1 for venous vessels

with diameters ranging from 100–1200 µm. This suggests that the overall compliance does

not differ significantly between the pulmonary arterial and venous trees. Consequently, we

use a constant compliance

(26)

approximately the same value used by Clipp & Steele (2009, 2012), for both pulmonary

arteries and veins. This value gives simulated pressure waveforms consistent with the

physiological ranges of 8.8 ± 3.3–22 ± 4.2 mmHg (Greenfield & Douglas, 1963; Herve et

al., 1989), 10–25 mmHg (Fung, 1996) and 8–25 mmHg (Hall, 2011) in the proximal

pulmonary arteries.
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2.5 Numerical methods

As in our previous studies (Olufsen, 1999; Olufsen et al., 2000, 2012), we use a two-step

Lax–Wendroff scheme to compute volume flux and area in the large pulmonary arteries and

veins. The implementation of the bifurcation and inflow conditions is identical to the

methods described previously (for details see Appendices A.1 and A.2 of Olufsen (1998)).

New for this study is the matching condition (19) needed to link arterial and venous trees.

This is transformed to the time domain using convolution, giving

(27)

where q1(t) and p1(t) are the volume flux and pressure at the root of the arterial tree, and

q2(t) and p2(t) are the volume flux and pressure at the root of the venous tree. ykl(t) is the

inverse Fourier transform of Ykl(ω). Equation (27) is the matching boundary condition to be

applied at the end of terminal arteries and veins. Further details can be found in Appendices

A.3 and A.4 of Vaughan (2010).

2.6 Mean pressure across small arteries and veins

By using the admittance matrix computed in section 2.3.4, the mean pressure can be

computed (for ω = 0) along the connected trees representing arterioles and venules. To do

so, it is necessary first to compute the pressures at the terminals of large vessels  and

veins  for ω = 0. These pressures can be extracted from (27), and assigned to the root of

the structured arterial and venous trees as

where  and  denote the pressures at the roots of the structured trees. The

corresponding flows can be found from

(28)

where  and .

For each vessel, the pressure at distal ends of arterial and venous root vessels can be

computed as

(29)

where (k, l) = (2, 1) if S = A and (k, l) = (1, 2) if S = V.

Pressure drop along α and β pathways—Suppose that there is a maximum of n

generations along α branches from the root vessel, i.e. vessels scaled by αiβ0, i = 1,…,n.

Then, following the similar steps as those for the root vessel, one may compute pressure and
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flow in any vessel segment along the α branch. So for any vessel indexed (i, 0) in the tree,

continuity of pressure gives

(30)

where (k, l) = (2, 1) if S = A and (k, l) = (1, 2) if S = V. Again, the flows can be computed

from

(31)

where Y(i, 0) is the admittance matrix involving all the vessels of and between generations

αiβ0. Finally, the pressure at the distal end of every vessel is given by

(32)

In a similarly way, one may compute the pressure along the β branch with m generations.

Pressure in vessels at all generations—For any other generation vessel in the

connected trees, the pressure continuity in the case of α parentage implies that

and if the vessel has β parentage then

where i = 1,…,n and j = 1,…,m and l, k are defined for vessel S. The flows at the respective

ends are given by

Finally, the pressures at the distal end of any vessel in the tree can be computed from

Below we give the recursive algorithm for computing mean pressure across α and β

branches for the complete structured trees.

Algorithm 2: Mean pressure along α branches

Result: PMEAN

Input: Terminal  and 

Apply FFT (fast Fourier transform)
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if ω = 0

For each vessel (i, j), i = 0, …, n, j = 0, …, m.

comp(i, j, :, :) = Y(i, j)

for i = 0 : n

if (i = 0)

else

end

Apply IFFT (inverse fast Fourier transform)

3 Results

3.1 Normal case

We first show results for a healthy young subject, whose measured vessel diameters are

given in Table 1, followed by results for pulmonary hypertension. While vessel geometries

and inflow into the MPA were partially obtained from measurements, other quantities such

as density, viscosity, and scaling ratios, were determined from literature values. Flow and

pressure results for the healthy young subject are shown in Figure 5. This figure shows the

predicted flows and pressure from three locations along the MPA, LPA, RPA, RIV, RSV

and LIV. The first column shows that the pressure in the large arteries range from 10–25

mmHg. Slight differences in peak pressure and arrival time for the reflected waves can be

observed between proximal and distal ends of the MPA and RPA, while no significant

differences can be observed in the LPA. The second column shows the venous pressure

dynamics. The magnitude and variation in pressure remains low in the veins. The pressures

are biphasic (have two maxima) and the LIV pressure oscillates about 2 mmHg, the constant

Qureshi et al. Page 17

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



right atrial pressure specified in the model. In the RIV and RSV, the pressure remains above

2 mmHg. As for the arteries, there is little change in flow with distance along individual

vessels, but the differences in geometry between the left- and right-sided vessels lead to a

greater flow in the LIV than in the RIV and RSV.

Figure 6 shows the mean (time-averaged over one cardiac cycle) pressure drop across the

arterial and venous vascular beds connecting the RIA and RIV. The results are similar for

the other vascular beds. The first two panels depict the pressure at the root of the arterial and

venous trees. These pressures are imposed as boundary conditions and used to compute the

mean pressure drop along the small vessels connecting the RIA to the RIV. The last panel

shows the mean pressure drop across the combined arterial and venous beds. The mean

pressures are plotted along the α branch (composed of vessels scaled by αiβ0, i = 1,…,n), the

β branch (composed of vessels scaled by α0βj, j = 1,…,m where m < n), and the average

computed over all branches of the same radius. The scale used for the radius r is logarithmic

(log10 r), ranging from the largest to smallest arteries and then from the smallest to largest

veins.

Along the arterial tree the pressure drops from about 17 to 10 mmHg, and along the venous

tree the pressure continues to decrease from about 10 to 2 mmHg. It should be noted that the

pressure drops differ significantly between the two extreme cases: on the arterial side,

pressures in the β branches are greater than those in the α branches, and vice versa on the

venous side. For the α branches, the greatest pressure drop occurs in the larger arteries and

veins, whereas the opposite holds for the β branches.

3.2 Pulmonary Hypertension

Pulmonary hypertension is a rare condition, with less than 50 cases per million people

(Peacock et al., 2007). However, its occurrence is significantly higher for at-risk patient

groups including HIV patients (Hachulla et al., 2005; Sitbon et al., 2008), patients with

systemic sclerosis (Mukerjee et al., 2003), and with sickle cell disease (Fonseca et al., 2012;

Machado & Glaswin, 2010). Moreover, the consequences of the disease for those affected

are often severe. The condition may arise as the result of multiple mechanisms, and as a

result the disease is often divided into subcategories (Peacock & Rubin, 2004; Simonneau et

al., 2004). While a large number of specific subcategories exist, in this study we analyse the

effect of pulmonary hypertension according to three major subgroups characterised by

observed anatomical changes of the blood vessels. These include:

Group I : Pulmonary arterial hypertension (PAH)—This group of conditions

includes pathophysiology observed in patients with increased stiffness and resistance of

small pulmonary vessels of diameters less than 500 µm (Lankhaar et al., 2006; Reeves et al.,

2005).

Group II : Pulmonary hypertension associated with hypoxic lung disease
(HLD)—This pathophysiology is associated with vascular remodelling, typically affecting

vessels with a diameter less than 500 µm. In particular, it has been reported that patients

with HLD have a reduced density of vessels within the pulmonary vascular bed (vascular

Qureshi et al. Page 18

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 October 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



rarefaction). This type of remodelling is observed in patients with an underlying respiratory

disease (Tuder et al., 2007).

Group III : Chronic thromboembolic pulmonary hypertension (CTEPH)—For

patients with this form of hypertension, the problem is initially located in larger vessels,

which display decreased vessel diameter and increased stiffness. Eventually the condition

may propagate and also affect small pulmonary vessels as observed for patients with PAH

(Castelain et al., 2001; Dartevelle et al., 2004).

The results of computations simulating these three disease classes are shown in Figure 7 and

summarised below.

3.2.1 Pulmonary arterial hypertension (PAH)—Pulmonary arterial hypertension can

be triggered by a variety of pathologies (Barst et al., 2004), but an underlying feature of the

condition is the stiffening of the smaller pulmonary arteries. Reeves et al. (2005) showed

that the arterial distensibility is decreased in healthy ageing and in patients with chronic

hypoxia, and that reduced distensibility leads to increased stiffening of the small vessels. In

this study, the reduction of distensibility is modelled by increasing the stiffness parameter

Eh/r0, which is inversely proportional to the distensibility parameter, up to 100% for the

large arteries and 75% for the small blood vessels.

Figure 7(a) shows the effects of small-vessel stiffening within the arterial and venous

structured trees on predicted pressures at midpoints in the MPA and RSV. In the MPA the

increased stiffness results in an increase in peak and pulse (the peak minus trough) pressure,

and amplified oscillations of the pulmonary venous pressure and flow waveforms, with little

change in the flow through the MPA. The increased small-artery stiffness results in a delay

of the peak pressure wave arrival.

3.2.2 Pulmonary hypertension associated with hypoxic lung disease (HLD)—
Hypoxic lung disease results in hypoxic pulmonary vascoconstriction, microvascular

rarefaction and vascular remodelling (Tuder et al., 2007), all of which contribute to

pulmonary hypertentsion that aggravates the hypoxaemia already present. Here we focus on

vascular rarefaction and its contribution to pulmonary hypertension. In Olufsen et al. (2012),

rarefaction within the systemic arterial vascular beds was modelled by reducing the radius

exponent ξ and the asymmetry ratio γ. Decreasing these parameters results in a decrease of

the area ratio η within the structured tree. This approach is extended here to study the

reduction in area ratios within both arterial and venous structured trees. For a typical

structured tree, the effects of changing the vascular density ξ in a neighbourhood of the

normal physiological values (ξnormal = 2:76) are given in Table 2.

Figure 7(b) shows predicted pulse pressure waveforms in the MPA. Rarefied vascular beds

result in a significant increases in peak, trough and mean arterial pressures. Further, as the

degree of rarefaction is increased, the separate peaks from the incident and reflected

pressure pulses merge forming a single, more featureless, peak in the pressure waveform.

This figure also illustrates the effects of rarefaction on the pulmonary veins, where the

amplitude of the pressure and flow waveforms are reduced. In addition, rarefaction causes a
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phase shift in the venous pulse waves, with both venous pressure and flow waveforms

peaking earlier.

Figure 8 illustrates how the small-vessel remodelling (HLD) affects the pressure drop across

the vascular bed connecting the RIA and RIV. Most significantly, the increased pressure at

the inlet to the vascular bed raises the overall pressure in both the small arteries and veins. In

particular, the arteries in branches that decrease rapidly in radius with generation number,

such as the β branch illustrated in the last panel, experience higher pressures than average

for their radius making them even more susceptible to further injury and disease.

3.2.3 Chronic thromboembolic pulmonary hypertension (CTEPH)—The

pathophysiology associated with chronic thromboembolic pulmonary hypertension is similar

to that of pulmonary arterial hypertension, except that it occurs in the large proximal

pulmonary arteries (Castelain et al., 2001; Dartevelle et al., 2004), although the small

vessels may also be affected eventually. As in Section 3.2.1, in which PAH was studied, we

simulate the initial effects of CTEPH by stiffening just the large arteries by up to twice as

much as normal. The later involvement of small vessels is modelled by uniformly stiffening

the walls of the large arteries and all of the small arteries and veins in the vascular beds.

Figure 7(c) shows the effect of increasing the stiffness of the large pulmonary arteries.

Results show an increase in peak and pulse pressure, with a steeper earlier pressure peak

followed by secondary pressure peak appearing shortly after the first peak. The increase in

pressure and appearance of a second peak agrees with observations of pressure pulses in

patients with chronic thromboembolic pulmonary hypertension by Lankhaar et al. (2006),

although the observed increase in peak pressure is much greater than our predictions.

Predicted flows in the MPA show negligible effects with increased stiffness. In the

pulmonary veins, increased stiffness of the large arteries leads to a slight decrease in the

amplitude of the pressure waveform and a slight increase of flow waveform without any

notable changes in the shape of the waveforms. Finally, results with uniform stiffening of

both large and small vessels were almost identical to those obtained for PAH, see Figure

7(a), which caused a significant increase in arterial pressure and earlier peaking of the

pressure pulse. These results agree well with observations by Lankhaar et al. (2006).

4 Discussion of results

The objective of this study is to simulate propagation of pressure and flow wave forms in the

pulmonary circulation, by setting up a network including both small and large arteries and

veins enabling simulation of blood flow and pressure along the complete path emanating at

the right ventricle and ending at the left atrium. This was achieved by extending the

structured-tree models (Clipp & Steele, 2009; Olufsen et al., 2000, 2012) developed for

simulation within arterial networks to include confluent venous networks. To do so, a set of

matching boundary conditions was developed that relates the pressure and outflow from

large arteries with the pressure and inflow into large veins. These are obtained by replacing

the input impedance (Z) at the root of a structured tree by an admittance (a 2 × 2 matrix Y)

that links the two root vessels. Parameters for the pulmonary arteries are similar to those in

Olufsen et al. (2012) and Vaughan (2010), except that the compliance parameter has been
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modified to improve pressure predictions. Finally, in order to understand the

haemodynamics of the small blood vessels and the contribution of pulmonary venules

towards total vascular resistance, the model was augmented to predict the mean pressure

drop across both arterial and venous vascular beds.

It is worth mentioning that the root impedance gives a measure of total resistance to pulsatile

flow in the vascular beds, which is analogous to the resistance in an electric circuit with

alternating current. On the other hand, for electrical circuits, the admittance is defined as the

inverse of impedance (Y ≡ Z−1) and therefore provides the measure of how easily the

current flows through the circuit. Although these analogies contribute in understanding the

blood flow through resistance vessels and their effects on overall haemodynamics, the actual

utility of admittance Y in this model is to enable us to relate the pressure and flow at the two

ends (proximal and distal) of the vessel (see equation (19)) in the periodic regime, and

consequently at both ends of the circulation (the arterial and venous sides). This approach

results into two convolution integrals describing the arterial-venous haemodynamic

matching in the time domain.

After developing a computational solver, we presented simulations predicting normal

pressure and flow dynamics for a healthy young male. These simulations give

physiologically accurate pressure waveforms, c.f. panels in column 1 of Figure 5 reporting

pressures ranging from 10–25 mmHg in the large proximal arteries. These values agree with

values reported by Fung (1996) (10–25 mmHg) and Hall (2011) (8–25 mmHg and pmean

=16 mmHg). Moreover, the physiological pressures in the MPA and RPA are also in close

agreement with values reported by Greenfield & Douglas (1963) (8.1–21 ± 3.2 mmHg in the

MPA) and Herve et al. (1989) (23.2±4.7–9.4±3.4 mmHg in the RPA). In addition,

comparison of the pressure profile in the MPA, panel 1 of Figure 5, with the pressure and

radius pulsation graph reported in Figure 2 in Greenfield & Douglas (1963) shows that the

shape of the pressure waves are similar. Both results include a pronounced dicrotic notch

and a steep pressure rise in systole. This is a major improvement from our previous model of

pulmonary arteries (Olufsen et al., 2012), which, using the same inflow boundary condition,

simulates a rather featureless pressure waveform at a significantly low pressure (2–14

mmHg) (Figure 7a in Olufsen et al. (2012)).

An increase in pressure is quite visible in distal MPA and LPA, which suggest that vessel

tapering plays a role despite the fact that pulmonary vessels are more compliant and shorter

compared to their systemic counterparts. In the case of LPA, we observe limited effects of

wave propagation because the LPA is short (2.5 cm). Also, since tapering is minimal and no

side branches are included within these three vessels, the flow does not vary significantly

among the three locations within each vessel. However, a significantly greater flow enters

the LPA compared to the RPA, because the diameter of the LPA in this subject is

significantly larger than the RPA (1.8 vs. 2.2 cm). Similarly, the flow through the LIV is

much larger than through the other veins, since the LIV is connected to the LIA, which has a

large distal diameter (1.8 cm), and since the way in which we have constructed the

structured-tree model for the vascular beds requires the distal diameters of pairs of large

arteries and veins to be the same. The geometry may also explain different oscillatory

pressure behaviour observed in this vessel.
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As suggested by Gao & Raj (2005), mean-pressure predictions along pulmonary arteries and

veins can be used to study the contribution of the small pulmonary veins toward the total

peripheral resistance and haemodynamic regulation. Not only does the blood pressure

continue to drop across the convergent tree of small veins (Figure 6), but the decrease is

slightly greater across the venous tree compared to the arterial tree (8 vs. 7 mmHg). Since

both trees are topologically equivalent and mirror images with same number of vessels in

each tree, it is the different length-to-radius ratios that are responsible for this difference.

There is close agreement with results reported by Zhuang et al. (1983), who studied the

haemodynamics of cat pulmonary vessels and reported that veins contribute approximately

49% of the total pulmonary vascular resistance.

In order to analyse the clinical applications of our model, we extended our model to simulate

three cases of pulmonary hypertension including PAH, HLD, and CTEPH. In PAH the

dicrotic notch tends to disappear and the peak and pulse pressures increase with the severity

of the condition. These qualitative observations agree with observations by Lankhaar et al.

(2006) who compared a control group with data from patients with idiopathic pulmonary

hypertension. Similarly the increase in pressure and the appearance of a second peak under

CTEPH also agrees with Lankhar et al.’s observations from patients with chronic

thromboembolic pulmonary hypertension, although the observed increase in peak pressure

for the two conditions is much greater than our predictions. However, when we

simultaneously increase both the small and large vessel stiffnesses, the observations are then

in line with those of Lankhaar et al. While pressure profiles are modulated by disease,

predicted flows in the MPA show negligible effects under disease conditions, unlike results

reported by Lankhaar et al., where a significant retrograde flow is observed at the end of

systole. This is because the flow profile obtained by MRI measurements from a healthy

young subject is imposed even for simulations set up to predict the effect of disease. This is

done since no measurements were available for the disease conditions. Maintaining a

healthy flow at the system inlet forces the flow to be normal, especially in the proximal

locations such as the MPA.

The maximum change in pressure is observed under HLD where pressure increases rapidly

with increasing rarefaction of the vascular beds. The pulmonary circulation is normally

characterised by negative or open-end type wave reflections (Hollander et al., 2001) which

reduce the right ventricular afterload. In the case of HLD, however, the observed increase in

a rather featureless pressure waveform suggests that within rarefied vascular beds positive or

closed-end reflections develop, amplifying the incident pressure waves and thereby

increasing the right ventricular afterload. This hypothesis needs more investigation, but it

does indicate that smaller vessels are the site of disease pathophysiology and play important

role in improving or worsening the disease condition. HLD significantly raises the mean

pressure in the vascular beds, especially in the arteries, enhancing the risk of further small

vessel pathology.

5 Future developments

In the discussion section we have already highlighted one of the study limitations of

imposing a healthy flow profile as inflow boundary condition for simulating the disease
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condition that prevents the flow to vary in pulmonary hypertension simulations. This aspect

should be addressed in future studies predicting dynamics under pathological conditions. In

addition, flow in the smallest arterioles and venules (specifically vessels with a radius less

than 50 µm), and in the capillaries found around the alveoli, is neglected; this is clearly a

topic that merits further investigation and refinement. Absent from our model too is a

detailed boundary condition describing the return flow of blood to the left atrium. The

contraction of the left atrium causes a biphasic flow profile in the large pulmonary veins,

which may propagate upstream. Improvement of this boundary condition could also improve

our ability to investigate effects of pulmonary venous hypertension, which is associated with

left heart condition that may develop due to mitral valve stenosis or congestive heart failure.

There is also a need to link this model with a right ventricle model, as remodelling of the

heart in disease is clearly linked to disease within the pulmonary circulation. Moreover, the

model developed here is only partially patient specific; we included geometric and flow

measurements for the pulmonary arteries, while data from the venous networks were

estimated from literature. The haemodynamics, especially the flow distribution, is dependent

on vascular dimensions and, with more complete data from a single subject, it will be

possible to obtain more detailed patient-specific results. Should future experiments indicate

significantly different values of the compliance between the pulmonary arteries and veins,

one could also adjust the compliance modulus, which here is assumed constant and the same

for the arterial and the venous trees. This can easily be incorporated by assigning different

values to Eh/r0 in (4) for the arteries and veins.

6 Conclusions

This mathematical and computational model of the pulmonary circulation employs an

elegant algorithm that, via calculation of vessel admittance, can be used for merging

dynamic predictions in networks containing both arterial and venous trees, a topic rarely

studied in the past. The results for the normal physiological case are in agreement with

reported pressure range and shape features observed under clinical conditions, and the model

provides an important new tool for investigating hypotheses associated with pulmonary

hypertension. Despite fixed inflow and boundary conditions, the current simulations set up

to predict pressure dynamics associated with PAH, HLD and CTEPH display pressure

increases and patterns which are in qualitative (changes in the wave shape and effects on

propagation) agreement with results reported in literature.

In conclusion, this is a promising model that can be developed further so that it can be

applied to a wide range of pulmonary diseases and used to understand the underlying

mechanisms of disease processes.
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Fig. 1.
Schematic of the pulmonary circulation model arranged in a sequence of larger arteries,

arterioles, venules and large veins. The large pulmonary arteries and veins are specified

explicitly, while the small vessels are represented by structured trees. The main pulmonary

artery (MPA) is the root vessel within the pulmonary arterial tree. A flow waveform

measured using MRI is specified at the inlet to this vessel. The MPA bifurcates into the right

(RPA) and left (LPA) pulmonary arteries. The RPA bifurcates into the right interlobular

artery (RIA) and the right trunk artery (RTA), and the LPA bifurcates into the left

interlobular artery (LIA) and left trunk artery (LTA). The RIA, RTA, LIA and LTA are the

terminal vessels of the large pulmonary arterial model, and it is to the outlet of these vessels

that the structured-tree matching conditions are applied to join the arterial and venous

systems. The outlet of the RIA is matched with the inlet of right inferior pulmonary vein

(RIV), the RTA with the right superior vein (LSV), the LIA with the left inferior vein (LIV),

and the LTA with the inlet of left superior vein (LSV). The pulmonary veins open into left

atrium in pairs draining blood from left and right lungs and therefore at the outlet of each

vein a constant pressure condition is applied. Continuous-pressure and flow-conservation

conditions are used at each bifurcating junction, marked by a ‘.’ for large arteries.
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Fig. 2.
Inflow profile for the main pulmonary artery. This profile was interpolated from MRI

measurements sampled at 45 points per period and averaged over 5 cardiac cycles.
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Fig. 3.
Linking an arterial tree with a venous tree. For each vessel in the arterial tree there is a

mirror vessel in the venous tree which may have different compliance and length-to-radius

ratio. The radii are defined as functions of root vessel radius via scaling factors α and β.

Starting from terminals of structured trees, both trees are connected by joining the pairs of

vessels in series and in parallel. Flows  and , denote qA (L) (flow at distal end of large

terminal arteries) and similarly qV (0) (flow at proximal end of large terminal veins),

respectively, and pressures  and , represent pA (L) and pV (0), respectively. The flows

are related to the pressures by a 2 × 2 admittance matrix Y (ω). Note that the labels of

branches are the ordered pairs, which refer to generation of vessel in the tree and are powers

of scaling factors α and β, i.e. the label (i, j) indicates that the radius of the vessel is .
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Fig. 4.
Relations between flow and pressure via admittance Y, Y‖ and Y⇔ for a single vessel (a),

vessels connected in parallel (b), and vessels connected in series (c). Q1 and Q2 are positive

when the flows are into the vessel.
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Fig. 5.
Predicted pressure (first two columns) and flow (last two columns) at three locations along

the large arteries (MPA, RPA, and LPA) and veins (RIV, RSV and LIV). For each vessel,

flow and pressure are evaluated at the vessel inlet (solid blue), at the midpoint (dashed

magenta), and at the end (solid cyan).
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Fig. 6.
Pressure profiles in a typical vascular bed. The first two graphs give pressures at the roots of

the vascular bed connecting the RIA and RIV. The last graph shows mean pressure changes

along the α and β pathways, together with the mean over all vessels of the same radius. The

mean (time-averaged) pressure is plotted against vessel radius on a linear-log scale. The

pressure drop across the α branch is marked by a dashed red line, the β branch pressure drop

is marked by a dashed-dot magenta line, and across all the branches of the same radius by a

solid blue line.
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Fig. 7.
Effect of hypertension on pressure and flow at midpoints of the MPA and RSV. The first

two columns show pressure and flow waveforms. The third column gives peak (solid blue),

mean (dashed magenta), MPA pulse (dashed-dot red) and trough (solid cyan) pressures.
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Fig. 8.
Effects of pulmonary hypertension associated with hypoxic lung disease on mean pressure

in vessels connecting the RIA with the RIV. Mean pressure is plotted against vessel radius

on a linear log scale. The curves correspond to a reduction in vascular density: normal (solid

blue), 10% decrease (dashed dot red), 20% decrease (solid cyan) and 30% decrease (dashed

magenta). The first column shows the pressure averaged over all vessels of the same radius,

the α branch is plotted in the second column, and the β branch in third column. The

pressures at the the roots of the RIA and RIV (solid blue) in the case of HLD, c.f. Figure

7(b), are imposed as boundary conditions.
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Table 1

Dimensions of the large pulmonary vessels including the main pulmonary artery (MPA), the right (RPA) and

left (LPA) pulmonary arteries, the right (RIA) and left (LIA) interlobular arteries, the right (RTA) and left

(LTA) trunk arteries, the right (RSV) and left (LSV) superior veins, and the right (RIV) and left (LIV) inferior

veins. For each vessel, the proximal and distal diameters are given together with the vessel lengths. For both

arteries and veins, proximal and distal refer to vessel entry close to and away from heart. The measurement

resolution for all diameters is 1 mm, and all vessel lengths are rounded to the nearest 2.5mm to match the

spatial resolution used in numerical computations. The RTA and LTA were too short to obtain both inlet and

outlet diameters, thus these vessels were assumed not to taper and their lengths were estimated from literature.

No. Name Prox. diam.
(cm)

Dist. diam.
(cm)

Length
(cm)

1 MPA 2.7 2.6 4.50

2 RPA 1.8 1.2 5.75

3 LPA 2.2 2.2 2.50

4 RIA 1.1 1.1 1.25

5 RTA 0.9 0.9 1.00

6 LIA 2.1 1.8 2.25

7 LTA 1.2 1.2 1.00

8 RIV 1.2 1.1 1.25

9 RSV 1.0 0.9 1.50

10 LIV 1.9 1.8 2.25

11 LSV 1.3 1.2 2.00
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Table 2

The effects of changing radius exponent ξ on the vascular density within the vascular beds. The deviation in

the total number of small vessels from normal values is presented for the arterial structured tree connected to

the RIA. The minus sign indicates a reduction in density while a plus indicates an increase.

ξ # of vessels ×105 % change

2.40 4.6 −27

2.50 5.1 −20

2.60 5.6 −12

2.76 6.3 0

2.90 7.1 +12

3.00 7.7 +22
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